1 // SPDX-License-Identifier: GPL-2.0
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 * This driver uses the sungem driver (c) David Miller
21 * (davem@redhat.com) as its basis.
23 * The cassini chip has a number of features that distinguish it from
25 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
26 * load balancing (non-VLAN mode)
27 * batching of multiple packets
28 * multiple CPU dispatching
29 * page-based RX descriptor engine with separate completion rings
30 * Gigabit support (GMII and PCS interface)
31 * MIF link up/down detection works
33 * RX is handled by page sized buffers that are attached as fragments to
34 * the skb. here's what's done:
35 * -- driver allocates pages at a time and keeps reference counts
37 * -- the upper protocol layers assume that the header is in the skb
38 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * -- driver appends the rest of the data pages as frags to skbuffs
41 * and increments the reference count
42 * -- on page reclamation, the driver swaps the page with a spare page.
43 * if that page is still in use, it frees its reference to that page,
44 * and allocates a new page for use. otherwise, it just recycles the
47 * NOTE: cassini can parse the header. however, it's not worth it
48 * as long as the network stack requires a header copy.
50 * TX has 4 queues. currently these queues are used in a round-robin
51 * fashion for load balancing. They can also be used for QoS. for that
52 * to work, however, QoS information needs to be exposed down to the driver
53 * level so that subqueues get targeted to particular transmit rings.
54 * alternatively, the queues can be configured via use of the all-purpose
57 * RX DATA: the rx completion ring has all the info, but the rx desc
58 * ring has all of the data. RX can conceivably come in under multiple
59 * interrupts, but the INT# assignment needs to be set up properly by
60 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
61 * that. also, the two descriptor rings are designed to distinguish between
62 * encrypted and non-encrypted packets, but we use them for buffering
65 * by default, the selective clear mask is set up to process rx packets.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/interrupt.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <linux/atomic.h>
102 #include <asm/byteorder.h>
103 #include <linux/uaccess.h>
105 #define cas_page_map(x) kmap_atomic((x))
106 #define cas_page_unmap(x) kunmap_atomic((x))
107 #define CAS_NCPUS num_online_cpus()
109 #define cas_skb_release(x) netif_rx(x)
111 /* select which firmware to use */
112 #define USE_HP_WORKAROUND
113 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
114 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
118 #define USE_TX_COMPWB /* use completion writeback registers */
119 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
120 #define USE_RX_BLANK /* hw interrupt mitigation */
121 #undef USE_ENTROPY_DEV /* don't test for entropy device */
123 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
124 * also, we need to make cp->lock finer-grained.
131 #undef USE_VPD_DEBUG /* debug vpd information if defined */
133 /* rx processing options */
134 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
135 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
136 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
137 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
138 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
140 #define DRV_MODULE_NAME "cassini"
141 #define DRV_MODULE_VERSION "1.6"
142 #define DRV_MODULE_RELDATE "21 May 2008"
144 #define CAS_DEF_MSG_ENABLE \
154 /* length of time before we decide the hardware is borked,
155 * and dev->tx_timeout() should be called to fix the problem
157 #define CAS_TX_TIMEOUT (HZ)
158 #define CAS_LINK_TIMEOUT (22*HZ/10)
159 #define CAS_LINK_FAST_TIMEOUT (1)
161 /* timeout values for state changing. these specify the number
162 * of 10us delays to be used before giving up.
164 #define STOP_TRIES_PHY 1000
165 #define STOP_TRIES 5000
167 /* specify a minimum frame size to deal with some fifo issues
168 * max mtu == 2 * page size - ethernet header - 64 - swivel =
169 * 2 * page_size - 0x50
171 #define CAS_MIN_FRAME 97
172 #define CAS_1000MB_MIN_FRAME 255
173 #define CAS_MIN_MTU 60
174 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
178 * Eliminate these and use separate atomic counters for each, to
179 * avoid a race condition.
182 #define CAS_RESET_MTU 1
183 #define CAS_RESET_ALL 2
184 #define CAS_RESET_SPARE 3
187 static char version
[] =
188 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
190 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
191 static int link_mode
;
193 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
194 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
195 MODULE_LICENSE("GPL");
196 MODULE_FIRMWARE("sun/cassini.bin");
197 module_param(cassini_debug
, int, 0);
198 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
199 module_param(link_mode
, int, 0);
200 MODULE_PARM_DESC(link_mode
, "default link mode");
203 * Work around for a PCS bug in which the link goes down due to the chip
204 * being confused and never showing a link status of "up."
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 * Value in seconds, for user input.
210 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
211 module_param(linkdown_timeout
, int, 0);
212 MODULE_PARM_DESC(linkdown_timeout
,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216 * value in 'ticks' (units used by jiffies). Set when we init the
217 * module because 'HZ' in actually a function call on some flavors of
218 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220 static int link_transition_timeout
;
224 static u16 link_modes
[] = {
225 BMCR_ANENABLE
, /* 0 : autoneg */
226 0, /* 1 : 10bt half duplex */
227 BMCR_SPEED100
, /* 2 : 100bt half duplex */
228 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
229 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
230 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
233 static const struct pci_device_id cas_pci_tbl
[] = {
234 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
235 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
236 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
237 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
241 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
243 static void cas_set_link_modes(struct cas
*cp
);
245 static inline void cas_lock_tx(struct cas
*cp
)
249 for (i
= 0; i
< N_TX_RINGS
; i
++)
250 spin_lock_nested(&cp
->tx_lock
[i
], i
);
253 static inline void cas_lock_all(struct cas
*cp
)
255 spin_lock_irq(&cp
->lock
);
259 /* WTZ: QA was finding deadlock problems with the previous
260 * versions after long test runs with multiple cards per machine.
261 * See if replacing cas_lock_all with safer versions helps. The
262 * symptoms QA is reporting match those we'd expect if interrupts
263 * aren't being properly restored, and we fixed a previous deadlock
264 * with similar symptoms by using save/restore versions in other
267 #define cas_lock_all_save(cp, flags) \
269 struct cas *xxxcp = (cp); \
270 spin_lock_irqsave(&xxxcp->lock, flags); \
271 cas_lock_tx(xxxcp); \
274 static inline void cas_unlock_tx(struct cas
*cp
)
278 for (i
= N_TX_RINGS
; i
> 0; i
--)
279 spin_unlock(&cp
->tx_lock
[i
- 1]);
282 static inline void cas_unlock_all(struct cas
*cp
)
285 spin_unlock_irq(&cp
->lock
);
288 #define cas_unlock_all_restore(cp, flags) \
290 struct cas *xxxcp = (cp); \
291 cas_unlock_tx(xxxcp); \
292 spin_unlock_irqrestore(&xxxcp->lock, flags); \
295 static void cas_disable_irq(struct cas
*cp
, const int ring
)
297 /* Make sure we won't get any more interrupts */
299 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
303 /* disable completion interrupts and selectively mask */
304 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
306 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
316 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
317 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
321 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
322 REG_PLUS_INTRN_MASK(ring
));
328 static inline void cas_mask_intr(struct cas
*cp
)
332 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
333 cas_disable_irq(cp
, i
);
336 static void cas_enable_irq(struct cas
*cp
, const int ring
)
338 if (ring
== 0) { /* all but TX_DONE */
339 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
343 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
345 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
355 writel(INTRN_MASK_RX_EN
, cp
->regs
+
356 REG_PLUS_INTRN_MASK(ring
));
365 static inline void cas_unmask_intr(struct cas
*cp
)
369 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
370 cas_enable_irq(cp
, i
);
373 static inline void cas_entropy_gather(struct cas
*cp
)
375 #ifdef USE_ENTROPY_DEV
376 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
379 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
380 readl(cp
->regs
+ REG_ENTROPY_IV
),
385 static inline void cas_entropy_reset(struct cas
*cp
)
387 #ifdef USE_ENTROPY_DEV
388 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
391 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
392 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
393 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
394 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
396 /* if we read back 0x0, we don't have an entropy device */
397 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
398 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
402 /* access to the phy. the following assumes that we've initialized the MIF to
403 * be in frame rather than bit-bang mode
405 static u16
cas_phy_read(struct cas
*cp
, int reg
)
408 int limit
= STOP_TRIES_PHY
;
410 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
411 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
412 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
413 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
414 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
416 /* poll for completion */
417 while (limit
-- > 0) {
419 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
420 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
421 return cmd
& MIF_FRAME_DATA_MASK
;
423 return 0xFFFF; /* -1 */
426 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
428 int limit
= STOP_TRIES_PHY
;
431 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
432 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
433 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
434 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
435 cmd
|= val
& MIF_FRAME_DATA_MASK
;
436 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
438 /* poll for completion */
439 while (limit
-- > 0) {
441 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
442 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
448 static void cas_phy_powerup(struct cas
*cp
)
450 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
452 if ((ctl
& BMCR_PDOWN
) == 0)
455 cas_phy_write(cp
, MII_BMCR
, ctl
);
458 static void cas_phy_powerdown(struct cas
*cp
)
460 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
462 if (ctl
& BMCR_PDOWN
)
465 cas_phy_write(cp
, MII_BMCR
, ctl
);
468 /* cp->lock held. note: the last put_page will free the buffer */
469 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
471 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
473 __free_pages(page
->buffer
, cp
->page_order
);
478 #ifdef RX_COUNT_BUFFERS
479 #define RX_USED_ADD(x, y) ((x)->used += (y))
480 #define RX_USED_SET(x, y) ((x)->used = (y))
482 #define RX_USED_ADD(x, y)
483 #define RX_USED_SET(x, y)
486 /* local page allocation routines for the receive buffers. jumbo pages
487 * require at least 8K contiguous and 8K aligned buffers.
489 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
493 page
= kmalloc(sizeof(cas_page_t
), flags
);
497 INIT_LIST_HEAD(&page
->list
);
498 RX_USED_SET(page
, 0);
499 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
502 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
503 cp
->page_size
, PCI_DMA_FROMDEVICE
);
511 /* initialize spare pool of rx buffers, but allocate during the open */
512 static void cas_spare_init(struct cas
*cp
)
514 spin_lock(&cp
->rx_inuse_lock
);
515 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
516 spin_unlock(&cp
->rx_inuse_lock
);
518 spin_lock(&cp
->rx_spare_lock
);
519 INIT_LIST_HEAD(&cp
->rx_spare_list
);
520 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
521 spin_unlock(&cp
->rx_spare_lock
);
524 /* used on close. free all the spare buffers. */
525 static void cas_spare_free(struct cas
*cp
)
527 struct list_head list
, *elem
, *tmp
;
529 /* free spare buffers */
530 INIT_LIST_HEAD(&list
);
531 spin_lock(&cp
->rx_spare_lock
);
532 list_splice_init(&cp
->rx_spare_list
, &list
);
533 spin_unlock(&cp
->rx_spare_lock
);
534 list_for_each_safe(elem
, tmp
, &list
) {
535 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
538 INIT_LIST_HEAD(&list
);
541 * Looks like Adrian had protected this with a different
542 * lock than used everywhere else to manipulate this list.
544 spin_lock(&cp
->rx_inuse_lock
);
545 list_splice_init(&cp
->rx_inuse_list
, &list
);
546 spin_unlock(&cp
->rx_inuse_lock
);
548 spin_lock(&cp
->rx_spare_lock
);
549 list_splice_init(&cp
->rx_inuse_list
, &list
);
550 spin_unlock(&cp
->rx_spare_lock
);
552 list_for_each_safe(elem
, tmp
, &list
) {
553 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
557 /* replenish spares if needed */
558 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
560 struct list_head list
, *elem
, *tmp
;
563 /* check inuse list. if we don't need any more free buffers,
567 /* make a local copy of the list */
568 INIT_LIST_HEAD(&list
);
569 spin_lock(&cp
->rx_inuse_lock
);
570 list_splice_init(&cp
->rx_inuse_list
, &list
);
571 spin_unlock(&cp
->rx_inuse_lock
);
573 list_for_each_safe(elem
, tmp
, &list
) {
574 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
577 * With the lockless pagecache, cassini buffering scheme gets
578 * slightly less accurate: we might find that a page has an
579 * elevated reference count here, due to a speculative ref,
580 * and skip it as in-use. Ideally we would be able to reclaim
581 * it. However this would be such a rare case, it doesn't
582 * matter too much as we should pick it up the next time round.
584 * Importantly, if we find that the page has a refcount of 1
585 * here (our refcount), then we know it is definitely not inuse
586 * so we can reuse it.
588 if (page_count(page
->buffer
) > 1)
592 spin_lock(&cp
->rx_spare_lock
);
593 if (cp
->rx_spares_needed
> 0) {
594 list_add(elem
, &cp
->rx_spare_list
);
595 cp
->rx_spares_needed
--;
596 spin_unlock(&cp
->rx_spare_lock
);
598 spin_unlock(&cp
->rx_spare_lock
);
599 cas_page_free(cp
, page
);
603 /* put any inuse buffers back on the list */
604 if (!list_empty(&list
)) {
605 spin_lock(&cp
->rx_inuse_lock
);
606 list_splice(&list
, &cp
->rx_inuse_list
);
607 spin_unlock(&cp
->rx_inuse_lock
);
610 spin_lock(&cp
->rx_spare_lock
);
611 needed
= cp
->rx_spares_needed
;
612 spin_unlock(&cp
->rx_spare_lock
);
616 /* we still need spares, so try to allocate some */
617 INIT_LIST_HEAD(&list
);
620 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
623 list_add(&spare
->list
, &list
);
627 spin_lock(&cp
->rx_spare_lock
);
628 list_splice(&list
, &cp
->rx_spare_list
);
629 cp
->rx_spares_needed
-= i
;
630 spin_unlock(&cp
->rx_spare_lock
);
633 /* pull a page from the list. */
634 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
636 struct list_head
*entry
;
639 spin_lock(&cp
->rx_spare_lock
);
640 if (list_empty(&cp
->rx_spare_list
)) {
641 /* try to do a quick recovery */
642 spin_unlock(&cp
->rx_spare_lock
);
643 cas_spare_recover(cp
, GFP_ATOMIC
);
644 spin_lock(&cp
->rx_spare_lock
);
645 if (list_empty(&cp
->rx_spare_list
)) {
646 netif_err(cp
, rx_err
, cp
->dev
,
647 "no spare buffers available\n");
648 spin_unlock(&cp
->rx_spare_lock
);
653 entry
= cp
->rx_spare_list
.next
;
655 recover
= ++cp
->rx_spares_needed
;
656 spin_unlock(&cp
->rx_spare_lock
);
658 /* trigger the timer to do the recovery */
659 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
661 atomic_inc(&cp
->reset_task_pending
);
662 atomic_inc(&cp
->reset_task_pending_spare
);
663 schedule_work(&cp
->reset_task
);
665 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
666 schedule_work(&cp
->reset_task
);
669 return list_entry(entry
, cas_page_t
, list
);
673 static void cas_mif_poll(struct cas
*cp
, const int enable
)
677 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
678 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
680 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
681 cfg
|= MIF_CFG_PHY_SELECT
;
683 /* poll and interrupt on link status change. */
685 cfg
|= MIF_CFG_POLL_EN
;
686 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
687 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
689 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
690 cp
->regs
+ REG_MIF_MASK
);
691 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
694 /* Must be invoked under cp->lock */
695 static void cas_begin_auto_negotiation(struct cas
*cp
,
696 const struct ethtool_link_ksettings
*ep
)
702 int oldstate
= cp
->lstate
;
703 int link_was_not_down
= !(oldstate
== link_down
);
705 /* Setup link parameters */
708 lcntl
= cp
->link_cntl
;
709 if (ep
->base
.autoneg
== AUTONEG_ENABLE
) {
710 cp
->link_cntl
= BMCR_ANENABLE
;
712 u32 speed
= ep
->base
.speed
;
714 if (speed
== SPEED_100
)
715 cp
->link_cntl
|= BMCR_SPEED100
;
716 else if (speed
== SPEED_1000
)
717 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
718 if (ep
->base
.duplex
== DUPLEX_FULL
)
719 cp
->link_cntl
|= BMCR_FULLDPLX
;
722 changed
= (lcntl
!= cp
->link_cntl
);
725 if (cp
->lstate
== link_up
) {
726 netdev_info(cp
->dev
, "PCS link down\n");
729 netdev_info(cp
->dev
, "link configuration changed\n");
732 cp
->lstate
= link_down
;
733 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate
== link_up
)
743 netif_carrier_off(cp
->dev
);
744 if (changed
&& link_was_not_down
) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp
->reset_task_pending
);
751 atomic_inc(&cp
->reset_task_pending_all
);
752 schedule_work(&cp
->reset_task
);
754 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
758 if (cp
->phy_type
& CAS_PHY_SERDES
) {
759 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
761 if (cp
->link_cntl
& BMCR_ANENABLE
) {
762 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
763 cp
->lstate
= link_aneg
;
765 if (cp
->link_cntl
& BMCR_FULLDPLX
)
766 val
|= PCS_MII_CTRL_DUPLEX
;
767 val
&= ~PCS_MII_AUTONEG_EN
;
768 cp
->lstate
= link_force_ok
;
770 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
771 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
775 ctl
= cas_phy_read(cp
, MII_BMCR
);
776 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
777 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
778 ctl
|= cp
->link_cntl
;
779 if (ctl
& BMCR_ANENABLE
) {
780 ctl
|= BMCR_ANRESTART
;
781 cp
->lstate
= link_aneg
;
783 cp
->lstate
= link_force_ok
;
785 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
786 cas_phy_write(cp
, MII_BMCR
, ctl
);
791 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas
*cp
)
797 int limit
= STOP_TRIES_PHY
;
800 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
803 val
= cas_phy_read(cp
, MII_BMCR
);
804 if ((val
& BMCR_RESET
) == 0)
811 static void cas_saturn_firmware_init(struct cas
*cp
)
813 const struct firmware
*fw
;
814 const char fw_name
[] = "sun/cassini.bin";
817 if (PHY_NS_DP83065
!= cp
->phy_id
)
820 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
822 pr_err("Failed to load firmware \"%s\"\n",
827 pr_err("bogus length %zu in \"%s\"\n",
831 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
832 cp
->fw_size
= fw
->size
- 2;
833 cp
->fw_data
= vmalloc(cp
->fw_size
);
836 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
838 release_firmware(fw
);
841 static void cas_saturn_firmware_load(struct cas
*cp
)
848 cas_phy_powerdown(cp
);
850 /* expanded memory access mode */
851 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
853 /* pointer configuration for new firmware */
854 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
855 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
856 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
857 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
858 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
859 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
860 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
861 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
863 /* download new firmware */
864 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
865 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
866 for (i
= 0; i
< cp
->fw_size
; i
++)
867 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
869 /* enable firmware */
870 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
871 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
875 /* phy initialization */
876 static void cas_phy_init(struct cas
*cp
)
880 /* if we're in MII/GMII mode, set up phy */
881 if (CAS_PHY_MII(cp
->phy_type
)) {
882 writel(PCS_DATAPATH_MODE_MII
,
883 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
886 cas_reset_mii_phy(cp
); /* take out of isolate mode */
888 if (PHY_LUCENT_B0
== cp
->phy_id
) {
889 /* workaround link up/down issue with lucent */
890 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
891 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
892 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
894 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
895 /* workarounds for broadcom phy */
896 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
897 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
898 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
899 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
900 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
901 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
902 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
903 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
904 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
905 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
906 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
908 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
909 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
910 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
912 /* link workaround */
913 cas_phy_write(cp
, BROADCOM_MII_REG4
,
917 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
918 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
919 SATURN_PCFG_FSI
: 0x0,
920 cp
->regs
+ REG_SATURN_PCFG
);
922 /* load firmware to address 10Mbps auto-negotiation
923 * issue. NOTE: this will need to be changed if the
924 * default firmware gets fixed.
926 if (PHY_NS_DP83065
== cp
->phy_id
) {
927 cas_saturn_firmware_load(cp
);
932 /* advertise capabilities */
933 val
= cas_phy_read(cp
, MII_BMCR
);
934 val
&= ~BMCR_ANENABLE
;
935 cas_phy_write(cp
, MII_BMCR
, val
);
938 cas_phy_write(cp
, MII_ADVERTISE
,
939 cas_phy_read(cp
, MII_ADVERTISE
) |
940 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
941 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
942 CAS_ADVERTISE_PAUSE
|
943 CAS_ADVERTISE_ASYM_PAUSE
));
945 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
946 /* make sure that we don't advertise half
947 * duplex to avoid a chip issue
949 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
950 val
&= ~CAS_ADVERTISE_1000HALF
;
951 val
|= CAS_ADVERTISE_1000FULL
;
952 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
956 /* reset pcs for serdes */
960 writel(PCS_DATAPATH_MODE_SERDES
,
961 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
963 /* enable serdes pins on saturn */
964 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
965 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
967 /* Reset PCS unit. */
968 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
969 val
|= PCS_MII_RESET
;
970 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
973 while (--limit
> 0) {
975 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
980 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
981 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
983 /* Make sure PCS is disabled while changing advertisement
986 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
988 /* Advertise all capabilities except half-duplex. */
989 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
990 val
&= ~PCS_MII_ADVERT_HD
;
991 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
992 PCS_MII_ADVERT_ASYM_PAUSE
);
993 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
996 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
998 /* pcs workaround: enable sync detect */
999 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1000 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1005 static int cas_pcs_link_check(struct cas
*cp
)
1007 u32 stat
, state_machine
;
1010 /* The link status bit latches on zero, so you must
1011 * read it twice in such a case to see a transition
1012 * to the link being up.
1014 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1015 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1016 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1018 /* The remote-fault indication is only valid
1019 * when autoneg has completed.
1021 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1022 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1023 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1024 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1026 /* work around link detection issue by querying the PCS state
1029 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1030 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1031 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1032 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1033 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1036 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1037 if (cp
->lstate
!= link_up
) {
1039 cp
->lstate
= link_up
;
1040 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1042 cas_set_link_modes(cp
);
1043 netif_carrier_on(cp
->dev
);
1046 } else if (cp
->lstate
== link_up
) {
1047 cp
->lstate
= link_down
;
1048 if (link_transition_timeout
!= 0 &&
1049 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1050 !cp
->link_transition_jiffies_valid
) {
1052 * force a reset, as a workaround for the
1053 * link-failure problem. May want to move this to a
1054 * point a bit earlier in the sequence. If we had
1055 * generated a reset a short time ago, we'll wait for
1056 * the link timer to check the status until a
1057 * timer expires (link_transistion_jiffies_valid is
1058 * true when the timer is running.) Instead of using
1059 * a system timer, we just do a check whenever the
1060 * link timer is running - this clears the flag after
1064 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1065 cp
->link_transition_jiffies
= jiffies
;
1066 cp
->link_transition_jiffies_valid
= 1;
1068 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1070 netif_carrier_off(cp
->dev
);
1072 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1074 /* Cassini only: if you force a mode, there can be
1075 * sync problems on link down. to fix that, the following
1076 * things need to be checked:
1077 * 1) read serialink state register
1078 * 2) read pcs status register to verify link down.
1079 * 3) if link down and serial link == 0x03, then you need
1080 * to global reset the chip.
1082 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1083 /* should check to see if we're in a forced mode */
1084 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1088 } else if (cp
->lstate
== link_down
) {
1089 if (link_transition_timeout
!= 0 &&
1090 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1091 !cp
->link_transition_jiffies_valid
) {
1092 /* force a reset, as a workaround for the
1093 * link-failure problem. May want to move
1094 * this to a point a bit earlier in the
1098 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1099 cp
->link_transition_jiffies
= jiffies
;
1100 cp
->link_transition_jiffies_valid
= 1;
1102 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1109 static int cas_pcs_interrupt(struct net_device
*dev
,
1110 struct cas
*cp
, u32 status
)
1112 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1114 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1116 return cas_pcs_link_check(cp
);
1119 static int cas_txmac_interrupt(struct net_device
*dev
,
1120 struct cas
*cp
, u32 status
)
1122 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1127 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1128 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1130 /* Defer timer expiration is quite normal,
1131 * don't even log the event.
1133 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1134 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1137 spin_lock(&cp
->stat_lock
[0]);
1138 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1139 netdev_err(dev
, "TX MAC xmit underrun\n");
1140 cp
->net_stats
[0].tx_fifo_errors
++;
1143 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1144 netdev_err(dev
, "TX MAC max packet size error\n");
1145 cp
->net_stats
[0].tx_errors
++;
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1151 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1152 cp
->net_stats
[0].collisions
+= 0x10000;
1154 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1155 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1156 cp
->net_stats
[0].collisions
+= 0x10000;
1159 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1160 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1161 cp
->net_stats
[0].collisions
+= 0x10000;
1163 spin_unlock(&cp
->stat_lock
[0]);
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1171 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1173 cas_hp_inst_t
*inst
;
1178 while ((inst
= firmware
) && inst
->note
) {
1179 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1181 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1182 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1183 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1185 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1186 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1187 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1188 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1190 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1191 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1192 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1194 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1195 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1196 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1197 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1198 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1204 static void cas_init_rx_dma(struct cas
*cp
)
1206 u64 desc_dma
= cp
->block_dvma
;
1210 /* rx free descriptors */
1211 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1212 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1213 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS
> 1) &&
1215 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1216 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1217 writel(val
, cp
->regs
+ REG_RX_CFG
);
1219 val
= (unsigned long) cp
->init_rxds
[0] -
1220 (unsigned long) cp
->init_block
;
1221 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1222 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1225 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1229 val
= (unsigned long) cp
->init_rxds
[1] -
1230 (unsigned long) cp
->init_block
;
1231 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1232 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1233 REG_PLUS_RX_DB1_LOW
);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1238 /* rx completion registers */
1239 val
= (unsigned long) cp
->init_rxcs
[0] -
1240 (unsigned long) cp
->init_block
;
1241 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1242 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1244 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1246 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1247 val
= (unsigned long) cp
->init_rxcs
[i
] -
1248 (unsigned long) cp
->init_block
;
1249 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1250 REG_PLUS_RX_CBN_HI(i
));
1251 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1252 REG_PLUS_RX_CBN_LOW(i
));
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1260 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1261 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1262 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1263 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1264 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS
> 1)
1268 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1269 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1271 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1272 writel(INTR_RX_DONE_ALT
,
1273 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1276 /* set up pause thresholds */
1277 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1278 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1279 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1280 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1281 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1283 /* zero out dma reassembly buffers */
1284 for (i
= 0; i
< 64; i
++) {
1285 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1286 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1287 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1288 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1293 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1295 /* interrupt mitigation */
1297 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1298 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1299 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1301 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1311 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1312 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1313 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1314 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1320 writel(0x0, cp
->regs
+ REG_RX_RED
);
1322 /* receive page sizes. default == 2K (0x800) */
1324 if (cp
->page_size
== 0x1000)
1326 else if (cp
->page_size
== 0x2000)
1328 else if (cp
->page_size
== 0x4000)
1331 /* round mtu + offset. constrain to page size. */
1332 size
= cp
->dev
->mtu
+ 64;
1333 if (size
> cp
->page_size
)
1334 size
= cp
->page_size
;
1338 else if (size
<= 0x800)
1340 else if (size
<= 0x1000)
1345 cp
->mtu_stride
= 1 << (i
+ 10);
1346 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1347 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1348 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1349 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1350 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1356 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1357 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1358 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1359 writel(val
, cp
->regs
+ REG_HP_CFG
);
1362 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1364 memset(rxc
, 0, sizeof(*rxc
));
1365 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1372 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1374 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1377 if (page_count(page
->buffer
) == 1)
1380 new = cas_page_dequeue(cp
);
1382 spin_lock(&cp
->rx_inuse_lock
);
1383 list_add(&page
->list
, &cp
->rx_inuse_list
);
1384 spin_unlock(&cp
->rx_inuse_lock
);
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1393 cas_page_t
**page0
= cp
->rx_pages
[0];
1394 cas_page_t
**page1
= cp
->rx_pages
[1];
1396 /* swap if buffer is in use */
1397 if (page_count(page0
[index
]->buffer
) > 1) {
1398 cas_page_t
*new = cas_page_spare(cp
, index
);
1400 page1
[index
] = page0
[index
];
1404 RX_USED_SET(page0
[index
], 0);
1405 return page0
[index
];
1408 static void cas_clean_rxds(struct cas
*cp
)
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1414 /* release all rx flows */
1415 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1416 struct sk_buff
*skb
;
1417 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1418 cas_skb_release(skb
);
1422 /* initialize descriptors */
1423 size
= RX_DESC_RINGN_SIZE(0);
1424 for (i
= 0; i
< size
; i
++) {
1425 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1426 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1427 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1428 CAS_BASE(RX_INDEX_RING
, 0));
1431 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1433 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1436 static void cas_clean_rxcs(struct cas
*cp
)
1440 /* take ownership of rx comp descriptors */
1441 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1442 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1443 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1444 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1445 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1446 cas_rxc_init(rxc
+ j
);
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1458 static int cas_rxmac_reset(struct cas
*cp
)
1460 struct net_device
*dev
= cp
->dev
;
1464 /* First, reset MAC RX. */
1465 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1466 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1467 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1471 if (limit
== STOP_TRIES
) {
1472 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1476 /* Second, disable RX DMA. */
1477 writel(0, cp
->regs
+ REG_RX_CFG
);
1478 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1479 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1483 if (limit
== STOP_TRIES
) {
1484 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1490 /* Execute RX reset command. */
1491 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1492 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1493 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1497 if (limit
== STOP_TRIES
) {
1498 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1502 /* reset driver rx state */
1506 /* Now, reprogram the rest of RX unit. */
1507 cas_init_rx_dma(cp
);
1510 val
= readl(cp
->regs
+ REG_RX_CFG
);
1511 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1512 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1513 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1514 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1519 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1522 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1527 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1529 /* these are all rollovers */
1530 spin_lock(&cp
->stat_lock
[0]);
1531 if (stat
& MAC_RX_ALIGN_ERR
)
1532 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1534 if (stat
& MAC_RX_CRC_ERR
)
1535 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1537 if (stat
& MAC_RX_LEN_ERR
)
1538 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1540 if (stat
& MAC_RX_OVERFLOW
) {
1541 cp
->net_stats
[0].rx_over_errors
++;
1542 cp
->net_stats
[0].rx_fifo_errors
++;
1545 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1548 spin_unlock(&cp
->stat_lock
[0]);
1552 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1555 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1560 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1561 "mac interrupt, stat: 0x%x\n", stat
);
1563 /* This interrupt is just for pause frame and pause
1564 * tracking. It is useful for diagnostics and debug
1565 * but probably by default we will mask these events.
1567 if (stat
& MAC_CTRL_PAUSE_STATE
)
1568 cp
->pause_entered
++;
1570 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1571 cp
->pause_last_time_recvd
= (stat
>> 16);
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1582 switch (cp
->lstate
) {
1583 case link_force_ret
:
1584 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1585 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1586 cp
->timer_ticks
= 5;
1587 cp
->lstate
= link_force_ok
;
1588 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1592 val
= cas_phy_read(cp
, MII_BMCR
);
1594 /* Try forced modes. we try things in the following order:
1595 * 1000 full -> 100 full/half -> 10 half
1597 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1598 val
|= BMCR_FULLDPLX
;
1599 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1600 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1601 cas_phy_write(cp
, MII_BMCR
, val
);
1602 cp
->timer_ticks
= 5;
1603 cp
->lstate
= link_force_try
;
1604 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1607 case link_force_try
:
1608 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609 val
= cas_phy_read(cp
, MII_BMCR
);
1610 cp
->timer_ticks
= 5;
1611 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1612 val
&= ~CAS_BMCR_SPEED1000
;
1613 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1614 cas_phy_write(cp
, MII_BMCR
, val
);
1618 if (val
& BMCR_SPEED100
) {
1619 if (val
& BMCR_FULLDPLX
) /* fd failed */
1620 val
&= ~BMCR_FULLDPLX
;
1621 else { /* 100Mbps failed */
1622 val
&= ~BMCR_SPEED100
;
1624 cas_phy_write(cp
, MII_BMCR
, val
);
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1639 if (bmsr
& BMSR_LSTATUS
) {
1640 /* Ok, here we got a link. If we had it due to a forced
1641 * fallback, and we were configured for autoneg, we
1642 * retry a short autoneg pass. If you know your hub is
1643 * broken, use ethtool ;)
1645 if ((cp
->lstate
== link_force_try
) &&
1646 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1647 cp
->lstate
= link_force_ret
;
1648 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1649 cas_mif_poll(cp
, 0);
1650 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1651 cp
->timer_ticks
= 5;
1653 netif_info(cp
, link
, cp
->dev
,
1654 "Got link after fallback, retrying autoneg once...\n");
1655 cas_phy_write(cp
, MII_BMCR
,
1656 cp
->link_fcntl
| BMCR_ANENABLE
|
1658 cas_mif_poll(cp
, 1);
1660 } else if (cp
->lstate
!= link_up
) {
1661 cp
->lstate
= link_up
;
1662 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1665 cas_set_link_modes(cp
);
1666 netif_carrier_on(cp
->dev
);
1672 /* link not up. if the link was previously up, we restart the
1676 if (cp
->lstate
== link_up
) {
1677 cp
->lstate
= link_down
;
1678 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1680 netif_carrier_off(cp
->dev
);
1682 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1685 } else if (++cp
->timer_ticks
> 10)
1686 cas_mdio_link_not_up(cp
);
1691 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1694 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1697 /* check for a link change */
1698 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1701 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1702 return cas_mii_link_check(cp
, bmsr
);
1705 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1708 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1713 netdev_err(dev
, "PCI error [%04x:%04x]",
1714 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1716 /* cassini+ has this reserved */
1717 if ((stat
& PCI_ERR_BADACK
) &&
1718 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1719 pr_cont(" <No ACK64# during ABS64 cycle>");
1721 if (stat
& PCI_ERR_DTRTO
)
1722 pr_cont(" <Delayed transaction timeout>");
1723 if (stat
& PCI_ERR_OTHER
)
1724 pr_cont(" <other>");
1725 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1726 pr_cont(" <BIM DMA 0 write req>");
1727 if (stat
& PCI_ERR_BIM_DMA_READ
)
1728 pr_cont(" <BIM DMA 0 read req>");
1731 if (stat
& PCI_ERR_OTHER
) {
1734 /* Interrogate PCI config space for the
1737 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1738 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1739 if (cfg
& PCI_STATUS_PARITY
)
1740 netdev_err(dev
, "PCI parity error detected\n");
1741 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1742 netdev_err(dev
, "PCI target abort\n");
1743 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1744 netdev_err(dev
, "PCI master acks target abort\n");
1745 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1746 netdev_err(dev
, "PCI master abort\n");
1747 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1748 netdev_err(dev
, "PCI system error SERR#\n");
1749 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1750 netdev_err(dev
, "PCI parity error\n");
1752 /* Write the error bits back to clear them. */
1753 cfg
&= (PCI_STATUS_PARITY
|
1754 PCI_STATUS_SIG_TARGET_ABORT
|
1755 PCI_STATUS_REC_TARGET_ABORT
|
1756 PCI_STATUS_REC_MASTER_ABORT
|
1757 PCI_STATUS_SIG_SYSTEM_ERROR
|
1758 PCI_STATUS_DETECTED_PARITY
);
1759 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1762 /* For all PCI errors, we should reset the chip. */
1766 /* All non-normal interrupt conditions get serviced here.
1767 * Returns non-zero if we should just exit the interrupt
1768 * handler right now (ie. if we reset the card which invalidates
1769 * all of the other original irq status bits).
1771 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1774 if (status
& INTR_RX_TAG_ERROR
) {
1775 /* corrupt RX tag framing */
1776 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1777 "corrupt rx tag framing\n");
1778 spin_lock(&cp
->stat_lock
[0]);
1779 cp
->net_stats
[0].rx_errors
++;
1780 spin_unlock(&cp
->stat_lock
[0]);
1784 if (status
& INTR_RX_LEN_MISMATCH
) {
1785 /* length mismatch. */
1786 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1787 "length mismatch for rx frame\n");
1788 spin_lock(&cp
->stat_lock
[0]);
1789 cp
->net_stats
[0].rx_errors
++;
1790 spin_unlock(&cp
->stat_lock
[0]);
1794 if (status
& INTR_PCS_STATUS
) {
1795 if (cas_pcs_interrupt(dev
, cp
, status
))
1799 if (status
& INTR_TX_MAC_STATUS
) {
1800 if (cas_txmac_interrupt(dev
, cp
, status
))
1804 if (status
& INTR_RX_MAC_STATUS
) {
1805 if (cas_rxmac_interrupt(dev
, cp
, status
))
1809 if (status
& INTR_MAC_CTRL_STATUS
) {
1810 if (cas_mac_interrupt(dev
, cp
, status
))
1814 if (status
& INTR_MIF_STATUS
) {
1815 if (cas_mif_interrupt(dev
, cp
, status
))
1819 if (status
& INTR_PCI_ERROR_STATUS
) {
1820 if (cas_pci_interrupt(dev
, cp
, status
))
1827 atomic_inc(&cp
->reset_task_pending
);
1828 atomic_inc(&cp
->reset_task_pending_all
);
1829 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1830 schedule_work(&cp
->reset_task
);
1832 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1833 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1834 schedule_work(&cp
->reset_task
);
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840 * determining whether to do a netif_stop/wakeup
1842 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1847 unsigned long off
= addr
+ len
;
1849 if (CAS_TABORT(cp
) == 1)
1851 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1853 return TX_TARGET_ABORT_LEN
;
1856 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1858 struct cas_tx_desc
*txds
;
1859 struct sk_buff
**skbs
;
1860 struct net_device
*dev
= cp
->dev
;
1863 spin_lock(&cp
->tx_lock
[ring
]);
1864 txds
= cp
->init_txds
[ring
];
1865 skbs
= cp
->tx_skbs
[ring
];
1866 entry
= cp
->tx_old
[ring
];
1868 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1869 while (entry
!= limit
) {
1870 struct sk_buff
*skb
= skbs
[entry
];
1876 /* this should never occur */
1877 entry
= TX_DESC_NEXT(ring
, entry
);
1881 /* however, we might get only a partial skb release. */
1882 count
-= skb_shinfo(skb
)->nr_frags
+
1883 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1887 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1888 "tx[%d] done, slot %d\n", ring
, entry
);
1891 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1893 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1894 struct cas_tx_desc
*txd
= txds
+ entry
;
1896 daddr
= le64_to_cpu(txd
->buffer
);
1897 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1898 le64_to_cpu(txd
->control
));
1899 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1901 entry
= TX_DESC_NEXT(ring
, entry
);
1903 /* tiny buffer may follow */
1904 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1905 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1906 entry
= TX_DESC_NEXT(ring
, entry
);
1910 spin_lock(&cp
->stat_lock
[ring
]);
1911 cp
->net_stats
[ring
].tx_packets
++;
1912 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1913 spin_unlock(&cp
->stat_lock
[ring
]);
1914 dev_kfree_skb_irq(skb
);
1916 cp
->tx_old
[ring
] = entry
;
1918 /* this is wrong for multiple tx rings. the net device needs
1919 * multiple queues for this to do the right thing. we wait
1920 * for 2*packets to be available when using tiny buffers
1922 if (netif_queue_stopped(dev
) &&
1923 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1924 netif_wake_queue(dev
);
1925 spin_unlock(&cp
->tx_lock
[ring
]);
1928 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1932 #ifdef USE_TX_COMPWB
1933 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1935 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1936 "tx interrupt, status: 0x%x, %llx\n",
1937 status
, (unsigned long long)compwb
);
1938 /* process all the rings */
1939 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1940 #ifdef USE_TX_COMPWB
1941 /* use the completion writeback registers */
1942 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1943 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1944 compwb
= TX_COMPWB_NEXT(compwb
);
1946 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1948 if (cp
->tx_old
[ring
] != limit
)
1949 cas_tx_ringN(cp
, ring
, limit
);
1954 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1955 int entry
, const u64
*words
,
1956 struct sk_buff
**skbref
)
1958 int dlen
, hlen
, len
, i
, alloclen
;
1959 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1960 struct cas_page
*page
;
1961 struct sk_buff
*skb
;
1962 void *addr
, *crcaddr
;
1966 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1967 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1970 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1973 alloclen
= max(hlen
, RX_COPY_MIN
);
1975 skb
= netdev_alloc_skb(cp
->dev
, alloclen
+ swivel
+ cp
->crc_size
);
1980 skb_reserve(skb
, swivel
);
1983 addr
= crcaddr
= NULL
;
1984 if (hlen
) { /* always copy header pages */
1985 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1986 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1987 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1991 if (!dlen
) /* attach FCS */
1993 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1994 PCI_DMA_FROMDEVICE
);
1995 addr
= cas_page_map(page
->buffer
);
1996 memcpy(p
, addr
+ off
, i
);
1997 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1998 PCI_DMA_FROMDEVICE
);
1999 cas_page_unmap(addr
);
2000 RX_USED_ADD(page
, 0x100);
2006 if (alloclen
< (hlen
+ dlen
)) {
2007 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2009 /* normal or jumbo packets. we use frags */
2010 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2011 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2012 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2014 hlen
= min(cp
->page_size
- off
, dlen
);
2016 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2017 "rx page overflow: %d\n", hlen
);
2018 dev_kfree_skb_irq(skb
);
2022 if (i
== dlen
) /* attach FCS */
2024 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2025 PCI_DMA_FROMDEVICE
);
2027 /* make sure we always copy a header */
2029 if (p
== (char *) skb
->data
) { /* not split */
2030 addr
= cas_page_map(page
->buffer
);
2031 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2032 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2033 PCI_DMA_FROMDEVICE
);
2034 cas_page_unmap(addr
);
2036 swivel
= RX_COPY_MIN
;
2037 RX_USED_ADD(page
, cp
->mtu_stride
);
2039 RX_USED_ADD(page
, hlen
);
2041 skb_put(skb
, alloclen
);
2043 skb_shinfo(skb
)->nr_frags
++;
2044 skb
->data_len
+= hlen
- swivel
;
2045 skb
->truesize
+= hlen
- swivel
;
2046 skb
->len
+= hlen
- swivel
;
2048 __skb_frag_set_page(frag
, page
->buffer
);
2049 __skb_frag_ref(frag
);
2050 frag
->page_offset
= off
;
2051 skb_frag_size_set(frag
, hlen
- swivel
);
2053 /* any more data? */
2054 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2058 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2059 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2060 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2061 hlen
+ cp
->crc_size
,
2062 PCI_DMA_FROMDEVICE
);
2063 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2064 hlen
+ cp
->crc_size
,
2065 PCI_DMA_FROMDEVICE
);
2067 skb_shinfo(skb
)->nr_frags
++;
2068 skb
->data_len
+= hlen
;
2072 __skb_frag_set_page(frag
, page
->buffer
);
2073 __skb_frag_ref(frag
);
2074 frag
->page_offset
= 0;
2075 skb_frag_size_set(frag
, hlen
);
2076 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2080 addr
= cas_page_map(page
->buffer
);
2081 crcaddr
= addr
+ off
+ hlen
;
2085 /* copying packet */
2089 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2090 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2091 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2092 hlen
= min(cp
->page_size
- off
, dlen
);
2094 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2095 "rx page overflow: %d\n", hlen
);
2096 dev_kfree_skb_irq(skb
);
2100 if (i
== dlen
) /* attach FCS */
2102 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2103 PCI_DMA_FROMDEVICE
);
2104 addr
= cas_page_map(page
->buffer
);
2105 memcpy(p
, addr
+ off
, i
);
2106 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2107 PCI_DMA_FROMDEVICE
);
2108 cas_page_unmap(addr
);
2109 if (p
== (char *) skb
->data
) /* not split */
2110 RX_USED_ADD(page
, cp
->mtu_stride
);
2112 RX_USED_ADD(page
, i
);
2114 /* any more data? */
2115 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2117 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2118 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2119 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2120 dlen
+ cp
->crc_size
,
2121 PCI_DMA_FROMDEVICE
);
2122 addr
= cas_page_map(page
->buffer
);
2123 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2124 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2125 dlen
+ cp
->crc_size
,
2126 PCI_DMA_FROMDEVICE
);
2127 cas_page_unmap(addr
);
2128 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2133 crcaddr
= skb
->data
+ alloclen
;
2135 skb_put(skb
, alloclen
);
2138 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2140 /* checksum includes FCS. strip it out. */
2141 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2142 csum_unfold(csum
)));
2144 cas_page_unmap(addr
);
2146 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2147 if (skb
->protocol
== htons(ETH_P_IP
)) {
2148 skb
->csum
= csum_unfold(~csum
);
2149 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2151 skb_checksum_none_assert(skb
);
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157 * as nonreassm except that we batch up the buffers.
2158 * NOTE: we currently just treat each flow as a bunch of packets that
2159 * we pass up. a better way would be to coalesce the packets
2160 * into a jumbo packet. to do that, we need to do the following:
2161 * 1) the first packet will have a clean split between header and
2163 * 2) each time the next flow packet comes in, extend the
2164 * data length and merge the checksums.
2165 * 3) on flow release, fix up the header.
2166 * 4) make sure the higher layer doesn't care.
2167 * because packets get coalesced, we shouldn't run into fragment count
2170 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2171 struct sk_buff
*skb
)
2173 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2174 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2176 /* this is protected at a higher layer, so no need to
2177 * do any additional locking here. stick the buffer
2180 __skb_queue_tail(flow
, skb
);
2181 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2182 while ((skb
= __skb_dequeue(flow
))) {
2183 cas_skb_release(skb
);
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189 * layer, this will need to put in a replacement.
2191 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2196 entry
= cp
->rx_old
[ring
];
2198 new = cas_page_swap(cp
, ring
, index
);
2199 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2200 cp
->init_rxds
[ring
][entry
].index
=
2201 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2202 CAS_BASE(RX_INDEX_RING
, ring
));
2204 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2205 cp
->rx_old
[ring
] = entry
;
2211 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2212 else if ((N_RX_DESC_RINGS
> 1) &&
2213 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2214 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2221 unsigned int entry
, last
, count
, released
;
2223 cas_page_t
**page
= cp
->rx_pages
[ring
];
2225 entry
= cp
->rx_old
[ring
];
2227 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2228 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2231 count
= entry
& 0x3;
2232 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2234 while (entry
!= last
) {
2235 /* make a new buffer if it's still in use */
2236 if (page_count(page
[entry
]->buffer
) > 1) {
2237 cas_page_t
*new = cas_page_dequeue(cp
);
2239 /* let the timer know that we need to
2242 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2243 if (!timer_pending(&cp
->link_timer
))
2244 mod_timer(&cp
->link_timer
, jiffies
+
2245 CAS_LINK_FAST_TIMEOUT
);
2246 cp
->rx_old
[ring
] = entry
;
2247 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2250 spin_lock(&cp
->rx_inuse_lock
);
2251 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2252 spin_unlock(&cp
->rx_inuse_lock
);
2253 cp
->init_rxds
[ring
][entry
].buffer
=
2254 cpu_to_le64(new->dma_addr
);
2264 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2266 cp
->rx_old
[ring
] = entry
;
2272 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2273 else if ((N_RX_DESC_RINGS
> 1) &&
2274 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2275 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2280 /* process a completion ring. packets are set up in three basic ways:
2281 * small packets: should be copied header + data in single buffer.
2282 * large packets: header and data in a single buffer.
2283 * split packets: header in a separate buffer from data.
2284 * data may be in multiple pages. data may be > 256
2285 * bytes but in a single page.
2287 * NOTE: RX page posting is done in this routine as well. while there's
2288 * the capability of using multiple RX completion rings, it isn't
2289 * really worthwhile due to the fact that the page posting will
2290 * force serialization on the single descriptor ring.
2292 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2294 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2298 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2299 "rx[%d] interrupt, done: %d/%d\n",
2301 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2303 entry
= cp
->rx_new
[ring
];
2306 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2307 struct sk_buff
*uninitialized_var(skb
);
2312 words
[0] = le64_to_cpu(rxc
->word1
);
2313 words
[1] = le64_to_cpu(rxc
->word2
);
2314 words
[2] = le64_to_cpu(rxc
->word3
);
2315 words
[3] = le64_to_cpu(rxc
->word4
);
2317 /* don't touch if still owned by hw */
2318 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2322 /* hw hasn't cleared the zero bit yet */
2323 if (words
[3] & RX_COMP4_ZERO
) {
2327 /* get info on the packet */
2328 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2329 spin_lock(&cp
->stat_lock
[ring
]);
2330 cp
->net_stats
[ring
].rx_errors
++;
2331 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2332 cp
->net_stats
[ring
].rx_length_errors
++;
2333 if (words
[3] & RX_COMP4_BAD
)
2334 cp
->net_stats
[ring
].rx_crc_errors
++;
2335 spin_unlock(&cp
->stat_lock
[ring
]);
2337 /* We'll just return it to Cassini. */
2339 spin_lock(&cp
->stat_lock
[ring
]);
2340 ++cp
->net_stats
[ring
].rx_dropped
;
2341 spin_unlock(&cp
->stat_lock
[ring
]);
2345 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2351 /* see if it's a flow re-assembly or not. the driver
2352 * itself handles release back up.
2354 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2355 /* non-reassm: these always get released */
2356 cas_skb_release(skb
);
2358 cas_rx_flow_pkt(cp
, words
, skb
);
2361 spin_lock(&cp
->stat_lock
[ring
]);
2362 cp
->net_stats
[ring
].rx_packets
++;
2363 cp
->net_stats
[ring
].rx_bytes
+= len
;
2364 spin_unlock(&cp
->stat_lock
[ring
]);
2369 /* should it be released? */
2370 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2371 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2372 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2373 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2374 cas_post_page(cp
, dring
, i
);
2377 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2378 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2379 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2380 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2381 cas_post_page(cp
, dring
, i
);
2384 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2385 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2386 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2387 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2388 cas_post_page(cp
, dring
, i
);
2391 /* skip to the next entry */
2392 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2393 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2395 if (budget
&& (npackets
>= budget
))
2399 cp
->rx_new
[ring
] = entry
;
2402 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2409 struct cas
*cp
, int ring
)
2411 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2414 last
= cp
->rx_cur
[ring
];
2415 entry
= cp
->rx_new
[ring
];
2416 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2417 "rxc[%d] interrupt, done: %d/%d\n",
2418 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2420 /* zero and re-mark descriptors */
2421 while (last
!= entry
) {
2422 cas_rxc_init(rxc
+ last
);
2423 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2425 cp
->rx_cur
[ring
] = last
;
2428 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2429 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2430 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436 * rings 3 and 4 are identical
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device
*dev
,
2440 struct cas
*cp
, const u32 status
,
2443 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2444 cas_post_rxcs_ringN(dev
, cp
, ring
);
2447 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2449 struct net_device
*dev
= dev_id
;
2450 struct cas
*cp
= netdev_priv(dev
);
2451 unsigned long flags
;
2452 int ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2453 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2455 /* check for shared irq */
2459 spin_lock_irqsave(&cp
->lock
, flags
);
2460 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2463 napi_schedule(&cp
->napi
);
2465 cas_rx_ringN(cp
, ring
, 0);
2467 status
&= ~INTR_RX_DONE_ALT
;
2471 cas_handle_irqN(dev
, cp
, status
, ring
);
2472 spin_unlock_irqrestore(&cp
->lock
, flags
);
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2481 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2482 /* Frame arrived, no free RX buffers available.
2483 * NOTE: we can get this on a link transition. */
2484 cas_post_rxds_ringN(cp
, 1, 0);
2485 spin_lock(&cp
->stat_lock
[1]);
2486 cp
->net_stats
[1].rx_dropped
++;
2487 spin_unlock(&cp
->stat_lock
[1]);
2490 if (status
& INTR_RX_BUF_AE_1
)
2491 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2492 RX_AE_FREEN_VAL(1));
2494 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2495 cas_post_rxcs_ringN(cp
, 1);
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2501 struct net_device
*dev
= dev_id
;
2502 struct cas
*cp
= netdev_priv(dev
);
2503 unsigned long flags
;
2504 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2506 /* check for shared interrupt */
2510 spin_lock_irqsave(&cp
->lock
, flags
);
2511 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2514 napi_schedule(&cp
->napi
);
2516 cas_rx_ringN(cp
, 1, 0);
2518 status
&= ~INTR_RX_DONE_ALT
;
2521 cas_handle_irq1(cp
, status
);
2522 spin_unlock_irqrestore(&cp
->lock
, flags
);
2527 static inline void cas_handle_irq(struct net_device
*dev
,
2528 struct cas
*cp
, const u32 status
)
2530 /* housekeeping interrupts */
2531 if (status
& INTR_ERROR_MASK
)
2532 cas_abnormal_irq(dev
, cp
, status
);
2534 if (status
& INTR_RX_BUF_UNAVAIL
) {
2535 /* Frame arrived, no free RX buffers available.
2536 * NOTE: we can get this on a link transition.
2538 cas_post_rxds_ringN(cp
, 0, 0);
2539 spin_lock(&cp
->stat_lock
[0]);
2540 cp
->net_stats
[0].rx_dropped
++;
2541 spin_unlock(&cp
->stat_lock
[0]);
2542 } else if (status
& INTR_RX_BUF_AE
) {
2543 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2544 RX_AE_FREEN_VAL(0));
2547 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2548 cas_post_rxcs_ringN(dev
, cp
, 0);
2551 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2553 struct net_device
*dev
= dev_id
;
2554 struct cas
*cp
= netdev_priv(dev
);
2555 unsigned long flags
;
2556 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2561 spin_lock_irqsave(&cp
->lock
, flags
);
2562 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2563 cas_tx(dev
, cp
, status
);
2564 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2567 if (status
& INTR_RX_DONE
) {
2570 napi_schedule(&cp
->napi
);
2572 cas_rx_ringN(cp
, 0, 0);
2574 status
&= ~INTR_RX_DONE
;
2578 cas_handle_irq(dev
, cp
, status
);
2579 spin_unlock_irqrestore(&cp
->lock
, flags
);
2585 static int cas_poll(struct napi_struct
*napi
, int budget
)
2587 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2588 struct net_device
*dev
= cp
->dev
;
2589 int i
, enable_intr
, credits
;
2590 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2591 unsigned long flags
;
2593 spin_lock_irqsave(&cp
->lock
, flags
);
2594 cas_tx(dev
, cp
, status
);
2595 spin_unlock_irqrestore(&cp
->lock
, flags
);
2597 /* NAPI rx packets. we spread the credits across all of the
2600 * to make sure we're fair with the work we loop through each
2601 * ring N_RX_COMP_RING times with a request of
2602 * budget / N_RX_COMP_RINGS
2606 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2608 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2609 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2610 if (credits
>= budget
) {
2618 /* final rx completion */
2619 spin_lock_irqsave(&cp
->lock
, flags
);
2621 cas_handle_irq(dev
, cp
, status
);
2624 if (N_RX_COMP_RINGS
> 1) {
2625 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2627 cas_handle_irq1(dev
, cp
, status
);
2632 if (N_RX_COMP_RINGS
> 2) {
2633 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2635 cas_handle_irqN(dev
, cp
, status
, 2);
2640 if (N_RX_COMP_RINGS
> 3) {
2641 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2643 cas_handle_irqN(dev
, cp
, status
, 3);
2646 spin_unlock_irqrestore(&cp
->lock
, flags
);
2648 napi_complete(napi
);
2649 cas_unmask_intr(cp
);
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device
*dev
)
2658 struct cas
*cp
= netdev_priv(dev
);
2660 cas_disable_irq(cp
, 0);
2661 cas_interrupt(cp
->pdev
->irq
, dev
);
2662 cas_enable_irq(cp
, 0);
2665 if (N_RX_COMP_RINGS
> 1) {
2666 /* cas_interrupt1(); */
2670 if (N_RX_COMP_RINGS
> 2) {
2671 /* cas_interruptN(); */
2675 if (N_RX_COMP_RINGS
> 3) {
2676 /* cas_interruptN(); */
2682 static void cas_tx_timeout(struct net_device
*dev
)
2684 struct cas
*cp
= netdev_priv(dev
);
2686 netdev_err(dev
, "transmit timed out, resetting\n");
2687 if (!cp
->hw_running
) {
2688 netdev_err(dev
, "hrm.. hw not running!\n");
2692 netdev_err(dev
, "MIF_STATE[%08x]\n",
2693 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2695 netdev_err(dev
, "MAC_STATE[%08x]\n",
2696 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2698 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699 readl(cp
->regs
+ REG_TX_CFG
),
2700 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2701 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2702 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2703 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2704 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2705 readl(cp
->regs
+ REG_TX_SM_1
),
2706 readl(cp
->regs
+ REG_TX_SM_2
));
2708 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2709 readl(cp
->regs
+ REG_RX_CFG
),
2710 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2711 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2713 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2715 readl(cp
->regs
+ REG_HP_STATUS0
),
2716 readl(cp
->regs
+ REG_HP_STATUS1
),
2717 readl(cp
->regs
+ REG_HP_STATUS2
));
2720 atomic_inc(&cp
->reset_task_pending
);
2721 atomic_inc(&cp
->reset_task_pending_all
);
2722 schedule_work(&cp
->reset_task
);
2724 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2725 schedule_work(&cp
->reset_task
);
2729 static inline int cas_intme(int ring
, int entry
)
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2738 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2739 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2741 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2743 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2744 if (cas_intme(ring
, entry
))
2745 ctrl
|= TX_DESC_INTME
;
2747 ctrl
|= TX_DESC_EOF
;
2748 txd
->control
= cpu_to_le64(ctrl
);
2749 txd
->buffer
= cpu_to_le64(mapping
);
2752 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2755 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2758 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2759 const int entry
, const int tentry
)
2761 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2762 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2763 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2766 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2767 struct sk_buff
*skb
)
2769 struct net_device
*dev
= cp
->dev
;
2770 int entry
, nr_frags
, frag
, tabort
, tentry
;
2772 unsigned long flags
;
2776 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2778 /* This is a hard error, log it. */
2779 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2780 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2781 netif_stop_queue(dev
);
2782 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2783 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2788 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2789 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2790 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2792 ctrl
= TX_DESC_CSUM_EN
|
2793 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2794 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2797 entry
= cp
->tx_new
[ring
];
2798 cp
->tx_skbs
[ring
][entry
] = skb
;
2800 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2801 len
= skb_headlen(skb
);
2802 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2803 offset_in_page(skb
->data
), len
,
2807 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2808 if (unlikely(tabort
)) {
2809 /* NOTE: len is always > tabort */
2810 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2811 ctrl
| TX_DESC_SOF
, 0);
2812 entry
= TX_DESC_NEXT(ring
, entry
);
2814 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2815 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2816 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2817 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2820 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2821 TX_DESC_SOF
, (nr_frags
== 0));
2823 entry
= TX_DESC_NEXT(ring
, entry
);
2825 for (frag
= 0; frag
< nr_frags
; frag
++) {
2826 const skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2828 len
= skb_frag_size(fragp
);
2829 mapping
= skb_frag_dma_map(&cp
->pdev
->dev
, fragp
, 0, len
,
2832 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2833 if (unlikely(tabort
)) {
2836 /* NOTE: len is always > tabort */
2837 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2839 entry
= TX_DESC_NEXT(ring
, entry
);
2841 addr
= cas_page_map(skb_frag_page(fragp
));
2842 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2843 addr
+ fragp
->page_offset
+ len
- tabort
,
2845 cas_page_unmap(addr
);
2846 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2850 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2851 (frag
+ 1 == nr_frags
));
2852 entry
= TX_DESC_NEXT(ring
, entry
);
2855 cp
->tx_new
[ring
] = entry
;
2856 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2857 netif_stop_queue(dev
);
2859 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2860 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2862 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2863 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2867 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2869 struct cas
*cp
= netdev_priv(dev
);
2871 /* this is only used as a load-balancing hint, so it doesn't
2872 * need to be SMP safe
2876 if (skb_padto(skb
, cp
->min_frame_size
))
2877 return NETDEV_TX_OK
;
2879 /* XXX: we need some higher-level QoS hooks to steer packets to
2880 * individual queues.
2882 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2883 return NETDEV_TX_BUSY
;
2884 return NETDEV_TX_OK
;
2887 static void cas_init_tx_dma(struct cas
*cp
)
2889 u64 desc_dma
= cp
->block_dvma
;
2894 /* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896 off
= offsetof(struct cas_init_block
, tx_compwb
);
2897 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2898 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2901 /* enable completion writebacks, enable paced mode,
2902 * disable read pipe, and disable pre-interrupt compwbs
2904 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2905 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2906 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2907 TX_CFG_INTR_COMPWB_DIS
;
2909 /* write out tx ring info and tx desc bases */
2910 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2911 off
= (unsigned long) cp
->init_txds
[i
] -
2912 (unsigned long) cp
->init_block
;
2914 val
|= CAS_TX_RINGN_BASE(i
);
2915 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2916 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2918 /* don't zero out the kick register here as the system
2922 writel(val
, cp
->regs
+ REG_TX_CFG
);
2924 /* program max burst sizes. these numbers should be different
2928 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2929 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2930 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2931 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2933 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2934 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2935 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2936 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas
*cp
)
2943 cas_init_tx_dma(cp
);
2944 cas_init_rx_dma(cp
);
2947 static void cas_process_mc_list(struct cas
*cp
)
2951 struct netdev_hw_addr
*ha
;
2954 memset(hash_table
, 0, sizeof(hash_table
));
2955 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2956 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2957 /* use the alternate mac address registers for the
2958 * first 15 multicast addresses
2960 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2961 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2962 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2963 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2964 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2965 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2969 /* use hw hash table for the next series of
2970 * multicast addresses
2972 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2974 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2977 for (i
= 0; i
< 16; i
++)
2978 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2981 /* Must be invoked under cp->lock. */
2982 static u32
cas_setup_multicast(struct cas
*cp
)
2987 if (cp
->dev
->flags
& IFF_PROMISC
) {
2988 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2990 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2991 for (i
=0; i
< 16; i
++)
2992 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2993 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2996 cas_process_mc_list(cp
);
2997 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas
*cp
)
3006 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3007 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3008 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3009 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3010 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3011 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3012 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3013 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3014 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3015 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3016 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3020 static void cas_mac_reset(struct cas
*cp
)
3024 /* do both TX and RX reset */
3025 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3026 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3031 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3039 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3044 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3045 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3046 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3048 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3049 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas
*cp
)
3056 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3060 /* setup core arbitration weight register */
3061 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3063 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3064 /* set the infinite burst register for chips that don't have
3067 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3068 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3071 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3073 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3074 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3075 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3077 /* change later for 802.3z */
3078 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3080 /* min frame + FCS */
3081 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3083 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3084 * specify the maximum frame size to prevent RX tag errors on
3087 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3088 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3089 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3090 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3092 /* NOTE: crc_size is used as a surrogate for half-duplex.
3093 * workaround saturn half-duplex issue by increasing preamble
3096 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3097 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3099 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3100 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3101 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3102 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3104 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3106 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3107 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3108 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3109 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3110 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3112 /* setup mac address in perfect filter array */
3113 for (i
= 0; i
< 45; i
++)
3114 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3116 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3117 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3118 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3120 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3121 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3122 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3124 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3126 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3127 cas_clear_mac_err(cp
);
3128 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3130 /* Setup MAC interrupts. We want to get all of the interesting
3131 * counter expiration events, but we do not want to hear about
3132 * normal rx/tx as the DMA engine tells us that.
3134 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3135 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3137 /* Don't enable even the PAUSE interrupts for now, we
3138 * make no use of those events other than to record them.
3140 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3143 /* Must be invoked under cp->lock. */
3144 static void cas_init_pause_thresholds(struct cas
*cp
)
3146 /* Calculate pause thresholds. Setting the OFF threshold to the
3147 * full RX fifo size effectively disables PAUSE generation
3149 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3150 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3152 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3153 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3154 cp
->rx_pause_off
= 7104;
3155 cp
->rx_pause_on
= 960;
3157 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3158 int on
= off
- max_frame
;
3159 cp
->rx_pause_off
= off
;
3160 cp
->rx_pause_on
= on
;
3165 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3167 int len
= strlen(str
) + 1;
3170 for (i
= 0; i
< len
; i
++) {
3171 if (readb(p
+ i
) != str
[i
])
3178 /* get the mac address by reading the vpd information in the rom.
3179 * also get the phy type and determine if there's an entropy generator.
3180 * NOTE: this is a bit convoluted for the following reasons:
3181 * 1) vpd info has order-dependent mac addresses for multinic cards
3182 * 2) the only way to determine the nic order is to use the slot
3184 * 3) fiber cards don't have bridges, so their slot numbers don't
3186 * 4) we don't actually know we have a fiber card until after
3187 * the mac addresses are parsed.
3189 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3192 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3193 void __iomem
*base
, *kstart
;
3196 #define VPD_FOUND_MAC 0x01
3197 #define VPD_FOUND_PHY 0x02
3199 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3202 #if defined(CONFIG_SPARC)
3203 const unsigned char *addr
;
3206 /* give us access to the PROM */
3207 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3208 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3210 /* check for an expansion rom */
3211 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3212 goto use_random_mac_addr
;
3214 /* search for beginning of vpd */
3216 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3217 /* check for PCIR */
3218 if ((readb(p
+ i
+ 0) == 0x50) &&
3219 (readb(p
+ i
+ 1) == 0x43) &&
3220 (readb(p
+ i
+ 2) == 0x49) &&
3221 (readb(p
+ i
+ 3) == 0x52)) {
3222 base
= p
+ (readb(p
+ i
+ 8) |
3223 (readb(p
+ i
+ 9) << 8));
3228 if (!base
|| (readb(base
) != 0x82))
3229 goto use_random_mac_addr
;
3231 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3232 while (i
< EXPANSION_ROM_SIZE
) {
3233 if (readb(base
+ i
) != 0x90) /* no vpd found */
3234 goto use_random_mac_addr
;
3236 /* found a vpd field */
3237 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3239 /* extract keywords */
3240 kstart
= base
+ i
+ 3;
3242 while ((p
- kstart
) < len
) {
3243 int klen
= readb(p
+ 2);
3249 /* look for the following things:
3250 * -- correct length == 29
3251 * 3 (type) + 2 (size) +
3252 * 18 (strlen("local-mac-address") + 1) +
3254 * -- VPD Instance 'I'
3255 * -- VPD Type Bytes 'B'
3256 * -- VPD data length == 6
3257 * -- property string == local-mac-address
3259 * -- correct length == 24
3260 * 3 (type) + 2 (size) +
3261 * 12 (strlen("entropy-dev") + 1) +
3262 * 7 (strlen("vms110") + 1)
3263 * -- VPD Instance 'I'
3264 * -- VPD Type String 'B'
3265 * -- VPD data length == 7
3266 * -- property string == entropy-dev
3268 * -- correct length == 18
3269 * 3 (type) + 2 (size) +
3270 * 9 (strlen("phy-type") + 1) +
3271 * 4 (strlen("pcs") + 1)
3272 * -- VPD Instance 'I'
3273 * -- VPD Type String 'S'
3274 * -- VPD data length == 4
3275 * -- property string == phy-type
3277 * -- correct length == 23
3278 * 3 (type) + 2 (size) +
3279 * 14 (strlen("phy-interface") + 1) +
3280 * 4 (strlen("pcs") + 1)
3281 * -- VPD Instance 'I'
3282 * -- VPD Type String 'S'
3283 * -- VPD data length == 4
3284 * -- property string == phy-interface
3286 if (readb(p
) != 'I')
3289 /* finally, check string and length */
3290 type
= readb(p
+ 3);
3292 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3293 cas_vpd_match(p
+ 5,
3294 "local-mac-address")) {
3295 if (mac_off
++ > offset
)
3298 /* set mac address */
3299 for (j
= 0; j
< 6; j
++)
3309 #ifdef USE_ENTROPY_DEV
3311 cas_vpd_match(p
+ 5, "entropy-dev") &&
3312 cas_vpd_match(p
+ 17, "vms110")) {
3313 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3318 if (found
& VPD_FOUND_PHY
)
3321 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3322 cas_vpd_match(p
+ 5, "phy-type")) {
3323 if (cas_vpd_match(p
+ 14, "pcs")) {
3324 phy_type
= CAS_PHY_SERDES
;
3329 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3330 cas_vpd_match(p
+ 5, "phy-interface")) {
3331 if (cas_vpd_match(p
+ 19, "pcs")) {
3332 phy_type
= CAS_PHY_SERDES
;
3337 found
|= VPD_FOUND_MAC
;
3341 found
|= VPD_FOUND_PHY
;
3349 use_random_mac_addr
:
3350 if (found
& VPD_FOUND_MAC
)
3353 #if defined(CONFIG_SPARC)
3354 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3356 memcpy(dev_addr
, addr
, ETH_ALEN
);
3361 /* Sun MAC prefix then 3 random bytes. */
3362 pr_info("MAC address not found in ROM VPD\n");
3366 get_random_bytes(dev_addr
+ 3, 3);
3369 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3373 /* check pci invariants */
3374 static void cas_check_pci_invariants(struct cas
*cp
)
3376 struct pci_dev
*pdev
= cp
->pdev
;
3379 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3380 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3381 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3382 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3383 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3384 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3386 /* Original Cassini supports HW CSUM, but it's not
3387 * enabled by default as it can trigger TX hangs.
3389 if (pdev
->revision
< CAS_ID_REV2
)
3390 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3392 /* Only sun has original cassini chips. */
3393 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3395 /* We use a flag because the same phy might be externally
3398 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3399 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3400 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3405 static int cas_check_invariants(struct cas
*cp
)
3407 struct pci_dev
*pdev
= cp
->pdev
;
3411 /* get page size for rx buffers. */
3413 #ifdef USE_PAGE_ORDER
3414 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3415 /* see if we can allocate larger pages */
3416 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3417 CAS_JUMBO_PAGE_SHIFT
-
3420 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3421 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3423 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3427 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3429 /* Fetch the FIFO configurations. */
3430 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3431 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3433 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3434 * they're both connected.
3436 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3437 PCI_SLOT(pdev
->devfn
));
3438 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3439 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3440 return 0; /* no more checking needed */
3444 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3445 if (cfg
& MIF_CFG_MDIO_1
) {
3446 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3447 } else if (cfg
& MIF_CFG_MDIO_0
) {
3448 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3451 cas_mif_poll(cp
, 0);
3452 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3454 for (i
= 0; i
< 32; i
++) {
3458 for (j
= 0; j
< 3; j
++) {
3460 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3461 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3462 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3463 cp
->phy_id
= phy_id
;
3468 pr_err("MII phy did not respond [%08x]\n",
3469 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3473 /* see if we can do gigabit */
3474 cfg
= cas_phy_read(cp
, MII_BMSR
);
3475 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3476 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3477 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3481 /* Must be invoked under cp->lock. */
3482 static inline void cas_start_dma(struct cas
*cp
)
3489 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3490 writel(val
, cp
->regs
+ REG_TX_CFG
);
3491 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3492 writel(val
, cp
->regs
+ REG_RX_CFG
);
3494 /* enable the mac */
3495 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3496 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3497 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3498 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3502 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3503 if ((val
& MAC_TX_CFG_EN
))
3507 if (i
< 0) txfailed
= 1;
3510 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3511 if ((val
& MAC_RX_CFG_EN
)) {
3514 "enabling mac failed [tx:%08x:%08x]\n",
3515 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3516 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3518 goto enable_rx_done
;
3522 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3523 (txfailed
? "tx,rx" : "rx"),
3524 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3525 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3528 cas_unmask_intr(cp
); /* enable interrupts */
3529 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3530 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3532 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3533 if (N_RX_DESC_RINGS
> 1)
3534 writel(RX_DESC_RINGN_SIZE(1) - 4,
3535 cp
->regs
+ REG_PLUS_RX_KICK1
);
3537 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3538 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3542 /* Must be invoked under cp->lock. */
3543 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3546 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3547 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3548 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3549 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3554 /* Must be invoked under cp->lock. */
3555 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3564 /* use GMII registers */
3565 val
= cas_phy_read(cp
, MII_LPA
);
3566 if (val
& CAS_LPA_PAUSE
)
3569 if (val
& CAS_LPA_ASYM_PAUSE
)
3572 if (val
& LPA_DUPLEX
)
3577 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3578 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3579 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3581 if (val
& CAS_LPA_1000FULL
)
3586 /* A link-up condition has occurred, initialize and enable the
3589 * Must be invoked under cp->lock.
3591 static void cas_set_link_modes(struct cas
*cp
)
3594 int full_duplex
, speed
, pause
;
3600 if (CAS_PHY_MII(cp
->phy_type
)) {
3601 cas_mif_poll(cp
, 0);
3602 val
= cas_phy_read(cp
, MII_BMCR
);
3603 if (val
& BMCR_ANENABLE
) {
3604 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3607 if (val
& BMCR_FULLDPLX
)
3610 if (val
& BMCR_SPEED100
)
3612 else if (val
& CAS_BMCR_SPEED1000
)
3613 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3616 cas_mif_poll(cp
, 1);
3619 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3620 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3621 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3622 if (val
& PCS_MII_CTRL_DUPLEX
)
3627 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3628 speed
, full_duplex
? "full" : "half");
3630 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3631 if (CAS_PHY_MII(cp
->phy_type
)) {
3632 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3634 val
|= MAC_XIF_DISABLE_ECHO
;
3637 val
|= MAC_XIF_FDPLX_LED
;
3639 val
|= MAC_XIF_GMII_MODE
;
3640 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3642 /* deal with carrier and collision detect. */
3643 val
= MAC_TX_CFG_IPG_EN
;
3645 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3646 val
|= MAC_TX_CFG_IGNORE_COLL
;
3648 #ifndef USE_CSMA_CD_PROTO
3649 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3650 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3653 /* val now set up for REG_MAC_TX_CFG */
3655 /* If gigabit and half-duplex, enable carrier extension
3656 * mode. increase slot time to 512 bytes as well.
3657 * else, disable it and make sure slot time is 64 bytes.
3658 * also activate checksum bug workaround
3660 if ((speed
== 1000) && !full_duplex
) {
3661 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3662 cp
->regs
+ REG_MAC_TX_CFG
);
3664 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3665 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3666 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3667 cp
->regs
+ REG_MAC_RX_CFG
);
3669 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3672 /* minimum size gigabit frame at half duplex */
3673 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3676 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3678 /* checksum bug workaround. don't strip FCS when in
3681 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3683 val
|= MAC_RX_CFG_STRIP_FCS
;
3685 cp
->min_frame_size
= CAS_MIN_MTU
;
3687 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3689 cp
->min_frame_size
= CAS_MIN_FRAME
;
3691 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3692 cp
->regs
+ REG_MAC_RX_CFG
);
3693 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3696 if (netif_msg_link(cp
)) {
3698 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3702 } else if (pause
& 0x10) {
3703 netdev_info(cp
->dev
, "TX pause enabled\n");
3705 netdev_info(cp
->dev
, "Pause is disabled\n");
3709 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3710 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3711 if (pause
) { /* symmetric or asymmetric pause */
3712 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3713 if (pause
& 0x01) { /* symmetric pause */
3714 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3717 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3721 /* Must be invoked under cp->lock. */
3722 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3727 cas_init_pause_thresholds(cp
);
3732 /* Default aneg parameters */
3733 cp
->timer_ticks
= 0;
3734 cas_begin_auto_negotiation(cp
, NULL
);
3735 } else if (cp
->lstate
== link_up
) {
3736 cas_set_link_modes(cp
);
3737 netif_carrier_on(cp
->dev
);
3741 /* Must be invoked under cp->lock. on earlier cassini boards,
3742 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3743 * let it settle out, and then restore pci state.
3745 static void cas_hard_reset(struct cas
*cp
)
3747 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3749 pci_restore_state(cp
->pdev
);
3753 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3757 /* issue a global reset. don't use RSTOUT. */
3758 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3759 /* For PCS, when the blkflag is set, we should set the
3760 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3761 * the last autonegotiation from being cleared. We'll
3762 * need some special handling if the chip is set into a
3765 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3766 cp
->regs
+ REG_SW_RESET
);
3768 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3771 /* need to wait at least 3ms before polling register */
3775 while (limit
-- > 0) {
3776 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3777 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3781 netdev_err(cp
->dev
, "sw reset failed\n");
3784 /* enable various BIM interrupts */
3785 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3786 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3788 /* clear out pci error status mask for handled errors.
3789 * we don't deal with DMA counter overflows as they happen
3792 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3793 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3794 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3795 REG_PCI_ERR_STATUS_MASK
);
3797 /* set up for MII by default to address mac rx reset timeout
3800 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3803 static void cas_reset(struct cas
*cp
, int blkflag
)
3808 cas_global_reset(cp
, blkflag
);
3810 cas_entropy_reset(cp
);
3812 /* disable dma engines. */
3813 val
= readl(cp
->regs
+ REG_TX_CFG
);
3814 val
&= ~TX_CFG_DMA_EN
;
3815 writel(val
, cp
->regs
+ REG_TX_CFG
);
3817 val
= readl(cp
->regs
+ REG_RX_CFG
);
3818 val
&= ~RX_CFG_DMA_EN
;
3819 writel(val
, cp
->regs
+ REG_RX_CFG
);
3821 /* program header parser */
3822 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3823 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3824 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3826 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3829 /* clear out error registers */
3830 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3831 cas_clear_mac_err(cp
);
3832 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3835 /* Shut down the chip, must be called with pm_mutex held. */
3836 static void cas_shutdown(struct cas
*cp
)
3838 unsigned long flags
;
3840 /* Make us not-running to avoid timers respawning */
3843 del_timer_sync(&cp
->link_timer
);
3845 /* Stop the reset task */
3847 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3848 atomic_read(&cp
->reset_task_pending_spare
) ||
3849 atomic_read(&cp
->reset_task_pending_all
))
3853 while (atomic_read(&cp
->reset_task_pending
))
3856 /* Actually stop the chip */
3857 cas_lock_all_save(cp
, flags
);
3859 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3860 cas_phy_powerdown(cp
);
3861 cas_unlock_all_restore(cp
, flags
);
3864 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3866 struct cas
*cp
= netdev_priv(dev
);
3869 if (!netif_running(dev
) || !netif_device_present(dev
))
3872 /* let the reset task handle it */
3874 atomic_inc(&cp
->reset_task_pending
);
3875 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3876 atomic_inc(&cp
->reset_task_pending_all
);
3878 atomic_inc(&cp
->reset_task_pending_mtu
);
3880 schedule_work(&cp
->reset_task
);
3882 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3883 CAS_RESET_ALL
: CAS_RESET_MTU
);
3884 pr_err("reset called in cas_change_mtu\n");
3885 schedule_work(&cp
->reset_task
);
3888 flush_work(&cp
->reset_task
);
3892 static void cas_clean_txd(struct cas
*cp
, int ring
)
3894 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3895 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3899 size
= TX_DESC_RINGN_SIZE(ring
);
3900 for (i
= 0; i
< size
; i
++) {
3903 if (skbs
[i
] == NULL
)
3909 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3910 int ent
= i
& (size
- 1);
3912 /* first buffer is never a tiny buffer and so
3913 * needs to be unmapped.
3915 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3916 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3917 le64_to_cpu(txd
[ent
].control
));
3918 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3921 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3924 /* next buffer might by a tiny buffer.
3927 ent
= i
& (size
- 1);
3928 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3932 dev_kfree_skb_any(skb
);
3935 /* zero out tiny buf usage */
3936 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3939 /* freed on close */
3940 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3942 cas_page_t
**page
= cp
->rx_pages
[ring
];
3945 size
= RX_DESC_RINGN_SIZE(ring
);
3946 for (i
= 0; i
< size
; i
++) {
3948 cas_page_free(cp
, page
[i
]);
3954 static void cas_free_rxds(struct cas
*cp
)
3958 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3959 cas_free_rx_desc(cp
, i
);
3962 /* Must be invoked under cp->lock. */
3963 static void cas_clean_rings(struct cas
*cp
)
3967 /* need to clean all tx rings */
3968 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3969 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3970 for (i
= 0; i
< N_TX_RINGS
; i
++)
3971 cas_clean_txd(cp
, i
);
3973 /* zero out init block */
3974 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3979 /* allocated on open */
3980 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3982 cas_page_t
**page
= cp
->rx_pages
[ring
];
3985 size
= RX_DESC_RINGN_SIZE(ring
);
3986 for (i
= 0; i
< size
; i
++) {
3987 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
3993 static int cas_alloc_rxds(struct cas
*cp
)
3997 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
3998 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4006 static void cas_reset_task(struct work_struct
*work
)
4008 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4010 int pending
= atomic_read(&cp
->reset_task_pending
);
4012 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4013 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4014 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4016 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4017 /* We can have more tasks scheduled than actually
4020 atomic_dec(&cp
->reset_task_pending
);
4024 /* The link went down, we reset the ring, but keep
4025 * DMA stopped. Use this function for reset
4028 if (cp
->hw_running
) {
4029 unsigned long flags
;
4031 /* Make sure we don't get interrupts or tx packets */
4032 netif_device_detach(cp
->dev
);
4033 cas_lock_all_save(cp
, flags
);
4036 /* We call cas_spare_recover when we call cas_open.
4037 * but we do not initialize the lists cas_spare_recover
4038 * uses until cas_open is called.
4040 cas_spare_recover(cp
, GFP_ATOMIC
);
4043 /* test => only pending_spare set */
4044 if (!pending_all
&& !pending_mtu
)
4047 if (pending
== CAS_RESET_SPARE
)
4050 /* when pending == CAS_RESET_ALL, the following
4051 * call to cas_init_hw will restart auto negotiation.
4052 * Setting the second argument of cas_reset to
4053 * !(pending == CAS_RESET_ALL) will set this argument
4054 * to 1 (avoiding reinitializing the PHY for the normal
4055 * PCS case) when auto negotiation is not restarted.
4058 cas_reset(cp
, !(pending_all
> 0));
4060 cas_clean_rings(cp
);
4061 cas_init_hw(cp
, (pending_all
> 0));
4063 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4065 cas_clean_rings(cp
);
4066 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4070 cas_unlock_all_restore(cp
, flags
);
4071 netif_device_attach(cp
->dev
);
4074 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4075 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4076 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4077 atomic_dec(&cp
->reset_task_pending
);
4079 atomic_set(&cp
->reset_task_pending
, 0);
4083 static void cas_link_timer(struct timer_list
*t
)
4085 struct cas
*cp
= from_timer(cp
, t
, link_timer
);
4086 int mask
, pending
= 0, reset
= 0;
4087 unsigned long flags
;
4089 if (link_transition_timeout
!= 0 &&
4090 cp
->link_transition_jiffies_valid
&&
4091 ((jiffies
- cp
->link_transition_jiffies
) >
4092 (link_transition_timeout
))) {
4093 /* One-second counter so link-down workaround doesn't
4094 * cause resets to occur so fast as to fool the switch
4095 * into thinking the link is down.
4097 cp
->link_transition_jiffies_valid
= 0;
4100 if (!cp
->hw_running
)
4103 spin_lock_irqsave(&cp
->lock
, flags
);
4105 cas_entropy_gather(cp
);
4107 /* If the link task is still pending, we just
4108 * reschedule the link timer
4111 if (atomic_read(&cp
->reset_task_pending_all
) ||
4112 atomic_read(&cp
->reset_task_pending_spare
) ||
4113 atomic_read(&cp
->reset_task_pending_mtu
))
4116 if (atomic_read(&cp
->reset_task_pending
))
4120 /* check for rx cleaning */
4121 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4124 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4125 rmask
= CAS_FLAG_RXD_POST(i
);
4126 if ((mask
& rmask
) == 0)
4129 /* post_rxds will do a mod_timer */
4130 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4134 cp
->cas_flags
&= ~rmask
;
4138 if (CAS_PHY_MII(cp
->phy_type
)) {
4140 cas_mif_poll(cp
, 0);
4141 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4142 /* WTZ: Solaris driver reads this twice, but that
4143 * may be due to the PCS case and the use of a
4144 * common implementation. Read it twice here to be
4147 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4148 cas_mif_poll(cp
, 1);
4149 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4150 reset
= cas_mii_link_check(cp
, bmsr
);
4152 reset
= cas_pcs_link_check(cp
);
4158 /* check for tx state machine confusion */
4159 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4160 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4162 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4164 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4165 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4166 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4167 "tx err: MAC_STATE[%08x]\n", val
);
4172 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4173 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4174 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4175 if ((val
== 0) && (wptr
!= rptr
)) {
4176 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4177 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4189 atomic_inc(&cp
->reset_task_pending
);
4190 atomic_inc(&cp
->reset_task_pending_all
);
4191 schedule_work(&cp
->reset_task
);
4193 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4194 pr_err("reset called in cas_link_timer\n");
4195 schedule_work(&cp
->reset_task
);
4200 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4202 spin_unlock_irqrestore(&cp
->lock
, flags
);
4205 /* tiny buffers are used to avoid target abort issues with
4208 static void cas_tx_tiny_free(struct cas
*cp
)
4210 struct pci_dev
*pdev
= cp
->pdev
;
4213 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4214 if (!cp
->tx_tiny_bufs
[i
])
4217 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4218 cp
->tx_tiny_bufs
[i
],
4219 cp
->tx_tiny_dvma
[i
]);
4220 cp
->tx_tiny_bufs
[i
] = NULL
;
4224 static int cas_tx_tiny_alloc(struct cas
*cp
)
4226 struct pci_dev
*pdev
= cp
->pdev
;
4229 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4230 cp
->tx_tiny_bufs
[i
] =
4231 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4232 &cp
->tx_tiny_dvma
[i
]);
4233 if (!cp
->tx_tiny_bufs
[i
]) {
4234 cas_tx_tiny_free(cp
);
4242 static int cas_open(struct net_device
*dev
)
4244 struct cas
*cp
= netdev_priv(dev
);
4246 unsigned long flags
;
4248 mutex_lock(&cp
->pm_mutex
);
4250 hw_was_up
= cp
->hw_running
;
4252 /* The power-management mutex protects the hw_running
4253 * etc. state so it is safe to do this bit without cp->lock
4255 if (!cp
->hw_running
) {
4256 /* Reset the chip */
4257 cas_lock_all_save(cp
, flags
);
4258 /* We set the second arg to cas_reset to zero
4259 * because cas_init_hw below will have its second
4260 * argument set to non-zero, which will force
4261 * autonegotiation to start.
4265 cas_unlock_all_restore(cp
, flags
);
4269 if (cas_tx_tiny_alloc(cp
) < 0)
4272 /* alloc rx descriptors */
4273 if (cas_alloc_rxds(cp
) < 0)
4276 /* allocate spares */
4278 cas_spare_recover(cp
, GFP_KERNEL
);
4280 /* We can now request the interrupt as we know it's masked
4281 * on the controller. cassini+ has up to 4 interrupts
4282 * that can be used, but you need to do explicit pci interrupt
4283 * mapping to expose them
4285 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4286 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4287 netdev_err(cp
->dev
, "failed to request irq !\n");
4293 napi_enable(&cp
->napi
);
4296 cas_lock_all_save(cp
, flags
);
4297 cas_clean_rings(cp
);
4298 cas_init_hw(cp
, !hw_was_up
);
4300 cas_unlock_all_restore(cp
, flags
);
4302 netif_start_queue(dev
);
4303 mutex_unlock(&cp
->pm_mutex
);
4310 cas_tx_tiny_free(cp
);
4312 mutex_unlock(&cp
->pm_mutex
);
4316 static int cas_close(struct net_device
*dev
)
4318 unsigned long flags
;
4319 struct cas
*cp
= netdev_priv(dev
);
4322 napi_disable(&cp
->napi
);
4324 /* Make sure we don't get distracted by suspend/resume */
4325 mutex_lock(&cp
->pm_mutex
);
4327 netif_stop_queue(dev
);
4329 /* Stop traffic, mark us closed */
4330 cas_lock_all_save(cp
, flags
);
4334 cas_begin_auto_negotiation(cp
, NULL
);
4335 cas_clean_rings(cp
);
4336 cas_unlock_all_restore(cp
, flags
);
4338 free_irq(cp
->pdev
->irq
, (void *) dev
);
4341 cas_tx_tiny_free(cp
);
4342 mutex_unlock(&cp
->pm_mutex
);
4347 const char name
[ETH_GSTRING_LEN
];
4348 } ethtool_cassini_statnames
[] = {
4355 {"rx_frame_errors"},
4356 {"rx_length_errors"},
4359 {"tx_aborted_errors"},
4366 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4369 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4370 } ethtool_register_table
[] = {
4385 {REG_PCS_MII_STATUS
},
4386 {REG_PCS_STATE_MACHINE
},
4387 {REG_MAC_COLL_EXCESS
},
4390 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4391 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4393 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4397 unsigned long flags
;
4399 spin_lock_irqsave(&cp
->lock
, flags
);
4400 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4403 if (ethtool_register_table
[i
].offsets
< 0) {
4404 hval
= cas_phy_read(cp
,
4405 -ethtool_register_table
[i
].offsets
);
4408 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4410 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4412 spin_unlock_irqrestore(&cp
->lock
, flags
);
4415 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4417 struct cas
*cp
= netdev_priv(dev
);
4418 struct net_device_stats
*stats
= cp
->net_stats
;
4419 unsigned long flags
;
4423 /* we collate all of the stats into net_stats[N_TX_RING] */
4424 if (!cp
->hw_running
)
4425 return stats
+ N_TX_RINGS
;
4427 /* collect outstanding stats */
4428 /* WTZ: the Cassini spec gives these as 16 bit counters but
4429 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4430 * in case the chip somehow puts any garbage in the other bits.
4431 * Also, counter usage didn't seem to mach what Adrian did
4432 * in the parts of the code that set these quantities. Made
4435 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4436 stats
[N_TX_RINGS
].rx_crc_errors
+=
4437 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4438 stats
[N_TX_RINGS
].rx_frame_errors
+=
4439 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4440 stats
[N_TX_RINGS
].rx_length_errors
+=
4441 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4443 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4444 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4445 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4446 stats
[N_TX_RINGS
].collisions
+=
4447 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4449 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4450 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4451 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4452 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4454 cas_clear_mac_err(cp
);
4456 /* saved bits that are unique to ring 0 */
4457 spin_lock(&cp
->stat_lock
[0]);
4458 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4459 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4460 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4461 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4462 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4463 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4464 spin_unlock(&cp
->stat_lock
[0]);
4466 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4467 spin_lock(&cp
->stat_lock
[i
]);
4468 stats
[N_TX_RINGS
].rx_length_errors
+=
4469 stats
[i
].rx_length_errors
;
4470 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4471 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4472 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4473 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4474 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4475 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4476 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4477 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4478 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4479 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4480 spin_unlock(&cp
->stat_lock
[i
]);
4482 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4483 return stats
+ N_TX_RINGS
;
4487 static void cas_set_multicast(struct net_device
*dev
)
4489 struct cas
*cp
= netdev_priv(dev
);
4490 u32 rxcfg
, rxcfg_new
;
4491 unsigned long flags
;
4492 int limit
= STOP_TRIES
;
4494 if (!cp
->hw_running
)
4497 spin_lock_irqsave(&cp
->lock
, flags
);
4498 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4500 /* disable RX MAC and wait for completion */
4501 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4502 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4508 /* disable hash filter and wait for completion */
4510 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4511 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4512 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4518 /* program hash filters */
4519 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4521 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4522 spin_unlock_irqrestore(&cp
->lock
, flags
);
4525 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4527 struct cas
*cp
= netdev_priv(dev
);
4528 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
4529 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
4530 strlcpy(info
->bus_info
, pci_name(cp
->pdev
), sizeof(info
->bus_info
));
4533 static int cas_get_link_ksettings(struct net_device
*dev
,
4534 struct ethtool_link_ksettings
*cmd
)
4536 struct cas
*cp
= netdev_priv(dev
);
4538 int full_duplex
, speed
, pause
;
4539 unsigned long flags
;
4540 enum link_state linkstate
= link_up
;
4541 u32 supported
, advertising
;
4544 supported
= SUPPORTED_Autoneg
;
4545 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4546 supported
|= SUPPORTED_1000baseT_Full
;
4547 advertising
|= ADVERTISED_1000baseT_Full
;
4550 /* Record PHY settings if HW is on. */
4551 spin_lock_irqsave(&cp
->lock
, flags
);
4553 linkstate
= cp
->lstate
;
4554 if (CAS_PHY_MII(cp
->phy_type
)) {
4555 cmd
->base
.port
= PORT_MII
;
4556 cmd
->base
.phy_address
= cp
->phy_addr
;
4557 advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4558 ADVERTISED_10baseT_Half
|
4559 ADVERTISED_10baseT_Full
|
4560 ADVERTISED_100baseT_Half
|
4561 ADVERTISED_100baseT_Full
;
4564 (SUPPORTED_10baseT_Half
|
4565 SUPPORTED_10baseT_Full
|
4566 SUPPORTED_100baseT_Half
|
4567 SUPPORTED_100baseT_Full
|
4568 SUPPORTED_TP
| SUPPORTED_MII
);
4570 if (cp
->hw_running
) {
4571 cas_mif_poll(cp
, 0);
4572 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4573 cas_read_mii_link_mode(cp
, &full_duplex
,
4575 cas_mif_poll(cp
, 1);
4579 cmd
->base
.port
= PORT_FIBRE
;
4580 cmd
->base
.phy_address
= 0;
4581 supported
|= SUPPORTED_FIBRE
;
4582 advertising
|= ADVERTISED_FIBRE
;
4584 if (cp
->hw_running
) {
4585 /* pcs uses the same bits as mii */
4586 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4587 cas_read_pcs_link_mode(cp
, &full_duplex
,
4591 spin_unlock_irqrestore(&cp
->lock
, flags
);
4593 if (bmcr
& BMCR_ANENABLE
) {
4594 advertising
|= ADVERTISED_Autoneg
;
4595 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
4596 cmd
->base
.speed
= ((speed
== 10) ?
4599 SPEED_1000
: SPEED_100
));
4600 cmd
->base
.duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4602 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
4603 cmd
->base
.speed
= ((bmcr
& CAS_BMCR_SPEED1000
) ?
4605 ((bmcr
& BMCR_SPEED100
) ?
4606 SPEED_100
: SPEED_10
));
4607 cmd
->base
.duplex
= (bmcr
& BMCR_FULLDPLX
) ?
4608 DUPLEX_FULL
: DUPLEX_HALF
;
4610 if (linkstate
!= link_up
) {
4611 /* Force these to "unknown" if the link is not up and
4612 * autonogotiation in enabled. We can set the link
4613 * speed to 0, but not cmd->duplex,
4614 * because its legal values are 0 and 1. Ethtool will
4615 * print the value reported in parentheses after the
4616 * word "Unknown" for unrecognized values.
4618 * If in forced mode, we report the speed and duplex
4619 * settings that we configured.
4621 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4622 cmd
->base
.speed
= 0;
4623 cmd
->base
.duplex
= 0xff;
4625 cmd
->base
.speed
= SPEED_10
;
4626 if (cp
->link_cntl
& BMCR_SPEED100
) {
4627 cmd
->base
.speed
= SPEED_100
;
4628 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4629 cmd
->base
.speed
= SPEED_1000
;
4631 cmd
->base
.duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
) ?
4632 DUPLEX_FULL
: DUPLEX_HALF
;
4636 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
4638 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
4644 static int cas_set_link_ksettings(struct net_device
*dev
,
4645 const struct ethtool_link_ksettings
*cmd
)
4647 struct cas
*cp
= netdev_priv(dev
);
4648 unsigned long flags
;
4649 u32 speed
= cmd
->base
.speed
;
4651 /* Verify the settings we care about. */
4652 if (cmd
->base
.autoneg
!= AUTONEG_ENABLE
&&
4653 cmd
->base
.autoneg
!= AUTONEG_DISABLE
)
4656 if (cmd
->base
.autoneg
== AUTONEG_DISABLE
&&
4657 ((speed
!= SPEED_1000
&&
4658 speed
!= SPEED_100
&&
4659 speed
!= SPEED_10
) ||
4660 (cmd
->base
.duplex
!= DUPLEX_HALF
&&
4661 cmd
->base
.duplex
!= DUPLEX_FULL
)))
4664 /* Apply settings and restart link process. */
4665 spin_lock_irqsave(&cp
->lock
, flags
);
4666 cas_begin_auto_negotiation(cp
, cmd
);
4667 spin_unlock_irqrestore(&cp
->lock
, flags
);
4671 static int cas_nway_reset(struct net_device
*dev
)
4673 struct cas
*cp
= netdev_priv(dev
);
4674 unsigned long flags
;
4676 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4679 /* Restart link process. */
4680 spin_lock_irqsave(&cp
->lock
, flags
);
4681 cas_begin_auto_negotiation(cp
, NULL
);
4682 spin_unlock_irqrestore(&cp
->lock
, flags
);
4687 static u32
cas_get_link(struct net_device
*dev
)
4689 struct cas
*cp
= netdev_priv(dev
);
4690 return cp
->lstate
== link_up
;
4693 static u32
cas_get_msglevel(struct net_device
*dev
)
4695 struct cas
*cp
= netdev_priv(dev
);
4696 return cp
->msg_enable
;
4699 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4701 struct cas
*cp
= netdev_priv(dev
);
4702 cp
->msg_enable
= value
;
4705 static int cas_get_regs_len(struct net_device
*dev
)
4707 struct cas
*cp
= netdev_priv(dev
);
4708 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4711 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4714 struct cas
*cp
= netdev_priv(dev
);
4716 /* cas_read_regs handles locks (cp->lock). */
4717 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4720 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4724 return CAS_NUM_STAT_KEYS
;
4730 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4732 memcpy(data
, ðtool_cassini_statnames
,
4733 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4736 static void cas_get_ethtool_stats(struct net_device
*dev
,
4737 struct ethtool_stats
*estats
, u64
*data
)
4739 struct cas
*cp
= netdev_priv(dev
);
4740 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4742 data
[i
++] = stats
->collisions
;
4743 data
[i
++] = stats
->rx_bytes
;
4744 data
[i
++] = stats
->rx_crc_errors
;
4745 data
[i
++] = stats
->rx_dropped
;
4746 data
[i
++] = stats
->rx_errors
;
4747 data
[i
++] = stats
->rx_fifo_errors
;
4748 data
[i
++] = stats
->rx_frame_errors
;
4749 data
[i
++] = stats
->rx_length_errors
;
4750 data
[i
++] = stats
->rx_over_errors
;
4751 data
[i
++] = stats
->rx_packets
;
4752 data
[i
++] = stats
->tx_aborted_errors
;
4753 data
[i
++] = stats
->tx_bytes
;
4754 data
[i
++] = stats
->tx_dropped
;
4755 data
[i
++] = stats
->tx_errors
;
4756 data
[i
++] = stats
->tx_fifo_errors
;
4757 data
[i
++] = stats
->tx_packets
;
4758 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4761 static const struct ethtool_ops cas_ethtool_ops
= {
4762 .get_drvinfo
= cas_get_drvinfo
,
4763 .nway_reset
= cas_nway_reset
,
4764 .get_link
= cas_get_link
,
4765 .get_msglevel
= cas_get_msglevel
,
4766 .set_msglevel
= cas_set_msglevel
,
4767 .get_regs_len
= cas_get_regs_len
,
4768 .get_regs
= cas_get_regs
,
4769 .get_sset_count
= cas_get_sset_count
,
4770 .get_strings
= cas_get_strings
,
4771 .get_ethtool_stats
= cas_get_ethtool_stats
,
4772 .get_link_ksettings
= cas_get_link_ksettings
,
4773 .set_link_ksettings
= cas_set_link_ksettings
,
4776 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4778 struct cas
*cp
= netdev_priv(dev
);
4779 struct mii_ioctl_data
*data
= if_mii(ifr
);
4780 unsigned long flags
;
4781 int rc
= -EOPNOTSUPP
;
4783 /* Hold the PM mutex while doing ioctl's or we may collide
4784 * with open/close and power management and oops.
4786 mutex_lock(&cp
->pm_mutex
);
4788 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4789 data
->phy_id
= cp
->phy_addr
;
4790 /* Fallthrough... */
4792 case SIOCGMIIREG
: /* Read MII PHY register. */
4793 spin_lock_irqsave(&cp
->lock
, flags
);
4794 cas_mif_poll(cp
, 0);
4795 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4796 cas_mif_poll(cp
, 1);
4797 spin_unlock_irqrestore(&cp
->lock
, flags
);
4801 case SIOCSMIIREG
: /* Write MII PHY register. */
4802 spin_lock_irqsave(&cp
->lock
, flags
);
4803 cas_mif_poll(cp
, 0);
4804 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4805 cas_mif_poll(cp
, 1);
4806 spin_unlock_irqrestore(&cp
->lock
, flags
);
4812 mutex_unlock(&cp
->pm_mutex
);
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817 * only subordinate device and we can tweak the bridge settings to
4818 * reflect that fact.
4820 static void cas_program_bridge(struct pci_dev
*cas_pdev
)
4822 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4828 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4831 /* Clear bit 10 (Bus Parking Control) in the Secondary
4832 * Arbiter Control/Status Register which lives at offset
4833 * 0x41. Using a 32-bit word read/modify/write at 0x40
4834 * is much simpler so that's how we do this.
4836 pci_read_config_dword(pdev
, 0x40, &val
);
4838 pci_write_config_dword(pdev
, 0x40, val
);
4840 /* Max out the Multi-Transaction Timer settings since
4841 * Cassini is the only device present.
4843 * The register is 16-bit and lives at 0x50. When the
4844 * settings are enabled, it extends the GRANT# signal
4845 * for a requestor after a transaction is complete. This
4846 * allows the next request to run without first needing
4847 * to negotiate the GRANT# signal back.
4849 * Bits 12:10 define the grant duration:
4857 * All other values are illegal.
4859 * Bits 09:00 define which REQ/GNT signal pairs get the
4860 * GRANT# signal treatment. We set them all.
4862 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4864 /* The Read Prefecth Policy register is 16-bit and sits at
4865 * offset 0x52. It enables a "smart" pre-fetch policy. We
4866 * enable it and max out all of the settings since only one
4867 * device is sitting underneath and thus bandwidth sharing is
4870 * The register has several 3 bit fields, which indicates a
4871 * multiplier applied to the base amount of prefetching the
4872 * chip would do. These fields are at:
4874 * 15:13 --- ReRead Primary Bus
4875 * 12:10 --- FirstRead Primary Bus
4876 * 09:07 --- ReRead Secondary Bus
4877 * 06:04 --- FirstRead Secondary Bus
4879 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880 * get enabled on. Bit 3 is a grouped enabler which controls
4881 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4882 * the individual REQ/GNT pairs [2:0].
4884 pci_write_config_word(pdev
, 0x52,
4891 /* Force cacheline size to 0x8 */
4892 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4894 /* Force latency timer to maximum setting so Cassini can
4895 * sit on the bus as long as it likes.
4897 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4900 static const struct net_device_ops cas_netdev_ops
= {
4901 .ndo_open
= cas_open
,
4902 .ndo_stop
= cas_close
,
4903 .ndo_start_xmit
= cas_start_xmit
,
4904 .ndo_get_stats
= cas_get_stats
,
4905 .ndo_set_rx_mode
= cas_set_multicast
,
4906 .ndo_do_ioctl
= cas_ioctl
,
4907 .ndo_tx_timeout
= cas_tx_timeout
,
4908 .ndo_change_mtu
= cas_change_mtu
,
4909 .ndo_set_mac_address
= eth_mac_addr
,
4910 .ndo_validate_addr
= eth_validate_addr
,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912 .ndo_poll_controller
= cas_netpoll
,
4916 static int cas_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
4918 static int cas_version_printed
= 0;
4919 unsigned long casreg_len
;
4920 struct net_device
*dev
;
4922 int i
, err
, pci_using_dac
;
4924 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4926 if (cas_version_printed
++ == 0)
4927 pr_info("%s", version
);
4929 err
= pci_enable_device(pdev
);
4931 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4935 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4936 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4937 "base address, aborting\n");
4939 goto err_out_disable_pdev
;
4942 dev
= alloc_etherdev(sizeof(*cp
));
4945 goto err_out_disable_pdev
;
4947 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4949 err
= pci_request_regions(pdev
, dev
->name
);
4951 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4952 goto err_out_free_netdev
;
4954 pci_set_master(pdev
);
4956 /* we must always turn on parity response or else parity
4957 * doesn't get generated properly. disable SERR/PERR as well.
4958 * in addition, we want to turn MWI on.
4960 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4961 pci_cmd
&= ~PCI_COMMAND_SERR
;
4962 pci_cmd
|= PCI_COMMAND_PARITY
;
4963 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4964 if (pci_try_set_mwi(pdev
))
4965 pr_warn("Could not enable MWI for %s\n", pci_name(pdev
));
4967 cas_program_bridge(pdev
);
4970 * On some architectures, the default cache line size set
4971 * by pci_try_set_mwi reduces perforamnce. We have to increase
4972 * it for this case. To start, we'll print some configuration
4976 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4977 &orig_cacheline_size
);
4978 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4979 cas_cacheline_size
=
4980 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4981 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4982 if (pci_write_config_byte(pdev
,
4983 PCI_CACHE_LINE_SIZE
,
4984 cas_cacheline_size
)) {
4985 dev_err(&pdev
->dev
, "Could not set PCI cache "
4987 goto err_write_cacheline
;
4993 /* Configure DMA attributes. */
4994 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
4996 err
= pci_set_consistent_dma_mask(pdev
,
4999 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5000 "for consistent allocations\n");
5001 goto err_out_free_res
;
5005 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5007 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5009 goto err_out_free_res
;
5014 casreg_len
= pci_resource_len(pdev
, 0);
5016 cp
= netdev_priv(dev
);
5019 /* A value of 0 indicates we never explicitly set it */
5020 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5023 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5026 #if defined(CONFIG_SPARC)
5027 cp
->of_node
= pci_device_to_OF_node(pdev
);
5030 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5031 cp
->link_transition_jiffies_valid
= 0;
5033 spin_lock_init(&cp
->lock
);
5034 spin_lock_init(&cp
->rx_inuse_lock
);
5035 spin_lock_init(&cp
->rx_spare_lock
);
5036 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5037 spin_lock_init(&cp
->stat_lock
[i
]);
5038 spin_lock_init(&cp
->tx_lock
[i
]);
5040 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5041 mutex_init(&cp
->pm_mutex
);
5043 timer_setup(&cp
->link_timer
, cas_link_timer
, 0);
5046 /* Just in case the implementation of atomic operations
5047 * change so that an explicit initialization is necessary.
5049 atomic_set(&cp
->reset_task_pending
, 0);
5050 atomic_set(&cp
->reset_task_pending_all
, 0);
5051 atomic_set(&cp
->reset_task_pending_spare
, 0);
5052 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5054 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5056 /* Default link parameters */
5057 if (link_mode
>= 0 && link_mode
< 6)
5058 cp
->link_cntl
= link_modes
[link_mode
];
5060 cp
->link_cntl
= BMCR_ANENABLE
;
5061 cp
->lstate
= link_down
;
5062 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5063 netif_carrier_off(cp
->dev
);
5064 cp
->timer_ticks
= 0;
5066 /* give us access to cassini registers */
5067 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5069 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5070 goto err_out_free_res
;
5072 cp
->casreg_len
= casreg_len
;
5074 pci_save_state(pdev
);
5075 cas_check_pci_invariants(cp
);
5078 if (cas_check_invariants(cp
))
5079 goto err_out_iounmap
;
5080 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5081 cas_saturn_firmware_init(cp
);
5083 cp
->init_block
= (struct cas_init_block
*)
5084 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5086 if (!cp
->init_block
) {
5087 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5088 goto err_out_iounmap
;
5091 for (i
= 0; i
< N_TX_RINGS
; i
++)
5092 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5094 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5095 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5097 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5098 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5100 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5101 skb_queue_head_init(&cp
->rx_flows
[i
]);
5103 dev
->netdev_ops
= &cas_netdev_ops
;
5104 dev
->ethtool_ops
= &cas_ethtool_ops
;
5105 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5108 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5110 dev
->irq
= pdev
->irq
;
5113 /* Cassini features. */
5114 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5115 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5118 dev
->features
|= NETIF_F_HIGHDMA
;
5120 /* MTU range: 60 - varies or 9000 */
5121 dev
->min_mtu
= CAS_MIN_MTU
;
5122 dev
->max_mtu
= CAS_MAX_MTU
;
5124 if (register_netdev(dev
)) {
5125 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5126 goto err_out_free_consistent
;
5129 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5130 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5132 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5133 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5134 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5137 pci_set_drvdata(pdev
, dev
);
5139 cas_entropy_reset(cp
);
5141 cas_begin_auto_negotiation(cp
, NULL
);
5144 err_out_free_consistent
:
5145 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5146 cp
->init_block
, cp
->block_dvma
);
5149 mutex_lock(&cp
->pm_mutex
);
5152 mutex_unlock(&cp
->pm_mutex
);
5154 pci_iounmap(pdev
, cp
->regs
);
5158 pci_release_regions(pdev
);
5160 err_write_cacheline
:
5161 /* Try to restore it in case the error occurred after we
5164 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5166 err_out_free_netdev
:
5169 err_out_disable_pdev
:
5170 pci_disable_device(pdev
);
5174 static void cas_remove_one(struct pci_dev
*pdev
)
5176 struct net_device
*dev
= pci_get_drvdata(pdev
);
5181 cp
= netdev_priv(dev
);
5182 unregister_netdev(dev
);
5186 mutex_lock(&cp
->pm_mutex
);
5187 cancel_work_sync(&cp
->reset_task
);
5190 mutex_unlock(&cp
->pm_mutex
);
5193 if (cp
->orig_cacheline_size
) {
5194 /* Restore the cache line size if we had modified
5197 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5198 cp
->orig_cacheline_size
);
5201 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5202 cp
->init_block
, cp
->block_dvma
);
5203 pci_iounmap(pdev
, cp
->regs
);
5205 pci_release_regions(pdev
);
5206 pci_disable_device(pdev
);
5210 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5212 struct net_device
*dev
= pci_get_drvdata(pdev
);
5213 struct cas
*cp
= netdev_priv(dev
);
5214 unsigned long flags
;
5216 mutex_lock(&cp
->pm_mutex
);
5218 /* If the driver is opened, we stop the DMA */
5220 netif_device_detach(dev
);
5222 cas_lock_all_save(cp
, flags
);
5224 /* We can set the second arg of cas_reset to 0
5225 * because on resume, we'll call cas_init_hw with
5226 * its second arg set so that autonegotiation is
5230 cas_clean_rings(cp
);
5231 cas_unlock_all_restore(cp
, flags
);
5236 mutex_unlock(&cp
->pm_mutex
);
5241 static int cas_resume(struct pci_dev
*pdev
)
5243 struct net_device
*dev
= pci_get_drvdata(pdev
);
5244 struct cas
*cp
= netdev_priv(dev
);
5246 netdev_info(dev
, "resuming\n");
5248 mutex_lock(&cp
->pm_mutex
);
5251 unsigned long flags
;
5252 cas_lock_all_save(cp
, flags
);
5255 cas_clean_rings(cp
);
5257 cas_unlock_all_restore(cp
, flags
);
5259 netif_device_attach(dev
);
5261 mutex_unlock(&cp
->pm_mutex
);
5264 #endif /* CONFIG_PM */
5266 static struct pci_driver cas_driver
= {
5267 .name
= DRV_MODULE_NAME
,
5268 .id_table
= cas_pci_tbl
,
5269 .probe
= cas_init_one
,
5270 .remove
= cas_remove_one
,
5272 .suspend
= cas_suspend
,
5273 .resume
= cas_resume
5277 static int __init
cas_init(void)
5279 if (linkdown_timeout
> 0)
5280 link_transition_timeout
= linkdown_timeout
* HZ
;
5282 link_transition_timeout
= 0;
5284 return pci_register_driver(&cas_driver
);
5287 static void __exit
cas_cleanup(void)
5289 pci_unregister_driver(&cas_driver
);
5292 module_init(cas_init
);
5293 module_exit(cas_cleanup
);