Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / sun / sungem.c
blob7a16d40a72d13cf1d522e8a3a396c826fe76f9b9
1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
44 #include <asm/io.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <asm/irq.h>
49 #ifdef CONFIG_SPARC
50 #include <asm/idprom.h>
51 #include <asm/prom.h>
52 #endif
54 #ifdef CONFIG_PPC_PMAC
55 #include <asm/prom.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
63 /* Stripping FCS is causing problems, disabled for now */
64 #undef STRIP_FCS
66 #define DEFAULT_MSG (NETIF_MSG_DRV | \
67 NETIF_MSG_PROBE | \
68 NETIF_MSG_LINK)
70 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
71 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
72 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
73 SUPPORTED_Pause | SUPPORTED_Autoneg)
75 #define DRV_NAME "sungem"
76 #define DRV_VERSION "1.0"
77 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
79 static char version[] =
80 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
82 MODULE_AUTHOR(DRV_AUTHOR);
83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
84 MODULE_LICENSE("GPL");
86 #define GEM_MODULE_NAME "gem"
88 static const struct pci_device_id gem_pci_tbl[] = {
89 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
90 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
92 /* These models only differ from the original GEM in
93 * that their tx/rx fifos are of a different size and
94 * they only support 10/100 speeds. -DaveM
96 * Apple's GMAC does support gigabit on machines with
97 * the BCM54xx PHYs. -BenH
99 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
100 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
101 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
102 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
104 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
106 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
108 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
110 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
111 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
112 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 {0, }
116 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
118 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
120 u32 cmd;
121 int limit = 10000;
123 cmd = (1 << 30);
124 cmd |= (2 << 28);
125 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
126 cmd |= (reg << 18) & MIF_FRAME_REGAD;
127 cmd |= (MIF_FRAME_TAMSB);
128 writel(cmd, gp->regs + MIF_FRAME);
130 while (--limit) {
131 cmd = readl(gp->regs + MIF_FRAME);
132 if (cmd & MIF_FRAME_TALSB)
133 break;
135 udelay(10);
138 if (!limit)
139 cmd = 0xffff;
141 return cmd & MIF_FRAME_DATA;
144 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
146 struct gem *gp = netdev_priv(dev);
147 return __sungem_phy_read(gp, mii_id, reg);
150 static inline u16 sungem_phy_read(struct gem *gp, int reg)
152 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
155 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
157 u32 cmd;
158 int limit = 10000;
160 cmd = (1 << 30);
161 cmd |= (1 << 28);
162 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
163 cmd |= (reg << 18) & MIF_FRAME_REGAD;
164 cmd |= (MIF_FRAME_TAMSB);
165 cmd |= (val & MIF_FRAME_DATA);
166 writel(cmd, gp->regs + MIF_FRAME);
168 while (limit--) {
169 cmd = readl(gp->regs + MIF_FRAME);
170 if (cmd & MIF_FRAME_TALSB)
171 break;
173 udelay(10);
177 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
179 struct gem *gp = netdev_priv(dev);
180 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
183 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
185 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
188 static inline void gem_enable_ints(struct gem *gp)
190 /* Enable all interrupts but TXDONE */
191 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
194 static inline void gem_disable_ints(struct gem *gp)
196 /* Disable all interrupts, including TXDONE */
197 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
198 (void)readl(gp->regs + GREG_IMASK); /* write posting */
201 static void gem_get_cell(struct gem *gp)
203 BUG_ON(gp->cell_enabled < 0);
204 gp->cell_enabled++;
205 #ifdef CONFIG_PPC_PMAC
206 if (gp->cell_enabled == 1) {
207 mb();
208 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
209 udelay(10);
211 #endif /* CONFIG_PPC_PMAC */
214 /* Turn off the chip's clock */
215 static void gem_put_cell(struct gem *gp)
217 BUG_ON(gp->cell_enabled <= 0);
218 gp->cell_enabled--;
219 #ifdef CONFIG_PPC_PMAC
220 if (gp->cell_enabled == 0) {
221 mb();
222 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
223 udelay(10);
225 #endif /* CONFIG_PPC_PMAC */
228 static inline void gem_netif_stop(struct gem *gp)
230 netif_trans_update(gp->dev); /* prevent tx timeout */
231 napi_disable(&gp->napi);
232 netif_tx_disable(gp->dev);
235 static inline void gem_netif_start(struct gem *gp)
237 /* NOTE: unconditional netif_wake_queue is only
238 * appropriate so long as all callers are assured to
239 * have free tx slots.
241 netif_wake_queue(gp->dev);
242 napi_enable(&gp->napi);
245 static void gem_schedule_reset(struct gem *gp)
247 gp->reset_task_pending = 1;
248 schedule_work(&gp->reset_task);
251 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
253 if (netif_msg_intr(gp))
254 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
257 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
259 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
260 u32 pcs_miistat;
262 if (netif_msg_intr(gp))
263 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
264 gp->dev->name, pcs_istat);
266 if (!(pcs_istat & PCS_ISTAT_LSC)) {
267 netdev_err(dev, "PCS irq but no link status change???\n");
268 return 0;
271 /* The link status bit latches on zero, so you must
272 * read it twice in such a case to see a transition
273 * to the link being up.
275 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
276 if (!(pcs_miistat & PCS_MIISTAT_LS))
277 pcs_miistat |=
278 (readl(gp->regs + PCS_MIISTAT) &
279 PCS_MIISTAT_LS);
281 if (pcs_miistat & PCS_MIISTAT_ANC) {
282 /* The remote-fault indication is only valid
283 * when autoneg has completed.
285 if (pcs_miistat & PCS_MIISTAT_RF)
286 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
287 else
288 netdev_info(dev, "PCS AutoNEG complete\n");
291 if (pcs_miistat & PCS_MIISTAT_LS) {
292 netdev_info(dev, "PCS link is now up\n");
293 netif_carrier_on(gp->dev);
294 } else {
295 netdev_info(dev, "PCS link is now down\n");
296 netif_carrier_off(gp->dev);
297 /* If this happens and the link timer is not running,
298 * reset so we re-negotiate.
300 if (!timer_pending(&gp->link_timer))
301 return 1;
304 return 0;
307 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
309 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
311 if (netif_msg_intr(gp))
312 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
313 gp->dev->name, txmac_stat);
315 /* Defer timer expiration is quite normal,
316 * don't even log the event.
318 if ((txmac_stat & MAC_TXSTAT_DTE) &&
319 !(txmac_stat & ~MAC_TXSTAT_DTE))
320 return 0;
322 if (txmac_stat & MAC_TXSTAT_URUN) {
323 netdev_err(dev, "TX MAC xmit underrun\n");
324 dev->stats.tx_fifo_errors++;
327 if (txmac_stat & MAC_TXSTAT_MPE) {
328 netdev_err(dev, "TX MAC max packet size error\n");
329 dev->stats.tx_errors++;
332 /* The rest are all cases of one of the 16-bit TX
333 * counters expiring.
335 if (txmac_stat & MAC_TXSTAT_NCE)
336 dev->stats.collisions += 0x10000;
338 if (txmac_stat & MAC_TXSTAT_ECE) {
339 dev->stats.tx_aborted_errors += 0x10000;
340 dev->stats.collisions += 0x10000;
343 if (txmac_stat & MAC_TXSTAT_LCE) {
344 dev->stats.tx_aborted_errors += 0x10000;
345 dev->stats.collisions += 0x10000;
348 /* We do not keep track of MAC_TXSTAT_FCE and
349 * MAC_TXSTAT_PCE events.
351 return 0;
354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
355 * so we do the following.
357 * If any part of the reset goes wrong, we return 1 and that causes the
358 * whole chip to be reset.
360 static int gem_rxmac_reset(struct gem *gp)
362 struct net_device *dev = gp->dev;
363 int limit, i;
364 u64 desc_dma;
365 u32 val;
367 /* First, reset & disable MAC RX. */
368 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
369 for (limit = 0; limit < 5000; limit++) {
370 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
371 break;
372 udelay(10);
374 if (limit == 5000) {
375 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
376 return 1;
379 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
380 gp->regs + MAC_RXCFG);
381 for (limit = 0; limit < 5000; limit++) {
382 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
383 break;
384 udelay(10);
386 if (limit == 5000) {
387 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
388 return 1;
391 /* Second, disable RX DMA. */
392 writel(0, gp->regs + RXDMA_CFG);
393 for (limit = 0; limit < 5000; limit++) {
394 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
395 break;
396 udelay(10);
398 if (limit == 5000) {
399 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
400 return 1;
403 mdelay(5);
405 /* Execute RX reset command. */
406 writel(gp->swrst_base | GREG_SWRST_RXRST,
407 gp->regs + GREG_SWRST);
408 for (limit = 0; limit < 5000; limit++) {
409 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
410 break;
411 udelay(10);
413 if (limit == 5000) {
414 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
415 return 1;
418 /* Refresh the RX ring. */
419 for (i = 0; i < RX_RING_SIZE; i++) {
420 struct gem_rxd *rxd = &gp->init_block->rxd[i];
422 if (gp->rx_skbs[i] == NULL) {
423 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
424 return 1;
427 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
429 gp->rx_new = gp->rx_old = 0;
431 /* Now we must reprogram the rest of RX unit. */
432 desc_dma = (u64) gp->gblock_dvma;
433 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
434 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
435 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
436 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
437 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
438 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
439 writel(val, gp->regs + RXDMA_CFG);
440 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
441 writel(((5 & RXDMA_BLANK_IPKTS) |
442 ((8 << 12) & RXDMA_BLANK_ITIME)),
443 gp->regs + RXDMA_BLANK);
444 else
445 writel(((5 & RXDMA_BLANK_IPKTS) |
446 ((4 << 12) & RXDMA_BLANK_ITIME)),
447 gp->regs + RXDMA_BLANK);
448 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
449 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
450 writel(val, gp->regs + RXDMA_PTHRESH);
451 val = readl(gp->regs + RXDMA_CFG);
452 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
453 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
454 val = readl(gp->regs + MAC_RXCFG);
455 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
457 return 0;
460 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
462 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
463 int ret = 0;
465 if (netif_msg_intr(gp))
466 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
467 gp->dev->name, rxmac_stat);
469 if (rxmac_stat & MAC_RXSTAT_OFLW) {
470 u32 smac = readl(gp->regs + MAC_SMACHINE);
472 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
473 dev->stats.rx_over_errors++;
474 dev->stats.rx_fifo_errors++;
476 ret = gem_rxmac_reset(gp);
479 if (rxmac_stat & MAC_RXSTAT_ACE)
480 dev->stats.rx_frame_errors += 0x10000;
482 if (rxmac_stat & MAC_RXSTAT_CCE)
483 dev->stats.rx_crc_errors += 0x10000;
485 if (rxmac_stat & MAC_RXSTAT_LCE)
486 dev->stats.rx_length_errors += 0x10000;
488 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
489 * events.
491 return ret;
494 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
496 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
498 if (netif_msg_intr(gp))
499 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
500 gp->dev->name, mac_cstat);
502 /* This interrupt is just for pause frame and pause
503 * tracking. It is useful for diagnostics and debug
504 * but probably by default we will mask these events.
506 if (mac_cstat & MAC_CSTAT_PS)
507 gp->pause_entered++;
509 if (mac_cstat & MAC_CSTAT_PRCV)
510 gp->pause_last_time_recvd = (mac_cstat >> 16);
512 return 0;
515 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
517 u32 mif_status = readl(gp->regs + MIF_STATUS);
518 u32 reg_val, changed_bits;
520 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
521 changed_bits = (mif_status & MIF_STATUS_STAT);
523 gem_handle_mif_event(gp, reg_val, changed_bits);
525 return 0;
528 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
530 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
532 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
533 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
534 netdev_err(dev, "PCI error [%04x]", pci_estat);
536 if (pci_estat & GREG_PCIESTAT_BADACK)
537 pr_cont(" <No ACK64# during ABS64 cycle>");
538 if (pci_estat & GREG_PCIESTAT_DTRTO)
539 pr_cont(" <Delayed transaction timeout>");
540 if (pci_estat & GREG_PCIESTAT_OTHER)
541 pr_cont(" <other>");
542 pr_cont("\n");
543 } else {
544 pci_estat |= GREG_PCIESTAT_OTHER;
545 netdev_err(dev, "PCI error\n");
548 if (pci_estat & GREG_PCIESTAT_OTHER) {
549 u16 pci_cfg_stat;
551 /* Interrogate PCI config space for the
552 * true cause.
554 pci_read_config_word(gp->pdev, PCI_STATUS,
555 &pci_cfg_stat);
556 netdev_err(dev, "Read PCI cfg space status [%04x]\n",
557 pci_cfg_stat);
558 if (pci_cfg_stat & PCI_STATUS_PARITY)
559 netdev_err(dev, "PCI parity error detected\n");
560 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
561 netdev_err(dev, "PCI target abort\n");
562 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
563 netdev_err(dev, "PCI master acks target abort\n");
564 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
565 netdev_err(dev, "PCI master abort\n");
566 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
567 netdev_err(dev, "PCI system error SERR#\n");
568 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
569 netdev_err(dev, "PCI parity error\n");
571 /* Write the error bits back to clear them. */
572 pci_cfg_stat &= (PCI_STATUS_PARITY |
573 PCI_STATUS_SIG_TARGET_ABORT |
574 PCI_STATUS_REC_TARGET_ABORT |
575 PCI_STATUS_REC_MASTER_ABORT |
576 PCI_STATUS_SIG_SYSTEM_ERROR |
577 PCI_STATUS_DETECTED_PARITY);
578 pci_write_config_word(gp->pdev,
579 PCI_STATUS, pci_cfg_stat);
582 /* For all PCI errors, we should reset the chip. */
583 return 1;
586 /* All non-normal interrupt conditions get serviced here.
587 * Returns non-zero if we should just exit the interrupt
588 * handler right now (ie. if we reset the card which invalidates
589 * all of the other original irq status bits).
591 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
593 if (gem_status & GREG_STAT_RXNOBUF) {
594 /* Frame arrived, no free RX buffers available. */
595 if (netif_msg_rx_err(gp))
596 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
597 gp->dev->name);
598 dev->stats.rx_dropped++;
601 if (gem_status & GREG_STAT_RXTAGERR) {
602 /* corrupt RX tag framing */
603 if (netif_msg_rx_err(gp))
604 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
605 gp->dev->name);
606 dev->stats.rx_errors++;
608 return 1;
611 if (gem_status & GREG_STAT_PCS) {
612 if (gem_pcs_interrupt(dev, gp, gem_status))
613 return 1;
616 if (gem_status & GREG_STAT_TXMAC) {
617 if (gem_txmac_interrupt(dev, gp, gem_status))
618 return 1;
621 if (gem_status & GREG_STAT_RXMAC) {
622 if (gem_rxmac_interrupt(dev, gp, gem_status))
623 return 1;
626 if (gem_status & GREG_STAT_MAC) {
627 if (gem_mac_interrupt(dev, gp, gem_status))
628 return 1;
631 if (gem_status & GREG_STAT_MIF) {
632 if (gem_mif_interrupt(dev, gp, gem_status))
633 return 1;
636 if (gem_status & GREG_STAT_PCIERR) {
637 if (gem_pci_interrupt(dev, gp, gem_status))
638 return 1;
641 return 0;
644 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
646 int entry, limit;
648 entry = gp->tx_old;
649 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
650 while (entry != limit) {
651 struct sk_buff *skb;
652 struct gem_txd *txd;
653 dma_addr_t dma_addr;
654 u32 dma_len;
655 int frag;
657 if (netif_msg_tx_done(gp))
658 printk(KERN_DEBUG "%s: tx done, slot %d\n",
659 gp->dev->name, entry);
660 skb = gp->tx_skbs[entry];
661 if (skb_shinfo(skb)->nr_frags) {
662 int last = entry + skb_shinfo(skb)->nr_frags;
663 int walk = entry;
664 int incomplete = 0;
666 last &= (TX_RING_SIZE - 1);
667 for (;;) {
668 walk = NEXT_TX(walk);
669 if (walk == limit)
670 incomplete = 1;
671 if (walk == last)
672 break;
674 if (incomplete)
675 break;
677 gp->tx_skbs[entry] = NULL;
678 dev->stats.tx_bytes += skb->len;
680 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
681 txd = &gp->init_block->txd[entry];
683 dma_addr = le64_to_cpu(txd->buffer);
684 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
686 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
687 entry = NEXT_TX(entry);
690 dev->stats.tx_packets++;
691 dev_consume_skb_any(skb);
693 gp->tx_old = entry;
695 /* Need to make the tx_old update visible to gem_start_xmit()
696 * before checking for netif_queue_stopped(). Without the
697 * memory barrier, there is a small possibility that gem_start_xmit()
698 * will miss it and cause the queue to be stopped forever.
700 smp_mb();
702 if (unlikely(netif_queue_stopped(dev) &&
703 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
704 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
706 __netif_tx_lock(txq, smp_processor_id());
707 if (netif_queue_stopped(dev) &&
708 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
709 netif_wake_queue(dev);
710 __netif_tx_unlock(txq);
714 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
716 int cluster_start, curr, count, kick;
718 cluster_start = curr = (gp->rx_new & ~(4 - 1));
719 count = 0;
720 kick = -1;
721 dma_wmb();
722 while (curr != limit) {
723 curr = NEXT_RX(curr);
724 if (++count == 4) {
725 struct gem_rxd *rxd =
726 &gp->init_block->rxd[cluster_start];
727 for (;;) {
728 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
729 rxd++;
730 cluster_start = NEXT_RX(cluster_start);
731 if (cluster_start == curr)
732 break;
734 kick = curr;
735 count = 0;
738 if (kick >= 0) {
739 mb();
740 writel(kick, gp->regs + RXDMA_KICK);
744 #define ALIGNED_RX_SKB_ADDR(addr) \
745 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
746 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
747 gfp_t gfp_flags)
749 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
751 if (likely(skb)) {
752 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
753 skb_reserve(skb, offset);
755 return skb;
758 static int gem_rx(struct gem *gp, int work_to_do)
760 struct net_device *dev = gp->dev;
761 int entry, drops, work_done = 0;
762 u32 done;
763 __sum16 csum;
765 if (netif_msg_rx_status(gp))
766 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
767 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
769 entry = gp->rx_new;
770 drops = 0;
771 done = readl(gp->regs + RXDMA_DONE);
772 for (;;) {
773 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
774 struct sk_buff *skb;
775 u64 status = le64_to_cpu(rxd->status_word);
776 dma_addr_t dma_addr;
777 int len;
779 if ((status & RXDCTRL_OWN) != 0)
780 break;
782 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
783 break;
785 /* When writing back RX descriptor, GEM writes status
786 * then buffer address, possibly in separate transactions.
787 * If we don't wait for the chip to write both, we could
788 * post a new buffer to this descriptor then have GEM spam
789 * on the buffer address. We sync on the RX completion
790 * register to prevent this from happening.
792 if (entry == done) {
793 done = readl(gp->regs + RXDMA_DONE);
794 if (entry == done)
795 break;
798 /* We can now account for the work we're about to do */
799 work_done++;
801 skb = gp->rx_skbs[entry];
803 len = (status & RXDCTRL_BUFSZ) >> 16;
804 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
805 dev->stats.rx_errors++;
806 if (len < ETH_ZLEN)
807 dev->stats.rx_length_errors++;
808 if (len & RXDCTRL_BAD)
809 dev->stats.rx_crc_errors++;
811 /* We'll just return it to GEM. */
812 drop_it:
813 dev->stats.rx_dropped++;
814 goto next;
817 dma_addr = le64_to_cpu(rxd->buffer);
818 if (len > RX_COPY_THRESHOLD) {
819 struct sk_buff *new_skb;
821 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
822 if (new_skb == NULL) {
823 drops++;
824 goto drop_it;
826 pci_unmap_page(gp->pdev, dma_addr,
827 RX_BUF_ALLOC_SIZE(gp),
828 PCI_DMA_FROMDEVICE);
829 gp->rx_skbs[entry] = new_skb;
830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 virt_to_page(new_skb->data),
833 offset_in_page(new_skb->data),
834 RX_BUF_ALLOC_SIZE(gp),
835 PCI_DMA_FROMDEVICE));
836 skb_reserve(new_skb, RX_OFFSET);
838 /* Trim the original skb for the netif. */
839 skb_trim(skb, len);
840 } else {
841 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
843 if (copy_skb == NULL) {
844 drops++;
845 goto drop_it;
848 skb_reserve(copy_skb, 2);
849 skb_put(copy_skb, len);
850 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
851 skb_copy_from_linear_data(skb, copy_skb->data, len);
852 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
854 /* We'll reuse the original ring buffer. */
855 skb = copy_skb;
858 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
859 skb->csum = csum_unfold(csum);
860 skb->ip_summed = CHECKSUM_COMPLETE;
861 skb->protocol = eth_type_trans(skb, gp->dev);
863 napi_gro_receive(&gp->napi, skb);
865 dev->stats.rx_packets++;
866 dev->stats.rx_bytes += len;
868 next:
869 entry = NEXT_RX(entry);
872 gem_post_rxds(gp, entry);
874 gp->rx_new = entry;
876 if (drops)
877 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
879 return work_done;
882 static int gem_poll(struct napi_struct *napi, int budget)
884 struct gem *gp = container_of(napi, struct gem, napi);
885 struct net_device *dev = gp->dev;
886 int work_done;
888 work_done = 0;
889 do {
890 /* Handle anomalies */
891 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
892 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
893 int reset;
895 /* We run the abnormal interrupt handling code with
896 * the Tx lock. It only resets the Rx portion of the
897 * chip, but we need to guard it against DMA being
898 * restarted by the link poll timer
900 __netif_tx_lock(txq, smp_processor_id());
901 reset = gem_abnormal_irq(dev, gp, gp->status);
902 __netif_tx_unlock(txq);
903 if (reset) {
904 gem_schedule_reset(gp);
905 napi_complete(napi);
906 return work_done;
910 /* Run TX completion thread */
911 gem_tx(dev, gp, gp->status);
913 /* Run RX thread. We don't use any locking here,
914 * code willing to do bad things - like cleaning the
915 * rx ring - must call napi_disable(), which
916 * schedule_timeout()'s if polling is already disabled.
918 work_done += gem_rx(gp, budget - work_done);
920 if (work_done >= budget)
921 return work_done;
923 gp->status = readl(gp->regs + GREG_STAT);
924 } while (gp->status & GREG_STAT_NAPI);
926 napi_complete_done(napi, work_done);
927 gem_enable_ints(gp);
929 return work_done;
932 static irqreturn_t gem_interrupt(int irq, void *dev_id)
934 struct net_device *dev = dev_id;
935 struct gem *gp = netdev_priv(dev);
937 if (napi_schedule_prep(&gp->napi)) {
938 u32 gem_status = readl(gp->regs + GREG_STAT);
940 if (unlikely(gem_status == 0)) {
941 napi_enable(&gp->napi);
942 return IRQ_NONE;
944 if (netif_msg_intr(gp))
945 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
946 gp->dev->name, gem_status);
948 gp->status = gem_status;
949 gem_disable_ints(gp);
950 __napi_schedule(&gp->napi);
953 /* If polling was disabled at the time we received that
954 * interrupt, we may return IRQ_HANDLED here while we
955 * should return IRQ_NONE. No big deal...
957 return IRQ_HANDLED;
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 static void gem_poll_controller(struct net_device *dev)
963 struct gem *gp = netdev_priv(dev);
965 disable_irq(gp->pdev->irq);
966 gem_interrupt(gp->pdev->irq, dev);
967 enable_irq(gp->pdev->irq);
969 #endif
971 static void gem_tx_timeout(struct net_device *dev)
973 struct gem *gp = netdev_priv(dev);
975 netdev_err(dev, "transmit timed out, resetting\n");
977 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
978 readl(gp->regs + TXDMA_CFG),
979 readl(gp->regs + MAC_TXSTAT),
980 readl(gp->regs + MAC_TXCFG));
981 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
982 readl(gp->regs + RXDMA_CFG),
983 readl(gp->regs + MAC_RXSTAT),
984 readl(gp->regs + MAC_RXCFG));
986 gem_schedule_reset(gp);
989 static __inline__ int gem_intme(int entry)
991 /* Algorithm: IRQ every 1/2 of descriptors. */
992 if (!(entry & ((TX_RING_SIZE>>1)-1)))
993 return 1;
995 return 0;
998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
999 struct net_device *dev)
1001 struct gem *gp = netdev_priv(dev);
1002 int entry;
1003 u64 ctrl;
1005 ctrl = 0;
1006 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1007 const u64 csum_start_off = skb_checksum_start_offset(skb);
1008 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1010 ctrl = (TXDCTRL_CENAB |
1011 (csum_start_off << 15) |
1012 (csum_stuff_off << 21));
1015 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1016 /* This is a hard error, log it. */
1017 if (!netif_queue_stopped(dev)) {
1018 netif_stop_queue(dev);
1019 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1021 return NETDEV_TX_BUSY;
1024 entry = gp->tx_new;
1025 gp->tx_skbs[entry] = skb;
1027 if (skb_shinfo(skb)->nr_frags == 0) {
1028 struct gem_txd *txd = &gp->init_block->txd[entry];
1029 dma_addr_t mapping;
1030 u32 len;
1032 len = skb->len;
1033 mapping = pci_map_page(gp->pdev,
1034 virt_to_page(skb->data),
1035 offset_in_page(skb->data),
1036 len, PCI_DMA_TODEVICE);
1037 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1038 if (gem_intme(entry))
1039 ctrl |= TXDCTRL_INTME;
1040 txd->buffer = cpu_to_le64(mapping);
1041 dma_wmb();
1042 txd->control_word = cpu_to_le64(ctrl);
1043 entry = NEXT_TX(entry);
1044 } else {
1045 struct gem_txd *txd;
1046 u32 first_len;
1047 u64 intme;
1048 dma_addr_t first_mapping;
1049 int frag, first_entry = entry;
1051 intme = 0;
1052 if (gem_intme(entry))
1053 intme |= TXDCTRL_INTME;
1055 /* We must give this initial chunk to the device last.
1056 * Otherwise we could race with the device.
1058 first_len = skb_headlen(skb);
1059 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1060 offset_in_page(skb->data),
1061 first_len, PCI_DMA_TODEVICE);
1062 entry = NEXT_TX(entry);
1064 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1065 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1066 u32 len;
1067 dma_addr_t mapping;
1068 u64 this_ctrl;
1070 len = skb_frag_size(this_frag);
1071 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1072 0, len, DMA_TO_DEVICE);
1073 this_ctrl = ctrl;
1074 if (frag == skb_shinfo(skb)->nr_frags - 1)
1075 this_ctrl |= TXDCTRL_EOF;
1077 txd = &gp->init_block->txd[entry];
1078 txd->buffer = cpu_to_le64(mapping);
1079 dma_wmb();
1080 txd->control_word = cpu_to_le64(this_ctrl | len);
1082 if (gem_intme(entry))
1083 intme |= TXDCTRL_INTME;
1085 entry = NEXT_TX(entry);
1087 txd = &gp->init_block->txd[first_entry];
1088 txd->buffer = cpu_to_le64(first_mapping);
1089 dma_wmb();
1090 txd->control_word =
1091 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1094 gp->tx_new = entry;
1095 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1096 netif_stop_queue(dev);
1098 /* netif_stop_queue() must be done before checking
1099 * checking tx index in TX_BUFFS_AVAIL() below, because
1100 * in gem_tx(), we update tx_old before checking for
1101 * netif_queue_stopped().
1103 smp_mb();
1104 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1105 netif_wake_queue(dev);
1107 if (netif_msg_tx_queued(gp))
1108 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1109 dev->name, entry, skb->len);
1110 mb();
1111 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1113 return NETDEV_TX_OK;
1116 static void gem_pcs_reset(struct gem *gp)
1118 int limit;
1119 u32 val;
1121 /* Reset PCS unit. */
1122 val = readl(gp->regs + PCS_MIICTRL);
1123 val |= PCS_MIICTRL_RST;
1124 writel(val, gp->regs + PCS_MIICTRL);
1126 limit = 32;
1127 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1128 udelay(100);
1129 if (limit-- <= 0)
1130 break;
1132 if (limit < 0)
1133 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1136 static void gem_pcs_reinit_adv(struct gem *gp)
1138 u32 val;
1140 /* Make sure PCS is disabled while changing advertisement
1141 * configuration.
1143 val = readl(gp->regs + PCS_CFG);
1144 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1145 writel(val, gp->regs + PCS_CFG);
1147 /* Advertise all capabilities except asymmetric
1148 * pause.
1150 val = readl(gp->regs + PCS_MIIADV);
1151 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1152 PCS_MIIADV_SP | PCS_MIIADV_AP);
1153 writel(val, gp->regs + PCS_MIIADV);
1155 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1156 * and re-enable PCS.
1158 val = readl(gp->regs + PCS_MIICTRL);
1159 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1160 val &= ~PCS_MIICTRL_WB;
1161 writel(val, gp->regs + PCS_MIICTRL);
1163 val = readl(gp->regs + PCS_CFG);
1164 val |= PCS_CFG_ENABLE;
1165 writel(val, gp->regs + PCS_CFG);
1167 /* Make sure serialink loopback is off. The meaning
1168 * of this bit is logically inverted based upon whether
1169 * you are in Serialink or SERDES mode.
1171 val = readl(gp->regs + PCS_SCTRL);
1172 if (gp->phy_type == phy_serialink)
1173 val &= ~PCS_SCTRL_LOOP;
1174 else
1175 val |= PCS_SCTRL_LOOP;
1176 writel(val, gp->regs + PCS_SCTRL);
1179 #define STOP_TRIES 32
1181 static void gem_reset(struct gem *gp)
1183 int limit;
1184 u32 val;
1186 /* Make sure we won't get any more interrupts */
1187 writel(0xffffffff, gp->regs + GREG_IMASK);
1189 /* Reset the chip */
1190 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1191 gp->regs + GREG_SWRST);
1193 limit = STOP_TRIES;
1195 do {
1196 udelay(20);
1197 val = readl(gp->regs + GREG_SWRST);
1198 if (limit-- <= 0)
1199 break;
1200 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1202 if (limit < 0)
1203 netdev_err(gp->dev, "SW reset is ghetto\n");
1205 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1206 gem_pcs_reinit_adv(gp);
1209 static void gem_start_dma(struct gem *gp)
1211 u32 val;
1213 /* We are ready to rock, turn everything on. */
1214 val = readl(gp->regs + TXDMA_CFG);
1215 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1216 val = readl(gp->regs + RXDMA_CFG);
1217 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1218 val = readl(gp->regs + MAC_TXCFG);
1219 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1220 val = readl(gp->regs + MAC_RXCFG);
1221 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1223 (void) readl(gp->regs + MAC_RXCFG);
1224 udelay(100);
1226 gem_enable_ints(gp);
1228 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1231 /* DMA won't be actually stopped before about 4ms tho ...
1233 static void gem_stop_dma(struct gem *gp)
1235 u32 val;
1237 /* We are done rocking, turn everything off. */
1238 val = readl(gp->regs + TXDMA_CFG);
1239 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1240 val = readl(gp->regs + RXDMA_CFG);
1241 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1242 val = readl(gp->regs + MAC_TXCFG);
1243 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1244 val = readl(gp->regs + MAC_RXCFG);
1245 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1247 (void) readl(gp->regs + MAC_RXCFG);
1249 /* Need to wait a bit ... done by the caller */
1253 // XXX dbl check what that function should do when called on PCS PHY
1254 static void gem_begin_auto_negotiation(struct gem *gp,
1255 const struct ethtool_link_ksettings *ep)
1257 u32 advertise, features;
1258 int autoneg;
1259 int speed;
1260 int duplex;
1261 u32 advertising;
1263 if (ep)
1264 ethtool_convert_link_mode_to_legacy_u32(
1265 &advertising, ep->link_modes.advertising);
1267 if (gp->phy_type != phy_mii_mdio0 &&
1268 gp->phy_type != phy_mii_mdio1)
1269 goto non_mii;
1271 /* Setup advertise */
1272 if (found_mii_phy(gp))
1273 features = gp->phy_mii.def->features;
1274 else
1275 features = 0;
1277 advertise = features & ADVERTISE_MASK;
1278 if (gp->phy_mii.advertising != 0)
1279 advertise &= gp->phy_mii.advertising;
1281 autoneg = gp->want_autoneg;
1282 speed = gp->phy_mii.speed;
1283 duplex = gp->phy_mii.duplex;
1285 /* Setup link parameters */
1286 if (!ep)
1287 goto start_aneg;
1288 if (ep->base.autoneg == AUTONEG_ENABLE) {
1289 advertise = advertising;
1290 autoneg = 1;
1291 } else {
1292 autoneg = 0;
1293 speed = ep->base.speed;
1294 duplex = ep->base.duplex;
1297 start_aneg:
1298 /* Sanitize settings based on PHY capabilities */
1299 if ((features & SUPPORTED_Autoneg) == 0)
1300 autoneg = 0;
1301 if (speed == SPEED_1000 &&
1302 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1303 speed = SPEED_100;
1304 if (speed == SPEED_100 &&
1305 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1306 speed = SPEED_10;
1307 if (duplex == DUPLEX_FULL &&
1308 !(features & (SUPPORTED_1000baseT_Full |
1309 SUPPORTED_100baseT_Full |
1310 SUPPORTED_10baseT_Full)))
1311 duplex = DUPLEX_HALF;
1312 if (speed == 0)
1313 speed = SPEED_10;
1315 /* If we are asleep, we don't try to actually setup the PHY, we
1316 * just store the settings
1318 if (!netif_device_present(gp->dev)) {
1319 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1320 gp->phy_mii.speed = speed;
1321 gp->phy_mii.duplex = duplex;
1322 return;
1325 /* Configure PHY & start aneg */
1326 gp->want_autoneg = autoneg;
1327 if (autoneg) {
1328 if (found_mii_phy(gp))
1329 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1330 gp->lstate = link_aneg;
1331 } else {
1332 if (found_mii_phy(gp))
1333 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1334 gp->lstate = link_force_ok;
1337 non_mii:
1338 gp->timer_ticks = 0;
1339 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1342 /* A link-up condition has occurred, initialize and enable the
1343 * rest of the chip.
1345 static int gem_set_link_modes(struct gem *gp)
1347 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1348 int full_duplex, speed, pause;
1349 u32 val;
1351 full_duplex = 0;
1352 speed = SPEED_10;
1353 pause = 0;
1355 if (found_mii_phy(gp)) {
1356 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1357 return 1;
1358 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1359 speed = gp->phy_mii.speed;
1360 pause = gp->phy_mii.pause;
1361 } else if (gp->phy_type == phy_serialink ||
1362 gp->phy_type == phy_serdes) {
1363 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1365 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1366 full_duplex = 1;
1367 speed = SPEED_1000;
1370 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1371 speed, (full_duplex ? "full" : "half"));
1374 /* We take the tx queue lock to avoid collisions between
1375 * this code, the tx path and the NAPI-driven error path
1377 __netif_tx_lock(txq, smp_processor_id());
1379 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1380 if (full_duplex) {
1381 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1382 } else {
1383 /* MAC_TXCFG_NBO must be zero. */
1385 writel(val, gp->regs + MAC_TXCFG);
1387 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1388 if (!full_duplex &&
1389 (gp->phy_type == phy_mii_mdio0 ||
1390 gp->phy_type == phy_mii_mdio1)) {
1391 val |= MAC_XIFCFG_DISE;
1392 } else if (full_duplex) {
1393 val |= MAC_XIFCFG_FLED;
1396 if (speed == SPEED_1000)
1397 val |= (MAC_XIFCFG_GMII);
1399 writel(val, gp->regs + MAC_XIFCFG);
1401 /* If gigabit and half-duplex, enable carrier extension
1402 * mode. Else, disable it.
1404 if (speed == SPEED_1000 && !full_duplex) {
1405 val = readl(gp->regs + MAC_TXCFG);
1406 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1408 val = readl(gp->regs + MAC_RXCFG);
1409 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1410 } else {
1411 val = readl(gp->regs + MAC_TXCFG);
1412 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1414 val = readl(gp->regs + MAC_RXCFG);
1415 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1418 if (gp->phy_type == phy_serialink ||
1419 gp->phy_type == phy_serdes) {
1420 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1422 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1423 pause = 1;
1426 if (!full_duplex)
1427 writel(512, gp->regs + MAC_STIME);
1428 else
1429 writel(64, gp->regs + MAC_STIME);
1430 val = readl(gp->regs + MAC_MCCFG);
1431 if (pause)
1432 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1433 else
1434 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1435 writel(val, gp->regs + MAC_MCCFG);
1437 gem_start_dma(gp);
1439 __netif_tx_unlock(txq);
1441 if (netif_msg_link(gp)) {
1442 if (pause) {
1443 netdev_info(gp->dev,
1444 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1445 gp->rx_fifo_sz,
1446 gp->rx_pause_off,
1447 gp->rx_pause_on);
1448 } else {
1449 netdev_info(gp->dev, "Pause is disabled\n");
1453 return 0;
1456 static int gem_mdio_link_not_up(struct gem *gp)
1458 switch (gp->lstate) {
1459 case link_force_ret:
1460 netif_info(gp, link, gp->dev,
1461 "Autoneg failed again, keeping forced mode\n");
1462 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1463 gp->last_forced_speed, DUPLEX_HALF);
1464 gp->timer_ticks = 5;
1465 gp->lstate = link_force_ok;
1466 return 0;
1467 case link_aneg:
1468 /* We try forced modes after a failed aneg only on PHYs that don't
1469 * have "magic_aneg" bit set, which means they internally do the
1470 * while forced-mode thingy. On these, we just restart aneg
1472 if (gp->phy_mii.def->magic_aneg)
1473 return 1;
1474 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1475 /* Try forced modes. */
1476 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1477 DUPLEX_HALF);
1478 gp->timer_ticks = 5;
1479 gp->lstate = link_force_try;
1480 return 0;
1481 case link_force_try:
1482 /* Downgrade from 100 to 10 Mbps if necessary.
1483 * If already at 10Mbps, warn user about the
1484 * situation every 10 ticks.
1486 if (gp->phy_mii.speed == SPEED_100) {
1487 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1488 DUPLEX_HALF);
1489 gp->timer_ticks = 5;
1490 netif_info(gp, link, gp->dev,
1491 "switching to forced 10bt\n");
1492 return 0;
1493 } else
1494 return 1;
1495 default:
1496 return 0;
1500 static void gem_link_timer(struct timer_list *t)
1502 struct gem *gp = from_timer(gp, t, link_timer);
1503 struct net_device *dev = gp->dev;
1504 int restart_aneg = 0;
1506 /* There's no point doing anything if we're going to be reset */
1507 if (gp->reset_task_pending)
1508 return;
1510 if (gp->phy_type == phy_serialink ||
1511 gp->phy_type == phy_serdes) {
1512 u32 val = readl(gp->regs + PCS_MIISTAT);
1514 if (!(val & PCS_MIISTAT_LS))
1515 val = readl(gp->regs + PCS_MIISTAT);
1517 if ((val & PCS_MIISTAT_LS) != 0) {
1518 if (gp->lstate == link_up)
1519 goto restart;
1521 gp->lstate = link_up;
1522 netif_carrier_on(dev);
1523 (void)gem_set_link_modes(gp);
1525 goto restart;
1527 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1528 /* Ok, here we got a link. If we had it due to a forced
1529 * fallback, and we were configured for autoneg, we do
1530 * retry a short autoneg pass. If you know your hub is
1531 * broken, use ethtool ;)
1533 if (gp->lstate == link_force_try && gp->want_autoneg) {
1534 gp->lstate = link_force_ret;
1535 gp->last_forced_speed = gp->phy_mii.speed;
1536 gp->timer_ticks = 5;
1537 if (netif_msg_link(gp))
1538 netdev_info(dev,
1539 "Got link after fallback, retrying autoneg once...\n");
1540 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1541 } else if (gp->lstate != link_up) {
1542 gp->lstate = link_up;
1543 netif_carrier_on(dev);
1544 if (gem_set_link_modes(gp))
1545 restart_aneg = 1;
1547 } else {
1548 /* If the link was previously up, we restart the
1549 * whole process
1551 if (gp->lstate == link_up) {
1552 gp->lstate = link_down;
1553 netif_info(gp, link, dev, "Link down\n");
1554 netif_carrier_off(dev);
1555 gem_schedule_reset(gp);
1556 /* The reset task will restart the timer */
1557 return;
1558 } else if (++gp->timer_ticks > 10) {
1559 if (found_mii_phy(gp))
1560 restart_aneg = gem_mdio_link_not_up(gp);
1561 else
1562 restart_aneg = 1;
1565 if (restart_aneg) {
1566 gem_begin_auto_negotiation(gp, NULL);
1567 return;
1569 restart:
1570 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1573 static void gem_clean_rings(struct gem *gp)
1575 struct gem_init_block *gb = gp->init_block;
1576 struct sk_buff *skb;
1577 int i;
1578 dma_addr_t dma_addr;
1580 for (i = 0; i < RX_RING_SIZE; i++) {
1581 struct gem_rxd *rxd;
1583 rxd = &gb->rxd[i];
1584 if (gp->rx_skbs[i] != NULL) {
1585 skb = gp->rx_skbs[i];
1586 dma_addr = le64_to_cpu(rxd->buffer);
1587 pci_unmap_page(gp->pdev, dma_addr,
1588 RX_BUF_ALLOC_SIZE(gp),
1589 PCI_DMA_FROMDEVICE);
1590 dev_kfree_skb_any(skb);
1591 gp->rx_skbs[i] = NULL;
1593 rxd->status_word = 0;
1594 dma_wmb();
1595 rxd->buffer = 0;
1598 for (i = 0; i < TX_RING_SIZE; i++) {
1599 if (gp->tx_skbs[i] != NULL) {
1600 struct gem_txd *txd;
1601 int frag;
1603 skb = gp->tx_skbs[i];
1604 gp->tx_skbs[i] = NULL;
1606 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1607 int ent = i & (TX_RING_SIZE - 1);
1609 txd = &gb->txd[ent];
1610 dma_addr = le64_to_cpu(txd->buffer);
1611 pci_unmap_page(gp->pdev, dma_addr,
1612 le64_to_cpu(txd->control_word) &
1613 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1615 if (frag != skb_shinfo(skb)->nr_frags)
1616 i++;
1618 dev_kfree_skb_any(skb);
1623 static void gem_init_rings(struct gem *gp)
1625 struct gem_init_block *gb = gp->init_block;
1626 struct net_device *dev = gp->dev;
1627 int i;
1628 dma_addr_t dma_addr;
1630 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1632 gem_clean_rings(gp);
1634 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1635 (unsigned)VLAN_ETH_FRAME_LEN);
1637 for (i = 0; i < RX_RING_SIZE; i++) {
1638 struct sk_buff *skb;
1639 struct gem_rxd *rxd = &gb->rxd[i];
1641 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1642 if (!skb) {
1643 rxd->buffer = 0;
1644 rxd->status_word = 0;
1645 continue;
1648 gp->rx_skbs[i] = skb;
1649 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1650 dma_addr = pci_map_page(gp->pdev,
1651 virt_to_page(skb->data),
1652 offset_in_page(skb->data),
1653 RX_BUF_ALLOC_SIZE(gp),
1654 PCI_DMA_FROMDEVICE);
1655 rxd->buffer = cpu_to_le64(dma_addr);
1656 dma_wmb();
1657 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1658 skb_reserve(skb, RX_OFFSET);
1661 for (i = 0; i < TX_RING_SIZE; i++) {
1662 struct gem_txd *txd = &gb->txd[i];
1664 txd->control_word = 0;
1665 dma_wmb();
1666 txd->buffer = 0;
1668 wmb();
1671 /* Init PHY interface and start link poll state machine */
1672 static void gem_init_phy(struct gem *gp)
1674 u32 mifcfg;
1676 /* Revert MIF CFG setting done on stop_phy */
1677 mifcfg = readl(gp->regs + MIF_CFG);
1678 mifcfg &= ~MIF_CFG_BBMODE;
1679 writel(mifcfg, gp->regs + MIF_CFG);
1681 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1682 int i;
1684 /* Those delay sucks, the HW seem to love them though, I'll
1685 * serisouly consider breaking some locks here to be able
1686 * to schedule instead
1688 for (i = 0; i < 3; i++) {
1689 #ifdef CONFIG_PPC_PMAC
1690 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1691 msleep(20);
1692 #endif
1693 /* Some PHYs used by apple have problem getting back to us,
1694 * we do an additional reset here
1696 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1697 msleep(20);
1698 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1699 break;
1700 if (i == 2)
1701 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1705 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1706 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1707 u32 val;
1709 /* Init datapath mode register. */
1710 if (gp->phy_type == phy_mii_mdio0 ||
1711 gp->phy_type == phy_mii_mdio1) {
1712 val = PCS_DMODE_MGM;
1713 } else if (gp->phy_type == phy_serialink) {
1714 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1715 } else {
1716 val = PCS_DMODE_ESM;
1719 writel(val, gp->regs + PCS_DMODE);
1722 if (gp->phy_type == phy_mii_mdio0 ||
1723 gp->phy_type == phy_mii_mdio1) {
1724 /* Reset and detect MII PHY */
1725 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1727 /* Init PHY */
1728 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1729 gp->phy_mii.def->ops->init(&gp->phy_mii);
1730 } else {
1731 gem_pcs_reset(gp);
1732 gem_pcs_reinit_adv(gp);
1735 /* Default aneg parameters */
1736 gp->timer_ticks = 0;
1737 gp->lstate = link_down;
1738 netif_carrier_off(gp->dev);
1740 /* Print things out */
1741 if (gp->phy_type == phy_mii_mdio0 ||
1742 gp->phy_type == phy_mii_mdio1)
1743 netdev_info(gp->dev, "Found %s PHY\n",
1744 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1746 gem_begin_auto_negotiation(gp, NULL);
1749 static void gem_init_dma(struct gem *gp)
1751 u64 desc_dma = (u64) gp->gblock_dvma;
1752 u32 val;
1754 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1755 writel(val, gp->regs + TXDMA_CFG);
1757 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1758 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1759 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1761 writel(0, gp->regs + TXDMA_KICK);
1763 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1764 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1765 writel(val, gp->regs + RXDMA_CFG);
1767 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1768 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1770 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1772 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1773 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1774 writel(val, gp->regs + RXDMA_PTHRESH);
1776 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1777 writel(((5 & RXDMA_BLANK_IPKTS) |
1778 ((8 << 12) & RXDMA_BLANK_ITIME)),
1779 gp->regs + RXDMA_BLANK);
1780 else
1781 writel(((5 & RXDMA_BLANK_IPKTS) |
1782 ((4 << 12) & RXDMA_BLANK_ITIME)),
1783 gp->regs + RXDMA_BLANK);
1786 static u32 gem_setup_multicast(struct gem *gp)
1788 u32 rxcfg = 0;
1789 int i;
1791 if ((gp->dev->flags & IFF_ALLMULTI) ||
1792 (netdev_mc_count(gp->dev) > 256)) {
1793 for (i=0; i<16; i++)
1794 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1795 rxcfg |= MAC_RXCFG_HFE;
1796 } else if (gp->dev->flags & IFF_PROMISC) {
1797 rxcfg |= MAC_RXCFG_PROM;
1798 } else {
1799 u16 hash_table[16];
1800 u32 crc;
1801 struct netdev_hw_addr *ha;
1802 int i;
1804 memset(hash_table, 0, sizeof(hash_table));
1805 netdev_for_each_mc_addr(ha, gp->dev) {
1806 crc = ether_crc_le(6, ha->addr);
1807 crc >>= 24;
1808 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1810 for (i=0; i<16; i++)
1811 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1812 rxcfg |= MAC_RXCFG_HFE;
1815 return rxcfg;
1818 static void gem_init_mac(struct gem *gp)
1820 unsigned char *e = &gp->dev->dev_addr[0];
1822 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1824 writel(0x00, gp->regs + MAC_IPG0);
1825 writel(0x08, gp->regs + MAC_IPG1);
1826 writel(0x04, gp->regs + MAC_IPG2);
1827 writel(0x40, gp->regs + MAC_STIME);
1828 writel(0x40, gp->regs + MAC_MINFSZ);
1830 /* Ethernet payload + header + FCS + optional VLAN tag. */
1831 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1833 writel(0x07, gp->regs + MAC_PASIZE);
1834 writel(0x04, gp->regs + MAC_JAMSIZE);
1835 writel(0x10, gp->regs + MAC_ATTLIM);
1836 writel(0x8808, gp->regs + MAC_MCTYPE);
1838 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1840 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1841 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1842 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1844 writel(0, gp->regs + MAC_ADDR3);
1845 writel(0, gp->regs + MAC_ADDR4);
1846 writel(0, gp->regs + MAC_ADDR5);
1848 writel(0x0001, gp->regs + MAC_ADDR6);
1849 writel(0xc200, gp->regs + MAC_ADDR7);
1850 writel(0x0180, gp->regs + MAC_ADDR8);
1852 writel(0, gp->regs + MAC_AFILT0);
1853 writel(0, gp->regs + MAC_AFILT1);
1854 writel(0, gp->regs + MAC_AFILT2);
1855 writel(0, gp->regs + MAC_AF21MSK);
1856 writel(0, gp->regs + MAC_AF0MSK);
1858 gp->mac_rx_cfg = gem_setup_multicast(gp);
1859 #ifdef STRIP_FCS
1860 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1861 #endif
1862 writel(0, gp->regs + MAC_NCOLL);
1863 writel(0, gp->regs + MAC_FASUCC);
1864 writel(0, gp->regs + MAC_ECOLL);
1865 writel(0, gp->regs + MAC_LCOLL);
1866 writel(0, gp->regs + MAC_DTIMER);
1867 writel(0, gp->regs + MAC_PATMPS);
1868 writel(0, gp->regs + MAC_RFCTR);
1869 writel(0, gp->regs + MAC_LERR);
1870 writel(0, gp->regs + MAC_AERR);
1871 writel(0, gp->regs + MAC_FCSERR);
1872 writel(0, gp->regs + MAC_RXCVERR);
1874 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1875 * them once a link is established.
1877 writel(0, gp->regs + MAC_TXCFG);
1878 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1879 writel(0, gp->regs + MAC_MCCFG);
1880 writel(0, gp->regs + MAC_XIFCFG);
1882 /* Setup MAC interrupts. We want to get all of the interesting
1883 * counter expiration events, but we do not want to hear about
1884 * normal rx/tx as the DMA engine tells us that.
1886 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1887 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1889 /* Don't enable even the PAUSE interrupts for now, we
1890 * make no use of those events other than to record them.
1892 writel(0xffffffff, gp->regs + MAC_MCMASK);
1894 /* Don't enable GEM's WOL in normal operations
1896 if (gp->has_wol)
1897 writel(0, gp->regs + WOL_WAKECSR);
1900 static void gem_init_pause_thresholds(struct gem *gp)
1902 u32 cfg;
1904 /* Calculate pause thresholds. Setting the OFF threshold to the
1905 * full RX fifo size effectively disables PAUSE generation which
1906 * is what we do for 10/100 only GEMs which have FIFOs too small
1907 * to make real gains from PAUSE.
1909 if (gp->rx_fifo_sz <= (2 * 1024)) {
1910 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1911 } else {
1912 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1913 int off = (gp->rx_fifo_sz - (max_frame * 2));
1914 int on = off - max_frame;
1916 gp->rx_pause_off = off;
1917 gp->rx_pause_on = on;
1921 /* Configure the chip "burst" DMA mode & enable some
1922 * HW bug fixes on Apple version
1924 cfg = 0;
1925 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1926 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1927 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1928 cfg |= GREG_CFG_IBURST;
1929 #endif
1930 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1931 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1932 writel(cfg, gp->regs + GREG_CFG);
1934 /* If Infinite Burst didn't stick, then use different
1935 * thresholds (and Apple bug fixes don't exist)
1937 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1938 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1939 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1940 writel(cfg, gp->regs + GREG_CFG);
1944 static int gem_check_invariants(struct gem *gp)
1946 struct pci_dev *pdev = gp->pdev;
1947 u32 mif_cfg;
1949 /* On Apple's sungem, we can't rely on registers as the chip
1950 * was been powered down by the firmware. The PHY is looked
1951 * up later on.
1953 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1954 gp->phy_type = phy_mii_mdio0;
1955 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1956 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1957 gp->swrst_base = 0;
1959 mif_cfg = readl(gp->regs + MIF_CFG);
1960 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1961 mif_cfg |= MIF_CFG_MDI0;
1962 writel(mif_cfg, gp->regs + MIF_CFG);
1963 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1964 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1966 /* We hard-code the PHY address so we can properly bring it out of
1967 * reset later on, we can't really probe it at this point, though
1968 * that isn't an issue.
1970 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1971 gp->mii_phy_addr = 1;
1972 else
1973 gp->mii_phy_addr = 0;
1975 return 0;
1978 mif_cfg = readl(gp->regs + MIF_CFG);
1980 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1981 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1982 /* One of the MII PHYs _must_ be present
1983 * as this chip has no gigabit PHY.
1985 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1986 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1987 mif_cfg);
1988 return -1;
1992 /* Determine initial PHY interface type guess. MDIO1 is the
1993 * external PHY and thus takes precedence over MDIO0.
1996 if (mif_cfg & MIF_CFG_MDI1) {
1997 gp->phy_type = phy_mii_mdio1;
1998 mif_cfg |= MIF_CFG_PSELECT;
1999 writel(mif_cfg, gp->regs + MIF_CFG);
2000 } else if (mif_cfg & MIF_CFG_MDI0) {
2001 gp->phy_type = phy_mii_mdio0;
2002 mif_cfg &= ~MIF_CFG_PSELECT;
2003 writel(mif_cfg, gp->regs + MIF_CFG);
2004 } else {
2005 #ifdef CONFIG_SPARC
2006 const char *p;
2008 p = of_get_property(gp->of_node, "shared-pins", NULL);
2009 if (p && !strcmp(p, "serdes"))
2010 gp->phy_type = phy_serdes;
2011 else
2012 #endif
2013 gp->phy_type = phy_serialink;
2015 if (gp->phy_type == phy_mii_mdio1 ||
2016 gp->phy_type == phy_mii_mdio0) {
2017 int i;
2019 for (i = 0; i < 32; i++) {
2020 gp->mii_phy_addr = i;
2021 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2022 break;
2024 if (i == 32) {
2025 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2026 pr_err("RIO MII phy will not respond\n");
2027 return -1;
2029 gp->phy_type = phy_serdes;
2033 /* Fetch the FIFO configurations now too. */
2034 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2035 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2037 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2038 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2039 if (gp->tx_fifo_sz != (9 * 1024) ||
2040 gp->rx_fifo_sz != (20 * 1024)) {
2041 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2042 gp->tx_fifo_sz, gp->rx_fifo_sz);
2043 return -1;
2045 gp->swrst_base = 0;
2046 } else {
2047 if (gp->tx_fifo_sz != (2 * 1024) ||
2048 gp->rx_fifo_sz != (2 * 1024)) {
2049 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2050 gp->tx_fifo_sz, gp->rx_fifo_sz);
2051 return -1;
2053 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2057 return 0;
2060 static void gem_reinit_chip(struct gem *gp)
2062 /* Reset the chip */
2063 gem_reset(gp);
2065 /* Make sure ints are disabled */
2066 gem_disable_ints(gp);
2068 /* Allocate & setup ring buffers */
2069 gem_init_rings(gp);
2071 /* Configure pause thresholds */
2072 gem_init_pause_thresholds(gp);
2074 /* Init DMA & MAC engines */
2075 gem_init_dma(gp);
2076 gem_init_mac(gp);
2080 static void gem_stop_phy(struct gem *gp, int wol)
2082 u32 mifcfg;
2084 /* Let the chip settle down a bit, it seems that helps
2085 * for sleep mode on some models
2087 msleep(10);
2089 /* Make sure we aren't polling PHY status change. We
2090 * don't currently use that feature though
2092 mifcfg = readl(gp->regs + MIF_CFG);
2093 mifcfg &= ~MIF_CFG_POLL;
2094 writel(mifcfg, gp->regs + MIF_CFG);
2096 if (wol && gp->has_wol) {
2097 unsigned char *e = &gp->dev->dev_addr[0];
2098 u32 csr;
2100 /* Setup wake-on-lan for MAGIC packet */
2101 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2102 gp->regs + MAC_RXCFG);
2103 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2104 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2105 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2107 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2108 csr = WOL_WAKECSR_ENABLE;
2109 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2110 csr |= WOL_WAKECSR_MII;
2111 writel(csr, gp->regs + WOL_WAKECSR);
2112 } else {
2113 writel(0, gp->regs + MAC_RXCFG);
2114 (void)readl(gp->regs + MAC_RXCFG);
2115 /* Machine sleep will die in strange ways if we
2116 * dont wait a bit here, looks like the chip takes
2117 * some time to really shut down
2119 msleep(10);
2122 writel(0, gp->regs + MAC_TXCFG);
2123 writel(0, gp->regs + MAC_XIFCFG);
2124 writel(0, gp->regs + TXDMA_CFG);
2125 writel(0, gp->regs + RXDMA_CFG);
2127 if (!wol) {
2128 gem_reset(gp);
2129 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2130 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2132 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2133 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2135 /* According to Apple, we must set the MDIO pins to this begnign
2136 * state or we may 1) eat more current, 2) damage some PHYs
2138 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2139 writel(0, gp->regs + MIF_BBCLK);
2140 writel(0, gp->regs + MIF_BBDATA);
2141 writel(0, gp->regs + MIF_BBOENAB);
2142 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2143 (void) readl(gp->regs + MAC_XIFCFG);
2147 static int gem_do_start(struct net_device *dev)
2149 struct gem *gp = netdev_priv(dev);
2150 int rc;
2152 /* Enable the cell */
2153 gem_get_cell(gp);
2155 /* Make sure PCI access and bus master are enabled */
2156 rc = pci_enable_device(gp->pdev);
2157 if (rc) {
2158 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2160 /* Put cell and forget it for now, it will be considered as
2161 * still asleep, a new sleep cycle may bring it back
2163 gem_put_cell(gp);
2164 return -ENXIO;
2166 pci_set_master(gp->pdev);
2168 /* Init & setup chip hardware */
2169 gem_reinit_chip(gp);
2171 /* An interrupt might come in handy */
2172 rc = request_irq(gp->pdev->irq, gem_interrupt,
2173 IRQF_SHARED, dev->name, (void *)dev);
2174 if (rc) {
2175 netdev_err(dev, "failed to request irq !\n");
2177 gem_reset(gp);
2178 gem_clean_rings(gp);
2179 gem_put_cell(gp);
2180 return rc;
2183 /* Mark us as attached again if we come from resume(), this has
2184 * no effect if we weren't detached and needs to be done now.
2186 netif_device_attach(dev);
2188 /* Restart NAPI & queues */
2189 gem_netif_start(gp);
2191 /* Detect & init PHY, start autoneg etc... this will
2192 * eventually result in starting DMA operations when
2193 * the link is up
2195 gem_init_phy(gp);
2197 return 0;
2200 static void gem_do_stop(struct net_device *dev, int wol)
2202 struct gem *gp = netdev_priv(dev);
2204 /* Stop NAPI and stop tx queue */
2205 gem_netif_stop(gp);
2207 /* Make sure ints are disabled. We don't care about
2208 * synchronizing as NAPI is disabled, thus a stray
2209 * interrupt will do nothing bad (our irq handler
2210 * just schedules NAPI)
2212 gem_disable_ints(gp);
2214 /* Stop the link timer */
2215 del_timer_sync(&gp->link_timer);
2217 /* We cannot cancel the reset task while holding the
2218 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2219 * if we did. This is not an issue however as the reset
2220 * task is synchronized vs. us (rtnl_lock) and will do
2221 * nothing if the device is down or suspended. We do
2222 * still clear reset_task_pending to avoid a spurrious
2223 * reset later on in case we do resume before it gets
2224 * scheduled.
2226 gp->reset_task_pending = 0;
2228 /* If we are going to sleep with WOL */
2229 gem_stop_dma(gp);
2230 msleep(10);
2231 if (!wol)
2232 gem_reset(gp);
2233 msleep(10);
2235 /* Get rid of rings */
2236 gem_clean_rings(gp);
2238 /* No irq needed anymore */
2239 free_irq(gp->pdev->irq, (void *) dev);
2241 /* Shut the PHY down eventually and setup WOL */
2242 gem_stop_phy(gp, wol);
2244 /* Make sure bus master is disabled */
2245 pci_disable_device(gp->pdev);
2247 /* Cell not needed neither if no WOL */
2248 if (!wol)
2249 gem_put_cell(gp);
2252 static void gem_reset_task(struct work_struct *work)
2254 struct gem *gp = container_of(work, struct gem, reset_task);
2256 /* Lock out the network stack (essentially shield ourselves
2257 * against a racing open, close, control call, or suspend
2259 rtnl_lock();
2261 /* Skip the reset task if suspended or closed, or if it's
2262 * been cancelled by gem_do_stop (see comment there)
2264 if (!netif_device_present(gp->dev) ||
2265 !netif_running(gp->dev) ||
2266 !gp->reset_task_pending) {
2267 rtnl_unlock();
2268 return;
2271 /* Stop the link timer */
2272 del_timer_sync(&gp->link_timer);
2274 /* Stop NAPI and tx */
2275 gem_netif_stop(gp);
2277 /* Reset the chip & rings */
2278 gem_reinit_chip(gp);
2279 if (gp->lstate == link_up)
2280 gem_set_link_modes(gp);
2282 /* Restart NAPI and Tx */
2283 gem_netif_start(gp);
2285 /* We are back ! */
2286 gp->reset_task_pending = 0;
2288 /* If the link is not up, restart autoneg, else restart the
2289 * polling timer
2291 if (gp->lstate != link_up)
2292 gem_begin_auto_negotiation(gp, NULL);
2293 else
2294 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2296 rtnl_unlock();
2299 static int gem_open(struct net_device *dev)
2301 /* We allow open while suspended, we just do nothing,
2302 * the chip will be initialized in resume()
2304 if (netif_device_present(dev))
2305 return gem_do_start(dev);
2306 return 0;
2309 static int gem_close(struct net_device *dev)
2311 if (netif_device_present(dev))
2312 gem_do_stop(dev, 0);
2314 return 0;
2317 #ifdef CONFIG_PM
2318 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2320 struct net_device *dev = pci_get_drvdata(pdev);
2321 struct gem *gp = netdev_priv(dev);
2323 /* Lock the network stack first to avoid racing with open/close,
2324 * reset task and setting calls
2326 rtnl_lock();
2328 /* Not running, mark ourselves non-present, no need for
2329 * a lock here
2331 if (!netif_running(dev)) {
2332 netif_device_detach(dev);
2333 rtnl_unlock();
2334 return 0;
2336 netdev_info(dev, "suspending, WakeOnLan %s\n",
2337 (gp->wake_on_lan && netif_running(dev)) ?
2338 "enabled" : "disabled");
2340 /* Tell the network stack we're gone. gem_do_stop() below will
2341 * synchronize with TX, stop NAPI etc...
2343 netif_device_detach(dev);
2345 /* Switch off chip, remember WOL setting */
2346 gp->asleep_wol = !!gp->wake_on_lan;
2347 gem_do_stop(dev, gp->asleep_wol);
2349 /* Unlock the network stack */
2350 rtnl_unlock();
2352 return 0;
2355 static int gem_resume(struct pci_dev *pdev)
2357 struct net_device *dev = pci_get_drvdata(pdev);
2358 struct gem *gp = netdev_priv(dev);
2360 /* See locking comment in gem_suspend */
2361 rtnl_lock();
2363 /* Not running, mark ourselves present, no need for
2364 * a lock here
2366 if (!netif_running(dev)) {
2367 netif_device_attach(dev);
2368 rtnl_unlock();
2369 return 0;
2372 /* Restart chip. If that fails there isn't much we can do, we
2373 * leave things stopped.
2375 gem_do_start(dev);
2377 /* If we had WOL enabled, the cell clock was never turned off during
2378 * sleep, so we end up beeing unbalanced. Fix that here
2380 if (gp->asleep_wol)
2381 gem_put_cell(gp);
2383 /* Unlock the network stack */
2384 rtnl_unlock();
2386 return 0;
2388 #endif /* CONFIG_PM */
2390 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2392 struct gem *gp = netdev_priv(dev);
2394 /* I have seen this being called while the PM was in progress,
2395 * so we shield against this. Let's also not poke at registers
2396 * while the reset task is going on.
2398 * TODO: Move stats collection elsewhere (link timer ?) and
2399 * make this a nop to avoid all those synchro issues
2401 if (!netif_device_present(dev) || !netif_running(dev))
2402 goto bail;
2404 /* Better safe than sorry... */
2405 if (WARN_ON(!gp->cell_enabled))
2406 goto bail;
2408 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2409 writel(0, gp->regs + MAC_FCSERR);
2411 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2412 writel(0, gp->regs + MAC_AERR);
2414 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2415 writel(0, gp->regs + MAC_LERR);
2417 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2418 dev->stats.collisions +=
2419 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2420 writel(0, gp->regs + MAC_ECOLL);
2421 writel(0, gp->regs + MAC_LCOLL);
2422 bail:
2423 return &dev->stats;
2426 static int gem_set_mac_address(struct net_device *dev, void *addr)
2428 struct sockaddr *macaddr = (struct sockaddr *) addr;
2429 struct gem *gp = netdev_priv(dev);
2430 unsigned char *e = &dev->dev_addr[0];
2432 if (!is_valid_ether_addr(macaddr->sa_data))
2433 return -EADDRNOTAVAIL;
2435 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2437 /* We'll just catch it later when the device is up'd or resumed */
2438 if (!netif_running(dev) || !netif_device_present(dev))
2439 return 0;
2441 /* Better safe than sorry... */
2442 if (WARN_ON(!gp->cell_enabled))
2443 return 0;
2445 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2446 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2447 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2449 return 0;
2452 static void gem_set_multicast(struct net_device *dev)
2454 struct gem *gp = netdev_priv(dev);
2455 u32 rxcfg, rxcfg_new;
2456 int limit = 10000;
2458 if (!netif_running(dev) || !netif_device_present(dev))
2459 return;
2461 /* Better safe than sorry... */
2462 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2463 return;
2465 rxcfg = readl(gp->regs + MAC_RXCFG);
2466 rxcfg_new = gem_setup_multicast(gp);
2467 #ifdef STRIP_FCS
2468 rxcfg_new |= MAC_RXCFG_SFCS;
2469 #endif
2470 gp->mac_rx_cfg = rxcfg_new;
2472 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2473 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2474 if (!limit--)
2475 break;
2476 udelay(10);
2479 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2480 rxcfg |= rxcfg_new;
2482 writel(rxcfg, gp->regs + MAC_RXCFG);
2485 /* Jumbo-grams don't seem to work :-( */
2486 #define GEM_MIN_MTU ETH_MIN_MTU
2487 #if 1
2488 #define GEM_MAX_MTU ETH_DATA_LEN
2489 #else
2490 #define GEM_MAX_MTU 9000
2491 #endif
2493 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2495 struct gem *gp = netdev_priv(dev);
2497 dev->mtu = new_mtu;
2499 /* We'll just catch it later when the device is up'd or resumed */
2500 if (!netif_running(dev) || !netif_device_present(dev))
2501 return 0;
2503 /* Better safe than sorry... */
2504 if (WARN_ON(!gp->cell_enabled))
2505 return 0;
2507 gem_netif_stop(gp);
2508 gem_reinit_chip(gp);
2509 if (gp->lstate == link_up)
2510 gem_set_link_modes(gp);
2511 gem_netif_start(gp);
2513 return 0;
2516 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2518 struct gem *gp = netdev_priv(dev);
2520 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2521 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2522 strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2525 static int gem_get_link_ksettings(struct net_device *dev,
2526 struct ethtool_link_ksettings *cmd)
2528 struct gem *gp = netdev_priv(dev);
2529 u32 supported, advertising;
2531 if (gp->phy_type == phy_mii_mdio0 ||
2532 gp->phy_type == phy_mii_mdio1) {
2533 if (gp->phy_mii.def)
2534 supported = gp->phy_mii.def->features;
2535 else
2536 supported = (SUPPORTED_10baseT_Half |
2537 SUPPORTED_10baseT_Full);
2539 /* XXX hardcoded stuff for now */
2540 cmd->base.port = PORT_MII;
2541 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2543 /* Return current PHY settings */
2544 cmd->base.autoneg = gp->want_autoneg;
2545 cmd->base.speed = gp->phy_mii.speed;
2546 cmd->base.duplex = gp->phy_mii.duplex;
2547 advertising = gp->phy_mii.advertising;
2549 /* If we started with a forced mode, we don't have a default
2550 * advertise set, we need to return something sensible so
2551 * userland can re-enable autoneg properly.
2553 if (advertising == 0)
2554 advertising = supported;
2555 } else { // XXX PCS ?
2556 supported =
2557 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2558 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2559 SUPPORTED_Autoneg);
2560 advertising = supported;
2561 cmd->base.speed = 0;
2562 cmd->base.duplex = 0;
2563 cmd->base.port = 0;
2564 cmd->base.phy_address = 0;
2565 cmd->base.autoneg = 0;
2567 /* serdes means usually a Fibre connector, with most fixed */
2568 if (gp->phy_type == phy_serdes) {
2569 cmd->base.port = PORT_FIBRE;
2570 supported = (SUPPORTED_1000baseT_Half |
2571 SUPPORTED_1000baseT_Full |
2572 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2573 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2574 advertising = supported;
2575 if (gp->lstate == link_up)
2576 cmd->base.speed = SPEED_1000;
2577 cmd->base.duplex = DUPLEX_FULL;
2578 cmd->base.autoneg = 1;
2582 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2583 supported);
2584 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2585 advertising);
2587 return 0;
2590 static int gem_set_link_ksettings(struct net_device *dev,
2591 const struct ethtool_link_ksettings *cmd)
2593 struct gem *gp = netdev_priv(dev);
2594 u32 speed = cmd->base.speed;
2595 u32 advertising;
2597 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2598 cmd->link_modes.advertising);
2600 /* Verify the settings we care about. */
2601 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2602 cmd->base.autoneg != AUTONEG_DISABLE)
2603 return -EINVAL;
2605 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2606 advertising == 0)
2607 return -EINVAL;
2609 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2610 ((speed != SPEED_1000 &&
2611 speed != SPEED_100 &&
2612 speed != SPEED_10) ||
2613 (cmd->base.duplex != DUPLEX_HALF &&
2614 cmd->base.duplex != DUPLEX_FULL)))
2615 return -EINVAL;
2617 /* Apply settings and restart link process. */
2618 if (netif_device_present(gp->dev)) {
2619 del_timer_sync(&gp->link_timer);
2620 gem_begin_auto_negotiation(gp, cmd);
2623 return 0;
2626 static int gem_nway_reset(struct net_device *dev)
2628 struct gem *gp = netdev_priv(dev);
2630 if (!gp->want_autoneg)
2631 return -EINVAL;
2633 /* Restart link process */
2634 if (netif_device_present(gp->dev)) {
2635 del_timer_sync(&gp->link_timer);
2636 gem_begin_auto_negotiation(gp, NULL);
2639 return 0;
2642 static u32 gem_get_msglevel(struct net_device *dev)
2644 struct gem *gp = netdev_priv(dev);
2645 return gp->msg_enable;
2648 static void gem_set_msglevel(struct net_device *dev, u32 value)
2650 struct gem *gp = netdev_priv(dev);
2651 gp->msg_enable = value;
2655 /* Add more when I understand how to program the chip */
2656 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2658 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2660 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2662 struct gem *gp = netdev_priv(dev);
2664 /* Add more when I understand how to program the chip */
2665 if (gp->has_wol) {
2666 wol->supported = WOL_SUPPORTED_MASK;
2667 wol->wolopts = gp->wake_on_lan;
2668 } else {
2669 wol->supported = 0;
2670 wol->wolopts = 0;
2674 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2676 struct gem *gp = netdev_priv(dev);
2678 if (!gp->has_wol)
2679 return -EOPNOTSUPP;
2680 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2681 return 0;
2684 static const struct ethtool_ops gem_ethtool_ops = {
2685 .get_drvinfo = gem_get_drvinfo,
2686 .get_link = ethtool_op_get_link,
2687 .nway_reset = gem_nway_reset,
2688 .get_msglevel = gem_get_msglevel,
2689 .set_msglevel = gem_set_msglevel,
2690 .get_wol = gem_get_wol,
2691 .set_wol = gem_set_wol,
2692 .get_link_ksettings = gem_get_link_ksettings,
2693 .set_link_ksettings = gem_set_link_ksettings,
2696 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2698 struct gem *gp = netdev_priv(dev);
2699 struct mii_ioctl_data *data = if_mii(ifr);
2700 int rc = -EOPNOTSUPP;
2702 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2703 * netif_device_present() is true and holds rtnl_lock for us
2704 * so we have nothing to worry about
2707 switch (cmd) {
2708 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2709 data->phy_id = gp->mii_phy_addr;
2710 /* Fallthrough... */
2712 case SIOCGMIIREG: /* Read MII PHY register. */
2713 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2714 data->reg_num & 0x1f);
2715 rc = 0;
2716 break;
2718 case SIOCSMIIREG: /* Write MII PHY register. */
2719 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2720 data->val_in);
2721 rc = 0;
2722 break;
2724 return rc;
2727 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2728 /* Fetch MAC address from vital product data of PCI ROM. */
2729 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2731 int this_offset;
2733 for (this_offset = 0x20; this_offset < len; this_offset++) {
2734 void __iomem *p = rom_base + this_offset;
2735 int i;
2737 if (readb(p + 0) != 0x90 ||
2738 readb(p + 1) != 0x00 ||
2739 readb(p + 2) != 0x09 ||
2740 readb(p + 3) != 0x4e ||
2741 readb(p + 4) != 0x41 ||
2742 readb(p + 5) != 0x06)
2743 continue;
2745 this_offset += 6;
2746 p += 6;
2748 for (i = 0; i < 6; i++)
2749 dev_addr[i] = readb(p + i);
2750 return 1;
2752 return 0;
2755 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2757 size_t size;
2758 void __iomem *p = pci_map_rom(pdev, &size);
2760 if (p) {
2761 int found;
2763 found = readb(p) == 0x55 &&
2764 readb(p + 1) == 0xaa &&
2765 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2766 pci_unmap_rom(pdev, p);
2767 if (found)
2768 return;
2771 /* Sun MAC prefix then 3 random bytes. */
2772 dev_addr[0] = 0x08;
2773 dev_addr[1] = 0x00;
2774 dev_addr[2] = 0x20;
2775 get_random_bytes(dev_addr + 3, 3);
2777 #endif /* not Sparc and not PPC */
2779 static int gem_get_device_address(struct gem *gp)
2781 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2782 struct net_device *dev = gp->dev;
2783 const unsigned char *addr;
2785 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2786 if (addr == NULL) {
2787 #ifdef CONFIG_SPARC
2788 addr = idprom->id_ethaddr;
2789 #else
2790 printk("\n");
2791 pr_err("%s: can't get mac-address\n", dev->name);
2792 return -1;
2793 #endif
2795 memcpy(dev->dev_addr, addr, ETH_ALEN);
2796 #else
2797 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2798 #endif
2799 return 0;
2802 static void gem_remove_one(struct pci_dev *pdev)
2804 struct net_device *dev = pci_get_drvdata(pdev);
2806 if (dev) {
2807 struct gem *gp = netdev_priv(dev);
2809 unregister_netdev(dev);
2811 /* Ensure reset task is truly gone */
2812 cancel_work_sync(&gp->reset_task);
2814 /* Free resources */
2815 pci_free_consistent(pdev,
2816 sizeof(struct gem_init_block),
2817 gp->init_block,
2818 gp->gblock_dvma);
2819 iounmap(gp->regs);
2820 pci_release_regions(pdev);
2821 free_netdev(dev);
2825 static const struct net_device_ops gem_netdev_ops = {
2826 .ndo_open = gem_open,
2827 .ndo_stop = gem_close,
2828 .ndo_start_xmit = gem_start_xmit,
2829 .ndo_get_stats = gem_get_stats,
2830 .ndo_set_rx_mode = gem_set_multicast,
2831 .ndo_do_ioctl = gem_ioctl,
2832 .ndo_tx_timeout = gem_tx_timeout,
2833 .ndo_change_mtu = gem_change_mtu,
2834 .ndo_validate_addr = eth_validate_addr,
2835 .ndo_set_mac_address = gem_set_mac_address,
2836 #ifdef CONFIG_NET_POLL_CONTROLLER
2837 .ndo_poll_controller = gem_poll_controller,
2838 #endif
2841 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2843 unsigned long gemreg_base, gemreg_len;
2844 struct net_device *dev;
2845 struct gem *gp;
2846 int err, pci_using_dac;
2848 printk_once(KERN_INFO "%s", version);
2850 /* Apple gmac note: during probe, the chip is powered up by
2851 * the arch code to allow the code below to work (and to let
2852 * the chip be probed on the config space. It won't stay powered
2853 * up until the interface is brought up however, so we can't rely
2854 * on register configuration done at this point.
2856 err = pci_enable_device(pdev);
2857 if (err) {
2858 pr_err("Cannot enable MMIO operation, aborting\n");
2859 return err;
2861 pci_set_master(pdev);
2863 /* Configure DMA attributes. */
2865 /* All of the GEM documentation states that 64-bit DMA addressing
2866 * is fully supported and should work just fine. However the
2867 * front end for RIO based GEMs is different and only supports
2868 * 32-bit addressing.
2870 * For now we assume the various PPC GEMs are 32-bit only as well.
2872 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2873 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2874 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
2875 pci_using_dac = 1;
2876 } else {
2877 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2878 if (err) {
2879 pr_err("No usable DMA configuration, aborting\n");
2880 goto err_disable_device;
2882 pci_using_dac = 0;
2885 gemreg_base = pci_resource_start(pdev, 0);
2886 gemreg_len = pci_resource_len(pdev, 0);
2888 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2889 pr_err("Cannot find proper PCI device base address, aborting\n");
2890 err = -ENODEV;
2891 goto err_disable_device;
2894 dev = alloc_etherdev(sizeof(*gp));
2895 if (!dev) {
2896 err = -ENOMEM;
2897 goto err_disable_device;
2899 SET_NETDEV_DEV(dev, &pdev->dev);
2901 gp = netdev_priv(dev);
2903 err = pci_request_regions(pdev, DRV_NAME);
2904 if (err) {
2905 pr_err("Cannot obtain PCI resources, aborting\n");
2906 goto err_out_free_netdev;
2909 gp->pdev = pdev;
2910 gp->dev = dev;
2912 gp->msg_enable = DEFAULT_MSG;
2914 timer_setup(&gp->link_timer, gem_link_timer, 0);
2916 INIT_WORK(&gp->reset_task, gem_reset_task);
2918 gp->lstate = link_down;
2919 gp->timer_ticks = 0;
2920 netif_carrier_off(dev);
2922 gp->regs = ioremap(gemreg_base, gemreg_len);
2923 if (!gp->regs) {
2924 pr_err("Cannot map device registers, aborting\n");
2925 err = -EIO;
2926 goto err_out_free_res;
2929 /* On Apple, we want a reference to the Open Firmware device-tree
2930 * node. We use it for clock control.
2932 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2933 gp->of_node = pci_device_to_OF_node(pdev);
2934 #endif
2936 /* Only Apple version supports WOL afaik */
2937 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2938 gp->has_wol = 1;
2940 /* Make sure cell is enabled */
2941 gem_get_cell(gp);
2943 /* Make sure everything is stopped and in init state */
2944 gem_reset(gp);
2946 /* Fill up the mii_phy structure (even if we won't use it) */
2947 gp->phy_mii.dev = dev;
2948 gp->phy_mii.mdio_read = _sungem_phy_read;
2949 gp->phy_mii.mdio_write = _sungem_phy_write;
2950 #ifdef CONFIG_PPC_PMAC
2951 gp->phy_mii.platform_data = gp->of_node;
2952 #endif
2953 /* By default, we start with autoneg */
2954 gp->want_autoneg = 1;
2956 /* Check fifo sizes, PHY type, etc... */
2957 if (gem_check_invariants(gp)) {
2958 err = -ENODEV;
2959 goto err_out_iounmap;
2962 /* It is guaranteed that the returned buffer will be at least
2963 * PAGE_SIZE aligned.
2965 gp->init_block = (struct gem_init_block *)
2966 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
2967 &gp->gblock_dvma);
2968 if (!gp->init_block) {
2969 pr_err("Cannot allocate init block, aborting\n");
2970 err = -ENOMEM;
2971 goto err_out_iounmap;
2974 err = gem_get_device_address(gp);
2975 if (err)
2976 goto err_out_free_consistent;
2978 dev->netdev_ops = &gem_netdev_ops;
2979 netif_napi_add(dev, &gp->napi, gem_poll, 64);
2980 dev->ethtool_ops = &gem_ethtool_ops;
2981 dev->watchdog_timeo = 5 * HZ;
2982 dev->dma = 0;
2984 /* Set that now, in case PM kicks in now */
2985 pci_set_drvdata(pdev, dev);
2987 /* We can do scatter/gather and HW checksum */
2988 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2989 dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2990 if (pci_using_dac)
2991 dev->features |= NETIF_F_HIGHDMA;
2993 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2994 dev->min_mtu = GEM_MIN_MTU;
2995 dev->max_mtu = GEM_MAX_MTU;
2997 /* Register with kernel */
2998 if (register_netdev(dev)) {
2999 pr_err("Cannot register net device, aborting\n");
3000 err = -ENOMEM;
3001 goto err_out_free_consistent;
3004 /* Undo the get_cell with appropriate locking (we could use
3005 * ndo_init/uninit but that would be even more clumsy imho)
3007 rtnl_lock();
3008 gem_put_cell(gp);
3009 rtnl_unlock();
3011 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3012 dev->dev_addr);
3013 return 0;
3015 err_out_free_consistent:
3016 gem_remove_one(pdev);
3017 err_out_iounmap:
3018 gem_put_cell(gp);
3019 iounmap(gp->regs);
3021 err_out_free_res:
3022 pci_release_regions(pdev);
3024 err_out_free_netdev:
3025 free_netdev(dev);
3026 err_disable_device:
3027 pci_disable_device(pdev);
3028 return err;
3033 static struct pci_driver gem_driver = {
3034 .name = GEM_MODULE_NAME,
3035 .id_table = gem_pci_tbl,
3036 .probe = gem_init_one,
3037 .remove = gem_remove_one,
3038 #ifdef CONFIG_PM
3039 .suspend = gem_suspend,
3040 .resume = gem_resume,
3041 #endif /* CONFIG_PM */
3044 module_pci_driver(gem_driver);