Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ethernet / ti / cpmac.c
blob9b8a30bf939bf946baed5f93228178e5fa686037
1 /*
2 * Copyright (C) 2006, 2007 Eugene Konev
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/moduleparam.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <linux/atomic.h>
44 #include <asm/mach-ar7/ar7.h>
46 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
47 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
48 MODULE_LICENSE("GPL");
49 MODULE_ALIAS("platform:cpmac");
51 static int debug_level = 8;
52 static int dumb_switch;
54 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
55 module_param(debug_level, int, 0444);
56 module_param(dumb_switch, int, 0444);
58 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
59 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
61 #define CPMAC_VERSION "0.5.2"
62 /* frame size + 802.1q tag + FCS size */
63 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
64 #define CPMAC_QUEUES 8
66 /* Ethernet registers */
67 #define CPMAC_TX_CONTROL 0x0004
68 #define CPMAC_TX_TEARDOWN 0x0008
69 #define CPMAC_RX_CONTROL 0x0014
70 #define CPMAC_RX_TEARDOWN 0x0018
71 #define CPMAC_MBP 0x0100
72 #define MBP_RXPASSCRC 0x40000000
73 #define MBP_RXQOS 0x20000000
74 #define MBP_RXNOCHAIN 0x10000000
75 #define MBP_RXCMF 0x01000000
76 #define MBP_RXSHORT 0x00800000
77 #define MBP_RXCEF 0x00400000
78 #define MBP_RXPROMISC 0x00200000
79 #define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
80 #define MBP_RXBCAST 0x00002000
81 #define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
82 #define MBP_RXMCAST 0x00000020
83 #define MBP_MCASTCHAN(channel) ((channel) & 0x7)
84 #define CPMAC_UNICAST_ENABLE 0x0104
85 #define CPMAC_UNICAST_CLEAR 0x0108
86 #define CPMAC_MAX_LENGTH 0x010c
87 #define CPMAC_BUFFER_OFFSET 0x0110
88 #define CPMAC_MAC_CONTROL 0x0160
89 #define MAC_TXPTYPE 0x00000200
90 #define MAC_TXPACE 0x00000040
91 #define MAC_MII 0x00000020
92 #define MAC_TXFLOW 0x00000010
93 #define MAC_RXFLOW 0x00000008
94 #define MAC_MTEST 0x00000004
95 #define MAC_LOOPBACK 0x00000002
96 #define MAC_FDX 0x00000001
97 #define CPMAC_MAC_STATUS 0x0164
98 #define MAC_STATUS_QOS 0x00000004
99 #define MAC_STATUS_RXFLOW 0x00000002
100 #define MAC_STATUS_TXFLOW 0x00000001
101 #define CPMAC_TX_INT_ENABLE 0x0178
102 #define CPMAC_TX_INT_CLEAR 0x017c
103 #define CPMAC_MAC_INT_VECTOR 0x0180
104 #define MAC_INT_STATUS 0x00080000
105 #define MAC_INT_HOST 0x00040000
106 #define MAC_INT_RX 0x00020000
107 #define MAC_INT_TX 0x00010000
108 #define CPMAC_MAC_EOI_VECTOR 0x0184
109 #define CPMAC_RX_INT_ENABLE 0x0198
110 #define CPMAC_RX_INT_CLEAR 0x019c
111 #define CPMAC_MAC_INT_ENABLE 0x01a8
112 #define CPMAC_MAC_INT_CLEAR 0x01ac
113 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
114 #define CPMAC_MAC_ADDR_MID 0x01d0
115 #define CPMAC_MAC_ADDR_HI 0x01d4
116 #define CPMAC_MAC_HASH_LO 0x01d8
117 #define CPMAC_MAC_HASH_HI 0x01dc
118 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
119 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
120 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
121 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
122 #define CPMAC_REG_END 0x0680
124 /* Rx/Tx statistics
125 * TODO: use some of them to fill stats in cpmac_stats()
127 #define CPMAC_STATS_RX_GOOD 0x0200
128 #define CPMAC_STATS_RX_BCAST 0x0204
129 #define CPMAC_STATS_RX_MCAST 0x0208
130 #define CPMAC_STATS_RX_PAUSE 0x020c
131 #define CPMAC_STATS_RX_CRC 0x0210
132 #define CPMAC_STATS_RX_ALIGN 0x0214
133 #define CPMAC_STATS_RX_OVER 0x0218
134 #define CPMAC_STATS_RX_JABBER 0x021c
135 #define CPMAC_STATS_RX_UNDER 0x0220
136 #define CPMAC_STATS_RX_FRAG 0x0224
137 #define CPMAC_STATS_RX_FILTER 0x0228
138 #define CPMAC_STATS_RX_QOSFILTER 0x022c
139 #define CPMAC_STATS_RX_OCTETS 0x0230
141 #define CPMAC_STATS_TX_GOOD 0x0234
142 #define CPMAC_STATS_TX_BCAST 0x0238
143 #define CPMAC_STATS_TX_MCAST 0x023c
144 #define CPMAC_STATS_TX_PAUSE 0x0240
145 #define CPMAC_STATS_TX_DEFER 0x0244
146 #define CPMAC_STATS_TX_COLLISION 0x0248
147 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
148 #define CPMAC_STATS_TX_MULTICOLL 0x0250
149 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
150 #define CPMAC_STATS_TX_LATECOLL 0x0258
151 #define CPMAC_STATS_TX_UNDERRUN 0x025c
152 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
153 #define CPMAC_STATS_TX_OCTETS 0x0264
155 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
156 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
157 (reg)))
159 /* MDIO bus */
160 #define CPMAC_MDIO_VERSION 0x0000
161 #define CPMAC_MDIO_CONTROL 0x0004
162 #define MDIOC_IDLE 0x80000000
163 #define MDIOC_ENABLE 0x40000000
164 #define MDIOC_PREAMBLE 0x00100000
165 #define MDIOC_FAULT 0x00080000
166 #define MDIOC_FAULTDETECT 0x00040000
167 #define MDIOC_INTTEST 0x00020000
168 #define MDIOC_CLKDIV(div) ((div) & 0xff)
169 #define CPMAC_MDIO_ALIVE 0x0008
170 #define CPMAC_MDIO_LINK 0x000c
171 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
172 #define MDIO_BUSY 0x80000000
173 #define MDIO_WRITE 0x40000000
174 #define MDIO_REG(reg) (((reg) & 0x1f) << 21)
175 #define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
176 #define MDIO_DATA(data) ((data) & 0xffff)
177 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
178 #define PHYSEL_LINKSEL 0x00000040
179 #define PHYSEL_LINKINT 0x00000020
181 struct cpmac_desc {
182 u32 hw_next;
183 u32 hw_data;
184 u16 buflen;
185 u16 bufflags;
186 u16 datalen;
187 u16 dataflags;
188 #define CPMAC_SOP 0x8000
189 #define CPMAC_EOP 0x4000
190 #define CPMAC_OWN 0x2000
191 #define CPMAC_EOQ 0x1000
192 struct sk_buff *skb;
193 struct cpmac_desc *next;
194 struct cpmac_desc *prev;
195 dma_addr_t mapping;
196 dma_addr_t data_mapping;
199 struct cpmac_priv {
200 spinlock_t lock;
201 spinlock_t rx_lock;
202 struct cpmac_desc *rx_head;
203 int ring_size;
204 struct cpmac_desc *desc_ring;
205 dma_addr_t dma_ring;
206 void __iomem *regs;
207 struct mii_bus *mii_bus;
208 char phy_name[MII_BUS_ID_SIZE + 3];
209 int oldlink, oldspeed, oldduplex;
210 u32 msg_enable;
211 struct net_device *dev;
212 struct work_struct reset_work;
213 struct platform_device *pdev;
214 struct napi_struct napi;
215 atomic_t reset_pending;
218 static irqreturn_t cpmac_irq(int, void *);
219 static void cpmac_hw_start(struct net_device *dev);
220 static void cpmac_hw_stop(struct net_device *dev);
221 static int cpmac_stop(struct net_device *dev);
222 static int cpmac_open(struct net_device *dev);
224 static void cpmac_dump_regs(struct net_device *dev)
226 int i;
227 struct cpmac_priv *priv = netdev_priv(dev);
229 for (i = 0; i < CPMAC_REG_END; i += 4) {
230 if (i % 16 == 0) {
231 if (i)
232 printk("\n");
233 printk("%s: reg[%p]:", dev->name, priv->regs + i);
235 printk(" %08x", cpmac_read(priv->regs, i));
237 printk("\n");
240 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
242 int i;
244 printk("%s: desc[%p]:", dev->name, desc);
245 for (i = 0; i < sizeof(*desc) / 4; i++)
246 printk(" %08x", ((u32 *)desc)[i]);
247 printk("\n");
250 static void cpmac_dump_all_desc(struct net_device *dev)
252 struct cpmac_priv *priv = netdev_priv(dev);
253 struct cpmac_desc *dump = priv->rx_head;
255 do {
256 cpmac_dump_desc(dev, dump);
257 dump = dump->next;
258 } while (dump != priv->rx_head);
261 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
263 int i;
265 printk("%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
266 for (i = 0; i < skb->len; i++) {
267 if (i % 16 == 0) {
268 if (i)
269 printk("\n");
270 printk("%s: data[%p]:", dev->name, skb->data + i);
272 printk(" %02x", ((u8 *)skb->data)[i]);
274 printk("\n");
277 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
279 u32 val;
281 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
282 cpu_relax();
283 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
284 MDIO_PHY(phy_id));
285 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
286 cpu_relax();
288 return MDIO_DATA(val);
291 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
292 int reg, u16 val)
294 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
295 cpu_relax();
296 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
297 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
299 return 0;
302 static int cpmac_mdio_reset(struct mii_bus *bus)
304 struct clk *cpmac_clk;
306 cpmac_clk = clk_get(&bus->dev, "cpmac");
307 if (IS_ERR(cpmac_clk)) {
308 pr_err("unable to get cpmac clock\n");
309 return -1;
311 ar7_device_reset(AR7_RESET_BIT_MDIO);
312 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
313 MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
315 return 0;
318 static struct mii_bus *cpmac_mii;
320 static void cpmac_set_multicast_list(struct net_device *dev)
322 struct netdev_hw_addr *ha;
323 u8 tmp;
324 u32 mbp, bit, hash[2] = { 0, };
325 struct cpmac_priv *priv = netdev_priv(dev);
327 mbp = cpmac_read(priv->regs, CPMAC_MBP);
328 if (dev->flags & IFF_PROMISC) {
329 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
330 MBP_RXPROMISC);
331 } else {
332 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
333 if (dev->flags & IFF_ALLMULTI) {
334 /* enable all multicast mode */
335 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
336 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
337 } else {
338 /* cpmac uses some strange mac address hashing
339 * (not crc32)
341 netdev_for_each_mc_addr(ha, dev) {
342 bit = 0;
343 tmp = ha->addr[0];
344 bit ^= (tmp >> 2) ^ (tmp << 4);
345 tmp = ha->addr[1];
346 bit ^= (tmp >> 4) ^ (tmp << 2);
347 tmp = ha->addr[2];
348 bit ^= (tmp >> 6) ^ tmp;
349 tmp = ha->addr[3];
350 bit ^= (tmp >> 2) ^ (tmp << 4);
351 tmp = ha->addr[4];
352 bit ^= (tmp >> 4) ^ (tmp << 2);
353 tmp = ha->addr[5];
354 bit ^= (tmp >> 6) ^ tmp;
355 bit &= 0x3f;
356 hash[bit / 32] |= 1 << (bit % 32);
359 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
360 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
365 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
366 struct cpmac_desc *desc)
368 struct sk_buff *skb, *result = NULL;
370 if (unlikely(netif_msg_hw(priv)))
371 cpmac_dump_desc(priv->dev, desc);
372 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
373 if (unlikely(!desc->datalen)) {
374 if (netif_msg_rx_err(priv) && net_ratelimit())
375 netdev_warn(priv->dev, "rx: spurious interrupt\n");
377 return NULL;
380 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
381 if (likely(skb)) {
382 skb_put(desc->skb, desc->datalen);
383 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
384 skb_checksum_none_assert(desc->skb);
385 priv->dev->stats.rx_packets++;
386 priv->dev->stats.rx_bytes += desc->datalen;
387 result = desc->skb;
388 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
389 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
390 desc->skb = skb;
391 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
392 CPMAC_SKB_SIZE,
393 DMA_FROM_DEVICE);
394 desc->hw_data = (u32)desc->data_mapping;
395 if (unlikely(netif_msg_pktdata(priv))) {
396 netdev_dbg(priv->dev, "received packet:\n");
397 cpmac_dump_skb(priv->dev, result);
399 } else {
400 if (netif_msg_rx_err(priv) && net_ratelimit())
401 netdev_warn(priv->dev,
402 "low on skbs, dropping packet\n");
404 priv->dev->stats.rx_dropped++;
407 desc->buflen = CPMAC_SKB_SIZE;
408 desc->dataflags = CPMAC_OWN;
410 return result;
413 static int cpmac_poll(struct napi_struct *napi, int budget)
415 struct sk_buff *skb;
416 struct cpmac_desc *desc, *restart;
417 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
418 int received = 0, processed = 0;
420 spin_lock(&priv->rx_lock);
421 if (unlikely(!priv->rx_head)) {
422 if (netif_msg_rx_err(priv) && net_ratelimit())
423 netdev_warn(priv->dev, "rx: polling, but no queue\n");
425 spin_unlock(&priv->rx_lock);
426 napi_complete(napi);
427 return 0;
430 desc = priv->rx_head;
431 restart = NULL;
432 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
433 processed++;
435 if ((desc->dataflags & CPMAC_EOQ) != 0) {
436 /* The last update to eoq->hw_next didn't happen
437 * soon enough, and the receiver stopped here.
438 * Remember this descriptor so we can restart
439 * the receiver after freeing some space.
441 if (unlikely(restart)) {
442 if (netif_msg_rx_err(priv))
443 netdev_err(priv->dev, "poll found a"
444 " duplicate EOQ: %p and %p\n",
445 restart, desc);
446 goto fatal_error;
449 restart = desc->next;
452 skb = cpmac_rx_one(priv, desc);
453 if (likely(skb)) {
454 netif_receive_skb(skb);
455 received++;
457 desc = desc->next;
460 if (desc != priv->rx_head) {
461 /* We freed some buffers, but not the whole ring,
462 * add what we did free to the rx list
464 desc->prev->hw_next = (u32)0;
465 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
468 /* Optimization: If we did not actually process an EOQ (perhaps because
469 * of quota limits), check to see if the tail of the queue has EOQ set.
470 * We should immediately restart in that case so that the receiver can
471 * restart and run in parallel with more packet processing.
472 * This lets us handle slightly larger bursts before running
473 * out of ring space (assuming dev->weight < ring_size)
476 if (!restart &&
477 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
478 == CPMAC_EOQ &&
479 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
480 /* reset EOQ so the poll loop (above) doesn't try to
481 * restart this when it eventually gets to this descriptor.
483 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
484 restart = priv->rx_head;
487 if (restart) {
488 priv->dev->stats.rx_errors++;
489 priv->dev->stats.rx_fifo_errors++;
490 if (netif_msg_rx_err(priv) && net_ratelimit())
491 netdev_warn(priv->dev, "rx dma ring overrun\n");
493 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
494 if (netif_msg_drv(priv))
495 netdev_err(priv->dev, "cpmac_poll is trying "
496 "to restart rx from a descriptor "
497 "that's not free: %p\n", restart);
498 goto fatal_error;
501 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
504 priv->rx_head = desc;
505 spin_unlock(&priv->rx_lock);
506 if (unlikely(netif_msg_rx_status(priv)))
507 netdev_dbg(priv->dev, "poll processed %d packets\n", received);
509 if (processed == 0) {
510 /* we ran out of packets to read,
511 * revert to interrupt-driven mode
513 napi_complete(napi);
514 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
515 return 0;
518 return 1;
520 fatal_error:
521 /* Something went horribly wrong.
522 * Reset hardware to try to recover rather than wedging.
524 if (netif_msg_drv(priv)) {
525 netdev_err(priv->dev, "cpmac_poll is confused. "
526 "Resetting hardware\n");
527 cpmac_dump_all_desc(priv->dev);
528 netdev_dbg(priv->dev, "RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
529 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
530 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
533 spin_unlock(&priv->rx_lock);
534 napi_complete(napi);
535 netif_tx_stop_all_queues(priv->dev);
536 napi_disable(&priv->napi);
538 atomic_inc(&priv->reset_pending);
539 cpmac_hw_stop(priv->dev);
540 if (!schedule_work(&priv->reset_work))
541 atomic_dec(&priv->reset_pending);
543 return 0;
547 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
549 int queue;
550 unsigned int len;
551 struct cpmac_desc *desc;
552 struct cpmac_priv *priv = netdev_priv(dev);
554 if (unlikely(atomic_read(&priv->reset_pending)))
555 return NETDEV_TX_BUSY;
557 if (unlikely(skb_padto(skb, ETH_ZLEN)))
558 return NETDEV_TX_OK;
560 len = max_t(unsigned int, skb->len, ETH_ZLEN);
561 queue = skb_get_queue_mapping(skb);
562 netif_stop_subqueue(dev, queue);
564 desc = &priv->desc_ring[queue];
565 if (unlikely(desc->dataflags & CPMAC_OWN)) {
566 if (netif_msg_tx_err(priv) && net_ratelimit())
567 netdev_warn(dev, "tx dma ring full\n");
569 return NETDEV_TX_BUSY;
572 spin_lock(&priv->lock);
573 spin_unlock(&priv->lock);
574 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
575 desc->skb = skb;
576 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
577 DMA_TO_DEVICE);
578 desc->hw_data = (u32)desc->data_mapping;
579 desc->datalen = len;
580 desc->buflen = len;
581 if (unlikely(netif_msg_tx_queued(priv)))
582 netdev_dbg(dev, "sending 0x%p, len=%d\n", skb, skb->len);
583 if (unlikely(netif_msg_hw(priv)))
584 cpmac_dump_desc(dev, desc);
585 if (unlikely(netif_msg_pktdata(priv)))
586 cpmac_dump_skb(dev, skb);
587 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
589 return NETDEV_TX_OK;
592 static void cpmac_end_xmit(struct net_device *dev, int queue)
594 struct cpmac_desc *desc;
595 struct cpmac_priv *priv = netdev_priv(dev);
597 desc = &priv->desc_ring[queue];
598 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
599 if (likely(desc->skb)) {
600 spin_lock(&priv->lock);
601 dev->stats.tx_packets++;
602 dev->stats.tx_bytes += desc->skb->len;
603 spin_unlock(&priv->lock);
604 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
605 DMA_TO_DEVICE);
607 if (unlikely(netif_msg_tx_done(priv)))
608 netdev_dbg(dev, "sent 0x%p, len=%d\n",
609 desc->skb, desc->skb->len);
611 dev_kfree_skb_irq(desc->skb);
612 desc->skb = NULL;
613 if (__netif_subqueue_stopped(dev, queue))
614 netif_wake_subqueue(dev, queue);
615 } else {
616 if (netif_msg_tx_err(priv) && net_ratelimit())
617 netdev_warn(dev, "end_xmit: spurious interrupt\n");
618 if (__netif_subqueue_stopped(dev, queue))
619 netif_wake_subqueue(dev, queue);
623 static void cpmac_hw_stop(struct net_device *dev)
625 int i;
626 struct cpmac_priv *priv = netdev_priv(dev);
627 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
629 ar7_device_reset(pdata->reset_bit);
630 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
631 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
632 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
633 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
634 for (i = 0; i < 8; i++) {
635 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
636 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
638 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
639 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
640 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
641 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
642 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
643 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
646 static void cpmac_hw_start(struct net_device *dev)
648 int i;
649 struct cpmac_priv *priv = netdev_priv(dev);
650 struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
652 ar7_device_reset(pdata->reset_bit);
653 for (i = 0; i < 8; i++) {
654 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
655 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
657 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
659 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
660 MBP_RXMCAST);
661 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
662 for (i = 0; i < 8; i++)
663 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
664 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
665 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
666 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
667 (dev->dev_addr[3] << 24));
668 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
669 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
670 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
671 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
672 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
673 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
674 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
675 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
676 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
678 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
679 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
680 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
681 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
682 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
683 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
684 MAC_FDX);
687 static void cpmac_clear_rx(struct net_device *dev)
689 struct cpmac_priv *priv = netdev_priv(dev);
690 struct cpmac_desc *desc;
691 int i;
693 if (unlikely(!priv->rx_head))
694 return;
695 desc = priv->rx_head;
696 for (i = 0; i < priv->ring_size; i++) {
697 if ((desc->dataflags & CPMAC_OWN) == 0) {
698 if (netif_msg_rx_err(priv) && net_ratelimit())
699 netdev_warn(dev, "packet dropped\n");
700 if (unlikely(netif_msg_hw(priv)))
701 cpmac_dump_desc(dev, desc);
702 desc->dataflags = CPMAC_OWN;
703 dev->stats.rx_dropped++;
705 desc->hw_next = desc->next->mapping;
706 desc = desc->next;
708 priv->rx_head->prev->hw_next = 0;
711 static void cpmac_clear_tx(struct net_device *dev)
713 struct cpmac_priv *priv = netdev_priv(dev);
714 int i;
716 if (unlikely(!priv->desc_ring))
717 return;
718 for (i = 0; i < CPMAC_QUEUES; i++) {
719 priv->desc_ring[i].dataflags = 0;
720 if (priv->desc_ring[i].skb) {
721 dev_kfree_skb_any(priv->desc_ring[i].skb);
722 priv->desc_ring[i].skb = NULL;
727 static void cpmac_hw_error(struct work_struct *work)
729 struct cpmac_priv *priv =
730 container_of(work, struct cpmac_priv, reset_work);
732 spin_lock(&priv->rx_lock);
733 cpmac_clear_rx(priv->dev);
734 spin_unlock(&priv->rx_lock);
735 cpmac_clear_tx(priv->dev);
736 cpmac_hw_start(priv->dev);
737 barrier();
738 atomic_dec(&priv->reset_pending);
740 netif_tx_wake_all_queues(priv->dev);
741 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
744 static void cpmac_check_status(struct net_device *dev)
746 struct cpmac_priv *priv = netdev_priv(dev);
748 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
749 int rx_channel = (macstatus >> 8) & 7;
750 int rx_code = (macstatus >> 12) & 15;
751 int tx_channel = (macstatus >> 16) & 7;
752 int tx_code = (macstatus >> 20) & 15;
754 if (rx_code || tx_code) {
755 if (netif_msg_drv(priv) && net_ratelimit()) {
756 /* Can't find any documentation on what these
757 * error codes actually are. So just log them and hope..
759 if (rx_code)
760 netdev_warn(dev, "host error %d on rx "
761 "channel %d (macstatus %08x), resetting\n",
762 rx_code, rx_channel, macstatus);
763 if (tx_code)
764 netdev_warn(dev, "host error %d on tx "
765 "channel %d (macstatus %08x), resetting\n",
766 tx_code, tx_channel, macstatus);
769 netif_tx_stop_all_queues(dev);
770 cpmac_hw_stop(dev);
771 if (schedule_work(&priv->reset_work))
772 atomic_inc(&priv->reset_pending);
773 if (unlikely(netif_msg_hw(priv)))
774 cpmac_dump_regs(dev);
776 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
779 static irqreturn_t cpmac_irq(int irq, void *dev_id)
781 struct net_device *dev = dev_id;
782 struct cpmac_priv *priv;
783 int queue;
784 u32 status;
786 priv = netdev_priv(dev);
788 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
790 if (unlikely(netif_msg_intr(priv)))
791 netdev_dbg(dev, "interrupt status: 0x%08x\n", status);
793 if (status & MAC_INT_TX)
794 cpmac_end_xmit(dev, (status & 7));
796 if (status & MAC_INT_RX) {
797 queue = (status >> 8) & 7;
798 if (napi_schedule_prep(&priv->napi)) {
799 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
800 __napi_schedule(&priv->napi);
804 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
806 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
807 cpmac_check_status(dev);
809 return IRQ_HANDLED;
812 static void cpmac_tx_timeout(struct net_device *dev)
814 struct cpmac_priv *priv = netdev_priv(dev);
816 spin_lock(&priv->lock);
817 dev->stats.tx_errors++;
818 spin_unlock(&priv->lock);
819 if (netif_msg_tx_err(priv) && net_ratelimit())
820 netdev_warn(dev, "transmit timeout\n");
822 atomic_inc(&priv->reset_pending);
823 barrier();
824 cpmac_clear_tx(dev);
825 barrier();
826 atomic_dec(&priv->reset_pending);
828 netif_tx_wake_all_queues(priv->dev);
831 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
833 if (!(netif_running(dev)))
834 return -EINVAL;
835 if (!dev->phydev)
836 return -EINVAL;
838 return phy_mii_ioctl(dev->phydev, ifr, cmd);
841 static void cpmac_get_ringparam(struct net_device *dev,
842 struct ethtool_ringparam *ring)
844 struct cpmac_priv *priv = netdev_priv(dev);
846 ring->rx_max_pending = 1024;
847 ring->rx_mini_max_pending = 1;
848 ring->rx_jumbo_max_pending = 1;
849 ring->tx_max_pending = 1;
851 ring->rx_pending = priv->ring_size;
852 ring->rx_mini_pending = 1;
853 ring->rx_jumbo_pending = 1;
854 ring->tx_pending = 1;
857 static int cpmac_set_ringparam(struct net_device *dev,
858 struct ethtool_ringparam *ring)
860 struct cpmac_priv *priv = netdev_priv(dev);
862 if (netif_running(dev))
863 return -EBUSY;
864 priv->ring_size = ring->rx_pending;
866 return 0;
869 static void cpmac_get_drvinfo(struct net_device *dev,
870 struct ethtool_drvinfo *info)
872 strlcpy(info->driver, "cpmac", sizeof(info->driver));
873 strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
874 snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
877 static const struct ethtool_ops cpmac_ethtool_ops = {
878 .get_drvinfo = cpmac_get_drvinfo,
879 .get_link = ethtool_op_get_link,
880 .get_ringparam = cpmac_get_ringparam,
881 .set_ringparam = cpmac_set_ringparam,
882 .get_link_ksettings = phy_ethtool_get_link_ksettings,
883 .set_link_ksettings = phy_ethtool_set_link_ksettings,
886 static void cpmac_adjust_link(struct net_device *dev)
888 struct cpmac_priv *priv = netdev_priv(dev);
889 int new_state = 0;
891 spin_lock(&priv->lock);
892 if (dev->phydev->link) {
893 netif_tx_start_all_queues(dev);
894 if (dev->phydev->duplex != priv->oldduplex) {
895 new_state = 1;
896 priv->oldduplex = dev->phydev->duplex;
899 if (dev->phydev->speed != priv->oldspeed) {
900 new_state = 1;
901 priv->oldspeed = dev->phydev->speed;
904 if (!priv->oldlink) {
905 new_state = 1;
906 priv->oldlink = 1;
908 } else if (priv->oldlink) {
909 new_state = 1;
910 priv->oldlink = 0;
911 priv->oldspeed = 0;
912 priv->oldduplex = -1;
915 if (new_state && netif_msg_link(priv) && net_ratelimit())
916 phy_print_status(dev->phydev);
918 spin_unlock(&priv->lock);
921 static int cpmac_open(struct net_device *dev)
923 int i, size, res;
924 struct cpmac_priv *priv = netdev_priv(dev);
925 struct resource *mem;
926 struct cpmac_desc *desc;
927 struct sk_buff *skb;
929 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
930 if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
931 if (netif_msg_drv(priv))
932 netdev_err(dev, "failed to request registers\n");
934 res = -ENXIO;
935 goto fail_reserve;
938 priv->regs = ioremap(mem->start, resource_size(mem));
939 if (!priv->regs) {
940 if (netif_msg_drv(priv))
941 netdev_err(dev, "failed to remap registers\n");
943 res = -ENXIO;
944 goto fail_remap;
947 size = priv->ring_size + CPMAC_QUEUES;
948 priv->desc_ring = dma_alloc_coherent(&dev->dev,
949 sizeof(struct cpmac_desc) * size,
950 &priv->dma_ring,
951 GFP_KERNEL);
952 if (!priv->desc_ring) {
953 res = -ENOMEM;
954 goto fail_alloc;
957 for (i = 0; i < size; i++)
958 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
960 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
961 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
962 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
963 if (unlikely(!skb)) {
964 res = -ENOMEM;
965 goto fail_desc;
967 desc->skb = skb;
968 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
969 CPMAC_SKB_SIZE,
970 DMA_FROM_DEVICE);
971 desc->hw_data = (u32)desc->data_mapping;
972 desc->buflen = CPMAC_SKB_SIZE;
973 desc->dataflags = CPMAC_OWN;
974 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
975 desc->next->prev = desc;
976 desc->hw_next = (u32)desc->next->mapping;
979 priv->rx_head->prev->hw_next = (u32)0;
981 res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
982 if (res) {
983 if (netif_msg_drv(priv))
984 netdev_err(dev, "failed to obtain irq\n");
986 goto fail_irq;
989 atomic_set(&priv->reset_pending, 0);
990 INIT_WORK(&priv->reset_work, cpmac_hw_error);
991 cpmac_hw_start(dev);
993 napi_enable(&priv->napi);
994 dev->phydev->state = PHY_CHANGELINK;
995 phy_start(dev->phydev);
997 return 0;
999 fail_irq:
1000 fail_desc:
1001 for (i = 0; i < priv->ring_size; i++) {
1002 if (priv->rx_head[i].skb) {
1003 dma_unmap_single(&dev->dev,
1004 priv->rx_head[i].data_mapping,
1005 CPMAC_SKB_SIZE,
1006 DMA_FROM_DEVICE);
1007 kfree_skb(priv->rx_head[i].skb);
1010 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * size,
1011 priv->desc_ring, priv->dma_ring);
1013 fail_alloc:
1014 iounmap(priv->regs);
1016 fail_remap:
1017 release_mem_region(mem->start, resource_size(mem));
1019 fail_reserve:
1020 return res;
1023 static int cpmac_stop(struct net_device *dev)
1025 int i;
1026 struct cpmac_priv *priv = netdev_priv(dev);
1027 struct resource *mem;
1029 netif_tx_stop_all_queues(dev);
1031 cancel_work_sync(&priv->reset_work);
1032 napi_disable(&priv->napi);
1033 phy_stop(dev->phydev);
1035 cpmac_hw_stop(dev);
1037 for (i = 0; i < 8; i++)
1038 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1039 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1040 cpmac_write(priv->regs, CPMAC_MBP, 0);
1042 free_irq(dev->irq, dev);
1043 iounmap(priv->regs);
1044 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1045 release_mem_region(mem->start, resource_size(mem));
1046 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1047 for (i = 0; i < priv->ring_size; i++) {
1048 if (priv->rx_head[i].skb) {
1049 dma_unmap_single(&dev->dev,
1050 priv->rx_head[i].data_mapping,
1051 CPMAC_SKB_SIZE,
1052 DMA_FROM_DEVICE);
1053 kfree_skb(priv->rx_head[i].skb);
1057 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1058 (CPMAC_QUEUES + priv->ring_size),
1059 priv->desc_ring, priv->dma_ring);
1061 return 0;
1064 static const struct net_device_ops cpmac_netdev_ops = {
1065 .ndo_open = cpmac_open,
1066 .ndo_stop = cpmac_stop,
1067 .ndo_start_xmit = cpmac_start_xmit,
1068 .ndo_tx_timeout = cpmac_tx_timeout,
1069 .ndo_set_rx_mode = cpmac_set_multicast_list,
1070 .ndo_do_ioctl = cpmac_ioctl,
1071 .ndo_validate_addr = eth_validate_addr,
1072 .ndo_set_mac_address = eth_mac_addr,
1075 static int external_switch;
1077 static int cpmac_probe(struct platform_device *pdev)
1079 int rc, phy_id;
1080 char mdio_bus_id[MII_BUS_ID_SIZE];
1081 struct resource *mem;
1082 struct cpmac_priv *priv;
1083 struct net_device *dev;
1084 struct plat_cpmac_data *pdata;
1085 struct phy_device *phydev = NULL;
1087 pdata = dev_get_platdata(&pdev->dev);
1089 if (external_switch || dumb_switch) {
1090 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1091 phy_id = pdev->id;
1092 } else {
1093 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1094 if (!(pdata->phy_mask & (1 << phy_id)))
1095 continue;
1096 if (!mdiobus_get_phy(cpmac_mii, phy_id))
1097 continue;
1098 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1099 break;
1103 if (phy_id == PHY_MAX_ADDR) {
1104 dev_err(&pdev->dev, "no PHY present, falling back "
1105 "to switch on MDIO bus 0\n");
1106 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1107 phy_id = pdev->id;
1109 mdio_bus_id[sizeof(mdio_bus_id) - 1] = '\0';
1111 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1112 if (!dev)
1113 return -ENOMEM;
1115 SET_NETDEV_DEV(dev, &pdev->dev);
1116 platform_set_drvdata(pdev, dev);
1117 priv = netdev_priv(dev);
1119 priv->pdev = pdev;
1120 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1121 if (!mem) {
1122 rc = -ENODEV;
1123 goto fail;
1126 dev->irq = platform_get_irq_byname(pdev, "irq");
1128 dev->netdev_ops = &cpmac_netdev_ops;
1129 dev->ethtool_ops = &cpmac_ethtool_ops;
1131 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1133 spin_lock_init(&priv->lock);
1134 spin_lock_init(&priv->rx_lock);
1135 priv->dev = dev;
1136 priv->ring_size = 64;
1137 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1138 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1140 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1141 mdio_bus_id, phy_id);
1143 phydev = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1144 PHY_INTERFACE_MODE_MII);
1146 if (IS_ERR(phydev)) {
1147 if (netif_msg_drv(priv))
1148 dev_err(&pdev->dev, "Could not attach to PHY\n");
1150 rc = PTR_ERR(phydev);
1151 goto fail;
1154 rc = register_netdev(dev);
1155 if (rc) {
1156 dev_err(&pdev->dev, "Could not register net device\n");
1157 goto fail;
1160 if (netif_msg_probe(priv)) {
1161 dev_info(&pdev->dev, "regs: %p, irq: %d, phy: %s, "
1162 "mac: %pM\n", (void *)mem->start, dev->irq,
1163 priv->phy_name, dev->dev_addr);
1166 return 0;
1168 fail:
1169 free_netdev(dev);
1170 return rc;
1173 static int cpmac_remove(struct platform_device *pdev)
1175 struct net_device *dev = platform_get_drvdata(pdev);
1177 unregister_netdev(dev);
1178 free_netdev(dev);
1180 return 0;
1183 static struct platform_driver cpmac_driver = {
1184 .driver = {
1185 .name = "cpmac",
1187 .probe = cpmac_probe,
1188 .remove = cpmac_remove,
1191 int cpmac_init(void)
1193 u32 mask;
1194 int i, res;
1196 cpmac_mii = mdiobus_alloc();
1197 if (cpmac_mii == NULL)
1198 return -ENOMEM;
1200 cpmac_mii->name = "cpmac-mii";
1201 cpmac_mii->read = cpmac_mdio_read;
1202 cpmac_mii->write = cpmac_mdio_write;
1203 cpmac_mii->reset = cpmac_mdio_reset;
1205 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1207 if (!cpmac_mii->priv) {
1208 pr_err("Can't ioremap mdio registers\n");
1209 res = -ENXIO;
1210 goto fail_alloc;
1213 /* FIXME: unhardcode gpio&reset bits */
1214 ar7_gpio_disable(26);
1215 ar7_gpio_disable(27);
1216 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1217 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1218 ar7_device_reset(AR7_RESET_BIT_EPHY);
1220 cpmac_mii->reset(cpmac_mii);
1222 for (i = 0; i < 300; i++) {
1223 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1224 if (mask)
1225 break;
1226 else
1227 msleep(10);
1230 mask &= 0x7fffffff;
1231 if (mask & (mask - 1)) {
1232 external_switch = 1;
1233 mask = 0;
1236 cpmac_mii->phy_mask = ~(mask | 0x80000000);
1237 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1239 res = mdiobus_register(cpmac_mii);
1240 if (res)
1241 goto fail_mii;
1243 res = platform_driver_register(&cpmac_driver);
1244 if (res)
1245 goto fail_cpmac;
1247 return 0;
1249 fail_cpmac:
1250 mdiobus_unregister(cpmac_mii);
1252 fail_mii:
1253 iounmap(cpmac_mii->priv);
1255 fail_alloc:
1256 mdiobus_free(cpmac_mii);
1258 return res;
1261 void cpmac_exit(void)
1263 platform_driver_unregister(&cpmac_driver);
1264 mdiobus_unregister(cpmac_mii);
1265 iounmap(cpmac_mii->priv);
1266 mdiobus_free(cpmac_mii);
1269 module_init(cpmac_init);
1270 module_exit(cpmac_exit);