2 * Texas Instruments Ethernet Switch Driver
4 * Copyright (C) 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/kernel.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
39 #include <linux/pinctrl/consumer.h>
44 #include "davinci_cpdma.h"
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
55 #define cpsw_info(priv, type, format, ...) \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
61 #define cpsw_err(priv, type, format, ...) \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
67 #define cpsw_dbg(priv, type, format, ...) \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
73 #define cpsw_notice(priv, type, format, ...) \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
79 #define ALE_ALL_PORTS 0x7
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
90 #define HOST_PORT_NUM 0
91 #define CPSW_ALE_PORTS_NUM 3
92 #define SLIVER_SIZE 0x40
94 #define CPSW1_HOST_PORT_OFFSET 0x028
95 #define CPSW1_SLAVE_OFFSET 0x050
96 #define CPSW1_SLAVE_SIZE 0x040
97 #define CPSW1_CPDMA_OFFSET 0x100
98 #define CPSW1_STATERAM_OFFSET 0x200
99 #define CPSW1_HW_STATS 0x400
100 #define CPSW1_CPTS_OFFSET 0x500
101 #define CPSW1_ALE_OFFSET 0x600
102 #define CPSW1_SLIVER_OFFSET 0x700
104 #define CPSW2_HOST_PORT_OFFSET 0x108
105 #define CPSW2_SLAVE_OFFSET 0x200
106 #define CPSW2_SLAVE_SIZE 0x100
107 #define CPSW2_CPDMA_OFFSET 0x800
108 #define CPSW2_HW_STATS 0x900
109 #define CPSW2_STATERAM_OFFSET 0xa00
110 #define CPSW2_CPTS_OFFSET 0xc00
111 #define CPSW2_ALE_OFFSET 0xd00
112 #define CPSW2_SLIVER_OFFSET 0xd80
113 #define CPSW2_BD_OFFSET 0x2000
115 #define CPDMA_RXTHRESH 0x0c0
116 #define CPDMA_RXFREE 0x0e0
117 #define CPDMA_TXHDP 0x00
118 #define CPDMA_RXHDP 0x20
119 #define CPDMA_TXCP 0x40
120 #define CPDMA_RXCP 0x60
122 #define CPSW_POLL_WEIGHT 64
123 #define CPSW_MIN_PACKET_SIZE (VLAN_ETH_ZLEN)
124 #define CPSW_MAX_PACKET_SIZE (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
126 #define RX_PRIORITY_MAPPING 0x76543210
127 #define TX_PRIORITY_MAPPING 0x33221100
128 #define CPDMA_TX_PRIORITY_MAP 0x76543210
130 #define CPSW_VLAN_AWARE BIT(1)
131 #define CPSW_ALE_VLAN_AWARE 1
133 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
134 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
135 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
137 #define CPSW_INTPACEEN (0x3f << 16)
138 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
139 #define CPSW_CMINTMAX_CNT 63
140 #define CPSW_CMINTMIN_CNT 2
141 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
142 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
144 #define cpsw_slave_index(cpsw, priv) \
145 ((cpsw->data.dual_emac) ? priv->emac_port : \
146 cpsw->data.active_slave)
148 #define CPSW_MAX_QUEUES 8
149 #define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
151 static int debug_level
;
152 module_param(debug_level
, int, 0);
153 MODULE_PARM_DESC(debug_level
, "cpsw debug level (NETIF_MSG bits)");
155 static int ale_ageout
= 10;
156 module_param(ale_ageout
, int, 0);
157 MODULE_PARM_DESC(ale_ageout
, "cpsw ale ageout interval (seconds)");
159 static int rx_packet_max
= CPSW_MAX_PACKET_SIZE
;
160 module_param(rx_packet_max
, int, 0);
161 MODULE_PARM_DESC(rx_packet_max
, "maximum receive packet size (bytes)");
163 static int descs_pool_size
= CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT
;
164 module_param(descs_pool_size
, int, 0444);
165 MODULE_PARM_DESC(descs_pool_size
, "Number of CPDMA CPPI descriptors in pool");
167 struct cpsw_wr_regs
{
187 struct cpsw_ss_regs
{
204 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
205 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
206 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
207 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
208 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
209 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
210 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
211 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
214 #define CPSW2_CONTROL 0x00 /* Control Register */
215 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
216 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
217 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
218 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
219 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
220 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
222 /* CPSW_PORT_V1 and V2 */
223 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
224 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
225 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
227 /* CPSW_PORT_V2 only */
228 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
229 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
230 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
231 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
232 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
233 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
234 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
235 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
237 /* Bit definitions for the CPSW2_CONTROL register */
238 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
239 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
240 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
241 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
242 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
243 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
244 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
245 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
246 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
247 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
248 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
249 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
250 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
251 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
252 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
253 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
254 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
256 #define CTRL_V2_TS_BITS \
257 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
258 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
260 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
261 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
262 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
265 #define CTRL_V3_TS_BITS \
266 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
267 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
270 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
271 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
272 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
274 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
275 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
276 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
277 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
278 #define TS_MSG_TYPE_EN_MASK (0xffff)
280 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
281 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
283 /* Bit definitions for the CPSW1_TS_CTL register */
284 #define CPSW_V1_TS_RX_EN BIT(0)
285 #define CPSW_V1_TS_TX_EN BIT(4)
286 #define CPSW_V1_MSG_TYPE_OFS 16
288 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
289 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
291 #define CPSW_MAX_BLKS_TX 15
292 #define CPSW_MAX_BLKS_TX_SHIFT 4
293 #define CPSW_MAX_BLKS_RX 5
295 struct cpsw_host_regs
{
301 u32 cpdma_tx_pri_map
;
302 u32 cpdma_rx_chan_map
;
305 struct cpsw_sliver_regs
{
318 struct cpsw_hw_stats
{
320 u32 rxbroadcastframes
;
321 u32 rxmulticastframes
;
324 u32 rxaligncodeerrors
;
325 u32 rxoversizedframes
;
327 u32 rxundersizedframes
;
332 u32 txbroadcastframes
;
333 u32 txmulticastframes
;
335 u32 txdeferredframes
;
336 u32 txcollisionframes
;
337 u32 txsinglecollframes
;
338 u32 txmultcollframes
;
339 u32 txexcessivecollisions
;
340 u32 txlatecollisions
;
342 u32 txcarriersenseerrors
;
345 u32 octetframes65t127
;
346 u32 octetframes128t255
;
347 u32 octetframes256t511
;
348 u32 octetframes512t1023
;
349 u32 octetframes1024tup
;
356 struct cpsw_slave_data
{
357 struct device_node
*phy_node
;
358 char phy_id
[MII_BUS_ID_SIZE
];
360 u8 mac_addr
[ETH_ALEN
];
361 u16 dual_emac_res_vlan
; /* Reserved VLAN for DualEMAC */
364 struct cpsw_platform_data
{
365 struct cpsw_slave_data
*slave_data
;
366 u32 ss_reg_ofs
; /* Subsystem control register offset */
367 u32 channels
; /* number of cpdma channels (symmetric) */
368 u32 slaves
; /* number of slave cpgmac ports */
369 u32 active_slave
; /* time stamping, ethtool and SIOCGMIIPHY slave */
370 u32 ale_entries
; /* ale table size */
371 u32 bd_ram_size
; /*buffer descriptor ram size */
372 u32 mac_control
; /* Mac control register */
373 u16 default_vlan
; /* Def VLAN for ALE lookup in VLAN aware mode*/
374 bool dual_emac
; /* Enable Dual EMAC mode */
379 struct cpsw_sliver_regs __iomem
*sliver
;
382 struct cpsw_slave_data
*data
;
383 struct phy_device
*phy
;
384 struct net_device
*ndev
;
388 static inline u32
slave_read(struct cpsw_slave
*slave
, u32 offset
)
390 return readl_relaxed(slave
->regs
+ offset
);
393 static inline void slave_write(struct cpsw_slave
*slave
, u32 val
, u32 offset
)
395 writel_relaxed(val
, slave
->regs
+ offset
);
399 struct cpdma_chan
*ch
;
405 struct cpsw_platform_data data
;
406 struct napi_struct napi_rx
;
407 struct napi_struct napi_tx
;
408 struct cpsw_ss_regs __iomem
*regs
;
409 struct cpsw_wr_regs __iomem
*wr_regs
;
410 u8 __iomem
*hw_stats
;
411 struct cpsw_host_regs __iomem
*host_port_regs
;
416 struct cpsw_slave
*slaves
;
417 struct cpdma_ctlr
*dma
;
418 struct cpsw_vector txv
[CPSW_MAX_QUEUES
];
419 struct cpsw_vector rxv
[CPSW_MAX_QUEUES
];
420 struct cpsw_ale
*ale
;
422 bool rx_irq_disabled
;
423 bool tx_irq_disabled
;
424 u32 irqs_table
[IRQ_NUM
];
426 int rx_ch_num
, tx_ch_num
;
432 struct net_device
*ndev
;
435 u8 mac_addr
[ETH_ALEN
];
439 struct cpsw_common
*cpsw
;
443 char stat_string
[ETH_GSTRING_LEN
];
455 #define CPSW_STAT(m) CPSW_STATS, \
456 sizeof(((struct cpsw_hw_stats *)0)->m), \
457 offsetof(struct cpsw_hw_stats, m)
458 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
459 sizeof(((struct cpdma_chan_stats *)0)->m), \
460 offsetof(struct cpdma_chan_stats, m)
461 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
462 sizeof(((struct cpdma_chan_stats *)0)->m), \
463 offsetof(struct cpdma_chan_stats, m)
465 static const struct cpsw_stats cpsw_gstrings_stats
[] = {
466 { "Good Rx Frames", CPSW_STAT(rxgoodframes
) },
467 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes
) },
468 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes
) },
469 { "Pause Rx Frames", CPSW_STAT(rxpauseframes
) },
470 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors
) },
471 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors
) },
472 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes
) },
473 { "Rx Jabbers", CPSW_STAT(rxjabberframes
) },
474 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes
) },
475 { "Rx Fragments", CPSW_STAT(rxfragments
) },
476 { "Rx Octets", CPSW_STAT(rxoctets
) },
477 { "Good Tx Frames", CPSW_STAT(txgoodframes
) },
478 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes
) },
479 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes
) },
480 { "Pause Tx Frames", CPSW_STAT(txpauseframes
) },
481 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes
) },
482 { "Collisions", CPSW_STAT(txcollisionframes
) },
483 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes
) },
484 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes
) },
485 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions
) },
486 { "Late Collisions", CPSW_STAT(txlatecollisions
) },
487 { "Tx Underrun", CPSW_STAT(txunderrun
) },
488 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors
) },
489 { "Tx Octets", CPSW_STAT(txoctets
) },
490 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64
) },
491 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127
) },
492 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255
) },
493 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511
) },
494 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023
) },
495 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup
) },
496 { "Net Octets", CPSW_STAT(netoctets
) },
497 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns
) },
498 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns
) },
499 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns
) },
502 static const struct cpsw_stats cpsw_gstrings_ch_stats
[] = {
503 { "head_enqueue", CPDMA_RX_STAT(head_enqueue
) },
504 { "tail_enqueue", CPDMA_RX_STAT(tail_enqueue
) },
505 { "pad_enqueue", CPDMA_RX_STAT(pad_enqueue
) },
506 { "misqueued", CPDMA_RX_STAT(misqueued
) },
507 { "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail
) },
508 { "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail
) },
509 { "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff
) },
510 { "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff
) },
511 { "empty_dequeue", CPDMA_RX_STAT(empty_dequeue
) },
512 { "busy_dequeue", CPDMA_RX_STAT(busy_dequeue
) },
513 { "good_dequeue", CPDMA_RX_STAT(good_dequeue
) },
514 { "requeue", CPDMA_RX_STAT(requeue
) },
515 { "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue
) },
518 #define CPSW_STATS_COMMON_LEN ARRAY_SIZE(cpsw_gstrings_stats)
519 #define CPSW_STATS_CH_LEN ARRAY_SIZE(cpsw_gstrings_ch_stats)
521 #define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
522 #define napi_to_cpsw(napi) container_of(napi, struct cpsw_common, napi)
523 #define for_each_slave(priv, func, arg...) \
525 struct cpsw_slave *slave; \
526 struct cpsw_common *cpsw = (priv)->cpsw; \
528 if (cpsw->data.dual_emac) \
529 (func)((cpsw)->slaves + priv->emac_port, ##arg);\
531 for (n = cpsw->data.slaves, \
532 slave = cpsw->slaves; \
534 (func)(slave++, ##arg); \
537 #define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb) \
539 if (!cpsw->data.dual_emac) \
541 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
542 ndev = cpsw->slaves[0].ndev; \
544 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
545 ndev = cpsw->slaves[1].ndev; \
549 #define cpsw_add_mcast(cpsw, priv, addr) \
551 if (cpsw->data.dual_emac) { \
552 struct cpsw_slave *slave = cpsw->slaves + \
554 int slave_port = cpsw_get_slave_port( \
556 cpsw_ale_add_mcast(cpsw->ale, addr, \
557 1 << slave_port | ALE_PORT_HOST, \
558 ALE_VLAN, slave->port_vlan, 0); \
560 cpsw_ale_add_mcast(cpsw->ale, addr, \
566 static inline int cpsw_get_slave_port(u32 slave_num
)
568 return slave_num
+ 1;
571 static void cpsw_set_promiscious(struct net_device
*ndev
, bool enable
)
573 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
574 struct cpsw_ale
*ale
= cpsw
->ale
;
577 if (cpsw
->data
.dual_emac
) {
580 /* Enabling promiscuous mode for one interface will be
581 * common for both the interface as the interface shares
582 * the same hardware resource.
584 for (i
= 0; i
< cpsw
->data
.slaves
; i
++)
585 if (cpsw
->slaves
[i
].ndev
->flags
& IFF_PROMISC
)
588 if (!enable
&& flag
) {
590 dev_err(&ndev
->dev
, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
595 cpsw_ale_control_set(ale
, 0, ALE_BYPASS
, 1);
597 dev_dbg(&ndev
->dev
, "promiscuity enabled\n");
600 cpsw_ale_control_set(ale
, 0, ALE_BYPASS
, 0);
601 dev_dbg(&ndev
->dev
, "promiscuity disabled\n");
605 unsigned long timeout
= jiffies
+ HZ
;
607 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
608 for (i
= 0; i
<= cpsw
->data
.slaves
; i
++) {
609 cpsw_ale_control_set(ale
, i
,
610 ALE_PORT_NOLEARN
, 1);
611 cpsw_ale_control_set(ale
, i
,
612 ALE_PORT_NO_SA_UPDATE
, 1);
615 /* Clear All Untouched entries */
616 cpsw_ale_control_set(ale
, 0, ALE_AGEOUT
, 1);
619 if (cpsw_ale_control_get(ale
, 0, ALE_AGEOUT
))
621 } while (time_after(timeout
, jiffies
));
622 cpsw_ale_control_set(ale
, 0, ALE_AGEOUT
, 1);
624 /* Clear all mcast from ALE */
625 cpsw_ale_flush_multicast(ale
, ALE_ALL_PORTS
, -1);
627 /* Flood All Unicast Packets to Host port */
628 cpsw_ale_control_set(ale
, 0, ALE_P0_UNI_FLOOD
, 1);
629 dev_dbg(&ndev
->dev
, "promiscuity enabled\n");
631 /* Don't Flood All Unicast Packets to Host port */
632 cpsw_ale_control_set(ale
, 0, ALE_P0_UNI_FLOOD
, 0);
634 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
635 for (i
= 0; i
<= cpsw
->data
.slaves
; i
++) {
636 cpsw_ale_control_set(ale
, i
,
637 ALE_PORT_NOLEARN
, 0);
638 cpsw_ale_control_set(ale
, i
,
639 ALE_PORT_NO_SA_UPDATE
, 0);
641 dev_dbg(&ndev
->dev
, "promiscuity disabled\n");
646 static void cpsw_ndo_set_rx_mode(struct net_device
*ndev
)
648 struct cpsw_priv
*priv
= netdev_priv(ndev
);
649 struct cpsw_common
*cpsw
= priv
->cpsw
;
652 if (cpsw
->data
.dual_emac
)
653 vid
= cpsw
->slaves
[priv
->emac_port
].port_vlan
;
655 vid
= cpsw
->data
.default_vlan
;
657 if (ndev
->flags
& IFF_PROMISC
) {
658 /* Enable promiscuous mode */
659 cpsw_set_promiscious(ndev
, true);
660 cpsw_ale_set_allmulti(cpsw
->ale
, IFF_ALLMULTI
);
663 /* Disable promiscuous mode */
664 cpsw_set_promiscious(ndev
, false);
667 /* Restore allmulti on vlans if necessary */
668 cpsw_ale_set_allmulti(cpsw
->ale
, priv
->ndev
->flags
& IFF_ALLMULTI
);
670 /* Clear all mcast from ALE */
671 cpsw_ale_flush_multicast(cpsw
->ale
, ALE_ALL_PORTS
, vid
);
673 if (!netdev_mc_empty(ndev
)) {
674 struct netdev_hw_addr
*ha
;
676 /* program multicast address list into ALE register */
677 netdev_for_each_mc_addr(ha
, ndev
) {
678 cpsw_add_mcast(cpsw
, priv
, (u8
*)ha
->addr
);
683 static void cpsw_intr_enable(struct cpsw_common
*cpsw
)
685 writel_relaxed(0xFF, &cpsw
->wr_regs
->tx_en
);
686 writel_relaxed(0xFF, &cpsw
->wr_regs
->rx_en
);
688 cpdma_ctlr_int_ctrl(cpsw
->dma
, true);
692 static void cpsw_intr_disable(struct cpsw_common
*cpsw
)
694 writel_relaxed(0, &cpsw
->wr_regs
->tx_en
);
695 writel_relaxed(0, &cpsw
->wr_regs
->rx_en
);
697 cpdma_ctlr_int_ctrl(cpsw
->dma
, false);
701 static void cpsw_tx_handler(void *token
, int len
, int status
)
703 struct netdev_queue
*txq
;
704 struct sk_buff
*skb
= token
;
705 struct net_device
*ndev
= skb
->dev
;
706 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
708 /* Check whether the queue is stopped due to stalled tx dma, if the
709 * queue is stopped then start the queue as we have free desc for tx
711 txq
= netdev_get_tx_queue(ndev
, skb_get_queue_mapping(skb
));
712 if (unlikely(netif_tx_queue_stopped(txq
)))
713 netif_tx_wake_queue(txq
);
715 cpts_tx_timestamp(cpsw
->cpts
, skb
);
716 ndev
->stats
.tx_packets
++;
717 ndev
->stats
.tx_bytes
+= len
;
718 dev_kfree_skb_any(skb
);
721 static void cpsw_rx_handler(void *token
, int len
, int status
)
723 struct cpdma_chan
*ch
;
724 struct sk_buff
*skb
= token
;
725 struct sk_buff
*new_skb
;
726 struct net_device
*ndev
= skb
->dev
;
728 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
730 cpsw_dual_emac_src_port_detect(cpsw
, status
, ndev
, skb
);
732 if (unlikely(status
< 0) || unlikely(!netif_running(ndev
))) {
733 /* In dual emac mode check for all interfaces */
734 if (cpsw
->data
.dual_emac
&& cpsw
->usage_count
&&
736 /* The packet received is for the interface which
737 * is already down and the other interface is up
738 * and running, instead of freeing which results
739 * in reducing of the number of rx descriptor in
740 * DMA engine, requeue skb back to cpdma.
746 /* the interface is going down, skbs are purged */
747 dev_kfree_skb_any(skb
);
751 new_skb
= netdev_alloc_skb_ip_align(ndev
, cpsw
->rx_packet_max
);
753 skb_copy_queue_mapping(new_skb
, skb
);
755 cpts_rx_timestamp(cpsw
->cpts
, skb
);
756 skb
->protocol
= eth_type_trans(skb
, ndev
);
757 netif_receive_skb(skb
);
758 ndev
->stats
.rx_bytes
+= len
;
759 ndev
->stats
.rx_packets
++;
760 kmemleak_not_leak(new_skb
);
762 ndev
->stats
.rx_dropped
++;
767 if (netif_dormant(ndev
)) {
768 dev_kfree_skb_any(new_skb
);
772 ch
= cpsw
->rxv
[skb_get_queue_mapping(new_skb
)].ch
;
773 ret
= cpdma_chan_submit(ch
, new_skb
, new_skb
->data
,
774 skb_tailroom(new_skb
), 0);
775 if (WARN_ON(ret
< 0))
776 dev_kfree_skb_any(new_skb
);
779 static void cpsw_split_res(struct net_device
*ndev
)
781 struct cpsw_priv
*priv
= netdev_priv(ndev
);
782 u32 consumed_rate
= 0, bigest_rate
= 0;
783 struct cpsw_common
*cpsw
= priv
->cpsw
;
784 struct cpsw_vector
*txv
= cpsw
->txv
;
785 int i
, ch_weight
, rlim_ch_num
= 0;
786 int budget
, bigest_rate_ch
= 0;
787 u32 ch_rate
, max_rate
;
790 for (i
= 0; i
< cpsw
->tx_ch_num
; i
++) {
791 ch_rate
= cpdma_chan_get_rate(txv
[i
].ch
);
796 consumed_rate
+= ch_rate
;
799 if (cpsw
->tx_ch_num
== rlim_ch_num
) {
800 max_rate
= consumed_rate
;
801 } else if (!rlim_ch_num
) {
802 ch_budget
= CPSW_POLL_WEIGHT
/ cpsw
->tx_ch_num
;
804 max_rate
= consumed_rate
;
806 max_rate
= cpsw
->speed
* 1000;
808 /* if max_rate is less then expected due to reduced link speed,
809 * split proportionally according next potential max speed
811 if (max_rate
< consumed_rate
)
814 if (max_rate
< consumed_rate
)
817 ch_budget
= (consumed_rate
* CPSW_POLL_WEIGHT
) / max_rate
;
818 ch_budget
= (CPSW_POLL_WEIGHT
- ch_budget
) /
819 (cpsw
->tx_ch_num
- rlim_ch_num
);
820 bigest_rate
= (max_rate
- consumed_rate
) /
821 (cpsw
->tx_ch_num
- rlim_ch_num
);
824 /* split tx weight/budget */
825 budget
= CPSW_POLL_WEIGHT
;
826 for (i
= 0; i
< cpsw
->tx_ch_num
; i
++) {
827 ch_rate
= cpdma_chan_get_rate(txv
[i
].ch
);
829 txv
[i
].budget
= (ch_rate
* CPSW_POLL_WEIGHT
) / max_rate
;
832 if (ch_rate
> bigest_rate
) {
834 bigest_rate
= ch_rate
;
837 ch_weight
= (ch_rate
* 100) / max_rate
;
840 cpdma_chan_set_weight(cpsw
->txv
[i
].ch
, ch_weight
);
842 txv
[i
].budget
= ch_budget
;
845 cpdma_chan_set_weight(cpsw
->txv
[i
].ch
, 0);
848 budget
-= txv
[i
].budget
;
852 txv
[bigest_rate_ch
].budget
+= budget
;
854 /* split rx budget */
855 budget
= CPSW_POLL_WEIGHT
;
856 ch_budget
= budget
/ cpsw
->rx_ch_num
;
857 for (i
= 0; i
< cpsw
->rx_ch_num
; i
++) {
858 cpsw
->rxv
[i
].budget
= ch_budget
;
863 cpsw
->rxv
[0].budget
+= budget
;
866 static irqreturn_t
cpsw_tx_interrupt(int irq
, void *dev_id
)
868 struct cpsw_common
*cpsw
= dev_id
;
870 writel(0, &cpsw
->wr_regs
->tx_en
);
871 cpdma_ctlr_eoi(cpsw
->dma
, CPDMA_EOI_TX
);
873 if (cpsw
->quirk_irq
) {
874 disable_irq_nosync(cpsw
->irqs_table
[1]);
875 cpsw
->tx_irq_disabled
= true;
878 napi_schedule(&cpsw
->napi_tx
);
882 static irqreturn_t
cpsw_rx_interrupt(int irq
, void *dev_id
)
884 struct cpsw_common
*cpsw
= dev_id
;
886 cpdma_ctlr_eoi(cpsw
->dma
, CPDMA_EOI_RX
);
887 writel(0, &cpsw
->wr_regs
->rx_en
);
889 if (cpsw
->quirk_irq
) {
890 disable_irq_nosync(cpsw
->irqs_table
[0]);
891 cpsw
->rx_irq_disabled
= true;
894 napi_schedule(&cpsw
->napi_rx
);
898 static int cpsw_tx_poll(struct napi_struct
*napi_tx
, int budget
)
901 int num_tx
, cur_budget
, ch
;
902 struct cpsw_common
*cpsw
= napi_to_cpsw(napi_tx
);
903 struct cpsw_vector
*txv
;
905 /* process every unprocessed channel */
906 ch_map
= cpdma_ctrl_txchs_state(cpsw
->dma
);
907 for (ch
= 0, num_tx
= 0; ch_map
; ch_map
>>= 1, ch
++) {
908 if (!(ch_map
& 0x01))
911 txv
= &cpsw
->txv
[ch
];
912 if (unlikely(txv
->budget
> budget
- num_tx
))
913 cur_budget
= budget
- num_tx
;
915 cur_budget
= txv
->budget
;
917 num_tx
+= cpdma_chan_process(txv
->ch
, cur_budget
);
918 if (num_tx
>= budget
)
922 if (num_tx
< budget
) {
923 napi_complete(napi_tx
);
924 writel(0xff, &cpsw
->wr_regs
->tx_en
);
925 if (cpsw
->quirk_irq
&& cpsw
->tx_irq_disabled
) {
926 cpsw
->tx_irq_disabled
= false;
927 enable_irq(cpsw
->irqs_table
[1]);
934 static int cpsw_rx_poll(struct napi_struct
*napi_rx
, int budget
)
937 int num_rx
, cur_budget
, ch
;
938 struct cpsw_common
*cpsw
= napi_to_cpsw(napi_rx
);
939 struct cpsw_vector
*rxv
;
941 /* process every unprocessed channel */
942 ch_map
= cpdma_ctrl_rxchs_state(cpsw
->dma
);
943 for (ch
= 0, num_rx
= 0; ch_map
; ch_map
>>= 1, ch
++) {
944 if (!(ch_map
& 0x01))
947 rxv
= &cpsw
->rxv
[ch
];
948 if (unlikely(rxv
->budget
> budget
- num_rx
))
949 cur_budget
= budget
- num_rx
;
951 cur_budget
= rxv
->budget
;
953 num_rx
+= cpdma_chan_process(rxv
->ch
, cur_budget
);
954 if (num_rx
>= budget
)
958 if (num_rx
< budget
) {
959 napi_complete_done(napi_rx
, num_rx
);
960 writel(0xff, &cpsw
->wr_regs
->rx_en
);
961 if (cpsw
->quirk_irq
&& cpsw
->rx_irq_disabled
) {
962 cpsw
->rx_irq_disabled
= false;
963 enable_irq(cpsw
->irqs_table
[0]);
970 static inline void soft_reset(const char *module
, void __iomem
*reg
)
972 unsigned long timeout
= jiffies
+ HZ
;
974 writel_relaxed(1, reg
);
977 } while ((readl_relaxed(reg
) & 1) && time_after(timeout
, jiffies
));
979 WARN(readl_relaxed(reg
) & 1, "failed to soft-reset %s\n", module
);
982 static void cpsw_set_slave_mac(struct cpsw_slave
*slave
,
983 struct cpsw_priv
*priv
)
985 slave_write(slave
, mac_hi(priv
->mac_addr
), SA_HI
);
986 slave_write(slave
, mac_lo(priv
->mac_addr
), SA_LO
);
989 static void _cpsw_adjust_link(struct cpsw_slave
*slave
,
990 struct cpsw_priv
*priv
, bool *link
)
992 struct phy_device
*phy
= slave
->phy
;
995 struct cpsw_common
*cpsw
= priv
->cpsw
;
1000 slave_port
= cpsw_get_slave_port(slave
->slave_num
);
1003 mac_control
= cpsw
->data
.mac_control
;
1005 /* enable forwarding */
1006 cpsw_ale_control_set(cpsw
->ale
, slave_port
,
1007 ALE_PORT_STATE
, ALE_PORT_STATE_FORWARD
);
1009 if (phy
->speed
== 1000)
1010 mac_control
|= BIT(7); /* GIGABITEN */
1012 mac_control
|= BIT(0); /* FULLDUPLEXEN */
1014 /* set speed_in input in case RMII mode is used in 100Mbps */
1015 if (phy
->speed
== 100)
1016 mac_control
|= BIT(15);
1017 /* in band mode only works in 10Mbps RGMII mode */
1018 else if ((phy
->speed
== 10) && phy_interface_is_rgmii(phy
))
1019 mac_control
|= BIT(18); /* In Band mode */
1022 mac_control
|= BIT(3);
1025 mac_control
|= BIT(4);
1030 /* disable forwarding */
1031 cpsw_ale_control_set(cpsw
->ale
, slave_port
,
1032 ALE_PORT_STATE
, ALE_PORT_STATE_DISABLE
);
1035 if (mac_control
!= slave
->mac_control
) {
1036 phy_print_status(phy
);
1037 writel_relaxed(mac_control
, &slave
->sliver
->mac_control
);
1040 slave
->mac_control
= mac_control
;
1043 static int cpsw_get_common_speed(struct cpsw_common
*cpsw
)
1047 for (i
= 0, speed
= 0; i
< cpsw
->data
.slaves
; i
++)
1048 if (cpsw
->slaves
[i
].phy
&& cpsw
->slaves
[i
].phy
->link
)
1049 speed
+= cpsw
->slaves
[i
].phy
->speed
;
1054 static int cpsw_need_resplit(struct cpsw_common
*cpsw
)
1059 /* re-split resources only in case speed was changed */
1060 speed
= cpsw_get_common_speed(cpsw
);
1061 if (speed
== cpsw
->speed
|| !speed
)
1064 cpsw
->speed
= speed
;
1066 for (i
= 0, rlim_ch_num
= 0; i
< cpsw
->tx_ch_num
; i
++) {
1067 ch_rate
= cpdma_chan_get_rate(cpsw
->txv
[i
].ch
);
1074 /* cases not dependent on speed */
1075 if (!rlim_ch_num
|| rlim_ch_num
== cpsw
->tx_ch_num
)
1081 static void cpsw_adjust_link(struct net_device
*ndev
)
1083 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1084 struct cpsw_common
*cpsw
= priv
->cpsw
;
1087 for_each_slave(priv
, _cpsw_adjust_link
, priv
, &link
);
1090 if (cpsw_need_resplit(cpsw
))
1091 cpsw_split_res(ndev
);
1093 netif_carrier_on(ndev
);
1094 if (netif_running(ndev
))
1095 netif_tx_wake_all_queues(ndev
);
1097 netif_carrier_off(ndev
);
1098 netif_tx_stop_all_queues(ndev
);
1102 static int cpsw_get_coalesce(struct net_device
*ndev
,
1103 struct ethtool_coalesce
*coal
)
1105 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
1107 coal
->rx_coalesce_usecs
= cpsw
->coal_intvl
;
1111 static int cpsw_set_coalesce(struct net_device
*ndev
,
1112 struct ethtool_coalesce
*coal
)
1114 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1116 u32 num_interrupts
= 0;
1120 struct cpsw_common
*cpsw
= priv
->cpsw
;
1122 coal_intvl
= coal
->rx_coalesce_usecs
;
1124 int_ctrl
= readl(&cpsw
->wr_regs
->int_control
);
1125 prescale
= cpsw
->bus_freq_mhz
* 4;
1127 if (!coal
->rx_coalesce_usecs
) {
1128 int_ctrl
&= ~(CPSW_INTPRESCALE_MASK
| CPSW_INTPACEEN
);
1132 if (coal_intvl
< CPSW_CMINTMIN_INTVL
)
1133 coal_intvl
= CPSW_CMINTMIN_INTVL
;
1135 if (coal_intvl
> CPSW_CMINTMAX_INTVL
) {
1136 /* Interrupt pacer works with 4us Pulse, we can
1137 * throttle further by dilating the 4us pulse.
1139 addnl_dvdr
= CPSW_INTPRESCALE_MASK
/ prescale
;
1141 if (addnl_dvdr
> 1) {
1142 prescale
*= addnl_dvdr
;
1143 if (coal_intvl
> (CPSW_CMINTMAX_INTVL
* addnl_dvdr
))
1144 coal_intvl
= (CPSW_CMINTMAX_INTVL
1148 coal_intvl
= CPSW_CMINTMAX_INTVL
;
1152 num_interrupts
= (1000 * addnl_dvdr
) / coal_intvl
;
1153 writel(num_interrupts
, &cpsw
->wr_regs
->rx_imax
);
1154 writel(num_interrupts
, &cpsw
->wr_regs
->tx_imax
);
1156 int_ctrl
|= CPSW_INTPACEEN
;
1157 int_ctrl
&= (~CPSW_INTPRESCALE_MASK
);
1158 int_ctrl
|= (prescale
& CPSW_INTPRESCALE_MASK
);
1161 writel(int_ctrl
, &cpsw
->wr_regs
->int_control
);
1163 cpsw_notice(priv
, timer
, "Set coalesce to %d usecs.\n", coal_intvl
);
1164 cpsw
->coal_intvl
= coal_intvl
;
1169 static int cpsw_get_sset_count(struct net_device
*ndev
, int sset
)
1171 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
1175 return (CPSW_STATS_COMMON_LEN
+
1176 (cpsw
->rx_ch_num
+ cpsw
->tx_ch_num
) *
1183 static void cpsw_add_ch_strings(u8
**p
, int ch_num
, int rx_dir
)
1189 ch_stats_len
= CPSW_STATS_CH_LEN
* ch_num
;
1190 for (i
= 0; i
< ch_stats_len
; i
++) {
1191 line
= i
% CPSW_STATS_CH_LEN
;
1192 snprintf(*p
, ETH_GSTRING_LEN
,
1193 "%s DMA chan %d: %s", rx_dir
? "Rx" : "Tx",
1194 i
/ CPSW_STATS_CH_LEN
,
1195 cpsw_gstrings_ch_stats
[line
].stat_string
);
1196 *p
+= ETH_GSTRING_LEN
;
1200 static void cpsw_get_strings(struct net_device
*ndev
, u32 stringset
, u8
*data
)
1202 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
1206 switch (stringset
) {
1208 for (i
= 0; i
< CPSW_STATS_COMMON_LEN
; i
++) {
1209 memcpy(p
, cpsw_gstrings_stats
[i
].stat_string
,
1211 p
+= ETH_GSTRING_LEN
;
1214 cpsw_add_ch_strings(&p
, cpsw
->rx_ch_num
, 1);
1215 cpsw_add_ch_strings(&p
, cpsw
->tx_ch_num
, 0);
1220 static void cpsw_get_ethtool_stats(struct net_device
*ndev
,
1221 struct ethtool_stats
*stats
, u64
*data
)
1224 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
1225 struct cpdma_chan_stats ch_stats
;
1228 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1229 for (l
= 0; l
< CPSW_STATS_COMMON_LEN
; l
++)
1230 data
[l
] = readl(cpsw
->hw_stats
+
1231 cpsw_gstrings_stats
[l
].stat_offset
);
1233 for (ch
= 0; ch
< cpsw
->rx_ch_num
; ch
++) {
1234 cpdma_chan_get_stats(cpsw
->rxv
[ch
].ch
, &ch_stats
);
1235 for (i
= 0; i
< CPSW_STATS_CH_LEN
; i
++, l
++) {
1236 p
= (u8
*)&ch_stats
+
1237 cpsw_gstrings_ch_stats
[i
].stat_offset
;
1238 data
[l
] = *(u32
*)p
;
1242 for (ch
= 0; ch
< cpsw
->tx_ch_num
; ch
++) {
1243 cpdma_chan_get_stats(cpsw
->txv
[ch
].ch
, &ch_stats
);
1244 for (i
= 0; i
< CPSW_STATS_CH_LEN
; i
++, l
++) {
1245 p
= (u8
*)&ch_stats
+
1246 cpsw_gstrings_ch_stats
[i
].stat_offset
;
1247 data
[l
] = *(u32
*)p
;
1252 static inline int cpsw_tx_packet_submit(struct cpsw_priv
*priv
,
1253 struct sk_buff
*skb
,
1254 struct cpdma_chan
*txch
)
1256 struct cpsw_common
*cpsw
= priv
->cpsw
;
1258 skb_tx_timestamp(skb
);
1259 return cpdma_chan_submit(txch
, skb
, skb
->data
, skb
->len
,
1260 priv
->emac_port
+ cpsw
->data
.dual_emac
);
1263 static inline void cpsw_add_dual_emac_def_ale_entries(
1264 struct cpsw_priv
*priv
, struct cpsw_slave
*slave
,
1267 struct cpsw_common
*cpsw
= priv
->cpsw
;
1268 u32 port_mask
= 1 << slave_port
| ALE_PORT_HOST
;
1270 if (cpsw
->version
== CPSW_VERSION_1
)
1271 slave_write(slave
, slave
->port_vlan
, CPSW1_PORT_VLAN
);
1273 slave_write(slave
, slave
->port_vlan
, CPSW2_PORT_VLAN
);
1274 cpsw_ale_add_vlan(cpsw
->ale
, slave
->port_vlan
, port_mask
,
1275 port_mask
, port_mask
, 0);
1276 cpsw_ale_add_mcast(cpsw
->ale
, priv
->ndev
->broadcast
,
1277 port_mask
, ALE_VLAN
, slave
->port_vlan
, 0);
1278 cpsw_ale_add_ucast(cpsw
->ale
, priv
->mac_addr
,
1279 HOST_PORT_NUM
, ALE_VLAN
|
1280 ALE_SECURE
, slave
->port_vlan
);
1281 cpsw_ale_control_set(cpsw
->ale
, slave_port
,
1282 ALE_PORT_DROP_UNKNOWN_VLAN
, 1);
1285 static void soft_reset_slave(struct cpsw_slave
*slave
)
1289 snprintf(name
, sizeof(name
), "slave-%d", slave
->slave_num
);
1290 soft_reset(name
, &slave
->sliver
->soft_reset
);
1293 static void cpsw_slave_open(struct cpsw_slave
*slave
, struct cpsw_priv
*priv
)
1296 struct phy_device
*phy
;
1297 struct cpsw_common
*cpsw
= priv
->cpsw
;
1299 soft_reset_slave(slave
);
1301 /* setup priority mapping */
1302 writel_relaxed(RX_PRIORITY_MAPPING
, &slave
->sliver
->rx_pri_map
);
1304 switch (cpsw
->version
) {
1305 case CPSW_VERSION_1
:
1306 slave_write(slave
, TX_PRIORITY_MAPPING
, CPSW1_TX_PRI_MAP
);
1307 /* Increase RX FIFO size to 5 for supporting fullduplex
1311 (CPSW_MAX_BLKS_TX
<< CPSW_MAX_BLKS_TX_SHIFT
) |
1312 CPSW_MAX_BLKS_RX
, CPSW1_MAX_BLKS
);
1314 case CPSW_VERSION_2
:
1315 case CPSW_VERSION_3
:
1316 case CPSW_VERSION_4
:
1317 slave_write(slave
, TX_PRIORITY_MAPPING
, CPSW2_TX_PRI_MAP
);
1318 /* Increase RX FIFO size to 5 for supporting fullduplex
1322 (CPSW_MAX_BLKS_TX
<< CPSW_MAX_BLKS_TX_SHIFT
) |
1323 CPSW_MAX_BLKS_RX
, CPSW2_MAX_BLKS
);
1327 /* setup max packet size, and mac address */
1328 writel_relaxed(cpsw
->rx_packet_max
, &slave
->sliver
->rx_maxlen
);
1329 cpsw_set_slave_mac(slave
, priv
);
1331 slave
->mac_control
= 0; /* no link yet */
1333 slave_port
= cpsw_get_slave_port(slave
->slave_num
);
1335 if (cpsw
->data
.dual_emac
)
1336 cpsw_add_dual_emac_def_ale_entries(priv
, slave
, slave_port
);
1338 cpsw_ale_add_mcast(cpsw
->ale
, priv
->ndev
->broadcast
,
1339 1 << slave_port
, 0, 0, ALE_MCAST_FWD_2
);
1341 if (slave
->data
->phy_node
) {
1342 phy
= of_phy_connect(priv
->ndev
, slave
->data
->phy_node
,
1343 &cpsw_adjust_link
, 0, slave
->data
->phy_if
);
1345 dev_err(priv
->dev
, "phy \"%pOF\" not found on slave %d\n",
1346 slave
->data
->phy_node
,
1351 phy
= phy_connect(priv
->ndev
, slave
->data
->phy_id
,
1352 &cpsw_adjust_link
, slave
->data
->phy_if
);
1355 "phy \"%s\" not found on slave %d, err %ld\n",
1356 slave
->data
->phy_id
, slave
->slave_num
,
1364 phy_attached_info(slave
->phy
);
1366 phy_start(slave
->phy
);
1368 /* Configure GMII_SEL register */
1369 cpsw_phy_sel(cpsw
->dev
, slave
->phy
->interface
, slave
->slave_num
);
1372 static inline void cpsw_add_default_vlan(struct cpsw_priv
*priv
)
1374 struct cpsw_common
*cpsw
= priv
->cpsw
;
1375 const int vlan
= cpsw
->data
.default_vlan
;
1378 int unreg_mcast_mask
;
1380 reg
= (cpsw
->version
== CPSW_VERSION_1
) ? CPSW1_PORT_VLAN
:
1383 writel(vlan
, &cpsw
->host_port_regs
->port_vlan
);
1385 for (i
= 0; i
< cpsw
->data
.slaves
; i
++)
1386 slave_write(cpsw
->slaves
+ i
, vlan
, reg
);
1388 if (priv
->ndev
->flags
& IFF_ALLMULTI
)
1389 unreg_mcast_mask
= ALE_ALL_PORTS
;
1391 unreg_mcast_mask
= ALE_PORT_1
| ALE_PORT_2
;
1393 cpsw_ale_add_vlan(cpsw
->ale
, vlan
, ALE_ALL_PORTS
,
1394 ALE_ALL_PORTS
, ALE_ALL_PORTS
,
1398 static void cpsw_init_host_port(struct cpsw_priv
*priv
)
1402 struct cpsw_common
*cpsw
= priv
->cpsw
;
1404 /* soft reset the controller and initialize ale */
1405 soft_reset("cpsw", &cpsw
->regs
->soft_reset
);
1406 cpsw_ale_start(cpsw
->ale
);
1408 /* switch to vlan unaware mode */
1409 cpsw_ale_control_set(cpsw
->ale
, HOST_PORT_NUM
, ALE_VLAN_AWARE
,
1410 CPSW_ALE_VLAN_AWARE
);
1411 control_reg
= readl(&cpsw
->regs
->control
);
1412 control_reg
|= CPSW_VLAN_AWARE
;
1413 writel(control_reg
, &cpsw
->regs
->control
);
1414 fifo_mode
= (cpsw
->data
.dual_emac
) ? CPSW_FIFO_DUAL_MAC_MODE
:
1415 CPSW_FIFO_NORMAL_MODE
;
1416 writel(fifo_mode
, &cpsw
->host_port_regs
->tx_in_ctl
);
1418 /* setup host port priority mapping */
1419 writel_relaxed(CPDMA_TX_PRIORITY_MAP
,
1420 &cpsw
->host_port_regs
->cpdma_tx_pri_map
);
1421 writel_relaxed(0, &cpsw
->host_port_regs
->cpdma_rx_chan_map
);
1423 cpsw_ale_control_set(cpsw
->ale
, HOST_PORT_NUM
,
1424 ALE_PORT_STATE
, ALE_PORT_STATE_FORWARD
);
1426 if (!cpsw
->data
.dual_emac
) {
1427 cpsw_ale_add_ucast(cpsw
->ale
, priv
->mac_addr
, HOST_PORT_NUM
,
1429 cpsw_ale_add_mcast(cpsw
->ale
, priv
->ndev
->broadcast
,
1430 ALE_PORT_HOST
, 0, 0, ALE_MCAST_FWD_2
);
1434 static int cpsw_fill_rx_channels(struct cpsw_priv
*priv
)
1436 struct cpsw_common
*cpsw
= priv
->cpsw
;
1437 struct sk_buff
*skb
;
1441 for (ch
= 0; ch
< cpsw
->rx_ch_num
; ch
++) {
1442 ch_buf_num
= cpdma_chan_get_rx_buf_num(cpsw
->rxv
[ch
].ch
);
1443 for (i
= 0; i
< ch_buf_num
; i
++) {
1444 skb
= __netdev_alloc_skb_ip_align(priv
->ndev
,
1445 cpsw
->rx_packet_max
,
1448 cpsw_err(priv
, ifup
, "cannot allocate skb\n");
1452 skb_set_queue_mapping(skb
, ch
);
1453 ret
= cpdma_chan_submit(cpsw
->rxv
[ch
].ch
, skb
,
1454 skb
->data
, skb_tailroom(skb
),
1457 cpsw_err(priv
, ifup
,
1458 "cannot submit skb to channel %d rx, error %d\n",
1463 kmemleak_not_leak(skb
);
1466 cpsw_info(priv
, ifup
, "ch %d rx, submitted %d descriptors\n",
1473 static void cpsw_slave_stop(struct cpsw_slave
*slave
, struct cpsw_common
*cpsw
)
1477 slave_port
= cpsw_get_slave_port(slave
->slave_num
);
1481 phy_stop(slave
->phy
);
1482 phy_disconnect(slave
->phy
);
1484 cpsw_ale_control_set(cpsw
->ale
, slave_port
,
1485 ALE_PORT_STATE
, ALE_PORT_STATE_DISABLE
);
1486 soft_reset_slave(slave
);
1489 static int cpsw_ndo_open(struct net_device
*ndev
)
1491 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1492 struct cpsw_common
*cpsw
= priv
->cpsw
;
1496 ret
= pm_runtime_get_sync(cpsw
->dev
);
1498 pm_runtime_put_noidle(cpsw
->dev
);
1502 netif_carrier_off(ndev
);
1504 /* Notify the stack of the actual queue counts. */
1505 ret
= netif_set_real_num_tx_queues(ndev
, cpsw
->tx_ch_num
);
1507 dev_err(priv
->dev
, "cannot set real number of tx queues\n");
1511 ret
= netif_set_real_num_rx_queues(ndev
, cpsw
->rx_ch_num
);
1513 dev_err(priv
->dev
, "cannot set real number of rx queues\n");
1517 reg
= cpsw
->version
;
1519 dev_info(priv
->dev
, "initializing cpsw version %d.%d (%d)\n",
1520 CPSW_MAJOR_VERSION(reg
), CPSW_MINOR_VERSION(reg
),
1521 CPSW_RTL_VERSION(reg
));
1523 /* Initialize host and slave ports */
1524 if (!cpsw
->usage_count
)
1525 cpsw_init_host_port(priv
);
1526 for_each_slave(priv
, cpsw_slave_open
, priv
);
1528 /* Add default VLAN */
1529 if (!cpsw
->data
.dual_emac
)
1530 cpsw_add_default_vlan(priv
);
1532 cpsw_ale_add_vlan(cpsw
->ale
, cpsw
->data
.default_vlan
,
1533 ALE_ALL_PORTS
, ALE_ALL_PORTS
, 0, 0);
1535 /* initialize shared resources for every ndev */
1536 if (!cpsw
->usage_count
) {
1537 /* disable priority elevation */
1538 writel_relaxed(0, &cpsw
->regs
->ptype
);
1540 /* enable statistics collection only on all ports */
1541 writel_relaxed(0x7, &cpsw
->regs
->stat_port_en
);
1543 /* Enable internal fifo flow control */
1544 writel(0x7, &cpsw
->regs
->flow_control
);
1546 napi_enable(&cpsw
->napi_rx
);
1547 napi_enable(&cpsw
->napi_tx
);
1549 if (cpsw
->tx_irq_disabled
) {
1550 cpsw
->tx_irq_disabled
= false;
1551 enable_irq(cpsw
->irqs_table
[1]);
1554 if (cpsw
->rx_irq_disabled
) {
1555 cpsw
->rx_irq_disabled
= false;
1556 enable_irq(cpsw
->irqs_table
[0]);
1559 ret
= cpsw_fill_rx_channels(priv
);
1563 if (cpts_register(cpsw
->cpts
))
1564 dev_err(priv
->dev
, "error registering cpts device\n");
1568 /* Enable Interrupt pacing if configured */
1569 if (cpsw
->coal_intvl
!= 0) {
1570 struct ethtool_coalesce coal
;
1572 coal
.rx_coalesce_usecs
= cpsw
->coal_intvl
;
1573 cpsw_set_coalesce(ndev
, &coal
);
1576 cpdma_ctlr_start(cpsw
->dma
);
1577 cpsw_intr_enable(cpsw
);
1578 cpsw
->usage_count
++;
1583 cpdma_ctlr_stop(cpsw
->dma
);
1584 for_each_slave(priv
, cpsw_slave_stop
, cpsw
);
1585 pm_runtime_put_sync(cpsw
->dev
);
1586 netif_carrier_off(priv
->ndev
);
1590 static int cpsw_ndo_stop(struct net_device
*ndev
)
1592 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1593 struct cpsw_common
*cpsw
= priv
->cpsw
;
1595 cpsw_info(priv
, ifdown
, "shutting down cpsw device\n");
1596 netif_tx_stop_all_queues(priv
->ndev
);
1597 netif_carrier_off(priv
->ndev
);
1599 if (cpsw
->usage_count
<= 1) {
1600 napi_disable(&cpsw
->napi_rx
);
1601 napi_disable(&cpsw
->napi_tx
);
1602 cpts_unregister(cpsw
->cpts
);
1603 cpsw_intr_disable(cpsw
);
1604 cpdma_ctlr_stop(cpsw
->dma
);
1605 cpsw_ale_stop(cpsw
->ale
);
1607 for_each_slave(priv
, cpsw_slave_stop
, cpsw
);
1609 if (cpsw_need_resplit(cpsw
))
1610 cpsw_split_res(ndev
);
1612 cpsw
->usage_count
--;
1613 pm_runtime_put_sync(cpsw
->dev
);
1617 static netdev_tx_t
cpsw_ndo_start_xmit(struct sk_buff
*skb
,
1618 struct net_device
*ndev
)
1620 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1621 struct cpsw_common
*cpsw
= priv
->cpsw
;
1622 struct cpts
*cpts
= cpsw
->cpts
;
1623 struct netdev_queue
*txq
;
1624 struct cpdma_chan
*txch
;
1627 if (skb_padto(skb
, CPSW_MIN_PACKET_SIZE
)) {
1628 cpsw_err(priv
, tx_err
, "packet pad failed\n");
1629 ndev
->stats
.tx_dropped
++;
1630 return NET_XMIT_DROP
;
1633 if (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
&&
1634 cpts_is_tx_enabled(cpts
) && cpts_can_timestamp(cpts
, skb
))
1635 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
1637 q_idx
= skb_get_queue_mapping(skb
);
1638 if (q_idx
>= cpsw
->tx_ch_num
)
1639 q_idx
= q_idx
% cpsw
->tx_ch_num
;
1641 txch
= cpsw
->txv
[q_idx
].ch
;
1642 txq
= netdev_get_tx_queue(ndev
, q_idx
);
1643 ret
= cpsw_tx_packet_submit(priv
, skb
, txch
);
1644 if (unlikely(ret
!= 0)) {
1645 cpsw_err(priv
, tx_err
, "desc submit failed\n");
1649 /* If there is no more tx desc left free then we need to
1650 * tell the kernel to stop sending us tx frames.
1652 if (unlikely(!cpdma_check_free_tx_desc(txch
))) {
1653 netif_tx_stop_queue(txq
);
1655 /* Barrier, so that stop_queue visible to other cpus */
1656 smp_mb__after_atomic();
1658 if (cpdma_check_free_tx_desc(txch
))
1659 netif_tx_wake_queue(txq
);
1662 return NETDEV_TX_OK
;
1664 ndev
->stats
.tx_dropped
++;
1665 netif_tx_stop_queue(txq
);
1667 /* Barrier, so that stop_queue visible to other cpus */
1668 smp_mb__after_atomic();
1670 if (cpdma_check_free_tx_desc(txch
))
1671 netif_tx_wake_queue(txq
);
1673 return NETDEV_TX_BUSY
;
1676 #if IS_ENABLED(CONFIG_TI_CPTS)
1678 static void cpsw_hwtstamp_v1(struct cpsw_common
*cpsw
)
1680 struct cpsw_slave
*slave
= &cpsw
->slaves
[cpsw
->data
.active_slave
];
1683 if (!cpts_is_tx_enabled(cpsw
->cpts
) &&
1684 !cpts_is_rx_enabled(cpsw
->cpts
)) {
1685 slave_write(slave
, 0, CPSW1_TS_CTL
);
1689 seq_id
= (30 << CPSW_V1_SEQ_ID_OFS_SHIFT
) | ETH_P_1588
;
1690 ts_en
= EVENT_MSG_BITS
<< CPSW_V1_MSG_TYPE_OFS
;
1692 if (cpts_is_tx_enabled(cpsw
->cpts
))
1693 ts_en
|= CPSW_V1_TS_TX_EN
;
1695 if (cpts_is_rx_enabled(cpsw
->cpts
))
1696 ts_en
|= CPSW_V1_TS_RX_EN
;
1698 slave_write(slave
, ts_en
, CPSW1_TS_CTL
);
1699 slave_write(slave
, seq_id
, CPSW1_TS_SEQ_LTYPE
);
1702 static void cpsw_hwtstamp_v2(struct cpsw_priv
*priv
)
1704 struct cpsw_slave
*slave
;
1705 struct cpsw_common
*cpsw
= priv
->cpsw
;
1708 slave
= &cpsw
->slaves
[cpsw_slave_index(cpsw
, priv
)];
1710 ctrl
= slave_read(slave
, CPSW2_CONTROL
);
1711 switch (cpsw
->version
) {
1712 case CPSW_VERSION_2
:
1713 ctrl
&= ~CTRL_V2_ALL_TS_MASK
;
1715 if (cpts_is_tx_enabled(cpsw
->cpts
))
1716 ctrl
|= CTRL_V2_TX_TS_BITS
;
1718 if (cpts_is_rx_enabled(cpsw
->cpts
))
1719 ctrl
|= CTRL_V2_RX_TS_BITS
;
1721 case CPSW_VERSION_3
:
1723 ctrl
&= ~CTRL_V3_ALL_TS_MASK
;
1725 if (cpts_is_tx_enabled(cpsw
->cpts
))
1726 ctrl
|= CTRL_V3_TX_TS_BITS
;
1728 if (cpts_is_rx_enabled(cpsw
->cpts
))
1729 ctrl
|= CTRL_V3_RX_TS_BITS
;
1733 mtype
= (30 << TS_SEQ_ID_OFFSET_SHIFT
) | EVENT_MSG_BITS
;
1735 slave_write(slave
, mtype
, CPSW2_TS_SEQ_MTYPE
);
1736 slave_write(slave
, ctrl
, CPSW2_CONTROL
);
1737 writel_relaxed(ETH_P_1588
, &cpsw
->regs
->ts_ltype
);
1740 static int cpsw_hwtstamp_set(struct net_device
*dev
, struct ifreq
*ifr
)
1742 struct cpsw_priv
*priv
= netdev_priv(dev
);
1743 struct hwtstamp_config cfg
;
1744 struct cpsw_common
*cpsw
= priv
->cpsw
;
1745 struct cpts
*cpts
= cpsw
->cpts
;
1747 if (cpsw
->version
!= CPSW_VERSION_1
&&
1748 cpsw
->version
!= CPSW_VERSION_2
&&
1749 cpsw
->version
!= CPSW_VERSION_3
)
1752 if (copy_from_user(&cfg
, ifr
->ifr_data
, sizeof(cfg
)))
1755 /* reserved for future extensions */
1759 if (cfg
.tx_type
!= HWTSTAMP_TX_OFF
&& cfg
.tx_type
!= HWTSTAMP_TX_ON
)
1762 switch (cfg
.rx_filter
) {
1763 case HWTSTAMP_FILTER_NONE
:
1764 cpts_rx_enable(cpts
, 0);
1766 case HWTSTAMP_FILTER_ALL
:
1767 case HWTSTAMP_FILTER_NTP_ALL
:
1769 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
1770 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
1771 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
1772 cpts_rx_enable(cpts
, HWTSTAMP_FILTER_PTP_V1_L4_EVENT
);
1773 cfg
.rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
1775 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
1776 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
1777 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
1778 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
1779 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
1780 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
1781 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
1782 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
1783 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
1784 cpts_rx_enable(cpts
, HWTSTAMP_FILTER_PTP_V2_EVENT
);
1785 cfg
.rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
1791 cpts_tx_enable(cpts
, cfg
.tx_type
== HWTSTAMP_TX_ON
);
1793 switch (cpsw
->version
) {
1794 case CPSW_VERSION_1
:
1795 cpsw_hwtstamp_v1(cpsw
);
1797 case CPSW_VERSION_2
:
1798 case CPSW_VERSION_3
:
1799 cpsw_hwtstamp_v2(priv
);
1805 return copy_to_user(ifr
->ifr_data
, &cfg
, sizeof(cfg
)) ? -EFAULT
: 0;
1808 static int cpsw_hwtstamp_get(struct net_device
*dev
, struct ifreq
*ifr
)
1810 struct cpsw_common
*cpsw
= ndev_to_cpsw(dev
);
1811 struct cpts
*cpts
= cpsw
->cpts
;
1812 struct hwtstamp_config cfg
;
1814 if (cpsw
->version
!= CPSW_VERSION_1
&&
1815 cpsw
->version
!= CPSW_VERSION_2
&&
1816 cpsw
->version
!= CPSW_VERSION_3
)
1820 cfg
.tx_type
= cpts_is_tx_enabled(cpts
) ?
1821 HWTSTAMP_TX_ON
: HWTSTAMP_TX_OFF
;
1822 cfg
.rx_filter
= (cpts_is_rx_enabled(cpts
) ?
1823 cpts
->rx_enable
: HWTSTAMP_FILTER_NONE
);
1825 return copy_to_user(ifr
->ifr_data
, &cfg
, sizeof(cfg
)) ? -EFAULT
: 0;
1828 static int cpsw_hwtstamp_get(struct net_device
*dev
, struct ifreq
*ifr
)
1833 static int cpsw_hwtstamp_set(struct net_device
*dev
, struct ifreq
*ifr
)
1837 #endif /*CONFIG_TI_CPTS*/
1839 static int cpsw_ndo_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
1841 struct cpsw_priv
*priv
= netdev_priv(dev
);
1842 struct cpsw_common
*cpsw
= priv
->cpsw
;
1843 int slave_no
= cpsw_slave_index(cpsw
, priv
);
1845 if (!netif_running(dev
))
1850 return cpsw_hwtstamp_set(dev
, req
);
1852 return cpsw_hwtstamp_get(dev
, req
);
1855 if (!cpsw
->slaves
[slave_no
].phy
)
1857 return phy_mii_ioctl(cpsw
->slaves
[slave_no
].phy
, req
, cmd
);
1860 static void cpsw_ndo_tx_timeout(struct net_device
*ndev
)
1862 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1863 struct cpsw_common
*cpsw
= priv
->cpsw
;
1866 cpsw_err(priv
, tx_err
, "transmit timeout, restarting dma\n");
1867 ndev
->stats
.tx_errors
++;
1868 cpsw_intr_disable(cpsw
);
1869 for (ch
= 0; ch
< cpsw
->tx_ch_num
; ch
++) {
1870 cpdma_chan_stop(cpsw
->txv
[ch
].ch
);
1871 cpdma_chan_start(cpsw
->txv
[ch
].ch
);
1874 cpsw_intr_enable(cpsw
);
1875 netif_trans_update(ndev
);
1876 netif_tx_wake_all_queues(ndev
);
1879 static int cpsw_ndo_set_mac_address(struct net_device
*ndev
, void *p
)
1881 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1882 struct sockaddr
*addr
= (struct sockaddr
*)p
;
1883 struct cpsw_common
*cpsw
= priv
->cpsw
;
1888 if (!is_valid_ether_addr(addr
->sa_data
))
1889 return -EADDRNOTAVAIL
;
1891 ret
= pm_runtime_get_sync(cpsw
->dev
);
1893 pm_runtime_put_noidle(cpsw
->dev
);
1897 if (cpsw
->data
.dual_emac
) {
1898 vid
= cpsw
->slaves
[priv
->emac_port
].port_vlan
;
1902 cpsw_ale_del_ucast(cpsw
->ale
, priv
->mac_addr
, HOST_PORT_NUM
,
1904 cpsw_ale_add_ucast(cpsw
->ale
, addr
->sa_data
, HOST_PORT_NUM
,
1907 memcpy(priv
->mac_addr
, addr
->sa_data
, ETH_ALEN
);
1908 memcpy(ndev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
1909 for_each_slave(priv
, cpsw_set_slave_mac
, priv
);
1911 pm_runtime_put(cpsw
->dev
);
1916 #ifdef CONFIG_NET_POLL_CONTROLLER
1917 static void cpsw_ndo_poll_controller(struct net_device
*ndev
)
1919 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
1921 cpsw_intr_disable(cpsw
);
1922 cpsw_rx_interrupt(cpsw
->irqs_table
[0], cpsw
);
1923 cpsw_tx_interrupt(cpsw
->irqs_table
[1], cpsw
);
1924 cpsw_intr_enable(cpsw
);
1928 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv
*priv
,
1932 int unreg_mcast_mask
= 0;
1934 struct cpsw_common
*cpsw
= priv
->cpsw
;
1936 if (cpsw
->data
.dual_emac
) {
1937 port_mask
= (1 << (priv
->emac_port
+ 1)) | ALE_PORT_HOST
;
1939 if (priv
->ndev
->flags
& IFF_ALLMULTI
)
1940 unreg_mcast_mask
= port_mask
;
1942 port_mask
= ALE_ALL_PORTS
;
1944 if (priv
->ndev
->flags
& IFF_ALLMULTI
)
1945 unreg_mcast_mask
= ALE_ALL_PORTS
;
1947 unreg_mcast_mask
= ALE_PORT_1
| ALE_PORT_2
;
1950 ret
= cpsw_ale_add_vlan(cpsw
->ale
, vid
, port_mask
, 0, port_mask
,
1955 ret
= cpsw_ale_add_ucast(cpsw
->ale
, priv
->mac_addr
,
1956 HOST_PORT_NUM
, ALE_VLAN
, vid
);
1960 ret
= cpsw_ale_add_mcast(cpsw
->ale
, priv
->ndev
->broadcast
,
1961 port_mask
, ALE_VLAN
, vid
, 0);
1963 goto clean_vlan_ucast
;
1967 cpsw_ale_del_ucast(cpsw
->ale
, priv
->mac_addr
,
1968 HOST_PORT_NUM
, ALE_VLAN
, vid
);
1970 cpsw_ale_del_vlan(cpsw
->ale
, vid
, 0);
1974 static int cpsw_ndo_vlan_rx_add_vid(struct net_device
*ndev
,
1975 __be16 proto
, u16 vid
)
1977 struct cpsw_priv
*priv
= netdev_priv(ndev
);
1978 struct cpsw_common
*cpsw
= priv
->cpsw
;
1981 if (vid
== cpsw
->data
.default_vlan
)
1984 ret
= pm_runtime_get_sync(cpsw
->dev
);
1986 pm_runtime_put_noidle(cpsw
->dev
);
1990 if (cpsw
->data
.dual_emac
) {
1991 /* In dual EMAC, reserved VLAN id should not be used for
1992 * creating VLAN interfaces as this can break the dual
1993 * EMAC port separation
1997 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
1998 if (vid
== cpsw
->slaves
[i
].port_vlan
)
2003 dev_info(priv
->dev
, "Adding vlanid %d to vlan filter\n", vid
);
2004 ret
= cpsw_add_vlan_ale_entry(priv
, vid
);
2006 pm_runtime_put(cpsw
->dev
);
2010 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device
*ndev
,
2011 __be16 proto
, u16 vid
)
2013 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2014 struct cpsw_common
*cpsw
= priv
->cpsw
;
2017 if (vid
== cpsw
->data
.default_vlan
)
2020 ret
= pm_runtime_get_sync(cpsw
->dev
);
2022 pm_runtime_put_noidle(cpsw
->dev
);
2026 if (cpsw
->data
.dual_emac
) {
2029 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
2030 if (vid
== cpsw
->slaves
[i
].port_vlan
)
2035 dev_info(priv
->dev
, "removing vlanid %d from vlan filter\n", vid
);
2036 ret
= cpsw_ale_del_vlan(cpsw
->ale
, vid
, 0);
2040 ret
= cpsw_ale_del_ucast(cpsw
->ale
, priv
->mac_addr
,
2041 HOST_PORT_NUM
, ALE_VLAN
, vid
);
2045 ret
= cpsw_ale_del_mcast(cpsw
->ale
, priv
->ndev
->broadcast
,
2047 pm_runtime_put(cpsw
->dev
);
2051 static int cpsw_ndo_set_tx_maxrate(struct net_device
*ndev
, int queue
, u32 rate
)
2053 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2054 struct cpsw_common
*cpsw
= priv
->cpsw
;
2055 struct cpsw_slave
*slave
;
2060 ch_rate
= netdev_get_tx_queue(ndev
, queue
)->tx_maxrate
;
2061 if (ch_rate
== rate
)
2064 ch_rate
= rate
* 1000;
2065 min_rate
= cpdma_chan_get_min_rate(cpsw
->dma
);
2066 if ((ch_rate
< min_rate
&& ch_rate
)) {
2067 dev_err(priv
->dev
, "The channel rate cannot be less than %dMbps",
2072 if (rate
> cpsw
->speed
) {
2073 dev_err(priv
->dev
, "The channel rate cannot be more than 2Gbps");
2077 ret
= pm_runtime_get_sync(cpsw
->dev
);
2079 pm_runtime_put_noidle(cpsw
->dev
);
2083 ret
= cpdma_chan_set_rate(cpsw
->txv
[queue
].ch
, ch_rate
);
2084 pm_runtime_put(cpsw
->dev
);
2089 /* update rates for slaves tx queues */
2090 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
2091 slave
= &cpsw
->slaves
[i
];
2095 netdev_get_tx_queue(slave
->ndev
, queue
)->tx_maxrate
= rate
;
2098 cpsw_split_res(ndev
);
2102 static const struct net_device_ops cpsw_netdev_ops
= {
2103 .ndo_open
= cpsw_ndo_open
,
2104 .ndo_stop
= cpsw_ndo_stop
,
2105 .ndo_start_xmit
= cpsw_ndo_start_xmit
,
2106 .ndo_set_mac_address
= cpsw_ndo_set_mac_address
,
2107 .ndo_do_ioctl
= cpsw_ndo_ioctl
,
2108 .ndo_validate_addr
= eth_validate_addr
,
2109 .ndo_tx_timeout
= cpsw_ndo_tx_timeout
,
2110 .ndo_set_rx_mode
= cpsw_ndo_set_rx_mode
,
2111 .ndo_set_tx_maxrate
= cpsw_ndo_set_tx_maxrate
,
2112 #ifdef CONFIG_NET_POLL_CONTROLLER
2113 .ndo_poll_controller
= cpsw_ndo_poll_controller
,
2115 .ndo_vlan_rx_add_vid
= cpsw_ndo_vlan_rx_add_vid
,
2116 .ndo_vlan_rx_kill_vid
= cpsw_ndo_vlan_rx_kill_vid
,
2119 static int cpsw_get_regs_len(struct net_device
*ndev
)
2121 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2123 return cpsw
->data
.ale_entries
* ALE_ENTRY_WORDS
* sizeof(u32
);
2126 static void cpsw_get_regs(struct net_device
*ndev
,
2127 struct ethtool_regs
*regs
, void *p
)
2130 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2132 /* update CPSW IP version */
2133 regs
->version
= cpsw
->version
;
2135 cpsw_ale_dump(cpsw
->ale
, reg
);
2138 static void cpsw_get_drvinfo(struct net_device
*ndev
,
2139 struct ethtool_drvinfo
*info
)
2141 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2142 struct platform_device
*pdev
= to_platform_device(cpsw
->dev
);
2144 strlcpy(info
->driver
, "cpsw", sizeof(info
->driver
));
2145 strlcpy(info
->version
, "1.0", sizeof(info
->version
));
2146 strlcpy(info
->bus_info
, pdev
->name
, sizeof(info
->bus_info
));
2149 static u32
cpsw_get_msglevel(struct net_device
*ndev
)
2151 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2152 return priv
->msg_enable
;
2155 static void cpsw_set_msglevel(struct net_device
*ndev
, u32 value
)
2157 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2158 priv
->msg_enable
= value
;
2161 #if IS_ENABLED(CONFIG_TI_CPTS)
2162 static int cpsw_get_ts_info(struct net_device
*ndev
,
2163 struct ethtool_ts_info
*info
)
2165 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2167 info
->so_timestamping
=
2168 SOF_TIMESTAMPING_TX_HARDWARE
|
2169 SOF_TIMESTAMPING_TX_SOFTWARE
|
2170 SOF_TIMESTAMPING_RX_HARDWARE
|
2171 SOF_TIMESTAMPING_RX_SOFTWARE
|
2172 SOF_TIMESTAMPING_SOFTWARE
|
2173 SOF_TIMESTAMPING_RAW_HARDWARE
;
2174 info
->phc_index
= cpsw
->cpts
->phc_index
;
2176 (1 << HWTSTAMP_TX_OFF
) |
2177 (1 << HWTSTAMP_TX_ON
);
2179 (1 << HWTSTAMP_FILTER_NONE
) |
2180 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT
) |
2181 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT
);
2185 static int cpsw_get_ts_info(struct net_device
*ndev
,
2186 struct ethtool_ts_info
*info
)
2188 info
->so_timestamping
=
2189 SOF_TIMESTAMPING_TX_SOFTWARE
|
2190 SOF_TIMESTAMPING_RX_SOFTWARE
|
2191 SOF_TIMESTAMPING_SOFTWARE
;
2192 info
->phc_index
= -1;
2194 info
->rx_filters
= 0;
2199 static int cpsw_get_link_ksettings(struct net_device
*ndev
,
2200 struct ethtool_link_ksettings
*ecmd
)
2202 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2203 struct cpsw_common
*cpsw
= priv
->cpsw
;
2204 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2206 if (!cpsw
->slaves
[slave_no
].phy
)
2209 phy_ethtool_ksettings_get(cpsw
->slaves
[slave_no
].phy
, ecmd
);
2213 static int cpsw_set_link_ksettings(struct net_device
*ndev
,
2214 const struct ethtool_link_ksettings
*ecmd
)
2216 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2217 struct cpsw_common
*cpsw
= priv
->cpsw
;
2218 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2220 if (cpsw
->slaves
[slave_no
].phy
)
2221 return phy_ethtool_ksettings_set(cpsw
->slaves
[slave_no
].phy
,
2227 static void cpsw_get_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2229 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2230 struct cpsw_common
*cpsw
= priv
->cpsw
;
2231 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2236 if (cpsw
->slaves
[slave_no
].phy
)
2237 phy_ethtool_get_wol(cpsw
->slaves
[slave_no
].phy
, wol
);
2240 static int cpsw_set_wol(struct net_device
*ndev
, struct ethtool_wolinfo
*wol
)
2242 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2243 struct cpsw_common
*cpsw
= priv
->cpsw
;
2244 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2246 if (cpsw
->slaves
[slave_no
].phy
)
2247 return phy_ethtool_set_wol(cpsw
->slaves
[slave_no
].phy
, wol
);
2252 static void cpsw_get_pauseparam(struct net_device
*ndev
,
2253 struct ethtool_pauseparam
*pause
)
2255 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2257 pause
->autoneg
= AUTONEG_DISABLE
;
2258 pause
->rx_pause
= priv
->rx_pause
? true : false;
2259 pause
->tx_pause
= priv
->tx_pause
? true : false;
2262 static int cpsw_set_pauseparam(struct net_device
*ndev
,
2263 struct ethtool_pauseparam
*pause
)
2265 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2268 priv
->rx_pause
= pause
->rx_pause
? true : false;
2269 priv
->tx_pause
= pause
->tx_pause
? true : false;
2271 for_each_slave(priv
, _cpsw_adjust_link
, priv
, &link
);
2275 static int cpsw_ethtool_op_begin(struct net_device
*ndev
)
2277 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2278 struct cpsw_common
*cpsw
= priv
->cpsw
;
2281 ret
= pm_runtime_get_sync(cpsw
->dev
);
2283 cpsw_err(priv
, drv
, "ethtool begin failed %d\n", ret
);
2284 pm_runtime_put_noidle(cpsw
->dev
);
2290 static void cpsw_ethtool_op_complete(struct net_device
*ndev
)
2292 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2295 ret
= pm_runtime_put(priv
->cpsw
->dev
);
2297 cpsw_err(priv
, drv
, "ethtool complete failed %d\n", ret
);
2300 static void cpsw_get_channels(struct net_device
*ndev
,
2301 struct ethtool_channels
*ch
)
2303 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2305 ch
->max_combined
= 0;
2306 ch
->max_rx
= CPSW_MAX_QUEUES
;
2307 ch
->max_tx
= CPSW_MAX_QUEUES
;
2309 ch
->other_count
= 0;
2310 ch
->rx_count
= cpsw
->rx_ch_num
;
2311 ch
->tx_count
= cpsw
->tx_ch_num
;
2312 ch
->combined_count
= 0;
2315 static int cpsw_check_ch_settings(struct cpsw_common
*cpsw
,
2316 struct ethtool_channels
*ch
)
2318 if (ch
->combined_count
)
2321 /* verify we have at least one channel in each direction */
2322 if (!ch
->rx_count
|| !ch
->tx_count
)
2325 if (ch
->rx_count
> cpsw
->data
.channels
||
2326 ch
->tx_count
> cpsw
->data
.channels
)
2332 static int cpsw_update_channels_res(struct cpsw_priv
*priv
, int ch_num
, int rx
)
2334 struct cpsw_common
*cpsw
= priv
->cpsw
;
2335 void (*handler
)(void *, int, int);
2336 struct netdev_queue
*queue
;
2337 struct cpsw_vector
*vec
;
2341 ch
= &cpsw
->rx_ch_num
;
2343 handler
= cpsw_rx_handler
;
2345 ch
= &cpsw
->tx_ch_num
;
2347 handler
= cpsw_tx_handler
;
2350 while (*ch
< ch_num
) {
2351 vec
[*ch
].ch
= cpdma_chan_create(cpsw
->dma
, *ch
, handler
, rx
);
2352 queue
= netdev_get_tx_queue(priv
->ndev
, *ch
);
2353 queue
->tx_maxrate
= 0;
2355 if (IS_ERR(vec
[*ch
].ch
))
2356 return PTR_ERR(vec
[*ch
].ch
);
2361 cpsw_info(priv
, ifup
, "created new %d %s channel\n", *ch
,
2362 (rx
? "rx" : "tx"));
2366 while (*ch
> ch_num
) {
2369 ret
= cpdma_chan_destroy(vec
[*ch
].ch
);
2373 cpsw_info(priv
, ifup
, "destroyed %d %s channel\n", *ch
,
2374 (rx
? "rx" : "tx"));
2380 static int cpsw_update_channels(struct cpsw_priv
*priv
,
2381 struct ethtool_channels
*ch
)
2385 ret
= cpsw_update_channels_res(priv
, ch
->rx_count
, 1);
2389 ret
= cpsw_update_channels_res(priv
, ch
->tx_count
, 0);
2396 static void cpsw_suspend_data_pass(struct net_device
*ndev
)
2398 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2399 struct cpsw_slave
*slave
;
2402 /* Disable NAPI scheduling */
2403 cpsw_intr_disable(cpsw
);
2405 /* Stop all transmit queues for every network device.
2406 * Disable re-using rx descriptors with dormant_on.
2408 for (i
= cpsw
->data
.slaves
, slave
= cpsw
->slaves
; i
; i
--, slave
++) {
2409 if (!(slave
->ndev
&& netif_running(slave
->ndev
)))
2412 netif_tx_stop_all_queues(slave
->ndev
);
2413 netif_dormant_on(slave
->ndev
);
2416 /* Handle rest of tx packets and stop cpdma channels */
2417 cpdma_ctlr_stop(cpsw
->dma
);
2420 static int cpsw_resume_data_pass(struct net_device
*ndev
)
2422 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2423 struct cpsw_common
*cpsw
= priv
->cpsw
;
2424 struct cpsw_slave
*slave
;
2427 /* Allow rx packets handling */
2428 for (i
= cpsw
->data
.slaves
, slave
= cpsw
->slaves
; i
; i
--, slave
++)
2429 if (slave
->ndev
&& netif_running(slave
->ndev
))
2430 netif_dormant_off(slave
->ndev
);
2432 /* After this receive is started */
2433 if (cpsw
->usage_count
) {
2434 ret
= cpsw_fill_rx_channels(priv
);
2438 cpdma_ctlr_start(cpsw
->dma
);
2439 cpsw_intr_enable(cpsw
);
2442 /* Resume transmit for every affected interface */
2443 for (i
= cpsw
->data
.slaves
, slave
= cpsw
->slaves
; i
; i
--, slave
++)
2444 if (slave
->ndev
&& netif_running(slave
->ndev
))
2445 netif_tx_start_all_queues(slave
->ndev
);
2450 static int cpsw_set_channels(struct net_device
*ndev
,
2451 struct ethtool_channels
*chs
)
2453 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2454 struct cpsw_common
*cpsw
= priv
->cpsw
;
2455 struct cpsw_slave
*slave
;
2458 ret
= cpsw_check_ch_settings(cpsw
, chs
);
2462 cpsw_suspend_data_pass(ndev
);
2463 ret
= cpsw_update_channels(priv
, chs
);
2467 for (i
= cpsw
->data
.slaves
, slave
= cpsw
->slaves
; i
; i
--, slave
++) {
2468 if (!(slave
->ndev
&& netif_running(slave
->ndev
)))
2471 /* Inform stack about new count of queues */
2472 ret
= netif_set_real_num_tx_queues(slave
->ndev
,
2475 dev_err(priv
->dev
, "cannot set real number of tx queues\n");
2479 ret
= netif_set_real_num_rx_queues(slave
->ndev
,
2482 dev_err(priv
->dev
, "cannot set real number of rx queues\n");
2487 if (cpsw
->usage_count
)
2488 cpsw_split_res(ndev
);
2490 ret
= cpsw_resume_data_pass(ndev
);
2494 dev_err(priv
->dev
, "cannot update channels number, closing device\n");
2499 static int cpsw_get_eee(struct net_device
*ndev
, struct ethtool_eee
*edata
)
2501 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2502 struct cpsw_common
*cpsw
= priv
->cpsw
;
2503 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2505 if (cpsw
->slaves
[slave_no
].phy
)
2506 return phy_ethtool_get_eee(cpsw
->slaves
[slave_no
].phy
, edata
);
2511 static int cpsw_set_eee(struct net_device
*ndev
, struct ethtool_eee
*edata
)
2513 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2514 struct cpsw_common
*cpsw
= priv
->cpsw
;
2515 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2517 if (cpsw
->slaves
[slave_no
].phy
)
2518 return phy_ethtool_set_eee(cpsw
->slaves
[slave_no
].phy
, edata
);
2523 static int cpsw_nway_reset(struct net_device
*ndev
)
2525 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2526 struct cpsw_common
*cpsw
= priv
->cpsw
;
2527 int slave_no
= cpsw_slave_index(cpsw
, priv
);
2529 if (cpsw
->slaves
[slave_no
].phy
)
2530 return genphy_restart_aneg(cpsw
->slaves
[slave_no
].phy
);
2535 static void cpsw_get_ringparam(struct net_device
*ndev
,
2536 struct ethtool_ringparam
*ering
)
2538 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2539 struct cpsw_common
*cpsw
= priv
->cpsw
;
2542 ering
->tx_max_pending
= 0;
2543 ering
->tx_pending
= cpdma_get_num_tx_descs(cpsw
->dma
);
2544 ering
->rx_max_pending
= descs_pool_size
- CPSW_MAX_QUEUES
;
2545 ering
->rx_pending
= cpdma_get_num_rx_descs(cpsw
->dma
);
2548 static int cpsw_set_ringparam(struct net_device
*ndev
,
2549 struct ethtool_ringparam
*ering
)
2551 struct cpsw_priv
*priv
= netdev_priv(ndev
);
2552 struct cpsw_common
*cpsw
= priv
->cpsw
;
2555 /* ignore ering->tx_pending - only rx_pending adjustment is supported */
2557 if (ering
->rx_mini_pending
|| ering
->rx_jumbo_pending
||
2558 ering
->rx_pending
< CPSW_MAX_QUEUES
||
2559 ering
->rx_pending
> (descs_pool_size
- CPSW_MAX_QUEUES
))
2562 if (ering
->rx_pending
== cpdma_get_num_rx_descs(cpsw
->dma
))
2565 cpsw_suspend_data_pass(ndev
);
2567 cpdma_set_num_rx_descs(cpsw
->dma
, ering
->rx_pending
);
2569 if (cpsw
->usage_count
)
2570 cpdma_chan_split_pool(cpsw
->dma
);
2572 ret
= cpsw_resume_data_pass(ndev
);
2576 dev_err(&ndev
->dev
, "cannot set ring params, closing device\n");
2581 static const struct ethtool_ops cpsw_ethtool_ops
= {
2582 .get_drvinfo
= cpsw_get_drvinfo
,
2583 .get_msglevel
= cpsw_get_msglevel
,
2584 .set_msglevel
= cpsw_set_msglevel
,
2585 .get_link
= ethtool_op_get_link
,
2586 .get_ts_info
= cpsw_get_ts_info
,
2587 .get_coalesce
= cpsw_get_coalesce
,
2588 .set_coalesce
= cpsw_set_coalesce
,
2589 .get_sset_count
= cpsw_get_sset_count
,
2590 .get_strings
= cpsw_get_strings
,
2591 .get_ethtool_stats
= cpsw_get_ethtool_stats
,
2592 .get_pauseparam
= cpsw_get_pauseparam
,
2593 .set_pauseparam
= cpsw_set_pauseparam
,
2594 .get_wol
= cpsw_get_wol
,
2595 .set_wol
= cpsw_set_wol
,
2596 .get_regs_len
= cpsw_get_regs_len
,
2597 .get_regs
= cpsw_get_regs
,
2598 .begin
= cpsw_ethtool_op_begin
,
2599 .complete
= cpsw_ethtool_op_complete
,
2600 .get_channels
= cpsw_get_channels
,
2601 .set_channels
= cpsw_set_channels
,
2602 .get_link_ksettings
= cpsw_get_link_ksettings
,
2603 .set_link_ksettings
= cpsw_set_link_ksettings
,
2604 .get_eee
= cpsw_get_eee
,
2605 .set_eee
= cpsw_set_eee
,
2606 .nway_reset
= cpsw_nway_reset
,
2607 .get_ringparam
= cpsw_get_ringparam
,
2608 .set_ringparam
= cpsw_set_ringparam
,
2611 static void cpsw_slave_init(struct cpsw_slave
*slave
, struct cpsw_common
*cpsw
,
2612 u32 slave_reg_ofs
, u32 sliver_reg_ofs
)
2614 void __iomem
*regs
= cpsw
->regs
;
2615 int slave_num
= slave
->slave_num
;
2616 struct cpsw_slave_data
*data
= cpsw
->data
.slave_data
+ slave_num
;
2619 slave
->regs
= regs
+ slave_reg_ofs
;
2620 slave
->sliver
= regs
+ sliver_reg_ofs
;
2621 slave
->port_vlan
= data
->dual_emac_res_vlan
;
2624 static int cpsw_probe_dt(struct cpsw_platform_data
*data
,
2625 struct platform_device
*pdev
)
2627 struct device_node
*node
= pdev
->dev
.of_node
;
2628 struct device_node
*slave_node
;
2635 if (of_property_read_u32(node
, "slaves", &prop
)) {
2636 dev_err(&pdev
->dev
, "Missing slaves property in the DT.\n");
2639 data
->slaves
= prop
;
2641 if (of_property_read_u32(node
, "active_slave", &prop
)) {
2642 dev_err(&pdev
->dev
, "Missing active_slave property in the DT.\n");
2645 data
->active_slave
= prop
;
2647 data
->slave_data
= devm_kzalloc(&pdev
->dev
, data
->slaves
2648 * sizeof(struct cpsw_slave_data
),
2650 if (!data
->slave_data
)
2653 if (of_property_read_u32(node
, "cpdma_channels", &prop
)) {
2654 dev_err(&pdev
->dev
, "Missing cpdma_channels property in the DT.\n");
2657 data
->channels
= prop
;
2659 if (of_property_read_u32(node
, "ale_entries", &prop
)) {
2660 dev_err(&pdev
->dev
, "Missing ale_entries property in the DT.\n");
2663 data
->ale_entries
= prop
;
2665 if (of_property_read_u32(node
, "bd_ram_size", &prop
)) {
2666 dev_err(&pdev
->dev
, "Missing bd_ram_size property in the DT.\n");
2669 data
->bd_ram_size
= prop
;
2671 if (of_property_read_u32(node
, "mac_control", &prop
)) {
2672 dev_err(&pdev
->dev
, "Missing mac_control property in the DT.\n");
2675 data
->mac_control
= prop
;
2677 if (of_property_read_bool(node
, "dual_emac"))
2678 data
->dual_emac
= 1;
2681 * Populate all the child nodes here...
2683 ret
= of_platform_populate(node
, NULL
, NULL
, &pdev
->dev
);
2684 /* We do not want to force this, as in some cases may not have child */
2686 dev_warn(&pdev
->dev
, "Doesn't have any child node\n");
2688 for_each_available_child_of_node(node
, slave_node
) {
2689 struct cpsw_slave_data
*slave_data
= data
->slave_data
+ i
;
2690 const void *mac_addr
= NULL
;
2694 /* This is no slave child node, continue */
2695 if (strcmp(slave_node
->name
, "slave"))
2698 slave_data
->phy_node
= of_parse_phandle(slave_node
,
2700 parp
= of_get_property(slave_node
, "phy_id", &lenp
);
2701 if (slave_data
->phy_node
) {
2703 "slave[%d] using phy-handle=\"%pOF\"\n",
2704 i
, slave_data
->phy_node
);
2705 } else if (of_phy_is_fixed_link(slave_node
)) {
2706 /* In the case of a fixed PHY, the DT node associated
2707 * to the PHY is the Ethernet MAC DT node.
2709 ret
= of_phy_register_fixed_link(slave_node
);
2711 if (ret
!= -EPROBE_DEFER
)
2712 dev_err(&pdev
->dev
, "failed to register fixed-link phy: %d\n", ret
);
2715 slave_data
->phy_node
= of_node_get(slave_node
);
2718 struct device_node
*mdio_node
;
2719 struct platform_device
*mdio
;
2721 if (lenp
!= (sizeof(__be32
) * 2)) {
2722 dev_err(&pdev
->dev
, "Invalid slave[%d] phy_id property\n", i
);
2725 mdio_node
= of_find_node_by_phandle(be32_to_cpup(parp
));
2726 phyid
= be32_to_cpup(parp
+1);
2727 mdio
= of_find_device_by_node(mdio_node
);
2728 of_node_put(mdio_node
);
2730 dev_err(&pdev
->dev
, "Missing mdio platform device\n");
2733 snprintf(slave_data
->phy_id
, sizeof(slave_data
->phy_id
),
2734 PHY_ID_FMT
, mdio
->name
, phyid
);
2735 put_device(&mdio
->dev
);
2738 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2742 slave_data
->phy_if
= of_get_phy_mode(slave_node
);
2743 if (slave_data
->phy_if
< 0) {
2744 dev_err(&pdev
->dev
, "Missing or malformed slave[%d] phy-mode property\n",
2746 return slave_data
->phy_if
;
2750 mac_addr
= of_get_mac_address(slave_node
);
2752 memcpy(slave_data
->mac_addr
, mac_addr
, ETH_ALEN
);
2754 ret
= ti_cm_get_macid(&pdev
->dev
, i
,
2755 slave_data
->mac_addr
);
2759 if (data
->dual_emac
) {
2760 if (of_property_read_u32(slave_node
, "dual_emac_res_vlan",
2762 dev_err(&pdev
->dev
, "Missing dual_emac_res_vlan in DT.\n");
2763 slave_data
->dual_emac_res_vlan
= i
+1;
2764 dev_err(&pdev
->dev
, "Using %d as Reserved VLAN for %d slave\n",
2765 slave_data
->dual_emac_res_vlan
, i
);
2767 slave_data
->dual_emac_res_vlan
= prop
;
2772 if (i
== data
->slaves
)
2779 static void cpsw_remove_dt(struct platform_device
*pdev
)
2781 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2782 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
2783 struct cpsw_platform_data
*data
= &cpsw
->data
;
2784 struct device_node
*node
= pdev
->dev
.of_node
;
2785 struct device_node
*slave_node
;
2788 for_each_available_child_of_node(node
, slave_node
) {
2789 struct cpsw_slave_data
*slave_data
= &data
->slave_data
[i
];
2791 if (strcmp(slave_node
->name
, "slave"))
2794 if (of_phy_is_fixed_link(slave_node
))
2795 of_phy_deregister_fixed_link(slave_node
);
2797 of_node_put(slave_data
->phy_node
);
2800 if (i
== data
->slaves
)
2804 of_platform_depopulate(&pdev
->dev
);
2807 static int cpsw_probe_dual_emac(struct cpsw_priv
*priv
)
2809 struct cpsw_common
*cpsw
= priv
->cpsw
;
2810 struct cpsw_platform_data
*data
= &cpsw
->data
;
2811 struct net_device
*ndev
;
2812 struct cpsw_priv
*priv_sl2
;
2815 ndev
= alloc_etherdev_mq(sizeof(struct cpsw_priv
), CPSW_MAX_QUEUES
);
2817 dev_err(cpsw
->dev
, "cpsw: error allocating net_device\n");
2821 priv_sl2
= netdev_priv(ndev
);
2822 priv_sl2
->cpsw
= cpsw
;
2823 priv_sl2
->ndev
= ndev
;
2824 priv_sl2
->dev
= &ndev
->dev
;
2825 priv_sl2
->msg_enable
= netif_msg_init(debug_level
, CPSW_DEBUG
);
2827 if (is_valid_ether_addr(data
->slave_data
[1].mac_addr
)) {
2828 memcpy(priv_sl2
->mac_addr
, data
->slave_data
[1].mac_addr
,
2830 dev_info(cpsw
->dev
, "cpsw: Detected MACID = %pM\n",
2831 priv_sl2
->mac_addr
);
2833 random_ether_addr(priv_sl2
->mac_addr
);
2834 dev_info(cpsw
->dev
, "cpsw: Random MACID = %pM\n",
2835 priv_sl2
->mac_addr
);
2837 memcpy(ndev
->dev_addr
, priv_sl2
->mac_addr
, ETH_ALEN
);
2839 priv_sl2
->emac_port
= 1;
2840 cpsw
->slaves
[1].ndev
= ndev
;
2841 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
2843 ndev
->netdev_ops
= &cpsw_netdev_ops
;
2844 ndev
->ethtool_ops
= &cpsw_ethtool_ops
;
2846 /* register the network device */
2847 SET_NETDEV_DEV(ndev
, cpsw
->dev
);
2848 ret
= register_netdev(ndev
);
2850 dev_err(cpsw
->dev
, "cpsw: error registering net device\n");
2858 #define CPSW_QUIRK_IRQ BIT(0)
2860 static const struct platform_device_id cpsw_devtype
[] = {
2862 /* keep it for existing comaptibles */
2864 .driver_data
= CPSW_QUIRK_IRQ
,
2866 .name
= "am335x-cpsw",
2867 .driver_data
= CPSW_QUIRK_IRQ
,
2869 .name
= "am4372-cpsw",
2872 .name
= "dra7-cpsw",
2878 MODULE_DEVICE_TABLE(platform
, cpsw_devtype
);
2887 static const struct of_device_id cpsw_of_mtable
[] = {
2888 { .compatible
= "ti,cpsw", .data
= &cpsw_devtype
[CPSW
], },
2889 { .compatible
= "ti,am335x-cpsw", .data
= &cpsw_devtype
[AM335X_CPSW
], },
2890 { .compatible
= "ti,am4372-cpsw", .data
= &cpsw_devtype
[AM4372_CPSW
], },
2891 { .compatible
= "ti,dra7-cpsw", .data
= &cpsw_devtype
[DRA7_CPSW
], },
2894 MODULE_DEVICE_TABLE(of
, cpsw_of_mtable
);
2896 static int cpsw_probe(struct platform_device
*pdev
)
2899 struct cpsw_platform_data
*data
;
2900 struct net_device
*ndev
;
2901 struct cpsw_priv
*priv
;
2902 struct cpdma_params dma_params
;
2903 struct cpsw_ale_params ale_params
;
2904 void __iomem
*ss_regs
;
2905 void __iomem
*cpts_regs
;
2906 struct resource
*res
, *ss_res
;
2907 const struct of_device_id
*of_id
;
2908 struct gpio_descs
*mode
;
2909 u32 slave_offset
, sliver_offset
, slave_size
;
2910 struct cpsw_common
*cpsw
;
2914 cpsw
= devm_kzalloc(&pdev
->dev
, sizeof(struct cpsw_common
), GFP_KERNEL
);
2918 cpsw
->dev
= &pdev
->dev
;
2920 ndev
= alloc_etherdev_mq(sizeof(struct cpsw_priv
), CPSW_MAX_QUEUES
);
2922 dev_err(&pdev
->dev
, "error allocating net_device\n");
2926 platform_set_drvdata(pdev
, ndev
);
2927 priv
= netdev_priv(ndev
);
2930 priv
->dev
= &ndev
->dev
;
2931 priv
->msg_enable
= netif_msg_init(debug_level
, CPSW_DEBUG
);
2932 cpsw
->rx_packet_max
= max(rx_packet_max
, 128);
2934 mode
= devm_gpiod_get_array_optional(&pdev
->dev
, "mode", GPIOD_OUT_LOW
);
2936 ret
= PTR_ERR(mode
);
2937 dev_err(&pdev
->dev
, "gpio request failed, ret %d\n", ret
);
2938 goto clean_ndev_ret
;
2942 * This may be required here for child devices.
2944 pm_runtime_enable(&pdev
->dev
);
2946 /* Select default pin state */
2947 pinctrl_pm_select_default_state(&pdev
->dev
);
2949 /* Need to enable clocks with runtime PM api to access module
2952 ret
= pm_runtime_get_sync(&pdev
->dev
);
2954 pm_runtime_put_noidle(&pdev
->dev
);
2955 goto clean_runtime_disable_ret
;
2958 ret
= cpsw_probe_dt(&cpsw
->data
, pdev
);
2963 cpsw
->rx_ch_num
= 1;
2964 cpsw
->tx_ch_num
= 1;
2966 if (is_valid_ether_addr(data
->slave_data
[0].mac_addr
)) {
2967 memcpy(priv
->mac_addr
, data
->slave_data
[0].mac_addr
, ETH_ALEN
);
2968 dev_info(&pdev
->dev
, "Detected MACID = %pM\n", priv
->mac_addr
);
2970 eth_random_addr(priv
->mac_addr
);
2971 dev_info(&pdev
->dev
, "Random MACID = %pM\n", priv
->mac_addr
);
2974 memcpy(ndev
->dev_addr
, priv
->mac_addr
, ETH_ALEN
);
2976 cpsw
->slaves
= devm_kzalloc(&pdev
->dev
,
2977 sizeof(struct cpsw_slave
) * data
->slaves
,
2979 if (!cpsw
->slaves
) {
2983 for (i
= 0; i
< data
->slaves
; i
++)
2984 cpsw
->slaves
[i
].slave_num
= i
;
2986 cpsw
->slaves
[0].ndev
= ndev
;
2987 priv
->emac_port
= 0;
2989 clk
= devm_clk_get(&pdev
->dev
, "fck");
2991 dev_err(priv
->dev
, "fck is not found\n");
2995 cpsw
->bus_freq_mhz
= clk_get_rate(clk
) / 1000000;
2997 ss_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2998 ss_regs
= devm_ioremap_resource(&pdev
->dev
, ss_res
);
2999 if (IS_ERR(ss_regs
)) {
3000 ret
= PTR_ERR(ss_regs
);
3003 cpsw
->regs
= ss_regs
;
3005 cpsw
->version
= readl(&cpsw
->regs
->id_ver
);
3007 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
3008 cpsw
->wr_regs
= devm_ioremap_resource(&pdev
->dev
, res
);
3009 if (IS_ERR(cpsw
->wr_regs
)) {
3010 ret
= PTR_ERR(cpsw
->wr_regs
);
3014 memset(&dma_params
, 0, sizeof(dma_params
));
3015 memset(&ale_params
, 0, sizeof(ale_params
));
3017 switch (cpsw
->version
) {
3018 case CPSW_VERSION_1
:
3019 cpsw
->host_port_regs
= ss_regs
+ CPSW1_HOST_PORT_OFFSET
;
3020 cpts_regs
= ss_regs
+ CPSW1_CPTS_OFFSET
;
3021 cpsw
->hw_stats
= ss_regs
+ CPSW1_HW_STATS
;
3022 dma_params
.dmaregs
= ss_regs
+ CPSW1_CPDMA_OFFSET
;
3023 dma_params
.txhdp
= ss_regs
+ CPSW1_STATERAM_OFFSET
;
3024 ale_params
.ale_regs
= ss_regs
+ CPSW1_ALE_OFFSET
;
3025 slave_offset
= CPSW1_SLAVE_OFFSET
;
3026 slave_size
= CPSW1_SLAVE_SIZE
;
3027 sliver_offset
= CPSW1_SLIVER_OFFSET
;
3028 dma_params
.desc_mem_phys
= 0;
3030 case CPSW_VERSION_2
:
3031 case CPSW_VERSION_3
:
3032 case CPSW_VERSION_4
:
3033 cpsw
->host_port_regs
= ss_regs
+ CPSW2_HOST_PORT_OFFSET
;
3034 cpts_regs
= ss_regs
+ CPSW2_CPTS_OFFSET
;
3035 cpsw
->hw_stats
= ss_regs
+ CPSW2_HW_STATS
;
3036 dma_params
.dmaregs
= ss_regs
+ CPSW2_CPDMA_OFFSET
;
3037 dma_params
.txhdp
= ss_regs
+ CPSW2_STATERAM_OFFSET
;
3038 ale_params
.ale_regs
= ss_regs
+ CPSW2_ALE_OFFSET
;
3039 slave_offset
= CPSW2_SLAVE_OFFSET
;
3040 slave_size
= CPSW2_SLAVE_SIZE
;
3041 sliver_offset
= CPSW2_SLIVER_OFFSET
;
3042 dma_params
.desc_mem_phys
=
3043 (u32 __force
) ss_res
->start
+ CPSW2_BD_OFFSET
;
3046 dev_err(priv
->dev
, "unknown version 0x%08x\n", cpsw
->version
);
3050 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
3051 struct cpsw_slave
*slave
= &cpsw
->slaves
[i
];
3053 cpsw_slave_init(slave
, cpsw
, slave_offset
, sliver_offset
);
3054 slave_offset
+= slave_size
;
3055 sliver_offset
+= SLIVER_SIZE
;
3058 dma_params
.dev
= &pdev
->dev
;
3059 dma_params
.rxthresh
= dma_params
.dmaregs
+ CPDMA_RXTHRESH
;
3060 dma_params
.rxfree
= dma_params
.dmaregs
+ CPDMA_RXFREE
;
3061 dma_params
.rxhdp
= dma_params
.txhdp
+ CPDMA_RXHDP
;
3062 dma_params
.txcp
= dma_params
.txhdp
+ CPDMA_TXCP
;
3063 dma_params
.rxcp
= dma_params
.txhdp
+ CPDMA_RXCP
;
3065 dma_params
.num_chan
= data
->channels
;
3066 dma_params
.has_soft_reset
= true;
3067 dma_params
.min_packet_size
= CPSW_MIN_PACKET_SIZE
;
3068 dma_params
.desc_mem_size
= data
->bd_ram_size
;
3069 dma_params
.desc_align
= 16;
3070 dma_params
.has_ext_regs
= true;
3071 dma_params
.desc_hw_addr
= dma_params
.desc_mem_phys
;
3072 dma_params
.bus_freq_mhz
= cpsw
->bus_freq_mhz
;
3073 dma_params
.descs_pool_size
= descs_pool_size
;
3075 cpsw
->dma
= cpdma_ctlr_create(&dma_params
);
3077 dev_err(priv
->dev
, "error initializing dma\n");
3082 cpsw
->txv
[0].ch
= cpdma_chan_create(cpsw
->dma
, 0, cpsw_tx_handler
, 0);
3083 if (IS_ERR(cpsw
->txv
[0].ch
)) {
3084 dev_err(priv
->dev
, "error initializing tx dma channel\n");
3085 ret
= PTR_ERR(cpsw
->txv
[0].ch
);
3089 cpsw
->rxv
[0].ch
= cpdma_chan_create(cpsw
->dma
, 0, cpsw_rx_handler
, 1);
3090 if (IS_ERR(cpsw
->rxv
[0].ch
)) {
3091 dev_err(priv
->dev
, "error initializing rx dma channel\n");
3092 ret
= PTR_ERR(cpsw
->rxv
[0].ch
);
3096 ale_params
.dev
= &pdev
->dev
;
3097 ale_params
.ale_ageout
= ale_ageout
;
3098 ale_params
.ale_entries
= data
->ale_entries
;
3099 ale_params
.ale_ports
= CPSW_ALE_PORTS_NUM
;
3101 cpsw
->ale
= cpsw_ale_create(&ale_params
);
3103 dev_err(priv
->dev
, "error initializing ale engine\n");
3108 cpsw
->cpts
= cpts_create(cpsw
->dev
, cpts_regs
, cpsw
->dev
->of_node
);
3109 if (IS_ERR(cpsw
->cpts
)) {
3110 ret
= PTR_ERR(cpsw
->cpts
);
3114 ndev
->irq
= platform_get_irq(pdev
, 1);
3115 if (ndev
->irq
< 0) {
3116 dev_err(priv
->dev
, "error getting irq resource\n");
3121 of_id
= of_match_device(cpsw_of_mtable
, &pdev
->dev
);
3123 pdev
->id_entry
= of_id
->data
;
3124 if (pdev
->id_entry
->driver_data
)
3125 cpsw
->quirk_irq
= true;
3128 ndev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
3130 ndev
->netdev_ops
= &cpsw_netdev_ops
;
3131 ndev
->ethtool_ops
= &cpsw_ethtool_ops
;
3132 netif_napi_add(ndev
, &cpsw
->napi_rx
, cpsw_rx_poll
, CPSW_POLL_WEIGHT
);
3133 netif_tx_napi_add(ndev
, &cpsw
->napi_tx
, cpsw_tx_poll
, CPSW_POLL_WEIGHT
);
3134 cpsw_split_res(ndev
);
3136 /* register the network device */
3137 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3138 ret
= register_netdev(ndev
);
3140 dev_err(priv
->dev
, "error registering net device\n");
3145 if (cpsw
->data
.dual_emac
) {
3146 ret
= cpsw_probe_dual_emac(priv
);
3148 cpsw_err(priv
, probe
, "error probe slave 2 emac interface\n");
3149 goto clean_unregister_netdev_ret
;
3153 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
3154 * MISC IRQs which are always kept disabled with this driver so
3155 * we will not request them.
3157 * If anyone wants to implement support for those, make sure to
3158 * first request and append them to irqs_table array.
3162 irq
= platform_get_irq(pdev
, 1);
3168 cpsw
->irqs_table
[0] = irq
;
3169 ret
= devm_request_irq(&pdev
->dev
, irq
, cpsw_rx_interrupt
,
3170 0, dev_name(&pdev
->dev
), cpsw
);
3172 dev_err(priv
->dev
, "error attaching irq (%d)\n", ret
);
3177 irq
= platform_get_irq(pdev
, 2);
3183 cpsw
->irqs_table
[1] = irq
;
3184 ret
= devm_request_irq(&pdev
->dev
, irq
, cpsw_tx_interrupt
,
3185 0, dev_name(&pdev
->dev
), cpsw
);
3187 dev_err(priv
->dev
, "error attaching irq (%d)\n", ret
);
3191 cpsw_notice(priv
, probe
,
3192 "initialized device (regs %pa, irq %d, pool size %d)\n",
3193 &ss_res
->start
, ndev
->irq
, dma_params
.descs_pool_size
);
3195 pm_runtime_put(&pdev
->dev
);
3199 clean_unregister_netdev_ret
:
3200 unregister_netdev(ndev
);
3202 cpdma_ctlr_destroy(cpsw
->dma
);
3204 cpsw_remove_dt(pdev
);
3205 pm_runtime_put_sync(&pdev
->dev
);
3206 clean_runtime_disable_ret
:
3207 pm_runtime_disable(&pdev
->dev
);
3209 free_netdev(priv
->ndev
);
3213 static int cpsw_remove(struct platform_device
*pdev
)
3215 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3216 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
3219 ret
= pm_runtime_get_sync(&pdev
->dev
);
3221 pm_runtime_put_noidle(&pdev
->dev
);
3225 if (cpsw
->data
.dual_emac
)
3226 unregister_netdev(cpsw
->slaves
[1].ndev
);
3227 unregister_netdev(ndev
);
3229 cpts_release(cpsw
->cpts
);
3230 cpdma_ctlr_destroy(cpsw
->dma
);
3231 cpsw_remove_dt(pdev
);
3232 pm_runtime_put_sync(&pdev
->dev
);
3233 pm_runtime_disable(&pdev
->dev
);
3234 if (cpsw
->data
.dual_emac
)
3235 free_netdev(cpsw
->slaves
[1].ndev
);
3240 #ifdef CONFIG_PM_SLEEP
3241 static int cpsw_suspend(struct device
*dev
)
3243 struct platform_device
*pdev
= to_platform_device(dev
);
3244 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3245 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
3247 if (cpsw
->data
.dual_emac
) {
3250 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
3251 if (netif_running(cpsw
->slaves
[i
].ndev
))
3252 cpsw_ndo_stop(cpsw
->slaves
[i
].ndev
);
3255 if (netif_running(ndev
))
3256 cpsw_ndo_stop(ndev
);
3259 /* Select sleep pin state */
3260 pinctrl_pm_select_sleep_state(dev
);
3265 static int cpsw_resume(struct device
*dev
)
3267 struct platform_device
*pdev
= to_platform_device(dev
);
3268 struct net_device
*ndev
= platform_get_drvdata(pdev
);
3269 struct cpsw_common
*cpsw
= ndev_to_cpsw(ndev
);
3271 /* Select default pin state */
3272 pinctrl_pm_select_default_state(dev
);
3274 /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
3276 if (cpsw
->data
.dual_emac
) {
3279 for (i
= 0; i
< cpsw
->data
.slaves
; i
++) {
3280 if (netif_running(cpsw
->slaves
[i
].ndev
))
3281 cpsw_ndo_open(cpsw
->slaves
[i
].ndev
);
3284 if (netif_running(ndev
))
3285 cpsw_ndo_open(ndev
);
3293 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops
, cpsw_suspend
, cpsw_resume
);
3295 static struct platform_driver cpsw_driver
= {
3299 .of_match_table
= cpsw_of_mtable
,
3301 .probe
= cpsw_probe
,
3302 .remove
= cpsw_remove
,
3305 module_platform_driver(cpsw_driver
);
3307 MODULE_LICENSE("GPL");
3308 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
3309 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
3310 MODULE_DESCRIPTION("TI CPSW Ethernet driver");