Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / ieee802154 / mrf24j40.c
blobcf4788d840bf1ff9bdd206915088a0aff39938d2
1 /*
2 * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
4 * Copyright (C) 2012 Alan Ott <alan@signal11.us>
5 * Signal 11 Software
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/spi/spi.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/ieee802154.h>
24 #include <linux/irq.h>
25 #include <net/cfg802154.h>
26 #include <net/mac802154.h>
28 /* MRF24J40 Short Address Registers */
29 #define REG_RXMCR 0x00 /* Receive MAC control */
30 #define BIT_PROMI BIT(0)
31 #define BIT_ERRPKT BIT(1)
32 #define BIT_NOACKRSP BIT(5)
33 #define BIT_PANCOORD BIT(3)
35 #define REG_PANIDL 0x01 /* PAN ID (low) */
36 #define REG_PANIDH 0x02 /* PAN ID (high) */
37 #define REG_SADRL 0x03 /* Short address (low) */
38 #define REG_SADRH 0x04 /* Short address (high) */
39 #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
40 #define REG_EADR1 0x06
41 #define REG_EADR2 0x07
42 #define REG_EADR3 0x08
43 #define REG_EADR4 0x09
44 #define REG_EADR5 0x0A
45 #define REG_EADR6 0x0B
46 #define REG_EADR7 0x0C
47 #define REG_RXFLUSH 0x0D
48 #define REG_ORDER 0x10
49 #define REG_TXMCR 0x11 /* Transmit MAC control */
50 #define TXMCR_MIN_BE_SHIFT 3
51 #define TXMCR_MIN_BE_MASK 0x18
52 #define TXMCR_CSMA_RETRIES_SHIFT 0
53 #define TXMCR_CSMA_RETRIES_MASK 0x07
55 #define REG_ACKTMOUT 0x12
56 #define REG_ESLOTG1 0x13
57 #define REG_SYMTICKL 0x14
58 #define REG_SYMTICKH 0x15
59 #define REG_PACON0 0x16 /* Power Amplifier Control */
60 #define REG_PACON1 0x17 /* Power Amplifier Control */
61 #define REG_PACON2 0x18 /* Power Amplifier Control */
62 #define REG_TXBCON0 0x1A
63 #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
64 #define BIT_TXNTRIG BIT(0)
65 #define BIT_TXNSECEN BIT(1)
66 #define BIT_TXNACKREQ BIT(2)
68 #define REG_TXG1CON 0x1C
69 #define REG_TXG2CON 0x1D
70 #define REG_ESLOTG23 0x1E
71 #define REG_ESLOTG45 0x1F
72 #define REG_ESLOTG67 0x20
73 #define REG_TXPEND 0x21
74 #define REG_WAKECON 0x22
75 #define REG_FROMOFFSET 0x23
76 #define REG_TXSTAT 0x24 /* TX MAC Status Register */
77 #define REG_TXBCON1 0x25
78 #define REG_GATECLK 0x26
79 #define REG_TXTIME 0x27
80 #define REG_HSYMTMRL 0x28
81 #define REG_HSYMTMRH 0x29
82 #define REG_SOFTRST 0x2A /* Soft Reset */
83 #define REG_SECCON0 0x2C
84 #define REG_SECCON1 0x2D
85 #define REG_TXSTBL 0x2E /* TX Stabilization */
86 #define REG_RXSR 0x30
87 #define REG_INTSTAT 0x31 /* Interrupt Status */
88 #define BIT_TXNIF BIT(0)
89 #define BIT_RXIF BIT(3)
90 #define BIT_SECIF BIT(4)
91 #define BIT_SECIGNORE BIT(7)
93 #define REG_INTCON 0x32 /* Interrupt Control */
94 #define BIT_TXNIE BIT(0)
95 #define BIT_RXIE BIT(3)
96 #define BIT_SECIE BIT(4)
98 #define REG_GPIO 0x33 /* GPIO */
99 #define REG_TRISGPIO 0x34 /* GPIO direction */
100 #define REG_SLPACK 0x35
101 #define REG_RFCTL 0x36 /* RF Control Mode Register */
102 #define BIT_RFRST BIT(2)
104 #define REG_SECCR2 0x37
105 #define REG_BBREG0 0x38
106 #define REG_BBREG1 0x39 /* Baseband Registers */
107 #define BIT_RXDECINV BIT(2)
109 #define REG_BBREG2 0x3A /* */
110 #define BBREG2_CCA_MODE_SHIFT 6
111 #define BBREG2_CCA_MODE_MASK 0xc0
113 #define REG_BBREG3 0x3B
114 #define REG_BBREG4 0x3C
115 #define REG_BBREG6 0x3E /* */
116 #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
118 /* MRF24J40 Long Address Registers */
119 #define REG_RFCON0 0x200 /* RF Control Registers */
120 #define RFCON0_CH_SHIFT 4
121 #define RFCON0_CH_MASK 0xf0
122 #define RFOPT_RECOMMEND 3
124 #define REG_RFCON1 0x201
125 #define REG_RFCON2 0x202
126 #define REG_RFCON3 0x203
128 #define TXPWRL_MASK 0xc0
129 #define TXPWRL_SHIFT 6
130 #define TXPWRL_30 0x3
131 #define TXPWRL_20 0x2
132 #define TXPWRL_10 0x1
133 #define TXPWRL_0 0x0
135 #define TXPWRS_MASK 0x38
136 #define TXPWRS_SHIFT 3
137 #define TXPWRS_6_3 0x7
138 #define TXPWRS_4_9 0x6
139 #define TXPWRS_3_7 0x5
140 #define TXPWRS_2_8 0x4
141 #define TXPWRS_1_9 0x3
142 #define TXPWRS_1_2 0x2
143 #define TXPWRS_0_5 0x1
144 #define TXPWRS_0 0x0
146 #define REG_RFCON5 0x205
147 #define REG_RFCON6 0x206
148 #define REG_RFCON7 0x207
149 #define REG_RFCON8 0x208
150 #define REG_SLPCAL0 0x209
151 #define REG_SLPCAL1 0x20A
152 #define REG_SLPCAL2 0x20B
153 #define REG_RFSTATE 0x20F
154 #define REG_RSSI 0x210
155 #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
156 #define BIT_INTEDGE BIT(1)
158 #define REG_SLPCON1 0x220
159 #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
160 #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
161 #define REG_REMCNTL 0x224
162 #define REG_REMCNTH 0x225
163 #define REG_MAINCNT0 0x226
164 #define REG_MAINCNT1 0x227
165 #define REG_MAINCNT2 0x228
166 #define REG_MAINCNT3 0x229
167 #define REG_TESTMODE 0x22F /* Test mode */
168 #define REG_ASSOEAR0 0x230
169 #define REG_ASSOEAR1 0x231
170 #define REG_ASSOEAR2 0x232
171 #define REG_ASSOEAR3 0x233
172 #define REG_ASSOEAR4 0x234
173 #define REG_ASSOEAR5 0x235
174 #define REG_ASSOEAR6 0x236
175 #define REG_ASSOEAR7 0x237
176 #define REG_ASSOSAR0 0x238
177 #define REG_ASSOSAR1 0x239
178 #define REG_UNONCE0 0x240
179 #define REG_UNONCE1 0x241
180 #define REG_UNONCE2 0x242
181 #define REG_UNONCE3 0x243
182 #define REG_UNONCE4 0x244
183 #define REG_UNONCE5 0x245
184 #define REG_UNONCE6 0x246
185 #define REG_UNONCE7 0x247
186 #define REG_UNONCE8 0x248
187 #define REG_UNONCE9 0x249
188 #define REG_UNONCE10 0x24A
189 #define REG_UNONCE11 0x24B
190 #define REG_UNONCE12 0x24C
191 #define REG_RX_FIFO 0x300 /* Receive FIFO */
193 /* Device configuration: Only channels 11-26 on page 0 are supported. */
194 #define MRF24J40_CHAN_MIN 11
195 #define MRF24J40_CHAN_MAX 26
196 #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
197 - ((u32)1 << MRF24J40_CHAN_MIN))
199 #define TX_FIFO_SIZE 128 /* From datasheet */
200 #define RX_FIFO_SIZE 144 /* From datasheet */
201 #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
203 enum mrf24j40_modules { MRF24J40, MRF24J40MA, MRF24J40MC };
205 /* Device Private Data */
206 struct mrf24j40 {
207 struct spi_device *spi;
208 struct ieee802154_hw *hw;
210 struct regmap *regmap_short;
211 struct regmap *regmap_long;
213 /* for writing txfifo */
214 struct spi_message tx_msg;
215 u8 tx_hdr_buf[2];
216 struct spi_transfer tx_hdr_trx;
217 u8 tx_len_buf[2];
218 struct spi_transfer tx_len_trx;
219 struct spi_transfer tx_buf_trx;
220 struct sk_buff *tx_skb;
222 /* post transmit message to send frame out */
223 struct spi_message tx_post_msg;
224 u8 tx_post_buf[2];
225 struct spi_transfer tx_post_trx;
227 /* for protect/unprotect/read length rxfifo */
228 struct spi_message rx_msg;
229 u8 rx_buf[3];
230 struct spi_transfer rx_trx;
232 /* receive handling */
233 struct spi_message rx_buf_msg;
234 u8 rx_addr_buf[2];
235 struct spi_transfer rx_addr_trx;
236 u8 rx_lqi_buf[2];
237 struct spi_transfer rx_lqi_trx;
238 u8 rx_fifo_buf[RX_FIFO_SIZE];
239 struct spi_transfer rx_fifo_buf_trx;
241 /* isr handling for reading intstat */
242 struct spi_message irq_msg;
243 u8 irq_buf[2];
244 struct spi_transfer irq_trx;
247 /* regmap information for short address register access */
248 #define MRF24J40_SHORT_WRITE 0x01
249 #define MRF24J40_SHORT_READ 0x00
250 #define MRF24J40_SHORT_NUMREGS 0x3F
252 /* regmap information for long address register access */
253 #define MRF24J40_LONG_ACCESS 0x80
254 #define MRF24J40_LONG_NUMREGS 0x38F
256 /* Read/Write SPI Commands for Short and Long Address registers. */
257 #define MRF24J40_READSHORT(reg) ((reg) << 1)
258 #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
259 #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
260 #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
262 /* The datasheet indicates the theoretical maximum for SCK to be 10MHz */
263 #define MAX_SPI_SPEED_HZ 10000000
265 #define printdev(X) (&X->spi->dev)
267 static bool
268 mrf24j40_short_reg_writeable(struct device *dev, unsigned int reg)
270 switch (reg) {
271 case REG_RXMCR:
272 case REG_PANIDL:
273 case REG_PANIDH:
274 case REG_SADRL:
275 case REG_SADRH:
276 case REG_EADR0:
277 case REG_EADR1:
278 case REG_EADR2:
279 case REG_EADR3:
280 case REG_EADR4:
281 case REG_EADR5:
282 case REG_EADR6:
283 case REG_EADR7:
284 case REG_RXFLUSH:
285 case REG_ORDER:
286 case REG_TXMCR:
287 case REG_ACKTMOUT:
288 case REG_ESLOTG1:
289 case REG_SYMTICKL:
290 case REG_SYMTICKH:
291 case REG_PACON0:
292 case REG_PACON1:
293 case REG_PACON2:
294 case REG_TXBCON0:
295 case REG_TXNCON:
296 case REG_TXG1CON:
297 case REG_TXG2CON:
298 case REG_ESLOTG23:
299 case REG_ESLOTG45:
300 case REG_ESLOTG67:
301 case REG_TXPEND:
302 case REG_WAKECON:
303 case REG_FROMOFFSET:
304 case REG_TXBCON1:
305 case REG_GATECLK:
306 case REG_TXTIME:
307 case REG_HSYMTMRL:
308 case REG_HSYMTMRH:
309 case REG_SOFTRST:
310 case REG_SECCON0:
311 case REG_SECCON1:
312 case REG_TXSTBL:
313 case REG_RXSR:
314 case REG_INTCON:
315 case REG_TRISGPIO:
316 case REG_GPIO:
317 case REG_RFCTL:
318 case REG_SECCR2:
319 case REG_SLPACK:
320 case REG_BBREG0:
321 case REG_BBREG1:
322 case REG_BBREG2:
323 case REG_BBREG3:
324 case REG_BBREG4:
325 case REG_BBREG6:
326 case REG_CCAEDTH:
327 return true;
328 default:
329 return false;
333 static bool
334 mrf24j40_short_reg_readable(struct device *dev, unsigned int reg)
336 bool rc;
338 /* all writeable are also readable */
339 rc = mrf24j40_short_reg_writeable(dev, reg);
340 if (rc)
341 return rc;
343 /* readonly regs */
344 switch (reg) {
345 case REG_TXSTAT:
346 case REG_INTSTAT:
347 return true;
348 default:
349 return false;
353 static bool
354 mrf24j40_short_reg_volatile(struct device *dev, unsigned int reg)
356 /* can be changed during runtime */
357 switch (reg) {
358 case REG_TXSTAT:
359 case REG_INTSTAT:
360 case REG_RXFLUSH:
361 case REG_TXNCON:
362 case REG_SOFTRST:
363 case REG_RFCTL:
364 case REG_TXBCON0:
365 case REG_TXG1CON:
366 case REG_TXG2CON:
367 case REG_TXBCON1:
368 case REG_SECCON0:
369 case REG_RXSR:
370 case REG_SLPACK:
371 case REG_SECCR2:
372 case REG_BBREG6:
373 /* use them in spi_async and regmap so it's volatile */
374 case REG_BBREG1:
375 return true;
376 default:
377 return false;
381 static bool
382 mrf24j40_short_reg_precious(struct device *dev, unsigned int reg)
384 /* don't clear irq line on read */
385 switch (reg) {
386 case REG_INTSTAT:
387 return true;
388 default:
389 return false;
393 static const struct regmap_config mrf24j40_short_regmap = {
394 .name = "mrf24j40_short",
395 .reg_bits = 7,
396 .val_bits = 8,
397 .pad_bits = 1,
398 .write_flag_mask = MRF24J40_SHORT_WRITE,
399 .read_flag_mask = MRF24J40_SHORT_READ,
400 .cache_type = REGCACHE_RBTREE,
401 .max_register = MRF24J40_SHORT_NUMREGS,
402 .writeable_reg = mrf24j40_short_reg_writeable,
403 .readable_reg = mrf24j40_short_reg_readable,
404 .volatile_reg = mrf24j40_short_reg_volatile,
405 .precious_reg = mrf24j40_short_reg_precious,
408 static bool
409 mrf24j40_long_reg_writeable(struct device *dev, unsigned int reg)
411 switch (reg) {
412 case REG_RFCON0:
413 case REG_RFCON1:
414 case REG_RFCON2:
415 case REG_RFCON3:
416 case REG_RFCON5:
417 case REG_RFCON6:
418 case REG_RFCON7:
419 case REG_RFCON8:
420 case REG_SLPCAL2:
421 case REG_SLPCON0:
422 case REG_SLPCON1:
423 case REG_WAKETIMEL:
424 case REG_WAKETIMEH:
425 case REG_REMCNTL:
426 case REG_REMCNTH:
427 case REG_MAINCNT0:
428 case REG_MAINCNT1:
429 case REG_MAINCNT2:
430 case REG_MAINCNT3:
431 case REG_TESTMODE:
432 case REG_ASSOEAR0:
433 case REG_ASSOEAR1:
434 case REG_ASSOEAR2:
435 case REG_ASSOEAR3:
436 case REG_ASSOEAR4:
437 case REG_ASSOEAR5:
438 case REG_ASSOEAR6:
439 case REG_ASSOEAR7:
440 case REG_ASSOSAR0:
441 case REG_ASSOSAR1:
442 case REG_UNONCE0:
443 case REG_UNONCE1:
444 case REG_UNONCE2:
445 case REG_UNONCE3:
446 case REG_UNONCE4:
447 case REG_UNONCE5:
448 case REG_UNONCE6:
449 case REG_UNONCE7:
450 case REG_UNONCE8:
451 case REG_UNONCE9:
452 case REG_UNONCE10:
453 case REG_UNONCE11:
454 case REG_UNONCE12:
455 return true;
456 default:
457 return false;
461 static bool
462 mrf24j40_long_reg_readable(struct device *dev, unsigned int reg)
464 bool rc;
466 /* all writeable are also readable */
467 rc = mrf24j40_long_reg_writeable(dev, reg);
468 if (rc)
469 return rc;
471 /* readonly regs */
472 switch (reg) {
473 case REG_SLPCAL0:
474 case REG_SLPCAL1:
475 case REG_RFSTATE:
476 case REG_RSSI:
477 return true;
478 default:
479 return false;
483 static bool
484 mrf24j40_long_reg_volatile(struct device *dev, unsigned int reg)
486 /* can be changed during runtime */
487 switch (reg) {
488 case REG_SLPCAL0:
489 case REG_SLPCAL1:
490 case REG_SLPCAL2:
491 case REG_RFSTATE:
492 case REG_RSSI:
493 case REG_MAINCNT3:
494 return true;
495 default:
496 return false;
500 static const struct regmap_config mrf24j40_long_regmap = {
501 .name = "mrf24j40_long",
502 .reg_bits = 11,
503 .val_bits = 8,
504 .pad_bits = 5,
505 .write_flag_mask = MRF24J40_LONG_ACCESS,
506 .read_flag_mask = MRF24J40_LONG_ACCESS,
507 .cache_type = REGCACHE_RBTREE,
508 .max_register = MRF24J40_LONG_NUMREGS,
509 .writeable_reg = mrf24j40_long_reg_writeable,
510 .readable_reg = mrf24j40_long_reg_readable,
511 .volatile_reg = mrf24j40_long_reg_volatile,
514 static int mrf24j40_long_regmap_write(void *context, const void *data,
515 size_t count)
517 struct spi_device *spi = context;
518 u8 buf[3];
520 if (count > 3)
521 return -EINVAL;
523 /* regmap supports read/write mask only in frist byte
524 * long write access need to set the 12th bit, so we
525 * make special handling for write.
527 memcpy(buf, data, count);
528 buf[1] |= (1 << 4);
530 return spi_write(spi, buf, count);
533 static int
534 mrf24j40_long_regmap_read(void *context, const void *reg, size_t reg_size,
535 void *val, size_t val_size)
537 struct spi_device *spi = context;
539 return spi_write_then_read(spi, reg, reg_size, val, val_size);
542 static const struct regmap_bus mrf24j40_long_regmap_bus = {
543 .write = mrf24j40_long_regmap_write,
544 .read = mrf24j40_long_regmap_read,
545 .reg_format_endian_default = REGMAP_ENDIAN_BIG,
546 .val_format_endian_default = REGMAP_ENDIAN_BIG,
549 static void write_tx_buf_complete(void *context)
551 struct mrf24j40 *devrec = context;
552 __le16 fc = ieee802154_get_fc_from_skb(devrec->tx_skb);
553 u8 val = BIT_TXNTRIG;
554 int ret;
556 if (ieee802154_is_secen(fc))
557 val |= BIT_TXNSECEN;
559 if (ieee802154_is_ackreq(fc))
560 val |= BIT_TXNACKREQ;
562 devrec->tx_post_msg.complete = NULL;
563 devrec->tx_post_buf[0] = MRF24J40_WRITESHORT(REG_TXNCON);
564 devrec->tx_post_buf[1] = val;
566 ret = spi_async(devrec->spi, &devrec->tx_post_msg);
567 if (ret)
568 dev_err(printdev(devrec), "SPI write Failed for transmit buf\n");
571 /* This function relies on an undocumented write method. Once a write command
572 and address is set, as many bytes of data as desired can be clocked into
573 the device. The datasheet only shows setting one byte at a time. */
574 static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
575 const u8 *data, size_t length)
577 u16 cmd;
578 int ret;
580 /* Range check the length. 2 bytes are used for the length fields.*/
581 if (length > TX_FIFO_SIZE-2) {
582 dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
583 length = TX_FIFO_SIZE-2;
586 cmd = MRF24J40_WRITELONG(reg);
587 devrec->tx_hdr_buf[0] = cmd >> 8 & 0xff;
588 devrec->tx_hdr_buf[1] = cmd & 0xff;
589 devrec->tx_len_buf[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
590 devrec->tx_len_buf[1] = length; /* Total length */
591 devrec->tx_buf_trx.tx_buf = data;
592 devrec->tx_buf_trx.len = length;
594 ret = spi_async(devrec->spi, &devrec->tx_msg);
595 if (ret)
596 dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
598 return ret;
601 static int mrf24j40_tx(struct ieee802154_hw *hw, struct sk_buff *skb)
603 struct mrf24j40 *devrec = hw->priv;
605 dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
606 devrec->tx_skb = skb;
608 return write_tx_buf(devrec, 0x000, skb->data, skb->len);
611 static int mrf24j40_ed(struct ieee802154_hw *hw, u8 *level)
613 /* TODO: */
614 pr_warn("mrf24j40: ed not implemented\n");
615 *level = 0;
616 return 0;
619 static int mrf24j40_start(struct ieee802154_hw *hw)
621 struct mrf24j40 *devrec = hw->priv;
623 dev_dbg(printdev(devrec), "start\n");
625 /* Clear TXNIE and RXIE. Enable interrupts */
626 return regmap_update_bits(devrec->regmap_short, REG_INTCON,
627 BIT_TXNIE | BIT_RXIE | BIT_SECIE, 0);
630 static void mrf24j40_stop(struct ieee802154_hw *hw)
632 struct mrf24j40 *devrec = hw->priv;
634 dev_dbg(printdev(devrec), "stop\n");
636 /* Set TXNIE and RXIE. Disable Interrupts */
637 regmap_update_bits(devrec->regmap_short, REG_INTCON,
638 BIT_TXNIE | BIT_RXIE, BIT_TXNIE | BIT_RXIE);
641 static int mrf24j40_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
643 struct mrf24j40 *devrec = hw->priv;
644 u8 val;
645 int ret;
647 dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
649 WARN_ON(page != 0);
650 WARN_ON(channel < MRF24J40_CHAN_MIN);
651 WARN_ON(channel > MRF24J40_CHAN_MAX);
653 /* Set Channel TODO */
654 val = (channel - 11) << RFCON0_CH_SHIFT | RFOPT_RECOMMEND;
655 ret = regmap_update_bits(devrec->regmap_long, REG_RFCON0,
656 RFCON0_CH_MASK, val);
657 if (ret)
658 return ret;
660 /* RF Reset */
661 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST,
662 BIT_RFRST);
663 if (ret)
664 return ret;
666 ret = regmap_update_bits(devrec->regmap_short, REG_RFCTL, BIT_RFRST, 0);
667 if (!ret)
668 udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
670 return ret;
673 static int mrf24j40_filter(struct ieee802154_hw *hw,
674 struct ieee802154_hw_addr_filt *filt,
675 unsigned long changed)
677 struct mrf24j40 *devrec = hw->priv;
679 dev_dbg(printdev(devrec), "filter\n");
681 if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
682 /* Short Addr */
683 u8 addrh, addrl;
685 addrh = le16_to_cpu(filt->short_addr) >> 8 & 0xff;
686 addrl = le16_to_cpu(filt->short_addr) & 0xff;
688 regmap_write(devrec->regmap_short, REG_SADRH, addrh);
689 regmap_write(devrec->regmap_short, REG_SADRL, addrl);
690 dev_dbg(printdev(devrec),
691 "Set short addr to %04hx\n", filt->short_addr);
694 if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
695 /* Device Address */
696 u8 i, addr[8];
698 memcpy(addr, &filt->ieee_addr, 8);
699 for (i = 0; i < 8; i++)
700 regmap_write(devrec->regmap_short, REG_EADR0 + i,
701 addr[i]);
703 #ifdef DEBUG
704 pr_debug("Set long addr to: ");
705 for (i = 0; i < 8; i++)
706 pr_debug("%02hhx ", addr[7 - i]);
707 pr_debug("\n");
708 #endif
711 if (changed & IEEE802154_AFILT_PANID_CHANGED) {
712 /* PAN ID */
713 u8 panidl, panidh;
715 panidh = le16_to_cpu(filt->pan_id) >> 8 & 0xff;
716 panidl = le16_to_cpu(filt->pan_id) & 0xff;
717 regmap_write(devrec->regmap_short, REG_PANIDH, panidh);
718 regmap_write(devrec->regmap_short, REG_PANIDL, panidl);
720 dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
723 if (changed & IEEE802154_AFILT_PANC_CHANGED) {
724 /* Pan Coordinator */
725 u8 val;
726 int ret;
728 if (filt->pan_coord)
729 val = BIT_PANCOORD;
730 else
731 val = 0;
732 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
733 BIT_PANCOORD, val);
734 if (ret)
735 return ret;
737 /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
738 * REG_ORDER is maintained as default (no beacon/superframe).
741 dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
742 filt->pan_coord ? "on" : "off");
745 return 0;
748 static void mrf24j40_handle_rx_read_buf_unlock(struct mrf24j40 *devrec)
750 int ret;
752 /* Turn back on reception of packets off the air. */
753 devrec->rx_msg.complete = NULL;
754 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
755 devrec->rx_buf[1] = 0x00; /* CLR RXDECINV */
756 ret = spi_async(devrec->spi, &devrec->rx_msg);
757 if (ret)
758 dev_err(printdev(devrec), "failed to unlock rx buffer\n");
761 static void mrf24j40_handle_rx_read_buf_complete(void *context)
763 struct mrf24j40 *devrec = context;
764 u8 len = devrec->rx_buf[2];
765 u8 rx_local_buf[RX_FIFO_SIZE];
766 struct sk_buff *skb;
768 memcpy(rx_local_buf, devrec->rx_fifo_buf, len);
769 mrf24j40_handle_rx_read_buf_unlock(devrec);
771 skb = dev_alloc_skb(IEEE802154_MTU);
772 if (!skb) {
773 dev_err(printdev(devrec), "failed to allocate skb\n");
774 return;
777 skb_put_data(skb, rx_local_buf, len);
778 ieee802154_rx_irqsafe(devrec->hw, skb, 0);
780 #ifdef DEBUG
781 print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ", DUMP_PREFIX_OFFSET, 16, 1,
782 rx_local_buf, len, 0);
783 pr_debug("mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
784 devrec->rx_lqi_buf[0], devrec->rx_lqi_buf[1]);
785 #endif
788 static void mrf24j40_handle_rx_read_buf(void *context)
790 struct mrf24j40 *devrec = context;
791 u16 cmd;
792 int ret;
794 /* if length is invalid read the full MTU */
795 if (!ieee802154_is_valid_psdu_len(devrec->rx_buf[2]))
796 devrec->rx_buf[2] = IEEE802154_MTU;
798 cmd = MRF24J40_READLONG(REG_RX_FIFO + 1);
799 devrec->rx_addr_buf[0] = cmd >> 8 & 0xff;
800 devrec->rx_addr_buf[1] = cmd & 0xff;
801 devrec->rx_fifo_buf_trx.len = devrec->rx_buf[2];
802 ret = spi_async(devrec->spi, &devrec->rx_buf_msg);
803 if (ret) {
804 dev_err(printdev(devrec), "failed to read rx buffer\n");
805 mrf24j40_handle_rx_read_buf_unlock(devrec);
809 static void mrf24j40_handle_rx_read_len(void *context)
811 struct mrf24j40 *devrec = context;
812 u16 cmd;
813 int ret;
815 /* read the length of received frame */
816 devrec->rx_msg.complete = mrf24j40_handle_rx_read_buf;
817 devrec->rx_trx.len = 3;
818 cmd = MRF24J40_READLONG(REG_RX_FIFO);
819 devrec->rx_buf[0] = cmd >> 8 & 0xff;
820 devrec->rx_buf[1] = cmd & 0xff;
822 ret = spi_async(devrec->spi, &devrec->rx_msg);
823 if (ret) {
824 dev_err(printdev(devrec), "failed to read rx buffer length\n");
825 mrf24j40_handle_rx_read_buf_unlock(devrec);
829 static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
831 /* Turn off reception of packets off the air. This prevents the
832 * device from overwriting the buffer while we're reading it.
834 devrec->rx_msg.complete = mrf24j40_handle_rx_read_len;
835 devrec->rx_trx.len = 2;
836 devrec->rx_buf[0] = MRF24J40_WRITESHORT(REG_BBREG1);
837 devrec->rx_buf[1] = BIT_RXDECINV; /* SET RXDECINV */
839 return spi_async(devrec->spi, &devrec->rx_msg);
842 static int
843 mrf24j40_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
844 u8 retries)
846 struct mrf24j40 *devrec = hw->priv;
847 u8 val;
849 /* min_be */
850 val = min_be << TXMCR_MIN_BE_SHIFT;
851 /* csma backoffs */
852 val |= retries << TXMCR_CSMA_RETRIES_SHIFT;
854 return regmap_update_bits(devrec->regmap_short, REG_TXMCR,
855 TXMCR_MIN_BE_MASK | TXMCR_CSMA_RETRIES_MASK,
856 val);
859 static int mrf24j40_set_cca_mode(struct ieee802154_hw *hw,
860 const struct wpan_phy_cca *cca)
862 struct mrf24j40 *devrec = hw->priv;
863 u8 val;
865 /* mapping 802.15.4 to driver spec */
866 switch (cca->mode) {
867 case NL802154_CCA_ENERGY:
868 val = 2;
869 break;
870 case NL802154_CCA_CARRIER:
871 val = 1;
872 break;
873 case NL802154_CCA_ENERGY_CARRIER:
874 switch (cca->opt) {
875 case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
876 val = 3;
877 break;
878 default:
879 return -EINVAL;
881 break;
882 default:
883 return -EINVAL;
886 return regmap_update_bits(devrec->regmap_short, REG_BBREG2,
887 BBREG2_CCA_MODE_MASK,
888 val << BBREG2_CCA_MODE_SHIFT);
891 /* array for representing ed levels */
892 static const s32 mrf24j40_ed_levels[] = {
893 -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100,
894 -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100,
895 -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100,
896 -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100,
897 -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100,
898 -4000, -3900, -3800, -3700, -3600, -3500
901 /* map ed levels to register value */
902 static const s32 mrf24j40_ed_levels_map[][2] = {
903 { -9000, 0 }, { -8900, 1 }, { -8800, 2 }, { -8700, 5 }, { -8600, 9 },
904 { -8500, 13 }, { -8400, 18 }, { -8300, 23 }, { -8200, 27 },
905 { -8100, 32 }, { -8000, 37 }, { -7900, 43 }, { -7800, 48 },
906 { -7700, 53 }, { -7600, 58 }, { -7500, 63 }, { -7400, 68 },
907 { -7300, 73 }, { -7200, 78 }, { -7100, 83 }, { -7000, 89 },
908 { -6900, 95 }, { -6800, 100 }, { -6700, 107 }, { -6600, 111 },
909 { -6500, 117 }, { -6400, 121 }, { -6300, 125 }, { -6200, 129 },
910 { -6100, 133 }, { -6000, 138 }, { -5900, 143 }, { -5800, 148 },
911 { -5700, 153 }, { -5600, 159 }, { -5500, 165 }, { -5400, 170 },
912 { -5300, 176 }, { -5200, 183 }, { -5100, 188 }, { -5000, 193 },
913 { -4900, 198 }, { -4800, 203 }, { -4700, 207 }, { -4600, 212 },
914 { -4500, 216 }, { -4400, 221 }, { -4300, 225 }, { -4200, 228 },
915 { -4100, 233 }, { -4000, 239 }, { -3900, 245 }, { -3800, 250 },
916 { -3700, 253 }, { -3600, 254 }, { -3500, 255 },
919 static int mrf24j40_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
921 struct mrf24j40 *devrec = hw->priv;
922 int i;
924 for (i = 0; i < ARRAY_SIZE(mrf24j40_ed_levels_map); i++) {
925 if (mrf24j40_ed_levels_map[i][0] == mbm)
926 return regmap_write(devrec->regmap_short, REG_CCAEDTH,
927 mrf24j40_ed_levels_map[i][1]);
930 return -EINVAL;
933 static const s32 mrf24j40ma_powers[] = {
934 0, -50, -120, -190, -280, -370, -490, -630, -1000, -1050, -1120, -1190,
935 -1280, -1370, -1490, -1630, -2000, -2050, -2120, -2190, -2280, -2370,
936 -2490, -2630, -3000, -3050, -3120, -3190, -3280, -3370, -3490, -3630,
939 static int mrf24j40_set_txpower(struct ieee802154_hw *hw, s32 mbm)
941 struct mrf24j40 *devrec = hw->priv;
942 s32 small_scale;
943 u8 val;
945 if (0 >= mbm && mbm > -1000) {
946 val = TXPWRL_0 << TXPWRL_SHIFT;
947 small_scale = mbm;
948 } else if (-1000 >= mbm && mbm > -2000) {
949 val = TXPWRL_10 << TXPWRL_SHIFT;
950 small_scale = mbm + 1000;
951 } else if (-2000 >= mbm && mbm > -3000) {
952 val = TXPWRL_20 << TXPWRL_SHIFT;
953 small_scale = mbm + 2000;
954 } else if (-3000 >= mbm && mbm > -4000) {
955 val = TXPWRL_30 << TXPWRL_SHIFT;
956 small_scale = mbm + 3000;
957 } else {
958 return -EINVAL;
961 switch (small_scale) {
962 case 0:
963 val |= (TXPWRS_0 << TXPWRS_SHIFT);
964 break;
965 case -50:
966 val |= (TXPWRS_0_5 << TXPWRS_SHIFT);
967 break;
968 case -120:
969 val |= (TXPWRS_1_2 << TXPWRS_SHIFT);
970 break;
971 case -190:
972 val |= (TXPWRS_1_9 << TXPWRS_SHIFT);
973 break;
974 case -280:
975 val |= (TXPWRS_2_8 << TXPWRS_SHIFT);
976 break;
977 case -370:
978 val |= (TXPWRS_3_7 << TXPWRS_SHIFT);
979 break;
980 case -490:
981 val |= (TXPWRS_4_9 << TXPWRS_SHIFT);
982 break;
983 case -630:
984 val |= (TXPWRS_6_3 << TXPWRS_SHIFT);
985 break;
986 default:
987 return -EINVAL;
990 return regmap_update_bits(devrec->regmap_long, REG_RFCON3,
991 TXPWRL_MASK | TXPWRS_MASK, val);
994 static int mrf24j40_set_promiscuous_mode(struct ieee802154_hw *hw, bool on)
996 struct mrf24j40 *devrec = hw->priv;
997 int ret;
999 if (on) {
1000 /* set PROMI, ERRPKT and NOACKRSP */
1001 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1002 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1003 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP);
1004 } else {
1005 /* clear PROMI, ERRPKT and NOACKRSP */
1006 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR,
1007 BIT_PROMI | BIT_ERRPKT | BIT_NOACKRSP,
1011 return ret;
1014 static const struct ieee802154_ops mrf24j40_ops = {
1015 .owner = THIS_MODULE,
1016 .xmit_async = mrf24j40_tx,
1017 .ed = mrf24j40_ed,
1018 .start = mrf24j40_start,
1019 .stop = mrf24j40_stop,
1020 .set_channel = mrf24j40_set_channel,
1021 .set_hw_addr_filt = mrf24j40_filter,
1022 .set_csma_params = mrf24j40_csma_params,
1023 .set_cca_mode = mrf24j40_set_cca_mode,
1024 .set_cca_ed_level = mrf24j40_set_cca_ed_level,
1025 .set_txpower = mrf24j40_set_txpower,
1026 .set_promiscuous_mode = mrf24j40_set_promiscuous_mode,
1029 static void mrf24j40_intstat_complete(void *context)
1031 struct mrf24j40 *devrec = context;
1032 u8 intstat = devrec->irq_buf[1];
1034 enable_irq(devrec->spi->irq);
1036 /* Ignore Rx security decryption */
1037 if (intstat & BIT_SECIF)
1038 regmap_write_async(devrec->regmap_short, REG_SECCON0,
1039 BIT_SECIGNORE);
1041 /* Check for TX complete */
1042 if (intstat & BIT_TXNIF)
1043 ieee802154_xmit_complete(devrec->hw, devrec->tx_skb, false);
1045 /* Check for Rx */
1046 if (intstat & BIT_RXIF)
1047 mrf24j40_handle_rx(devrec);
1050 static irqreturn_t mrf24j40_isr(int irq, void *data)
1052 struct mrf24j40 *devrec = data;
1053 int ret;
1055 disable_irq_nosync(irq);
1057 devrec->irq_buf[0] = MRF24J40_READSHORT(REG_INTSTAT);
1058 devrec->irq_buf[1] = 0;
1060 /* Read the interrupt status */
1061 ret = spi_async(devrec->spi, &devrec->irq_msg);
1062 if (ret) {
1063 enable_irq(irq);
1064 return IRQ_NONE;
1067 return IRQ_HANDLED;
1070 static int mrf24j40_hw_init(struct mrf24j40 *devrec)
1072 u32 irq_type;
1073 int ret;
1075 /* Initialize the device.
1076 From datasheet section 3.2: Initialization. */
1077 ret = regmap_write(devrec->regmap_short, REG_SOFTRST, 0x07);
1078 if (ret)
1079 goto err_ret;
1081 ret = regmap_write(devrec->regmap_short, REG_PACON2, 0x98);
1082 if (ret)
1083 goto err_ret;
1085 ret = regmap_write(devrec->regmap_short, REG_TXSTBL, 0x95);
1086 if (ret)
1087 goto err_ret;
1089 ret = regmap_write(devrec->regmap_long, REG_RFCON0, 0x03);
1090 if (ret)
1091 goto err_ret;
1093 ret = regmap_write(devrec->regmap_long, REG_RFCON1, 0x01);
1094 if (ret)
1095 goto err_ret;
1097 ret = regmap_write(devrec->regmap_long, REG_RFCON2, 0x80);
1098 if (ret)
1099 goto err_ret;
1101 ret = regmap_write(devrec->regmap_long, REG_RFCON6, 0x90);
1102 if (ret)
1103 goto err_ret;
1105 ret = regmap_write(devrec->regmap_long, REG_RFCON7, 0x80);
1106 if (ret)
1107 goto err_ret;
1109 ret = regmap_write(devrec->regmap_long, REG_RFCON8, 0x10);
1110 if (ret)
1111 goto err_ret;
1113 ret = regmap_write(devrec->regmap_long, REG_SLPCON1, 0x21);
1114 if (ret)
1115 goto err_ret;
1117 ret = regmap_write(devrec->regmap_short, REG_BBREG2, 0x80);
1118 if (ret)
1119 goto err_ret;
1121 ret = regmap_write(devrec->regmap_short, REG_CCAEDTH, 0x60);
1122 if (ret)
1123 goto err_ret;
1125 ret = regmap_write(devrec->regmap_short, REG_BBREG6, 0x40);
1126 if (ret)
1127 goto err_ret;
1129 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x04);
1130 if (ret)
1131 goto err_ret;
1133 ret = regmap_write(devrec->regmap_short, REG_RFCTL, 0x0);
1134 if (ret)
1135 goto err_ret;
1137 udelay(192);
1139 /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
1140 ret = regmap_update_bits(devrec->regmap_short, REG_RXMCR, 0x03, 0x00);
1141 if (ret)
1142 goto err_ret;
1144 if (spi_get_device_id(devrec->spi)->driver_data == MRF24J40MC) {
1145 /* Enable external amplifier.
1146 * From MRF24J40MC datasheet section 1.3: Operation.
1148 regmap_update_bits(devrec->regmap_long, REG_TESTMODE, 0x07,
1149 0x07);
1151 /* Set GPIO3 as output. */
1152 regmap_update_bits(devrec->regmap_short, REG_TRISGPIO, 0x08,
1153 0x08);
1155 /* Set GPIO3 HIGH to enable U5 voltage regulator */
1156 regmap_update_bits(devrec->regmap_short, REG_GPIO, 0x08, 0x08);
1158 /* Reduce TX pwr to meet FCC requirements.
1159 * From MRF24J40MC datasheet section 3.1.1
1161 regmap_write(devrec->regmap_long, REG_RFCON3, 0x28);
1164 irq_type = irq_get_trigger_type(devrec->spi->irq);
1165 if (irq_type == IRQ_TYPE_EDGE_RISING ||
1166 irq_type == IRQ_TYPE_EDGE_FALLING)
1167 dev_warn(&devrec->spi->dev,
1168 "Using edge triggered irq's are not recommended, because it can cause races and result in a non-functional driver!\n");
1169 switch (irq_type) {
1170 case IRQ_TYPE_EDGE_RISING:
1171 case IRQ_TYPE_LEVEL_HIGH:
1172 /* set interrupt polarity to rising */
1173 ret = regmap_update_bits(devrec->regmap_long, REG_SLPCON0,
1174 BIT_INTEDGE, BIT_INTEDGE);
1175 if (ret)
1176 goto err_ret;
1177 break;
1178 default:
1179 /* default is falling edge */
1180 break;
1183 return 0;
1185 err_ret:
1186 return ret;
1189 static void
1190 mrf24j40_setup_tx_spi_messages(struct mrf24j40 *devrec)
1192 spi_message_init(&devrec->tx_msg);
1193 devrec->tx_msg.context = devrec;
1194 devrec->tx_msg.complete = write_tx_buf_complete;
1195 devrec->tx_hdr_trx.len = 2;
1196 devrec->tx_hdr_trx.tx_buf = devrec->tx_hdr_buf;
1197 spi_message_add_tail(&devrec->tx_hdr_trx, &devrec->tx_msg);
1198 devrec->tx_len_trx.len = 2;
1199 devrec->tx_len_trx.tx_buf = devrec->tx_len_buf;
1200 spi_message_add_tail(&devrec->tx_len_trx, &devrec->tx_msg);
1201 spi_message_add_tail(&devrec->tx_buf_trx, &devrec->tx_msg);
1203 spi_message_init(&devrec->tx_post_msg);
1204 devrec->tx_post_msg.context = devrec;
1205 devrec->tx_post_trx.len = 2;
1206 devrec->tx_post_trx.tx_buf = devrec->tx_post_buf;
1207 spi_message_add_tail(&devrec->tx_post_trx, &devrec->tx_post_msg);
1210 static void
1211 mrf24j40_setup_rx_spi_messages(struct mrf24j40 *devrec)
1213 spi_message_init(&devrec->rx_msg);
1214 devrec->rx_msg.context = devrec;
1215 devrec->rx_trx.len = 2;
1216 devrec->rx_trx.tx_buf = devrec->rx_buf;
1217 devrec->rx_trx.rx_buf = devrec->rx_buf;
1218 spi_message_add_tail(&devrec->rx_trx, &devrec->rx_msg);
1220 spi_message_init(&devrec->rx_buf_msg);
1221 devrec->rx_buf_msg.context = devrec;
1222 devrec->rx_buf_msg.complete = mrf24j40_handle_rx_read_buf_complete;
1223 devrec->rx_addr_trx.len = 2;
1224 devrec->rx_addr_trx.tx_buf = devrec->rx_addr_buf;
1225 spi_message_add_tail(&devrec->rx_addr_trx, &devrec->rx_buf_msg);
1226 devrec->rx_fifo_buf_trx.rx_buf = devrec->rx_fifo_buf;
1227 spi_message_add_tail(&devrec->rx_fifo_buf_trx, &devrec->rx_buf_msg);
1228 devrec->rx_lqi_trx.len = 2;
1229 devrec->rx_lqi_trx.rx_buf = devrec->rx_lqi_buf;
1230 spi_message_add_tail(&devrec->rx_lqi_trx, &devrec->rx_buf_msg);
1233 static void
1234 mrf24j40_setup_irq_spi_messages(struct mrf24j40 *devrec)
1236 spi_message_init(&devrec->irq_msg);
1237 devrec->irq_msg.context = devrec;
1238 devrec->irq_msg.complete = mrf24j40_intstat_complete;
1239 devrec->irq_trx.len = 2;
1240 devrec->irq_trx.tx_buf = devrec->irq_buf;
1241 devrec->irq_trx.rx_buf = devrec->irq_buf;
1242 spi_message_add_tail(&devrec->irq_trx, &devrec->irq_msg);
1245 static void mrf24j40_phy_setup(struct mrf24j40 *devrec)
1247 ieee802154_random_extended_addr(&devrec->hw->phy->perm_extended_addr);
1248 devrec->hw->phy->current_channel = 11;
1250 /* mrf24j40 supports max_minbe 0 - 3 */
1251 devrec->hw->phy->supported.max_minbe = 3;
1252 /* datasheet doesn't say anything about max_be, but we have min_be
1253 * So we assume the max_be default.
1255 devrec->hw->phy->supported.min_maxbe = 5;
1256 devrec->hw->phy->supported.max_maxbe = 5;
1258 devrec->hw->phy->cca.mode = NL802154_CCA_CARRIER;
1259 devrec->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
1260 BIT(NL802154_CCA_CARRIER) |
1261 BIT(NL802154_CCA_ENERGY_CARRIER);
1262 devrec->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND);
1264 devrec->hw->phy->cca_ed_level = -6900;
1265 devrec->hw->phy->supported.cca_ed_levels = mrf24j40_ed_levels;
1266 devrec->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(mrf24j40_ed_levels);
1268 switch (spi_get_device_id(devrec->spi)->driver_data) {
1269 case MRF24J40:
1270 case MRF24J40MA:
1271 devrec->hw->phy->supported.tx_powers = mrf24j40ma_powers;
1272 devrec->hw->phy->supported.tx_powers_size = ARRAY_SIZE(mrf24j40ma_powers);
1273 devrec->hw->phy->flags |= WPAN_PHY_FLAG_TXPOWER;
1274 break;
1275 default:
1276 break;
1280 static int mrf24j40_probe(struct spi_device *spi)
1282 int ret = -ENOMEM, irq_type;
1283 struct ieee802154_hw *hw;
1284 struct mrf24j40 *devrec;
1286 dev_info(&spi->dev, "probe(). IRQ: %d\n", spi->irq);
1288 /* Register with the 802154 subsystem */
1290 hw = ieee802154_alloc_hw(sizeof(*devrec), &mrf24j40_ops);
1291 if (!hw)
1292 goto err_ret;
1294 devrec = hw->priv;
1295 devrec->spi = spi;
1296 spi_set_drvdata(spi, devrec);
1297 devrec->hw = hw;
1298 devrec->hw->parent = &spi->dev;
1299 devrec->hw->phy->supported.channels[0] = CHANNEL_MASK;
1300 devrec->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT |
1301 IEEE802154_HW_CSMA_PARAMS |
1302 IEEE802154_HW_PROMISCUOUS;
1304 devrec->hw->phy->flags = WPAN_PHY_FLAG_CCA_MODE |
1305 WPAN_PHY_FLAG_CCA_ED_LEVEL;
1307 mrf24j40_setup_tx_spi_messages(devrec);
1308 mrf24j40_setup_rx_spi_messages(devrec);
1309 mrf24j40_setup_irq_spi_messages(devrec);
1311 devrec->regmap_short = devm_regmap_init_spi(spi,
1312 &mrf24j40_short_regmap);
1313 if (IS_ERR(devrec->regmap_short)) {
1314 ret = PTR_ERR(devrec->regmap_short);
1315 dev_err(&spi->dev, "Failed to allocate short register map: %d\n",
1316 ret);
1317 goto err_register_device;
1320 devrec->regmap_long = devm_regmap_init(&spi->dev,
1321 &mrf24j40_long_regmap_bus,
1322 spi, &mrf24j40_long_regmap);
1323 if (IS_ERR(devrec->regmap_long)) {
1324 ret = PTR_ERR(devrec->regmap_long);
1325 dev_err(&spi->dev, "Failed to allocate long register map: %d\n",
1326 ret);
1327 goto err_register_device;
1330 if (spi->max_speed_hz > MAX_SPI_SPEED_HZ) {
1331 dev_warn(&spi->dev, "spi clock above possible maximum: %d",
1332 MAX_SPI_SPEED_HZ);
1333 ret = -EINVAL;
1334 goto err_register_device;
1337 ret = mrf24j40_hw_init(devrec);
1338 if (ret)
1339 goto err_register_device;
1341 mrf24j40_phy_setup(devrec);
1343 /* request IRQF_TRIGGER_LOW as fallback default */
1344 irq_type = irq_get_trigger_type(spi->irq);
1345 if (!irq_type)
1346 irq_type = IRQF_TRIGGER_LOW;
1348 ret = devm_request_irq(&spi->dev, spi->irq, mrf24j40_isr,
1349 irq_type, dev_name(&spi->dev), devrec);
1350 if (ret) {
1351 dev_err(printdev(devrec), "Unable to get IRQ");
1352 goto err_register_device;
1355 dev_dbg(printdev(devrec), "registered mrf24j40\n");
1356 ret = ieee802154_register_hw(devrec->hw);
1357 if (ret)
1358 goto err_register_device;
1360 return 0;
1362 err_register_device:
1363 ieee802154_free_hw(devrec->hw);
1364 err_ret:
1365 return ret;
1368 static int mrf24j40_remove(struct spi_device *spi)
1370 struct mrf24j40 *devrec = spi_get_drvdata(spi);
1372 dev_dbg(printdev(devrec), "remove\n");
1374 ieee802154_unregister_hw(devrec->hw);
1375 ieee802154_free_hw(devrec->hw);
1376 /* TODO: Will ieee802154_free_device() wait until ->xmit() is
1377 * complete? */
1379 return 0;
1382 static const struct of_device_id mrf24j40_of_match[] = {
1383 { .compatible = "microchip,mrf24j40", .data = (void *)MRF24J40 },
1384 { .compatible = "microchip,mrf24j40ma", .data = (void *)MRF24J40MA },
1385 { .compatible = "microchip,mrf24j40mc", .data = (void *)MRF24J40MC },
1386 { },
1388 MODULE_DEVICE_TABLE(of, mrf24j40_of_match);
1390 static const struct spi_device_id mrf24j40_ids[] = {
1391 { "mrf24j40", MRF24J40 },
1392 { "mrf24j40ma", MRF24J40MA },
1393 { "mrf24j40mc", MRF24J40MC },
1394 { },
1396 MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
1398 static struct spi_driver mrf24j40_driver = {
1399 .driver = {
1400 .of_match_table = of_match_ptr(mrf24j40_of_match),
1401 .name = "mrf24j40",
1403 .id_table = mrf24j40_ids,
1404 .probe = mrf24j40_probe,
1405 .remove = mrf24j40_remove,
1408 module_spi_driver(mrf24j40_driver);
1410 MODULE_LICENSE("GPL");
1411 MODULE_AUTHOR("Alan Ott");
1412 MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");