Linux 4.16.11
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath6kl / hif.c
blobd1942537ea108748031ca1e89323246985a495e0
1 /*
2 * Copyright (c) 2007-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hif.h"
19 #include <linux/export.h>
21 #include "core.h"
22 #include "target.h"
23 #include "hif-ops.h"
24 #include "debug.h"
25 #include "trace.h"
27 #define MAILBOX_FOR_BLOCK_SIZE 1
29 #define ATH6KL_TIME_QUANTUM 10 /* in ms */
31 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req,
32 bool from_dma)
34 u8 *buf;
35 int i;
37 buf = req->virt_dma_buf;
39 for (i = 0; i < req->scat_entries; i++) {
40 if (from_dma)
41 memcpy(req->scat_list[i].buf, buf,
42 req->scat_list[i].len);
43 else
44 memcpy(buf, req->scat_list[i].buf,
45 req->scat_list[i].len);
47 buf += req->scat_list[i].len;
50 return 0;
53 int ath6kl_hif_rw_comp_handler(void *context, int status)
55 struct htc_packet *packet = context;
57 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n",
58 packet, status);
60 packet->status = status;
61 packet->completion(packet->context, packet);
63 return 0;
65 EXPORT_SYMBOL(ath6kl_hif_rw_comp_handler);
67 #define REGISTER_DUMP_COUNT 60
68 #define REGISTER_DUMP_LEN_MAX 60
70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar)
72 __le32 regdump_val[REGISTER_DUMP_LEN_MAX];
73 u32 i, address, regdump_addr = 0;
74 int ret;
76 /* the reg dump pointer is copied to the host interest area */
77 address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
78 address = TARG_VTOP(ar->target_type, address);
80 /* read RAM location through diagnostic window */
81 ret = ath6kl_diag_read32(ar, address, &regdump_addr);
83 if (ret || !regdump_addr) {
84 ath6kl_warn("failed to get ptr to register dump area: %d\n",
85 ret);
86 return;
89 ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n",
90 regdump_addr);
91 regdump_addr = TARG_VTOP(ar->target_type, regdump_addr);
93 /* fetch register dump data */
94 ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)&regdump_val[0],
95 REGISTER_DUMP_COUNT * (sizeof(u32)));
96 if (ret) {
97 ath6kl_warn("failed to get register dump: %d\n", ret);
98 return;
101 ath6kl_info("crash dump:\n");
102 ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version,
103 ar->wiphy->fw_version);
105 BUILD_BUG_ON(REGISTER_DUMP_COUNT % 4);
107 for (i = 0; i < REGISTER_DUMP_COUNT; i += 4) {
108 ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
110 le32_to_cpu(regdump_val[i]),
111 le32_to_cpu(regdump_val[i + 1]),
112 le32_to_cpu(regdump_val[i + 2]),
113 le32_to_cpu(regdump_val[i + 3]));
117 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
119 u32 dummy;
120 int ret;
122 ath6kl_warn("firmware crashed\n");
125 * read counter to clear the interrupt, the debug error interrupt is
126 * counter 0.
128 ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
129 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
130 if (ret)
131 ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);
133 ath6kl_hif_dump_fw_crash(dev->ar);
134 ath6kl_read_fwlogs(dev->ar);
135 ath6kl_recovery_err_notify(dev->ar, ATH6KL_FW_ASSERT);
137 return ret;
140 /* mailbox recv message polling */
141 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
142 int timeout)
144 struct ath6kl_irq_proc_registers *rg;
145 int status = 0, i;
146 u8 htc_mbox = 1 << HTC_MAILBOX;
148 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
149 /* this is the standard HIF way, load the reg table */
150 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
151 (u8 *) &dev->irq_proc_reg,
152 sizeof(dev->irq_proc_reg),
153 HIF_RD_SYNC_BYTE_INC);
155 if (status) {
156 ath6kl_err("failed to read reg table\n");
157 return status;
160 /* check for MBOX data and valid lookahead */
161 if (dev->irq_proc_reg.host_int_status & htc_mbox) {
162 if (dev->irq_proc_reg.rx_lkahd_valid &
163 htc_mbox) {
165 * Mailbox has a message and the look ahead
166 * is valid.
168 rg = &dev->irq_proc_reg;
169 *lk_ahd =
170 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
171 break;
175 /* delay a little */
176 mdelay(ATH6KL_TIME_QUANTUM);
177 ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i);
180 if (i == 0) {
181 ath6kl_err("timeout waiting for recv message\n");
182 status = -ETIME;
183 /* check if the target asserted */
184 if (dev->irq_proc_reg.counter_int_status &
185 ATH6KL_TARGET_DEBUG_INTR_MASK)
187 * Target failure handler will be called in case of
188 * an assert.
190 ath6kl_hif_proc_dbg_intr(dev);
193 return status;
197 * Disable packet reception (used in case the host runs out of buffers)
198 * using the interrupt enable registers through the host I/F
200 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx)
202 struct ath6kl_irq_enable_reg regs;
203 int status = 0;
205 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n",
206 enable_rx ? "enable" : "disable");
208 /* take the lock to protect interrupt enable shadows */
209 spin_lock_bh(&dev->lock);
211 if (enable_rx)
212 dev->irq_en_reg.int_status_en |=
213 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
214 else
215 dev->irq_en_reg.int_status_en &=
216 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
218 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
220 spin_unlock_bh(&dev->lock);
222 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
223 &regs.int_status_en,
224 sizeof(struct ath6kl_irq_enable_reg),
225 HIF_WR_SYNC_BYTE_INC);
227 return status;
230 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev,
231 struct hif_scatter_req *scat_req, bool read)
233 int status = 0;
235 if (read) {
236 scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
237 scat_req->addr = dev->ar->mbox_info.htc_addr;
238 } else {
239 scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
241 scat_req->addr =
242 (scat_req->len > HIF_MBOX_WIDTH) ?
243 dev->ar->mbox_info.htc_ext_addr :
244 dev->ar->mbox_info.htc_addr;
247 ath6kl_dbg(ATH6KL_DBG_HIF,
248 "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n",
249 scat_req->scat_entries, scat_req->len,
250 scat_req->addr, !read ? "async" : "sync",
251 (read) ? "rd" : "wr");
253 if (!read && scat_req->virt_scat) {
254 status = ath6kl_hif_cp_scat_dma_buf(scat_req, false);
255 if (status) {
256 scat_req->status = status;
257 scat_req->complete(dev->ar->htc_target, scat_req);
258 return 0;
262 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
264 if (read) {
265 /* in sync mode, we can touch the scatter request */
266 scat_req->status = status;
267 if (!status && scat_req->virt_scat)
268 scat_req->status =
269 ath6kl_hif_cp_scat_dma_buf(scat_req, true);
272 return status;
275 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev)
277 u8 counter_int_status;
279 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
281 counter_int_status = dev->irq_proc_reg.counter_int_status &
282 dev->irq_en_reg.cntr_int_status_en;
284 ath6kl_dbg(ATH6KL_DBG_IRQ,
285 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
286 counter_int_status);
289 * NOTE: other modules like GMBOX may use the counter interrupt for
290 * credit flow control on other counters, we only need to check for
291 * the debug assertion counter interrupt.
293 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
294 return ath6kl_hif_proc_dbg_intr(dev);
296 return 0;
299 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
301 int status;
302 u8 error_int_status;
303 u8 reg_buf[4];
305 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
307 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
308 if (!error_int_status) {
309 WARN_ON(1);
310 return -EIO;
313 ath6kl_dbg(ATH6KL_DBG_IRQ,
314 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
315 error_int_status);
317 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
318 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
320 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
321 ath6kl_err("rx underflow\n");
323 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
324 ath6kl_err("tx overflow\n");
326 /* Clear the interrupt */
327 dev->irq_proc_reg.error_int_status &= ~error_int_status;
329 /* set W1C value to clear the interrupt, this hits the register first */
330 reg_buf[0] = error_int_status;
331 reg_buf[1] = 0;
332 reg_buf[2] = 0;
333 reg_buf[3] = 0;
335 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
336 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
338 WARN_ON(status);
340 return status;
343 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
345 int status;
346 u8 cpu_int_status;
347 u8 reg_buf[4];
349 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
351 cpu_int_status = dev->irq_proc_reg.cpu_int_status &
352 dev->irq_en_reg.cpu_int_status_en;
353 if (!cpu_int_status) {
354 WARN_ON(1);
355 return -EIO;
358 ath6kl_dbg(ATH6KL_DBG_IRQ,
359 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
360 cpu_int_status);
362 /* Clear the interrupt */
363 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
366 * Set up the register transfer buffer to hit the register 4 times ,
367 * this is done to make the access 4-byte aligned to mitigate issues
368 * with host bus interconnects that restrict bus transfer lengths to
369 * be a multiple of 4-bytes.
372 /* set W1C value to clear the interrupt, this hits the register first */
373 reg_buf[0] = cpu_int_status;
374 /* the remaining are set to zero which have no-effect */
375 reg_buf[1] = 0;
376 reg_buf[2] = 0;
377 reg_buf[3] = 0;
379 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
380 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
382 WARN_ON(status);
384 return status;
387 /* process pending interrupts synchronously */
388 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
390 struct ath6kl_irq_proc_registers *rg;
391 int status = 0;
392 u8 host_int_status = 0;
393 u32 lk_ahd = 0;
394 u8 htc_mbox = 1 << HTC_MAILBOX;
396 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
399 * NOTE: HIF implementation guarantees that the context of this
400 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
401 * sleep or call any API that can block or switch thread/task
402 * contexts. This is a fully schedulable context.
406 * Process pending intr only when int_status_en is clear, it may
407 * result in unnecessary bus transaction otherwise. Target may be
408 * unresponsive at the time.
410 if (dev->irq_en_reg.int_status_en) {
412 * Read the first 28 bytes of the HTC register table. This
413 * will yield us the value of different int status
414 * registers and the lookahead registers.
416 * length = sizeof(int_status) + sizeof(cpu_int_status)
417 * + sizeof(error_int_status) +
418 * sizeof(counter_int_status) +
419 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
420 * + sizeof(hole) + sizeof(rx_lkahd) +
421 * sizeof(int_status_en) +
422 * sizeof(cpu_int_status_en) +
423 * sizeof(err_int_status_en) +
424 * sizeof(cntr_int_status_en);
426 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
427 (u8 *) &dev->irq_proc_reg,
428 sizeof(dev->irq_proc_reg),
429 HIF_RD_SYNC_BYTE_INC);
430 if (status)
431 goto out;
433 ath6kl_dump_registers(dev, &dev->irq_proc_reg,
434 &dev->irq_en_reg);
435 trace_ath6kl_sdio_irq(&dev->irq_en_reg,
436 sizeof(dev->irq_en_reg));
438 /* Update only those registers that are enabled */
439 host_int_status = dev->irq_proc_reg.host_int_status &
440 dev->irq_en_reg.int_status_en;
442 /* Look at mbox status */
443 if (host_int_status & htc_mbox) {
445 * Mask out pending mbox value, we use "lookAhead as
446 * the real flag for mbox processing.
448 host_int_status &= ~htc_mbox;
449 if (dev->irq_proc_reg.rx_lkahd_valid &
450 htc_mbox) {
451 rg = &dev->irq_proc_reg;
452 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
453 if (!lk_ahd)
454 ath6kl_err("lookAhead is zero!\n");
459 if (!host_int_status && !lk_ahd) {
460 *done = true;
461 goto out;
464 if (lk_ahd) {
465 int fetched = 0;
467 ath6kl_dbg(ATH6KL_DBG_IRQ,
468 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
470 * Mailbox Interrupt, the HTC layer may issue async
471 * requests to empty the mailbox. When emptying the recv
472 * mailbox we use the async handler above called from the
473 * completion routine of the callers read request. This can
474 * improve performance by reducing context switching when
475 * we rapidly pull packets.
477 status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
478 lk_ahd, &fetched);
479 if (status)
480 goto out;
482 if (!fetched)
484 * HTC could not pull any messages out due to lack
485 * of resources.
487 dev->htc_cnxt->chk_irq_status_cnt = 0;
490 /* now handle the rest of them */
491 ath6kl_dbg(ATH6KL_DBG_IRQ,
492 "valid interrupt source(s) for other interrupts: 0x%x\n",
493 host_int_status);
495 if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
496 /* CPU Interrupt */
497 status = ath6kl_hif_proc_cpu_intr(dev);
498 if (status)
499 goto out;
502 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
503 /* Error Interrupt */
504 status = ath6kl_hif_proc_err_intr(dev);
505 if (status)
506 goto out;
509 if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
510 /* Counter Interrupt */
511 status = ath6kl_hif_proc_counter_intr(dev);
513 out:
515 * An optimization to bypass reading the IRQ status registers
516 * unecessarily which can re-wake the target, if upper layers
517 * determine that we are in a low-throughput mode, we can rely on
518 * taking another interrupt rather than re-checking the status
519 * registers which can re-wake the target.
521 * NOTE : for host interfaces that makes use of detecting pending
522 * mbox messages at hif can not use this optimization due to
523 * possible side effects, SPI requires the host to drain all
524 * messages from the mailbox before exiting the ISR routine.
527 ath6kl_dbg(ATH6KL_DBG_IRQ,
528 "bypassing irq status re-check, forcing done\n");
530 if (!dev->htc_cnxt->chk_irq_status_cnt)
531 *done = true;
533 ath6kl_dbg(ATH6KL_DBG_IRQ,
534 "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
536 return status;
539 /* interrupt handler, kicks off all interrupt processing */
540 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar)
542 struct ath6kl_device *dev = ar->htc_target->dev;
543 unsigned long timeout;
544 int status = 0;
545 bool done = false;
548 * Reset counter used to flag a re-scan of IRQ status registers on
549 * the target.
551 dev->htc_cnxt->chk_irq_status_cnt = 0;
554 * IRQ processing is synchronous, interrupt status registers can be
555 * re-read.
557 timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT);
558 while (time_before(jiffies, timeout) && !done) {
559 status = proc_pending_irqs(dev, &done);
560 if (status)
561 break;
564 return status;
566 EXPORT_SYMBOL(ath6kl_hif_intr_bh_handler);
568 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
570 struct ath6kl_irq_enable_reg regs;
571 int status;
573 spin_lock_bh(&dev->lock);
575 /* Enable all but ATH6KL CPU interrupts */
576 dev->irq_en_reg.int_status_en =
577 SM(INT_STATUS_ENABLE_ERROR, 0x01) |
578 SM(INT_STATUS_ENABLE_CPU, 0x01) |
579 SM(INT_STATUS_ENABLE_COUNTER, 0x01);
582 * NOTE: There are some cases where HIF can do detection of
583 * pending mbox messages which is disabled now.
585 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
587 /* Set up the CPU Interrupt status Register */
588 dev->irq_en_reg.cpu_int_status_en = 0;
590 /* Set up the Error Interrupt status Register */
591 dev->irq_en_reg.err_int_status_en =
592 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
593 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
596 * Enable Counter interrupt status register to get fatal errors for
597 * debugging.
599 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
600 ATH6KL_TARGET_DEBUG_INTR_MASK);
601 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
603 spin_unlock_bh(&dev->lock);
605 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
606 &regs.int_status_en, sizeof(regs),
607 HIF_WR_SYNC_BYTE_INC);
609 if (status)
610 ath6kl_err("failed to update interrupt ctl reg err: %d\n",
611 status);
613 return status;
616 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev)
618 struct ath6kl_irq_enable_reg regs;
620 spin_lock_bh(&dev->lock);
621 /* Disable all interrupts */
622 dev->irq_en_reg.int_status_en = 0;
623 dev->irq_en_reg.cpu_int_status_en = 0;
624 dev->irq_en_reg.err_int_status_en = 0;
625 dev->irq_en_reg.cntr_int_status_en = 0;
626 memcpy(&regs, &dev->irq_en_reg, sizeof(regs));
627 spin_unlock_bh(&dev->lock);
629 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
630 &regs.int_status_en, sizeof(regs),
631 HIF_WR_SYNC_BYTE_INC);
634 /* enable device interrupts */
635 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev)
637 int status = 0;
640 * Make sure interrupt are disabled before unmasking at the HIF
641 * layer. The rationale here is that between device insertion
642 * (where we clear the interrupts the first time) and when HTC
643 * is finally ready to handle interrupts, other software can perform
644 * target "soft" resets. The ATH6KL interrupt enables reset back to an
645 * "enabled" state when this happens.
647 ath6kl_hif_disable_intrs(dev);
649 /* unmask the host controller interrupts */
650 ath6kl_hif_irq_enable(dev->ar);
651 status = ath6kl_hif_enable_intrs(dev);
653 return status;
656 /* disable all device interrupts */
657 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev)
660 * Mask the interrupt at the HIF layer to avoid any stray interrupt
661 * taken while we zero out our shadow registers in
662 * ath6kl_hif_disable_intrs().
664 ath6kl_hif_irq_disable(dev->ar);
666 return ath6kl_hif_disable_intrs(dev);
669 int ath6kl_hif_setup(struct ath6kl_device *dev)
671 int status = 0;
673 spin_lock_init(&dev->lock);
676 * NOTE: we actually get the block size of a mailbox other than 0,
677 * for SDIO the block size on mailbox 0 is artificially set to 1.
678 * So we use the block size that is set for the other 3 mailboxes.
680 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
682 /* must be a power of 2 */
683 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
684 WARN_ON(1);
685 status = -EINVAL;
686 goto fail_setup;
689 /* assemble mask, used for padding to a block */
690 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
692 ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n",
693 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
695 status = ath6kl_hif_disable_intrs(dev);
697 fail_setup:
698 return status;