2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
28 #include <linux/io-64-nonatomic-hi-lo.h>
30 static DEFINE_IDA(region_ida
);
31 static DEFINE_PER_CPU(int, flush_idx
);
33 static int nvdimm_map_flush(struct device
*dev
, struct nvdimm
*nvdimm
, int dimm
,
34 struct nd_region_data
*ndrd
)
38 dev_dbg(dev
, "%s: map %d flush address%s\n", nvdimm_name(nvdimm
),
39 nvdimm
->num_flush
, nvdimm
->num_flush
== 1 ? "" : "es");
40 for (i
= 0; i
< (1 << ndrd
->hints_shift
); i
++) {
41 struct resource
*res
= &nvdimm
->flush_wpq
[i
];
42 unsigned long pfn
= PHYS_PFN(res
->start
);
43 void __iomem
*flush_page
;
45 /* check if flush hints share a page */
46 for (j
= 0; j
< i
; j
++) {
47 struct resource
*res_j
= &nvdimm
->flush_wpq
[j
];
48 unsigned long pfn_j
= PHYS_PFN(res_j
->start
);
55 flush_page
= (void __iomem
*) ((unsigned long)
56 ndrd_get_flush_wpq(ndrd
, dimm
, j
)
59 flush_page
= devm_nvdimm_ioremap(dev
,
60 PFN_PHYS(pfn
), PAGE_SIZE
);
63 ndrd_set_flush_wpq(ndrd
, dimm
, i
, flush_page
64 + (res
->start
& ~PAGE_MASK
));
70 int nd_region_activate(struct nd_region
*nd_region
)
72 int i
, j
, num_flush
= 0;
73 struct nd_region_data
*ndrd
;
74 struct device
*dev
= &nd_region
->dev
;
75 size_t flush_data_size
= sizeof(void *);
77 nvdimm_bus_lock(&nd_region
->dev
);
78 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
79 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
80 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
82 /* at least one null hint slot per-dimm for the "no-hint" case */
83 flush_data_size
+= sizeof(void *);
84 num_flush
= min_not_zero(num_flush
, nvdimm
->num_flush
);
85 if (!nvdimm
->num_flush
)
87 flush_data_size
+= nvdimm
->num_flush
* sizeof(void *);
89 nvdimm_bus_unlock(&nd_region
->dev
);
91 ndrd
= devm_kzalloc(dev
, sizeof(*ndrd
) + flush_data_size
, GFP_KERNEL
);
94 dev_set_drvdata(dev
, ndrd
);
99 ndrd
->hints_shift
= ilog2(num_flush
);
100 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
101 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
102 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
103 int rc
= nvdimm_map_flush(&nd_region
->dev
, nvdimm
, i
, ndrd
);
110 * Clear out entries that are duplicates. This should prevent the
113 for (i
= 0; i
< nd_region
->ndr_mappings
- 1; i
++) {
114 /* ignore if NULL already */
115 if (!ndrd_get_flush_wpq(ndrd
, i
, 0))
118 for (j
= i
+ 1; j
< nd_region
->ndr_mappings
; j
++)
119 if (ndrd_get_flush_wpq(ndrd
, i
, 0) ==
120 ndrd_get_flush_wpq(ndrd
, j
, 0))
121 ndrd_set_flush_wpq(ndrd
, j
, 0, NULL
);
127 static void nd_region_release(struct device
*dev
)
129 struct nd_region
*nd_region
= to_nd_region(dev
);
132 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
133 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
134 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
136 put_device(&nvdimm
->dev
);
138 free_percpu(nd_region
->lane
);
139 ida_simple_remove(®ion_ida
, nd_region
->id
);
141 kfree(to_nd_blk_region(dev
));
146 static struct device_type nd_blk_device_type
= {
148 .release
= nd_region_release
,
151 static struct device_type nd_pmem_device_type
= {
153 .release
= nd_region_release
,
156 static struct device_type nd_volatile_device_type
= {
157 .name
= "nd_volatile",
158 .release
= nd_region_release
,
161 bool is_nd_pmem(struct device
*dev
)
163 return dev
? dev
->type
== &nd_pmem_device_type
: false;
166 bool is_nd_blk(struct device
*dev
)
168 return dev
? dev
->type
== &nd_blk_device_type
: false;
171 bool is_nd_volatile(struct device
*dev
)
173 return dev
? dev
->type
== &nd_volatile_device_type
: false;
176 struct nd_region
*to_nd_region(struct device
*dev
)
178 struct nd_region
*nd_region
= container_of(dev
, struct nd_region
, dev
);
180 WARN_ON(dev
->type
->release
!= nd_region_release
);
183 EXPORT_SYMBOL_GPL(to_nd_region
);
185 struct nd_blk_region
*to_nd_blk_region(struct device
*dev
)
187 struct nd_region
*nd_region
= to_nd_region(dev
);
189 WARN_ON(!is_nd_blk(dev
));
190 return container_of(nd_region
, struct nd_blk_region
, nd_region
);
192 EXPORT_SYMBOL_GPL(to_nd_blk_region
);
194 void *nd_region_provider_data(struct nd_region
*nd_region
)
196 return nd_region
->provider_data
;
198 EXPORT_SYMBOL_GPL(nd_region_provider_data
);
200 void *nd_blk_region_provider_data(struct nd_blk_region
*ndbr
)
202 return ndbr
->blk_provider_data
;
204 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data
);
206 void nd_blk_region_set_provider_data(struct nd_blk_region
*ndbr
, void *data
)
208 ndbr
->blk_provider_data
= data
;
210 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data
);
213 * nd_region_to_nstype() - region to an integer namespace type
214 * @nd_region: region-device to interrogate
216 * This is the 'nstype' attribute of a region as well, an input to the
217 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
218 * namespace devices with namespace drivers.
220 int nd_region_to_nstype(struct nd_region
*nd_region
)
222 if (is_memory(&nd_region
->dev
)) {
225 for (i
= 0, alias
= 0; i
< nd_region
->ndr_mappings
; i
++) {
226 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
227 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
229 if (test_bit(NDD_ALIASING
, &nvdimm
->flags
))
233 return ND_DEVICE_NAMESPACE_PMEM
;
235 return ND_DEVICE_NAMESPACE_IO
;
236 } else if (is_nd_blk(&nd_region
->dev
)) {
237 return ND_DEVICE_NAMESPACE_BLK
;
242 EXPORT_SYMBOL(nd_region_to_nstype
);
244 static ssize_t
size_show(struct device
*dev
,
245 struct device_attribute
*attr
, char *buf
)
247 struct nd_region
*nd_region
= to_nd_region(dev
);
248 unsigned long long size
= 0;
250 if (is_memory(dev
)) {
251 size
= nd_region
->ndr_size
;
252 } else if (nd_region
->ndr_mappings
== 1) {
253 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[0];
255 size
= nd_mapping
->size
;
258 return sprintf(buf
, "%llu\n", size
);
260 static DEVICE_ATTR_RO(size
);
262 static ssize_t
deep_flush_show(struct device
*dev
,
263 struct device_attribute
*attr
, char *buf
)
265 struct nd_region
*nd_region
= to_nd_region(dev
);
268 * NOTE: in the nvdimm_has_flush() error case this attribute is
271 return sprintf(buf
, "%d\n", nvdimm_has_flush(nd_region
));
274 static ssize_t
deep_flush_store(struct device
*dev
, struct device_attribute
*attr
,
275 const char *buf
, size_t len
)
278 int rc
= strtobool(buf
, &flush
);
279 struct nd_region
*nd_region
= to_nd_region(dev
);
285 nvdimm_flush(nd_region
);
289 static DEVICE_ATTR_RW(deep_flush
);
291 static ssize_t
mappings_show(struct device
*dev
,
292 struct device_attribute
*attr
, char *buf
)
294 struct nd_region
*nd_region
= to_nd_region(dev
);
296 return sprintf(buf
, "%d\n", nd_region
->ndr_mappings
);
298 static DEVICE_ATTR_RO(mappings
);
300 static ssize_t
nstype_show(struct device
*dev
,
301 struct device_attribute
*attr
, char *buf
)
303 struct nd_region
*nd_region
= to_nd_region(dev
);
305 return sprintf(buf
, "%d\n", nd_region_to_nstype(nd_region
));
307 static DEVICE_ATTR_RO(nstype
);
309 static ssize_t
set_cookie_show(struct device
*dev
,
310 struct device_attribute
*attr
, char *buf
)
312 struct nd_region
*nd_region
= to_nd_region(dev
);
313 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
316 if (is_memory(dev
) && nd_set
)
317 /* pass, should be precluded by region_visible */;
322 * The cookie to show depends on which specification of the
323 * labels we are using. If there are not labels then default to
324 * the v1.1 namespace label cookie definition. To read all this
325 * data we need to wait for probing to settle.
328 nvdimm_bus_lock(dev
);
329 wait_nvdimm_bus_probe_idle(dev
);
330 if (nd_region
->ndr_mappings
) {
331 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[0];
332 struct nvdimm_drvdata
*ndd
= to_ndd(nd_mapping
);
335 struct nd_namespace_index
*nsindex
;
337 nsindex
= to_namespace_index(ndd
, ndd
->ns_current
);
338 rc
= sprintf(buf
, "%#llx\n",
339 nd_region_interleave_set_cookie(nd_region
,
343 nvdimm_bus_unlock(dev
);
348 return sprintf(buf
, "%#llx\n", nd_set
->cookie1
);
350 static DEVICE_ATTR_RO(set_cookie
);
352 resource_size_t
nd_region_available_dpa(struct nd_region
*nd_region
)
354 resource_size_t blk_max_overlap
= 0, available
, overlap
;
357 WARN_ON(!is_nvdimm_bus_locked(&nd_region
->dev
));
361 overlap
= blk_max_overlap
;
362 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
363 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
364 struct nvdimm_drvdata
*ndd
= to_ndd(nd_mapping
);
366 /* if a dimm is disabled the available capacity is zero */
370 if (is_memory(&nd_region
->dev
)) {
371 available
+= nd_pmem_available_dpa(nd_region
,
372 nd_mapping
, &overlap
);
373 if (overlap
> blk_max_overlap
) {
374 blk_max_overlap
= overlap
;
377 } else if (is_nd_blk(&nd_region
->dev
))
378 available
+= nd_blk_available_dpa(nd_region
);
384 static ssize_t
available_size_show(struct device
*dev
,
385 struct device_attribute
*attr
, char *buf
)
387 struct nd_region
*nd_region
= to_nd_region(dev
);
388 unsigned long long available
= 0;
391 * Flush in-flight updates and grab a snapshot of the available
392 * size. Of course, this value is potentially invalidated the
393 * memory nvdimm_bus_lock() is dropped, but that's userspace's
394 * problem to not race itself.
396 nvdimm_bus_lock(dev
);
397 wait_nvdimm_bus_probe_idle(dev
);
398 available
= nd_region_available_dpa(nd_region
);
399 nvdimm_bus_unlock(dev
);
401 return sprintf(buf
, "%llu\n", available
);
403 static DEVICE_ATTR_RO(available_size
);
405 static ssize_t
init_namespaces_show(struct device
*dev
,
406 struct device_attribute
*attr
, char *buf
)
408 struct nd_region_data
*ndrd
= dev_get_drvdata(dev
);
411 nvdimm_bus_lock(dev
);
413 rc
= sprintf(buf
, "%d/%d\n", ndrd
->ns_active
, ndrd
->ns_count
);
416 nvdimm_bus_unlock(dev
);
420 static DEVICE_ATTR_RO(init_namespaces
);
422 static ssize_t
namespace_seed_show(struct device
*dev
,
423 struct device_attribute
*attr
, char *buf
)
425 struct nd_region
*nd_region
= to_nd_region(dev
);
428 nvdimm_bus_lock(dev
);
429 if (nd_region
->ns_seed
)
430 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->ns_seed
));
432 rc
= sprintf(buf
, "\n");
433 nvdimm_bus_unlock(dev
);
436 static DEVICE_ATTR_RO(namespace_seed
);
438 static ssize_t
btt_seed_show(struct device
*dev
,
439 struct device_attribute
*attr
, char *buf
)
441 struct nd_region
*nd_region
= to_nd_region(dev
);
444 nvdimm_bus_lock(dev
);
445 if (nd_region
->btt_seed
)
446 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->btt_seed
));
448 rc
= sprintf(buf
, "\n");
449 nvdimm_bus_unlock(dev
);
453 static DEVICE_ATTR_RO(btt_seed
);
455 static ssize_t
pfn_seed_show(struct device
*dev
,
456 struct device_attribute
*attr
, char *buf
)
458 struct nd_region
*nd_region
= to_nd_region(dev
);
461 nvdimm_bus_lock(dev
);
462 if (nd_region
->pfn_seed
)
463 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->pfn_seed
));
465 rc
= sprintf(buf
, "\n");
466 nvdimm_bus_unlock(dev
);
470 static DEVICE_ATTR_RO(pfn_seed
);
472 static ssize_t
dax_seed_show(struct device
*dev
,
473 struct device_attribute
*attr
, char *buf
)
475 struct nd_region
*nd_region
= to_nd_region(dev
);
478 nvdimm_bus_lock(dev
);
479 if (nd_region
->dax_seed
)
480 rc
= sprintf(buf
, "%s\n", dev_name(nd_region
->dax_seed
));
482 rc
= sprintf(buf
, "\n");
483 nvdimm_bus_unlock(dev
);
487 static DEVICE_ATTR_RO(dax_seed
);
489 static ssize_t
read_only_show(struct device
*dev
,
490 struct device_attribute
*attr
, char *buf
)
492 struct nd_region
*nd_region
= to_nd_region(dev
);
494 return sprintf(buf
, "%d\n", nd_region
->ro
);
497 static ssize_t
read_only_store(struct device
*dev
,
498 struct device_attribute
*attr
, const char *buf
, size_t len
)
501 int rc
= strtobool(buf
, &ro
);
502 struct nd_region
*nd_region
= to_nd_region(dev
);
510 static DEVICE_ATTR_RW(read_only
);
512 static ssize_t
region_badblocks_show(struct device
*dev
,
513 struct device_attribute
*attr
, char *buf
)
515 struct nd_region
*nd_region
= to_nd_region(dev
);
517 return badblocks_show(&nd_region
->bb
, buf
, 0);
520 static DEVICE_ATTR(badblocks
, 0444, region_badblocks_show
, NULL
);
522 static ssize_t
resource_show(struct device
*dev
,
523 struct device_attribute
*attr
, char *buf
)
525 struct nd_region
*nd_region
= to_nd_region(dev
);
527 return sprintf(buf
, "%#llx\n", nd_region
->ndr_start
);
529 static DEVICE_ATTR_RO(resource
);
531 static ssize_t
persistence_domain_show(struct device
*dev
,
532 struct device_attribute
*attr
, char *buf
)
534 struct nd_region
*nd_region
= to_nd_region(dev
);
536 if (test_bit(ND_REGION_PERSIST_CACHE
, &nd_region
->flags
))
537 return sprintf(buf
, "cpu_cache\n");
538 else if (test_bit(ND_REGION_PERSIST_MEMCTRL
, &nd_region
->flags
))
539 return sprintf(buf
, "memory_controller\n");
541 return sprintf(buf
, "\n");
543 static DEVICE_ATTR_RO(persistence_domain
);
545 static struct attribute
*nd_region_attributes
[] = {
547 &dev_attr_nstype
.attr
,
548 &dev_attr_mappings
.attr
,
549 &dev_attr_btt_seed
.attr
,
550 &dev_attr_pfn_seed
.attr
,
551 &dev_attr_dax_seed
.attr
,
552 &dev_attr_deep_flush
.attr
,
553 &dev_attr_read_only
.attr
,
554 &dev_attr_set_cookie
.attr
,
555 &dev_attr_available_size
.attr
,
556 &dev_attr_namespace_seed
.attr
,
557 &dev_attr_init_namespaces
.attr
,
558 &dev_attr_badblocks
.attr
,
559 &dev_attr_resource
.attr
,
560 &dev_attr_persistence_domain
.attr
,
564 static umode_t
region_visible(struct kobject
*kobj
, struct attribute
*a
, int n
)
566 struct device
*dev
= container_of(kobj
, typeof(*dev
), kobj
);
567 struct nd_region
*nd_region
= to_nd_region(dev
);
568 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
569 int type
= nd_region_to_nstype(nd_region
);
571 if (!is_memory(dev
) && a
== &dev_attr_pfn_seed
.attr
)
574 if (!is_memory(dev
) && a
== &dev_attr_dax_seed
.attr
)
577 if (!is_nd_pmem(dev
) && a
== &dev_attr_badblocks
.attr
)
580 if (a
== &dev_attr_resource
.attr
) {
587 if (a
== &dev_attr_deep_flush
.attr
) {
588 int has_flush
= nvdimm_has_flush(nd_region
);
592 else if (has_flush
== 0)
598 if (a
== &dev_attr_persistence_domain
.attr
) {
599 if ((nd_region
->flags
& (BIT(ND_REGION_PERSIST_CACHE
)
600 | BIT(ND_REGION_PERSIST_MEMCTRL
))) == 0)
605 if (a
!= &dev_attr_set_cookie
.attr
606 && a
!= &dev_attr_available_size
.attr
)
609 if ((type
== ND_DEVICE_NAMESPACE_PMEM
610 || type
== ND_DEVICE_NAMESPACE_BLK
)
611 && a
== &dev_attr_available_size
.attr
)
613 else if (is_memory(dev
) && nd_set
)
619 struct attribute_group nd_region_attribute_group
= {
620 .attrs
= nd_region_attributes
,
621 .is_visible
= region_visible
,
623 EXPORT_SYMBOL_GPL(nd_region_attribute_group
);
625 u64
nd_region_interleave_set_cookie(struct nd_region
*nd_region
,
626 struct nd_namespace_index
*nsindex
)
628 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
633 if (nsindex
&& __le16_to_cpu(nsindex
->major
) == 1
634 && __le16_to_cpu(nsindex
->minor
) == 1)
635 return nd_set
->cookie1
;
636 return nd_set
->cookie2
;
639 u64
nd_region_interleave_set_altcookie(struct nd_region
*nd_region
)
641 struct nd_interleave_set
*nd_set
= nd_region
->nd_set
;
644 return nd_set
->altcookie
;
648 void nd_mapping_free_labels(struct nd_mapping
*nd_mapping
)
650 struct nd_label_ent
*label_ent
, *e
;
652 lockdep_assert_held(&nd_mapping
->lock
);
653 list_for_each_entry_safe(label_ent
, e
, &nd_mapping
->labels
, list
) {
654 list_del(&label_ent
->list
);
660 * Upon successful probe/remove, take/release a reference on the
661 * associated interleave set (if present), and plant new btt + namespace
662 * seeds. Also, on the removal of a BLK region, notify the provider to
663 * disable the region.
665 static void nd_region_notify_driver_action(struct nvdimm_bus
*nvdimm_bus
,
666 struct device
*dev
, bool probe
)
668 struct nd_region
*nd_region
;
670 if (!probe
&& is_nd_region(dev
)) {
673 nd_region
= to_nd_region(dev
);
674 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
675 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
676 struct nvdimm_drvdata
*ndd
= nd_mapping
->ndd
;
677 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
679 mutex_lock(&nd_mapping
->lock
);
680 nd_mapping_free_labels(nd_mapping
);
681 mutex_unlock(&nd_mapping
->lock
);
684 nd_mapping
->ndd
= NULL
;
686 atomic_dec(&nvdimm
->busy
);
689 if (dev
->parent
&& is_nd_region(dev
->parent
) && probe
) {
690 nd_region
= to_nd_region(dev
->parent
);
691 nvdimm_bus_lock(dev
);
692 if (nd_region
->ns_seed
== dev
)
693 nd_region_create_ns_seed(nd_region
);
694 nvdimm_bus_unlock(dev
);
696 if (is_nd_btt(dev
) && probe
) {
697 struct nd_btt
*nd_btt
= to_nd_btt(dev
);
699 nd_region
= to_nd_region(dev
->parent
);
700 nvdimm_bus_lock(dev
);
701 if (nd_region
->btt_seed
== dev
)
702 nd_region_create_btt_seed(nd_region
);
703 if (nd_region
->ns_seed
== &nd_btt
->ndns
->dev
)
704 nd_region_create_ns_seed(nd_region
);
705 nvdimm_bus_unlock(dev
);
707 if (is_nd_pfn(dev
) && probe
) {
708 struct nd_pfn
*nd_pfn
= to_nd_pfn(dev
);
710 nd_region
= to_nd_region(dev
->parent
);
711 nvdimm_bus_lock(dev
);
712 if (nd_region
->pfn_seed
== dev
)
713 nd_region_create_pfn_seed(nd_region
);
714 if (nd_region
->ns_seed
== &nd_pfn
->ndns
->dev
)
715 nd_region_create_ns_seed(nd_region
);
716 nvdimm_bus_unlock(dev
);
718 if (is_nd_dax(dev
) && probe
) {
719 struct nd_dax
*nd_dax
= to_nd_dax(dev
);
721 nd_region
= to_nd_region(dev
->parent
);
722 nvdimm_bus_lock(dev
);
723 if (nd_region
->dax_seed
== dev
)
724 nd_region_create_dax_seed(nd_region
);
725 if (nd_region
->ns_seed
== &nd_dax
->nd_pfn
.ndns
->dev
)
726 nd_region_create_ns_seed(nd_region
);
727 nvdimm_bus_unlock(dev
);
731 void nd_region_probe_success(struct nvdimm_bus
*nvdimm_bus
, struct device
*dev
)
733 nd_region_notify_driver_action(nvdimm_bus
, dev
, true);
736 void nd_region_disable(struct nvdimm_bus
*nvdimm_bus
, struct device
*dev
)
738 nd_region_notify_driver_action(nvdimm_bus
, dev
, false);
741 static ssize_t
mappingN(struct device
*dev
, char *buf
, int n
)
743 struct nd_region
*nd_region
= to_nd_region(dev
);
744 struct nd_mapping
*nd_mapping
;
745 struct nvdimm
*nvdimm
;
747 if (n
>= nd_region
->ndr_mappings
)
749 nd_mapping
= &nd_region
->mapping
[n
];
750 nvdimm
= nd_mapping
->nvdimm
;
752 return sprintf(buf
, "%s,%llu,%llu,%d\n", dev_name(&nvdimm
->dev
),
753 nd_mapping
->start
, nd_mapping
->size
,
754 nd_mapping
->position
);
757 #define REGION_MAPPING(idx) \
758 static ssize_t mapping##idx##_show(struct device *dev, \
759 struct device_attribute *attr, char *buf) \
761 return mappingN(dev, buf, idx); \
763 static DEVICE_ATTR_RO(mapping##idx)
766 * 32 should be enough for a while, even in the presence of socket
767 * interleave a 32-way interleave set is a degenerate case.
802 static umode_t
mapping_visible(struct kobject
*kobj
, struct attribute
*a
, int n
)
804 struct device
*dev
= container_of(kobj
, struct device
, kobj
);
805 struct nd_region
*nd_region
= to_nd_region(dev
);
807 if (n
< nd_region
->ndr_mappings
)
812 static struct attribute
*mapping_attributes
[] = {
813 &dev_attr_mapping0
.attr
,
814 &dev_attr_mapping1
.attr
,
815 &dev_attr_mapping2
.attr
,
816 &dev_attr_mapping3
.attr
,
817 &dev_attr_mapping4
.attr
,
818 &dev_attr_mapping5
.attr
,
819 &dev_attr_mapping6
.attr
,
820 &dev_attr_mapping7
.attr
,
821 &dev_attr_mapping8
.attr
,
822 &dev_attr_mapping9
.attr
,
823 &dev_attr_mapping10
.attr
,
824 &dev_attr_mapping11
.attr
,
825 &dev_attr_mapping12
.attr
,
826 &dev_attr_mapping13
.attr
,
827 &dev_attr_mapping14
.attr
,
828 &dev_attr_mapping15
.attr
,
829 &dev_attr_mapping16
.attr
,
830 &dev_attr_mapping17
.attr
,
831 &dev_attr_mapping18
.attr
,
832 &dev_attr_mapping19
.attr
,
833 &dev_attr_mapping20
.attr
,
834 &dev_attr_mapping21
.attr
,
835 &dev_attr_mapping22
.attr
,
836 &dev_attr_mapping23
.attr
,
837 &dev_attr_mapping24
.attr
,
838 &dev_attr_mapping25
.attr
,
839 &dev_attr_mapping26
.attr
,
840 &dev_attr_mapping27
.attr
,
841 &dev_attr_mapping28
.attr
,
842 &dev_attr_mapping29
.attr
,
843 &dev_attr_mapping30
.attr
,
844 &dev_attr_mapping31
.attr
,
848 struct attribute_group nd_mapping_attribute_group
= {
849 .is_visible
= mapping_visible
,
850 .attrs
= mapping_attributes
,
852 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group
);
854 int nd_blk_region_init(struct nd_region
*nd_region
)
856 struct device
*dev
= &nd_region
->dev
;
857 struct nvdimm_bus
*nvdimm_bus
= walk_to_nvdimm_bus(dev
);
862 if (nd_region
->ndr_mappings
< 1) {
863 dev_dbg(dev
, "invalid BLK region\n");
867 return to_nd_blk_region(dev
)->enable(nvdimm_bus
, dev
);
871 * nd_region_acquire_lane - allocate and lock a lane
872 * @nd_region: region id and number of lanes possible
874 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
875 * We optimize for the common case where there are 256 lanes, one
876 * per-cpu. For larger systems we need to lock to share lanes. For now
877 * this implementation assumes the cost of maintaining an allocator for
878 * free lanes is on the order of the lock hold time, so it implements a
879 * static lane = cpu % num_lanes mapping.
881 * In the case of a BTT instance on top of a BLK namespace a lane may be
882 * acquired recursively. We lock on the first instance.
884 * In the case of a BTT instance on top of PMEM, we only acquire a lane
885 * for the BTT metadata updates.
887 unsigned int nd_region_acquire_lane(struct nd_region
*nd_region
)
889 unsigned int cpu
, lane
;
892 if (nd_region
->num_lanes
< nr_cpu_ids
) {
893 struct nd_percpu_lane
*ndl_lock
, *ndl_count
;
895 lane
= cpu
% nd_region
->num_lanes
;
896 ndl_count
= per_cpu_ptr(nd_region
->lane
, cpu
);
897 ndl_lock
= per_cpu_ptr(nd_region
->lane
, lane
);
898 if (ndl_count
->count
++ == 0)
899 spin_lock(&ndl_lock
->lock
);
905 EXPORT_SYMBOL(nd_region_acquire_lane
);
907 void nd_region_release_lane(struct nd_region
*nd_region
, unsigned int lane
)
909 if (nd_region
->num_lanes
< nr_cpu_ids
) {
910 unsigned int cpu
= get_cpu();
911 struct nd_percpu_lane
*ndl_lock
, *ndl_count
;
913 ndl_count
= per_cpu_ptr(nd_region
->lane
, cpu
);
914 ndl_lock
= per_cpu_ptr(nd_region
->lane
, lane
);
915 if (--ndl_count
->count
== 0)
916 spin_unlock(&ndl_lock
->lock
);
921 EXPORT_SYMBOL(nd_region_release_lane
);
923 static struct nd_region
*nd_region_create(struct nvdimm_bus
*nvdimm_bus
,
924 struct nd_region_desc
*ndr_desc
, struct device_type
*dev_type
,
927 struct nd_region
*nd_region
;
933 for (i
= 0; i
< ndr_desc
->num_mappings
; i
++) {
934 struct nd_mapping_desc
*mapping
= &ndr_desc
->mapping
[i
];
935 struct nvdimm
*nvdimm
= mapping
->nvdimm
;
937 if ((mapping
->start
| mapping
->size
) % SZ_4K
) {
938 dev_err(&nvdimm_bus
->dev
, "%s: %s mapping%d is not 4K aligned\n",
939 caller
, dev_name(&nvdimm
->dev
), i
);
944 if (test_bit(NDD_UNARMED
, &nvdimm
->flags
))
948 if (dev_type
== &nd_blk_device_type
) {
949 struct nd_blk_region_desc
*ndbr_desc
;
950 struct nd_blk_region
*ndbr
;
952 ndbr_desc
= to_blk_region_desc(ndr_desc
);
953 ndbr
= kzalloc(sizeof(*ndbr
) + sizeof(struct nd_mapping
)
954 * ndr_desc
->num_mappings
,
957 nd_region
= &ndbr
->nd_region
;
958 ndbr
->enable
= ndbr_desc
->enable
;
959 ndbr
->do_io
= ndbr_desc
->do_io
;
963 nd_region
= kzalloc(sizeof(struct nd_region
)
964 + sizeof(struct nd_mapping
)
965 * ndr_desc
->num_mappings
,
967 region_buf
= nd_region
;
972 nd_region
->id
= ida_simple_get(®ion_ida
, 0, 0, GFP_KERNEL
);
973 if (nd_region
->id
< 0)
976 nd_region
->lane
= alloc_percpu(struct nd_percpu_lane
);
977 if (!nd_region
->lane
)
980 for (i
= 0; i
< nr_cpu_ids
; i
++) {
981 struct nd_percpu_lane
*ndl
;
983 ndl
= per_cpu_ptr(nd_region
->lane
, i
);
984 spin_lock_init(&ndl
->lock
);
988 for (i
= 0; i
< ndr_desc
->num_mappings
; i
++) {
989 struct nd_mapping_desc
*mapping
= &ndr_desc
->mapping
[i
];
990 struct nvdimm
*nvdimm
= mapping
->nvdimm
;
992 nd_region
->mapping
[i
].nvdimm
= nvdimm
;
993 nd_region
->mapping
[i
].start
= mapping
->start
;
994 nd_region
->mapping
[i
].size
= mapping
->size
;
995 nd_region
->mapping
[i
].position
= mapping
->position
;
996 INIT_LIST_HEAD(&nd_region
->mapping
[i
].labels
);
997 mutex_init(&nd_region
->mapping
[i
].lock
);
999 get_device(&nvdimm
->dev
);
1001 nd_region
->ndr_mappings
= ndr_desc
->num_mappings
;
1002 nd_region
->provider_data
= ndr_desc
->provider_data
;
1003 nd_region
->nd_set
= ndr_desc
->nd_set
;
1004 nd_region
->num_lanes
= ndr_desc
->num_lanes
;
1005 nd_region
->flags
= ndr_desc
->flags
;
1007 nd_region
->numa_node
= ndr_desc
->numa_node
;
1008 ida_init(&nd_region
->ns_ida
);
1009 ida_init(&nd_region
->btt_ida
);
1010 ida_init(&nd_region
->pfn_ida
);
1011 ida_init(&nd_region
->dax_ida
);
1012 dev
= &nd_region
->dev
;
1013 dev_set_name(dev
, "region%d", nd_region
->id
);
1014 dev
->parent
= &nvdimm_bus
->dev
;
1015 dev
->type
= dev_type
;
1016 dev
->groups
= ndr_desc
->attr_groups
;
1017 nd_region
->ndr_size
= resource_size(ndr_desc
->res
);
1018 nd_region
->ndr_start
= ndr_desc
->res
->start
;
1019 nd_device_register(dev
);
1024 ida_simple_remove(®ion_ida
, nd_region
->id
);
1030 struct nd_region
*nvdimm_pmem_region_create(struct nvdimm_bus
*nvdimm_bus
,
1031 struct nd_region_desc
*ndr_desc
)
1033 ndr_desc
->num_lanes
= ND_MAX_LANES
;
1034 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_pmem_device_type
,
1037 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create
);
1039 struct nd_region
*nvdimm_blk_region_create(struct nvdimm_bus
*nvdimm_bus
,
1040 struct nd_region_desc
*ndr_desc
)
1042 if (ndr_desc
->num_mappings
> 1)
1044 ndr_desc
->num_lanes
= min(ndr_desc
->num_lanes
, ND_MAX_LANES
);
1045 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_blk_device_type
,
1048 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create
);
1050 struct nd_region
*nvdimm_volatile_region_create(struct nvdimm_bus
*nvdimm_bus
,
1051 struct nd_region_desc
*ndr_desc
)
1053 ndr_desc
->num_lanes
= ND_MAX_LANES
;
1054 return nd_region_create(nvdimm_bus
, ndr_desc
, &nd_volatile_device_type
,
1057 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create
);
1060 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1061 * @nd_region: blk or interleaved pmem region
1063 void nvdimm_flush(struct nd_region
*nd_region
)
1065 struct nd_region_data
*ndrd
= dev_get_drvdata(&nd_region
->dev
);
1069 * Try to encourage some diversity in flush hint addresses
1070 * across cpus assuming a limited number of flush hints.
1072 idx
= this_cpu_read(flush_idx
);
1073 idx
= this_cpu_add_return(flush_idx
, hash_32(current
->pid
+ idx
, 8));
1076 * The first wmb() is needed to 'sfence' all previous writes
1077 * such that they are architecturally visible for the platform
1078 * buffer flush. Note that we've already arranged for pmem
1079 * writes to avoid the cache via memcpy_flushcache(). The final
1080 * wmb() ensures ordering for the NVDIMM flush write.
1083 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++)
1084 if (ndrd_get_flush_wpq(ndrd
, i
, 0))
1085 writeq(1, ndrd_get_flush_wpq(ndrd
, i
, idx
));
1088 EXPORT_SYMBOL_GPL(nvdimm_flush
);
1091 * nvdimm_has_flush - determine write flushing requirements
1092 * @nd_region: blk or interleaved pmem region
1094 * Returns 1 if writes require flushing
1095 * Returns 0 if writes do not require flushing
1096 * Returns -ENXIO if flushing capability can not be determined
1098 int nvdimm_has_flush(struct nd_region
*nd_region
)
1102 /* no nvdimm or pmem api == flushing capability unknown */
1103 if (nd_region
->ndr_mappings
== 0
1104 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API
))
1107 for (i
= 0; i
< nd_region
->ndr_mappings
; i
++) {
1108 struct nd_mapping
*nd_mapping
= &nd_region
->mapping
[i
];
1109 struct nvdimm
*nvdimm
= nd_mapping
->nvdimm
;
1111 /* flush hints present / available */
1112 if (nvdimm
->num_flush
)
1117 * The platform defines dimm devices without hints, assume
1118 * platform persistence mechanism like ADR
1122 EXPORT_SYMBOL_GPL(nvdimm_has_flush
);
1124 int nvdimm_has_cache(struct nd_region
*nd_region
)
1126 return is_nd_pmem(&nd_region
->dev
);
1128 EXPORT_SYMBOL_GPL(nvdimm_has_cache
);
1130 void __exit
nd_region_devs_exit(void)
1132 ida_destroy(®ion_ida
);