Linux 4.16.11
[linux/fpc-iii.git] / drivers / pci / access.c
blob5e9a9822d9d428f962ab87646cf6fbbf3bab1f54
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/delay.h>
3 #include <linux/pci.h>
4 #include <linux/module.h>
5 #include <linux/sched/signal.h>
6 #include <linux/slab.h>
7 #include <linux/ioport.h>
8 #include <linux/wait.h>
10 #include "pci.h"
13 * This interrupt-safe spinlock protects all accesses to PCI
14 * configuration space.
17 DEFINE_RAW_SPINLOCK(pci_lock);
20 * Wrappers for all PCI configuration access functions. They just check
21 * alignment, do locking and call the low-level functions pointed to
22 * by pci_dev->ops.
25 #define PCI_byte_BAD 0
26 #define PCI_word_BAD (pos & 1)
27 #define PCI_dword_BAD (pos & 3)
29 #ifdef CONFIG_PCI_LOCKLESS_CONFIG
30 # define pci_lock_config(f) do { (void)(f); } while (0)
31 # define pci_unlock_config(f) do { (void)(f); } while (0)
32 #else
33 # define pci_lock_config(f) raw_spin_lock_irqsave(&pci_lock, f)
34 # define pci_unlock_config(f) raw_spin_unlock_irqrestore(&pci_lock, f)
35 #endif
37 #define PCI_OP_READ(size, type, len) \
38 int pci_bus_read_config_##size \
39 (struct pci_bus *bus, unsigned int devfn, int pos, type *value) \
40 { \
41 int res; \
42 unsigned long flags; \
43 u32 data = 0; \
44 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
45 pci_lock_config(flags); \
46 res = bus->ops->read(bus, devfn, pos, len, &data); \
47 *value = (type)data; \
48 pci_unlock_config(flags); \
49 return res; \
52 #define PCI_OP_WRITE(size, type, len) \
53 int pci_bus_write_config_##size \
54 (struct pci_bus *bus, unsigned int devfn, int pos, type value) \
55 { \
56 int res; \
57 unsigned long flags; \
58 if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
59 pci_lock_config(flags); \
60 res = bus->ops->write(bus, devfn, pos, len, value); \
61 pci_unlock_config(flags); \
62 return res; \
65 PCI_OP_READ(byte, u8, 1)
66 PCI_OP_READ(word, u16, 2)
67 PCI_OP_READ(dword, u32, 4)
68 PCI_OP_WRITE(byte, u8, 1)
69 PCI_OP_WRITE(word, u16, 2)
70 PCI_OP_WRITE(dword, u32, 4)
72 EXPORT_SYMBOL(pci_bus_read_config_byte);
73 EXPORT_SYMBOL(pci_bus_read_config_word);
74 EXPORT_SYMBOL(pci_bus_read_config_dword);
75 EXPORT_SYMBOL(pci_bus_write_config_byte);
76 EXPORT_SYMBOL(pci_bus_write_config_word);
77 EXPORT_SYMBOL(pci_bus_write_config_dword);
79 int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
80 int where, int size, u32 *val)
82 void __iomem *addr;
84 addr = bus->ops->map_bus(bus, devfn, where);
85 if (!addr) {
86 *val = ~0;
87 return PCIBIOS_DEVICE_NOT_FOUND;
90 if (size == 1)
91 *val = readb(addr);
92 else if (size == 2)
93 *val = readw(addr);
94 else
95 *val = readl(addr);
97 return PCIBIOS_SUCCESSFUL;
99 EXPORT_SYMBOL_GPL(pci_generic_config_read);
101 int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
102 int where, int size, u32 val)
104 void __iomem *addr;
106 addr = bus->ops->map_bus(bus, devfn, where);
107 if (!addr)
108 return PCIBIOS_DEVICE_NOT_FOUND;
110 if (size == 1)
111 writeb(val, addr);
112 else if (size == 2)
113 writew(val, addr);
114 else
115 writel(val, addr);
117 return PCIBIOS_SUCCESSFUL;
119 EXPORT_SYMBOL_GPL(pci_generic_config_write);
121 int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
122 int where, int size, u32 *val)
124 void __iomem *addr;
126 addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
127 if (!addr) {
128 *val = ~0;
129 return PCIBIOS_DEVICE_NOT_FOUND;
132 *val = readl(addr);
134 if (size <= 2)
135 *val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
137 return PCIBIOS_SUCCESSFUL;
139 EXPORT_SYMBOL_GPL(pci_generic_config_read32);
141 int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
142 int where, int size, u32 val)
144 void __iomem *addr;
145 u32 mask, tmp;
147 addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
148 if (!addr)
149 return PCIBIOS_DEVICE_NOT_FOUND;
151 if (size == 4) {
152 writel(val, addr);
153 return PCIBIOS_SUCCESSFUL;
157 * In general, hardware that supports only 32-bit writes on PCI is
158 * not spec-compliant. For example, software may perform a 16-bit
159 * write. If the hardware only supports 32-bit accesses, we must
160 * do a 32-bit read, merge in the 16 bits we intend to write,
161 * followed by a 32-bit write. If the 16 bits we *don't* intend to
162 * write happen to have any RW1C (write-one-to-clear) bits set, we
163 * just inadvertently cleared something we shouldn't have.
165 dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
166 size, pci_domain_nr(bus), bus->number,
167 PCI_SLOT(devfn), PCI_FUNC(devfn), where);
169 mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
170 tmp = readl(addr) & mask;
171 tmp |= val << ((where & 0x3) * 8);
172 writel(tmp, addr);
174 return PCIBIOS_SUCCESSFUL;
176 EXPORT_SYMBOL_GPL(pci_generic_config_write32);
179 * pci_bus_set_ops - Set raw operations of pci bus
180 * @bus: pci bus struct
181 * @ops: new raw operations
183 * Return previous raw operations
185 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
187 struct pci_ops *old_ops;
188 unsigned long flags;
190 raw_spin_lock_irqsave(&pci_lock, flags);
191 old_ops = bus->ops;
192 bus->ops = ops;
193 raw_spin_unlock_irqrestore(&pci_lock, flags);
194 return old_ops;
196 EXPORT_SYMBOL(pci_bus_set_ops);
199 * The following routines are to prevent the user from accessing PCI config
200 * space when it's unsafe to do so. Some devices require this during BIST and
201 * we're required to prevent it during D-state transitions.
203 * We have a bit per device to indicate it's blocked and a global wait queue
204 * for callers to sleep on until devices are unblocked.
206 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
208 static noinline void pci_wait_cfg(struct pci_dev *dev)
210 DECLARE_WAITQUEUE(wait, current);
212 __add_wait_queue(&pci_cfg_wait, &wait);
213 do {
214 set_current_state(TASK_UNINTERRUPTIBLE);
215 raw_spin_unlock_irq(&pci_lock);
216 schedule();
217 raw_spin_lock_irq(&pci_lock);
218 } while (dev->block_cfg_access);
219 __remove_wait_queue(&pci_cfg_wait, &wait);
222 /* Returns 0 on success, negative values indicate error. */
223 #define PCI_USER_READ_CONFIG(size, type) \
224 int pci_user_read_config_##size \
225 (struct pci_dev *dev, int pos, type *val) \
227 int ret = PCIBIOS_SUCCESSFUL; \
228 u32 data = -1; \
229 if (PCI_##size##_BAD) \
230 return -EINVAL; \
231 raw_spin_lock_irq(&pci_lock); \
232 if (unlikely(dev->block_cfg_access)) \
233 pci_wait_cfg(dev); \
234 ret = dev->bus->ops->read(dev->bus, dev->devfn, \
235 pos, sizeof(type), &data); \
236 raw_spin_unlock_irq(&pci_lock); \
237 *val = (type)data; \
238 return pcibios_err_to_errno(ret); \
240 EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
242 /* Returns 0 on success, negative values indicate error. */
243 #define PCI_USER_WRITE_CONFIG(size, type) \
244 int pci_user_write_config_##size \
245 (struct pci_dev *dev, int pos, type val) \
247 int ret = PCIBIOS_SUCCESSFUL; \
248 if (PCI_##size##_BAD) \
249 return -EINVAL; \
250 raw_spin_lock_irq(&pci_lock); \
251 if (unlikely(dev->block_cfg_access)) \
252 pci_wait_cfg(dev); \
253 ret = dev->bus->ops->write(dev->bus, dev->devfn, \
254 pos, sizeof(type), val); \
255 raw_spin_unlock_irq(&pci_lock); \
256 return pcibios_err_to_errno(ret); \
258 EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
260 PCI_USER_READ_CONFIG(byte, u8)
261 PCI_USER_READ_CONFIG(word, u16)
262 PCI_USER_READ_CONFIG(dword, u32)
263 PCI_USER_WRITE_CONFIG(byte, u8)
264 PCI_USER_WRITE_CONFIG(word, u16)
265 PCI_USER_WRITE_CONFIG(dword, u32)
267 /* VPD access through PCI 2.2+ VPD capability */
270 * pci_read_vpd - Read one entry from Vital Product Data
271 * @dev: pci device struct
272 * @pos: offset in vpd space
273 * @count: number of bytes to read
274 * @buf: pointer to where to store result
276 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
278 if (!dev->vpd || !dev->vpd->ops)
279 return -ENODEV;
280 return dev->vpd->ops->read(dev, pos, count, buf);
282 EXPORT_SYMBOL(pci_read_vpd);
285 * pci_write_vpd - Write entry to Vital Product Data
286 * @dev: pci device struct
287 * @pos: offset in vpd space
288 * @count: number of bytes to write
289 * @buf: buffer containing write data
291 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
293 if (!dev->vpd || !dev->vpd->ops)
294 return -ENODEV;
295 return dev->vpd->ops->write(dev, pos, count, buf);
297 EXPORT_SYMBOL(pci_write_vpd);
300 * pci_set_vpd_size - Set size of Vital Product Data space
301 * @dev: pci device struct
302 * @len: size of vpd space
304 int pci_set_vpd_size(struct pci_dev *dev, size_t len)
306 if (!dev->vpd || !dev->vpd->ops)
307 return -ENODEV;
308 return dev->vpd->ops->set_size(dev, len);
310 EXPORT_SYMBOL(pci_set_vpd_size);
312 #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
315 * pci_vpd_size - determine actual size of Vital Product Data
316 * @dev: pci device struct
317 * @old_size: current assumed size, also maximum allowed size
319 static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
321 size_t off = 0;
322 unsigned char header[1+2]; /* 1 byte tag, 2 bytes length */
324 while (off < old_size &&
325 pci_read_vpd(dev, off, 1, header) == 1) {
326 unsigned char tag;
328 if (header[0] & PCI_VPD_LRDT) {
329 /* Large Resource Data Type Tag */
330 tag = pci_vpd_lrdt_tag(header);
331 /* Only read length from known tag items */
332 if ((tag == PCI_VPD_LTIN_ID_STRING) ||
333 (tag == PCI_VPD_LTIN_RO_DATA) ||
334 (tag == PCI_VPD_LTIN_RW_DATA)) {
335 if (pci_read_vpd(dev, off+1, 2,
336 &header[1]) != 2) {
337 pci_warn(dev, "invalid large VPD tag %02x size at offset %zu",
338 tag, off + 1);
339 return 0;
341 off += PCI_VPD_LRDT_TAG_SIZE +
342 pci_vpd_lrdt_size(header);
344 } else {
345 /* Short Resource Data Type Tag */
346 off += PCI_VPD_SRDT_TAG_SIZE +
347 pci_vpd_srdt_size(header);
348 tag = pci_vpd_srdt_tag(header);
351 if (tag == PCI_VPD_STIN_END) /* End tag descriptor */
352 return off;
354 if ((tag != PCI_VPD_LTIN_ID_STRING) &&
355 (tag != PCI_VPD_LTIN_RO_DATA) &&
356 (tag != PCI_VPD_LTIN_RW_DATA)) {
357 pci_warn(dev, "invalid %s VPD tag %02x at offset %zu",
358 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
359 tag, off);
360 return 0;
363 return 0;
367 * Wait for last operation to complete.
368 * This code has to spin since there is no other notification from the PCI
369 * hardware. Since the VPD is often implemented by serial attachment to an
370 * EEPROM, it may take many milliseconds to complete.
372 * Returns 0 on success, negative values indicate error.
374 static int pci_vpd_wait(struct pci_dev *dev)
376 struct pci_vpd *vpd = dev->vpd;
377 unsigned long timeout = jiffies + msecs_to_jiffies(125);
378 unsigned long max_sleep = 16;
379 u16 status;
380 int ret;
382 if (!vpd->busy)
383 return 0;
385 while (time_before(jiffies, timeout)) {
386 ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
387 &status);
388 if (ret < 0)
389 return ret;
391 if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
392 vpd->busy = 0;
393 return 0;
396 if (fatal_signal_pending(current))
397 return -EINTR;
399 usleep_range(10, max_sleep);
400 if (max_sleep < 1024)
401 max_sleep *= 2;
404 pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n");
405 return -ETIMEDOUT;
408 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
409 void *arg)
411 struct pci_vpd *vpd = dev->vpd;
412 int ret;
413 loff_t end = pos + count;
414 u8 *buf = arg;
416 if (pos < 0)
417 return -EINVAL;
419 if (!vpd->valid) {
420 vpd->valid = 1;
421 vpd->len = pci_vpd_size(dev, vpd->len);
424 if (vpd->len == 0)
425 return -EIO;
427 if (pos > vpd->len)
428 return 0;
430 if (end > vpd->len) {
431 end = vpd->len;
432 count = end - pos;
435 if (mutex_lock_killable(&vpd->lock))
436 return -EINTR;
438 ret = pci_vpd_wait(dev);
439 if (ret < 0)
440 goto out;
442 while (pos < end) {
443 u32 val;
444 unsigned int i, skip;
446 ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
447 pos & ~3);
448 if (ret < 0)
449 break;
450 vpd->busy = 1;
451 vpd->flag = PCI_VPD_ADDR_F;
452 ret = pci_vpd_wait(dev);
453 if (ret < 0)
454 break;
456 ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
457 if (ret < 0)
458 break;
460 skip = pos & 3;
461 for (i = 0; i < sizeof(u32); i++) {
462 if (i >= skip) {
463 *buf++ = val;
464 if (++pos == end)
465 break;
467 val >>= 8;
470 out:
471 mutex_unlock(&vpd->lock);
472 return ret ? ret : count;
475 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
476 const void *arg)
478 struct pci_vpd *vpd = dev->vpd;
479 const u8 *buf = arg;
480 loff_t end = pos + count;
481 int ret = 0;
483 if (pos < 0 || (pos & 3) || (count & 3))
484 return -EINVAL;
486 if (!vpd->valid) {
487 vpd->valid = 1;
488 vpd->len = pci_vpd_size(dev, vpd->len);
491 if (vpd->len == 0)
492 return -EIO;
494 if (end > vpd->len)
495 return -EINVAL;
497 if (mutex_lock_killable(&vpd->lock))
498 return -EINTR;
500 ret = pci_vpd_wait(dev);
501 if (ret < 0)
502 goto out;
504 while (pos < end) {
505 u32 val;
507 val = *buf++;
508 val |= *buf++ << 8;
509 val |= *buf++ << 16;
510 val |= *buf++ << 24;
512 ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
513 if (ret < 0)
514 break;
515 ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
516 pos | PCI_VPD_ADDR_F);
517 if (ret < 0)
518 break;
520 vpd->busy = 1;
521 vpd->flag = 0;
522 ret = pci_vpd_wait(dev);
523 if (ret < 0)
524 break;
526 pos += sizeof(u32);
528 out:
529 mutex_unlock(&vpd->lock);
530 return ret ? ret : count;
533 static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
535 struct pci_vpd *vpd = dev->vpd;
537 if (len == 0 || len > PCI_VPD_MAX_SIZE)
538 return -EIO;
540 vpd->valid = 1;
541 vpd->len = len;
543 return 0;
546 static const struct pci_vpd_ops pci_vpd_ops = {
547 .read = pci_vpd_read,
548 .write = pci_vpd_write,
549 .set_size = pci_vpd_set_size,
552 static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
553 void *arg)
555 struct pci_dev *tdev = pci_get_slot(dev->bus,
556 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
557 ssize_t ret;
559 if (!tdev)
560 return -ENODEV;
562 ret = pci_read_vpd(tdev, pos, count, arg);
563 pci_dev_put(tdev);
564 return ret;
567 static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
568 const void *arg)
570 struct pci_dev *tdev = pci_get_slot(dev->bus,
571 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
572 ssize_t ret;
574 if (!tdev)
575 return -ENODEV;
577 ret = pci_write_vpd(tdev, pos, count, arg);
578 pci_dev_put(tdev);
579 return ret;
582 static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
584 struct pci_dev *tdev = pci_get_slot(dev->bus,
585 PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
586 int ret;
588 if (!tdev)
589 return -ENODEV;
591 ret = pci_set_vpd_size(tdev, len);
592 pci_dev_put(tdev);
593 return ret;
596 static const struct pci_vpd_ops pci_vpd_f0_ops = {
597 .read = pci_vpd_f0_read,
598 .write = pci_vpd_f0_write,
599 .set_size = pci_vpd_f0_set_size,
602 int pci_vpd_init(struct pci_dev *dev)
604 struct pci_vpd *vpd;
605 u8 cap;
607 cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
608 if (!cap)
609 return -ENODEV;
611 vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
612 if (!vpd)
613 return -ENOMEM;
615 vpd->len = PCI_VPD_MAX_SIZE;
616 if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
617 vpd->ops = &pci_vpd_f0_ops;
618 else
619 vpd->ops = &pci_vpd_ops;
620 mutex_init(&vpd->lock);
621 vpd->cap = cap;
622 vpd->busy = 0;
623 vpd->valid = 0;
624 dev->vpd = vpd;
625 return 0;
628 void pci_vpd_release(struct pci_dev *dev)
630 kfree(dev->vpd);
634 * pci_cfg_access_lock - Lock PCI config reads/writes
635 * @dev: pci device struct
637 * When access is locked, any userspace reads or writes to config
638 * space and concurrent lock requests will sleep until access is
639 * allowed via pci_cfg_access_unlock() again.
641 void pci_cfg_access_lock(struct pci_dev *dev)
643 might_sleep();
645 raw_spin_lock_irq(&pci_lock);
646 if (dev->block_cfg_access)
647 pci_wait_cfg(dev);
648 dev->block_cfg_access = 1;
649 raw_spin_unlock_irq(&pci_lock);
651 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
654 * pci_cfg_access_trylock - try to lock PCI config reads/writes
655 * @dev: pci device struct
657 * Same as pci_cfg_access_lock, but will return 0 if access is
658 * already locked, 1 otherwise. This function can be used from
659 * atomic contexts.
661 bool pci_cfg_access_trylock(struct pci_dev *dev)
663 unsigned long flags;
664 bool locked = true;
666 raw_spin_lock_irqsave(&pci_lock, flags);
667 if (dev->block_cfg_access)
668 locked = false;
669 else
670 dev->block_cfg_access = 1;
671 raw_spin_unlock_irqrestore(&pci_lock, flags);
673 return locked;
675 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
678 * pci_cfg_access_unlock - Unlock PCI config reads/writes
679 * @dev: pci device struct
681 * This function allows PCI config accesses to resume.
683 void pci_cfg_access_unlock(struct pci_dev *dev)
685 unsigned long flags;
687 raw_spin_lock_irqsave(&pci_lock, flags);
689 /* This indicates a problem in the caller, but we don't need
690 * to kill them, unlike a double-block above. */
691 WARN_ON(!dev->block_cfg_access);
693 dev->block_cfg_access = 0;
694 raw_spin_unlock_irqrestore(&pci_lock, flags);
696 wake_up_all(&pci_cfg_wait);
698 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
700 static inline int pcie_cap_version(const struct pci_dev *dev)
702 return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
705 static bool pcie_downstream_port(const struct pci_dev *dev)
707 int type = pci_pcie_type(dev);
709 return type == PCI_EXP_TYPE_ROOT_PORT ||
710 type == PCI_EXP_TYPE_DOWNSTREAM ||
711 type == PCI_EXP_TYPE_PCIE_BRIDGE;
714 bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
716 int type = pci_pcie_type(dev);
718 return type == PCI_EXP_TYPE_ENDPOINT ||
719 type == PCI_EXP_TYPE_LEG_END ||
720 type == PCI_EXP_TYPE_ROOT_PORT ||
721 type == PCI_EXP_TYPE_UPSTREAM ||
722 type == PCI_EXP_TYPE_DOWNSTREAM ||
723 type == PCI_EXP_TYPE_PCI_BRIDGE ||
724 type == PCI_EXP_TYPE_PCIE_BRIDGE;
727 static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
729 return pcie_downstream_port(dev) &&
730 pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
733 static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
735 int type = pci_pcie_type(dev);
737 return type == PCI_EXP_TYPE_ROOT_PORT ||
738 type == PCI_EXP_TYPE_RC_EC;
741 static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
743 if (!pci_is_pcie(dev))
744 return false;
746 switch (pos) {
747 case PCI_EXP_FLAGS:
748 return true;
749 case PCI_EXP_DEVCAP:
750 case PCI_EXP_DEVCTL:
751 case PCI_EXP_DEVSTA:
752 return true;
753 case PCI_EXP_LNKCAP:
754 case PCI_EXP_LNKCTL:
755 case PCI_EXP_LNKSTA:
756 return pcie_cap_has_lnkctl(dev);
757 case PCI_EXP_SLTCAP:
758 case PCI_EXP_SLTCTL:
759 case PCI_EXP_SLTSTA:
760 return pcie_cap_has_sltctl(dev);
761 case PCI_EXP_RTCTL:
762 case PCI_EXP_RTCAP:
763 case PCI_EXP_RTSTA:
764 return pcie_cap_has_rtctl(dev);
765 case PCI_EXP_DEVCAP2:
766 case PCI_EXP_DEVCTL2:
767 case PCI_EXP_LNKCAP2:
768 case PCI_EXP_LNKCTL2:
769 case PCI_EXP_LNKSTA2:
770 return pcie_cap_version(dev) > 1;
771 default:
772 return false;
777 * Note that these accessor functions are only for the "PCI Express
778 * Capability" (see PCIe spec r3.0, sec 7.8). They do not apply to the
779 * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
781 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
783 int ret;
785 *val = 0;
786 if (pos & 1)
787 return -EINVAL;
789 if (pcie_capability_reg_implemented(dev, pos)) {
790 ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
792 * Reset *val to 0 if pci_read_config_word() fails, it may
793 * have been written as 0xFFFF if hardware error happens
794 * during pci_read_config_word().
796 if (ret)
797 *val = 0;
798 return ret;
802 * For Functions that do not implement the Slot Capabilities,
803 * Slot Status, and Slot Control registers, these spaces must
804 * be hardwired to 0b, with the exception of the Presence Detect
805 * State bit in the Slot Status register of Downstream Ports,
806 * which must be hardwired to 1b. (PCIe Base Spec 3.0, sec 7.8)
808 if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
809 pos == PCI_EXP_SLTSTA)
810 *val = PCI_EXP_SLTSTA_PDS;
812 return 0;
814 EXPORT_SYMBOL(pcie_capability_read_word);
816 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
818 int ret;
820 *val = 0;
821 if (pos & 3)
822 return -EINVAL;
824 if (pcie_capability_reg_implemented(dev, pos)) {
825 ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
827 * Reset *val to 0 if pci_read_config_dword() fails, it may
828 * have been written as 0xFFFFFFFF if hardware error happens
829 * during pci_read_config_dword().
831 if (ret)
832 *val = 0;
833 return ret;
836 if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
837 pos == PCI_EXP_SLTSTA)
838 *val = PCI_EXP_SLTSTA_PDS;
840 return 0;
842 EXPORT_SYMBOL(pcie_capability_read_dword);
844 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
846 if (pos & 1)
847 return -EINVAL;
849 if (!pcie_capability_reg_implemented(dev, pos))
850 return 0;
852 return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
854 EXPORT_SYMBOL(pcie_capability_write_word);
856 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
858 if (pos & 3)
859 return -EINVAL;
861 if (!pcie_capability_reg_implemented(dev, pos))
862 return 0;
864 return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
866 EXPORT_SYMBOL(pcie_capability_write_dword);
868 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
869 u16 clear, u16 set)
871 int ret;
872 u16 val;
874 ret = pcie_capability_read_word(dev, pos, &val);
875 if (!ret) {
876 val &= ~clear;
877 val |= set;
878 ret = pcie_capability_write_word(dev, pos, val);
881 return ret;
883 EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
885 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
886 u32 clear, u32 set)
888 int ret;
889 u32 val;
891 ret = pcie_capability_read_dword(dev, pos, &val);
892 if (!ret) {
893 val &= ~clear;
894 val |= set;
895 ret = pcie_capability_write_dword(dev, pos, val);
898 return ret;
900 EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
902 int pci_read_config_byte(const struct pci_dev *dev, int where, u8 *val)
904 if (pci_dev_is_disconnected(dev)) {
905 *val = ~0;
906 return PCIBIOS_DEVICE_NOT_FOUND;
908 return pci_bus_read_config_byte(dev->bus, dev->devfn, where, val);
910 EXPORT_SYMBOL(pci_read_config_byte);
912 int pci_read_config_word(const struct pci_dev *dev, int where, u16 *val)
914 if (pci_dev_is_disconnected(dev)) {
915 *val = ~0;
916 return PCIBIOS_DEVICE_NOT_FOUND;
918 return pci_bus_read_config_word(dev->bus, dev->devfn, where, val);
920 EXPORT_SYMBOL(pci_read_config_word);
922 int pci_read_config_dword(const struct pci_dev *dev, int where,
923 u32 *val)
925 if (pci_dev_is_disconnected(dev)) {
926 *val = ~0;
927 return PCIBIOS_DEVICE_NOT_FOUND;
929 return pci_bus_read_config_dword(dev->bus, dev->devfn, where, val);
931 EXPORT_SYMBOL(pci_read_config_dword);
933 int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val)
935 if (pci_dev_is_disconnected(dev))
936 return PCIBIOS_DEVICE_NOT_FOUND;
937 return pci_bus_write_config_byte(dev->bus, dev->devfn, where, val);
939 EXPORT_SYMBOL(pci_write_config_byte);
941 int pci_write_config_word(const struct pci_dev *dev, int where, u16 val)
943 if (pci_dev_is_disconnected(dev))
944 return PCIBIOS_DEVICE_NOT_FOUND;
945 return pci_bus_write_config_word(dev->bus, dev->devfn, where, val);
947 EXPORT_SYMBOL(pci_write_config_word);
949 int pci_write_config_dword(const struct pci_dev *dev, int where,
950 u32 val)
952 if (pci_dev_is_disconnected(dev))
953 return PCIBIOS_DEVICE_NOT_FOUND;
954 return pci_bus_write_config_dword(dev->bus, dev->devfn, where, val);
956 EXPORT_SYMBOL(pci_write_config_dword);