Linux 4.16.11
[linux/fpc-iii.git] / drivers / pci / host / vmd.c
blob930a8fa08bd66f56ac37188d5b4fe36e8ac42fe0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
23 #define VMD_CFGBAR 0
24 #define VMD_MEMBAR1 2
25 #define VMD_MEMBAR2 4
28 * Lock for manipulating VMD IRQ lists.
30 static DEFINE_RAW_SPINLOCK(list_lock);
32 /**
33 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
34 * @node: list item for parent traversal.
35 * @irq: back pointer to parent.
36 * @enabled: true if driver enabled IRQ
37 * @virq: the virtual IRQ value provided to the requesting driver.
39 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
40 * a VMD IRQ using this structure.
42 struct vmd_irq {
43 struct list_head node;
44 struct vmd_irq_list *irq;
45 bool enabled;
46 unsigned int virq;
49 /**
50 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
51 * @irq_list: the list of irq's the VMD one demuxes to.
52 * @srcu: SRCU struct for local synchronization.
53 * @count: number of child IRQs assigned to this vector; used to track
54 * sharing.
56 struct vmd_irq_list {
57 struct list_head irq_list;
58 struct srcu_struct srcu;
59 unsigned int count;
62 struct vmd_dev {
63 struct pci_dev *dev;
65 spinlock_t cfg_lock;
66 char __iomem *cfgbar;
68 int msix_count;
69 struct vmd_irq_list *irqs;
71 struct pci_sysdata sysdata;
72 struct resource resources[3];
73 struct irq_domain *irq_domain;
74 struct pci_bus *bus;
76 #ifdef CONFIG_X86_DEV_DMA_OPS
77 struct dma_map_ops dma_ops;
78 struct dma_domain dma_domain;
79 #endif
82 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
84 return container_of(bus->sysdata, struct vmd_dev, sysdata);
87 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
88 struct vmd_irq_list *irqs)
90 return irqs - vmd->irqs;
94 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
95 * but the MSI entry for the hardware it's driving will be programmed with a
96 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
97 * domain into one of its own, and the VMD driver de-muxes these for the
98 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
99 * and irq_chip to set this up.
101 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
103 struct vmd_irq *vmdirq = data->chip_data;
104 struct vmd_irq_list *irq = vmdirq->irq;
105 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
107 msg->address_hi = MSI_ADDR_BASE_HI;
108 msg->address_lo = MSI_ADDR_BASE_LO |
109 MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
110 msg->data = 0;
114 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
116 static void vmd_irq_enable(struct irq_data *data)
118 struct vmd_irq *vmdirq = data->chip_data;
119 unsigned long flags;
121 raw_spin_lock_irqsave(&list_lock, flags);
122 WARN_ON(vmdirq->enabled);
123 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
124 vmdirq->enabled = true;
125 raw_spin_unlock_irqrestore(&list_lock, flags);
127 data->chip->irq_unmask(data);
130 static void vmd_irq_disable(struct irq_data *data)
132 struct vmd_irq *vmdirq = data->chip_data;
133 unsigned long flags;
135 data->chip->irq_mask(data);
137 raw_spin_lock_irqsave(&list_lock, flags);
138 if (vmdirq->enabled) {
139 list_del_rcu(&vmdirq->node);
140 vmdirq->enabled = false;
142 raw_spin_unlock_irqrestore(&list_lock, flags);
146 * XXX: Stubbed until we develop acceptable way to not create conflicts with
147 * other devices sharing the same vector.
149 static int vmd_irq_set_affinity(struct irq_data *data,
150 const struct cpumask *dest, bool force)
152 return -EINVAL;
155 static struct irq_chip vmd_msi_controller = {
156 .name = "VMD-MSI",
157 .irq_enable = vmd_irq_enable,
158 .irq_disable = vmd_irq_disable,
159 .irq_compose_msi_msg = vmd_compose_msi_msg,
160 .irq_set_affinity = vmd_irq_set_affinity,
163 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
164 msi_alloc_info_t *arg)
166 return 0;
170 * XXX: We can be even smarter selecting the best IRQ once we solve the
171 * affinity problem.
173 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
175 int i, best = 1;
176 unsigned long flags;
178 if (pci_is_bridge(msi_desc_to_pci_dev(desc)) || vmd->msix_count == 1)
179 return &vmd->irqs[0];
181 raw_spin_lock_irqsave(&list_lock, flags);
182 for (i = 1; i < vmd->msix_count; i++)
183 if (vmd->irqs[i].count < vmd->irqs[best].count)
184 best = i;
185 vmd->irqs[best].count++;
186 raw_spin_unlock_irqrestore(&list_lock, flags);
188 return &vmd->irqs[best];
191 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
192 unsigned int virq, irq_hw_number_t hwirq,
193 msi_alloc_info_t *arg)
195 struct msi_desc *desc = arg->desc;
196 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
197 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
198 unsigned int index, vector;
200 if (!vmdirq)
201 return -ENOMEM;
203 INIT_LIST_HEAD(&vmdirq->node);
204 vmdirq->irq = vmd_next_irq(vmd, desc);
205 vmdirq->virq = virq;
206 index = index_from_irqs(vmd, vmdirq->irq);
207 vector = pci_irq_vector(vmd->dev, index);
209 irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
210 handle_untracked_irq, vmd, NULL);
211 return 0;
214 static void vmd_msi_free(struct irq_domain *domain,
215 struct msi_domain_info *info, unsigned int virq)
217 struct vmd_irq *vmdirq = irq_get_chip_data(virq);
218 unsigned long flags;
220 synchronize_srcu(&vmdirq->irq->srcu);
222 /* XXX: Potential optimization to rebalance */
223 raw_spin_lock_irqsave(&list_lock, flags);
224 vmdirq->irq->count--;
225 raw_spin_unlock_irqrestore(&list_lock, flags);
227 kfree(vmdirq);
230 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
231 int nvec, msi_alloc_info_t *arg)
233 struct pci_dev *pdev = to_pci_dev(dev);
234 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
236 if (nvec > vmd->msix_count)
237 return vmd->msix_count;
239 memset(arg, 0, sizeof(*arg));
240 return 0;
243 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
245 arg->desc = desc;
248 static struct msi_domain_ops vmd_msi_domain_ops = {
249 .get_hwirq = vmd_get_hwirq,
250 .msi_init = vmd_msi_init,
251 .msi_free = vmd_msi_free,
252 .msi_prepare = vmd_msi_prepare,
253 .set_desc = vmd_set_desc,
256 static struct msi_domain_info vmd_msi_domain_info = {
257 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
258 MSI_FLAG_PCI_MSIX,
259 .ops = &vmd_msi_domain_ops,
260 .chip = &vmd_msi_controller,
263 #ifdef CONFIG_X86_DEV_DMA_OPS
265 * VMD replaces the requester ID with its own. DMA mappings for devices in a
266 * VMD domain need to be mapped for the VMD, not the device requiring
267 * the mapping.
269 static struct device *to_vmd_dev(struct device *dev)
271 struct pci_dev *pdev = to_pci_dev(dev);
272 struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
274 return &vmd->dev->dev;
277 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
279 return get_dma_ops(to_vmd_dev(dev));
282 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
283 gfp_t flag, unsigned long attrs)
285 return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
286 attrs);
289 static void vmd_free(struct device *dev, size_t size, void *vaddr,
290 dma_addr_t addr, unsigned long attrs)
292 return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
293 attrs);
296 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
297 void *cpu_addr, dma_addr_t addr, size_t size,
298 unsigned long attrs)
300 return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
301 size, attrs);
304 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
305 void *cpu_addr, dma_addr_t addr, size_t size,
306 unsigned long attrs)
308 return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
309 addr, size, attrs);
312 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
313 unsigned long offset, size_t size,
314 enum dma_data_direction dir,
315 unsigned long attrs)
317 return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
318 dir, attrs);
321 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
322 enum dma_data_direction dir, unsigned long attrs)
324 vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
327 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
328 enum dma_data_direction dir, unsigned long attrs)
330 return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
333 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
334 enum dma_data_direction dir, unsigned long attrs)
336 vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
339 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
340 size_t size, enum dma_data_direction dir)
342 vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
345 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
346 size_t size, enum dma_data_direction dir)
348 vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
349 dir);
352 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
353 int nents, enum dma_data_direction dir)
355 vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
358 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
359 int nents, enum dma_data_direction dir)
361 vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
364 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
366 return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
369 static int vmd_dma_supported(struct device *dev, u64 mask)
371 return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
374 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
375 static u64 vmd_get_required_mask(struct device *dev)
377 return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
379 #endif
381 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
383 struct dma_domain *domain = &vmd->dma_domain;
385 if (get_dma_ops(&vmd->dev->dev))
386 del_dma_domain(domain);
389 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
390 do { \
391 if (source->fn) \
392 dest->fn = vmd_##fn; \
393 } while (0)
395 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
397 const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
398 struct dma_map_ops *dest = &vmd->dma_ops;
399 struct dma_domain *domain = &vmd->dma_domain;
401 domain->domain_nr = vmd->sysdata.domain;
402 domain->dma_ops = dest;
404 if (!source)
405 return;
406 ASSIGN_VMD_DMA_OPS(source, dest, alloc);
407 ASSIGN_VMD_DMA_OPS(source, dest, free);
408 ASSIGN_VMD_DMA_OPS(source, dest, mmap);
409 ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
410 ASSIGN_VMD_DMA_OPS(source, dest, map_page);
411 ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
412 ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
413 ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
414 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
415 ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
416 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
417 ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
418 ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
419 ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
420 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
421 ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
422 #endif
423 add_dma_domain(domain);
425 #undef ASSIGN_VMD_DMA_OPS
426 #else
427 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
428 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
429 #endif
431 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
432 unsigned int devfn, int reg, int len)
434 char __iomem *addr = vmd->cfgbar +
435 (bus->number << 20) + (devfn << 12) + reg;
437 if ((addr - vmd->cfgbar) + len >=
438 resource_size(&vmd->dev->resource[VMD_CFGBAR]))
439 return NULL;
441 return addr;
445 * CPU may deadlock if config space is not serialized on some versions of this
446 * hardware, so all config space access is done under a spinlock.
448 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
449 int len, u32 *value)
451 struct vmd_dev *vmd = vmd_from_bus(bus);
452 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
453 unsigned long flags;
454 int ret = 0;
456 if (!addr)
457 return -EFAULT;
459 spin_lock_irqsave(&vmd->cfg_lock, flags);
460 switch (len) {
461 case 1:
462 *value = readb(addr);
463 break;
464 case 2:
465 *value = readw(addr);
466 break;
467 case 4:
468 *value = readl(addr);
469 break;
470 default:
471 ret = -EINVAL;
472 break;
474 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
475 return ret;
479 * VMD h/w converts non-posted config writes to posted memory writes. The
480 * read-back in this function forces the completion so it returns only after
481 * the config space was written, as expected.
483 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
484 int len, u32 value)
486 struct vmd_dev *vmd = vmd_from_bus(bus);
487 char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
488 unsigned long flags;
489 int ret = 0;
491 if (!addr)
492 return -EFAULT;
494 spin_lock_irqsave(&vmd->cfg_lock, flags);
495 switch (len) {
496 case 1:
497 writeb(value, addr);
498 readb(addr);
499 break;
500 case 2:
501 writew(value, addr);
502 readw(addr);
503 break;
504 case 4:
505 writel(value, addr);
506 readl(addr);
507 break;
508 default:
509 ret = -EINVAL;
510 break;
512 spin_unlock_irqrestore(&vmd->cfg_lock, flags);
513 return ret;
516 static struct pci_ops vmd_ops = {
517 .read = vmd_pci_read,
518 .write = vmd_pci_write,
521 static void vmd_attach_resources(struct vmd_dev *vmd)
523 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
524 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
527 static void vmd_detach_resources(struct vmd_dev *vmd)
529 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
530 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
534 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
535 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
536 * 16 bits are the PCI Segment Group (domain) number. Other bits are
537 * currently reserved.
539 static int vmd_find_free_domain(void)
541 int domain = 0xffff;
542 struct pci_bus *bus = NULL;
544 while ((bus = pci_find_next_bus(bus)) != NULL)
545 domain = max_t(int, domain, pci_domain_nr(bus));
546 return domain + 1;
549 static int vmd_enable_domain(struct vmd_dev *vmd)
551 struct pci_sysdata *sd = &vmd->sysdata;
552 struct fwnode_handle *fn;
553 struct resource *res;
554 u32 upper_bits;
555 unsigned long flags;
556 LIST_HEAD(resources);
558 res = &vmd->dev->resource[VMD_CFGBAR];
559 vmd->resources[0] = (struct resource) {
560 .name = "VMD CFGBAR",
561 .start = 0,
562 .end = (resource_size(res) >> 20) - 1,
563 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
567 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
568 * put 32-bit resources in the window.
570 * There's no hardware reason why a 64-bit window *couldn't*
571 * contain a 32-bit resource, but pbus_size_mem() computes the
572 * bridge window size assuming a 64-bit window will contain no
573 * 32-bit resources. __pci_assign_resource() enforces that
574 * artificial restriction to make sure everything will fit.
576 * The only way we could use a 64-bit non-prefechable MEMBAR is
577 * if its address is <4GB so that we can convert it to a 32-bit
578 * resource. To be visible to the host OS, all VMD endpoints must
579 * be initially configured by platform BIOS, which includes setting
580 * up these resources. We can assume the device is configured
581 * according to the platform needs.
583 res = &vmd->dev->resource[VMD_MEMBAR1];
584 upper_bits = upper_32_bits(res->end);
585 flags = res->flags & ~IORESOURCE_SIZEALIGN;
586 if (!upper_bits)
587 flags &= ~IORESOURCE_MEM_64;
588 vmd->resources[1] = (struct resource) {
589 .name = "VMD MEMBAR1",
590 .start = res->start,
591 .end = res->end,
592 .flags = flags,
593 .parent = res,
596 res = &vmd->dev->resource[VMD_MEMBAR2];
597 upper_bits = upper_32_bits(res->end);
598 flags = res->flags & ~IORESOURCE_SIZEALIGN;
599 if (!upper_bits)
600 flags &= ~IORESOURCE_MEM_64;
601 vmd->resources[2] = (struct resource) {
602 .name = "VMD MEMBAR2",
603 .start = res->start + 0x2000,
604 .end = res->end,
605 .flags = flags,
606 .parent = res,
609 sd->vmd_domain = true;
610 sd->domain = vmd_find_free_domain();
611 if (sd->domain < 0)
612 return sd->domain;
614 sd->node = pcibus_to_node(vmd->dev->bus);
616 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
617 if (!fn)
618 return -ENODEV;
620 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
621 x86_vector_domain);
622 irq_domain_free_fwnode(fn);
623 if (!vmd->irq_domain)
624 return -ENODEV;
626 pci_add_resource(&resources, &vmd->resources[0]);
627 pci_add_resource(&resources, &vmd->resources[1]);
628 pci_add_resource(&resources, &vmd->resources[2]);
629 vmd->bus = pci_create_root_bus(&vmd->dev->dev, 0, &vmd_ops, sd,
630 &resources);
631 if (!vmd->bus) {
632 pci_free_resource_list(&resources);
633 irq_domain_remove(vmd->irq_domain);
634 return -ENODEV;
637 vmd_attach_resources(vmd);
638 vmd_setup_dma_ops(vmd);
639 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
640 pci_rescan_bus(vmd->bus);
642 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
643 "domain"), "Can't create symlink to domain\n");
644 return 0;
647 static irqreturn_t vmd_irq(int irq, void *data)
649 struct vmd_irq_list *irqs = data;
650 struct vmd_irq *vmdirq;
651 int idx;
653 idx = srcu_read_lock(&irqs->srcu);
654 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
655 generic_handle_irq(vmdirq->virq);
656 srcu_read_unlock(&irqs->srcu, idx);
658 return IRQ_HANDLED;
661 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
663 struct vmd_dev *vmd;
664 int i, err;
666 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
667 return -ENOMEM;
669 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
670 if (!vmd)
671 return -ENOMEM;
673 vmd->dev = dev;
674 err = pcim_enable_device(dev);
675 if (err < 0)
676 return err;
678 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
679 if (!vmd->cfgbar)
680 return -ENOMEM;
682 pci_set_master(dev);
683 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
684 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
685 return -ENODEV;
687 vmd->msix_count = pci_msix_vec_count(dev);
688 if (vmd->msix_count < 0)
689 return -ENODEV;
691 vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
692 PCI_IRQ_MSIX);
693 if (vmd->msix_count < 0)
694 return vmd->msix_count;
696 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
697 GFP_KERNEL);
698 if (!vmd->irqs)
699 return -ENOMEM;
701 for (i = 0; i < vmd->msix_count; i++) {
702 err = init_srcu_struct(&vmd->irqs[i].srcu);
703 if (err)
704 return err;
706 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
707 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
708 vmd_irq, IRQF_NO_THREAD,
709 "vmd", &vmd->irqs[i]);
710 if (err)
711 return err;
714 spin_lock_init(&vmd->cfg_lock);
715 pci_set_drvdata(dev, vmd);
716 err = vmd_enable_domain(vmd);
717 if (err)
718 return err;
720 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
721 vmd->sysdata.domain);
722 return 0;
725 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
727 int i;
729 for (i = 0; i < vmd->msix_count; i++)
730 cleanup_srcu_struct(&vmd->irqs[i].srcu);
733 static void vmd_remove(struct pci_dev *dev)
735 struct vmd_dev *vmd = pci_get_drvdata(dev);
737 vmd_detach_resources(vmd);
738 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
739 pci_stop_root_bus(vmd->bus);
740 pci_remove_root_bus(vmd->bus);
741 vmd_cleanup_srcu(vmd);
742 vmd_teardown_dma_ops(vmd);
743 irq_domain_remove(vmd->irq_domain);
746 #ifdef CONFIG_PM_SLEEP
747 static int vmd_suspend(struct device *dev)
749 struct pci_dev *pdev = to_pci_dev(dev);
750 struct vmd_dev *vmd = pci_get_drvdata(pdev);
751 int i;
753 for (i = 0; i < vmd->msix_count; i++)
754 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
756 pci_save_state(pdev);
757 return 0;
760 static int vmd_resume(struct device *dev)
762 struct pci_dev *pdev = to_pci_dev(dev);
763 struct vmd_dev *vmd = pci_get_drvdata(pdev);
764 int err, i;
766 for (i = 0; i < vmd->msix_count; i++) {
767 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
768 vmd_irq, IRQF_NO_THREAD,
769 "vmd", &vmd->irqs[i]);
770 if (err)
771 return err;
774 pci_restore_state(pdev);
775 return 0;
777 #endif
778 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
780 static const struct pci_device_id vmd_ids[] = {
781 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x201d),},
782 {0,}
784 MODULE_DEVICE_TABLE(pci, vmd_ids);
786 static struct pci_driver vmd_drv = {
787 .name = "vmd",
788 .id_table = vmd_ids,
789 .probe = vmd_probe,
790 .remove = vmd_remove,
791 .driver = {
792 .pm = &vmd_dev_pm_ops,
795 module_pci_driver(vmd_drv);
797 MODULE_AUTHOR("Intel Corporation");
798 MODULE_LICENSE("GPL v2");
799 MODULE_VERSION("0.6");