2 * Perf support for the Statistical Profiling Extension, introduced as
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 * Copyright (C) 2016 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
22 #define PMUNAME "arm_spe"
23 #define DRVNAME PMUNAME "_pmu"
24 #define pr_fmt(fmt) DRVNAME ": " fmt
26 #include <linux/cpuhotplug.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/module.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/perf_event.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
36 #include <asm/sysreg.h>
38 #define ARM_SPE_BUF_PAD_BYTE 0
40 struct arm_spe_pmu_buf
{
48 struct platform_device
*pdev
;
49 cpumask_t supported_cpus
;
50 struct hlist_node hotplug_node
;
57 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
58 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
59 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
60 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
61 #define SPE_PMU_FEAT_LDS (1UL << 4)
62 #define SPE_PMU_FEAT_ERND (1UL << 5)
63 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
68 struct perf_output_handle __percpu
*handle
;
71 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
73 /* Convert a free-running index from perf into an SPE buffer offset */
74 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
76 /* Keep track of our dynamic hotplug state */
77 static enum cpuhp_state arm_spe_pmu_online
;
79 enum arm_spe_pmu_buf_fault_action
{
80 SPE_PMU_BUF_FAULT_ACT_SPURIOUS
,
81 SPE_PMU_BUF_FAULT_ACT_FATAL
,
82 SPE_PMU_BUF_FAULT_ACT_OK
,
85 /* This sysfs gunk was really good fun to write. */
86 enum arm_spe_pmu_capabilities
{
87 SPE_PMU_CAP_ARCH_INST
= 0,
90 SPE_PMU_CAP_CNT_SZ
= SPE_PMU_CAP_FEAT_MAX
,
94 static int arm_spe_pmu_feat_caps
[SPE_PMU_CAP_FEAT_MAX
] = {
95 [SPE_PMU_CAP_ARCH_INST
] = SPE_PMU_FEAT_ARCH_INST
,
96 [SPE_PMU_CAP_ERND
] = SPE_PMU_FEAT_ERND
,
99 static u32
arm_spe_pmu_cap_get(struct arm_spe_pmu
*spe_pmu
, int cap
)
101 if (cap
< SPE_PMU_CAP_FEAT_MAX
)
102 return !!(spe_pmu
->features
& arm_spe_pmu_feat_caps
[cap
]);
105 case SPE_PMU_CAP_CNT_SZ
:
106 return spe_pmu
->counter_sz
;
107 case SPE_PMU_CAP_MIN_IVAL
:
108 return spe_pmu
->min_period
;
110 WARN(1, "unknown cap %d\n", cap
);
116 static ssize_t
arm_spe_pmu_cap_show(struct device
*dev
,
117 struct device_attribute
*attr
,
120 struct platform_device
*pdev
= to_platform_device(dev
);
121 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
122 struct dev_ext_attribute
*ea
=
123 container_of(attr
, struct dev_ext_attribute
, attr
);
124 int cap
= (long)ea
->var
;
126 return snprintf(buf
, PAGE_SIZE
, "%u\n",
127 arm_spe_pmu_cap_get(spe_pmu
, cap
));
130 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
131 &((struct dev_ext_attribute[]) { \
132 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
135 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
136 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
138 static struct attribute
*arm_spe_pmu_cap_attr
[] = {
139 SPE_CAP_EXT_ATTR_ENTRY(arch_inst
, SPE_PMU_CAP_ARCH_INST
),
140 SPE_CAP_EXT_ATTR_ENTRY(ernd
, SPE_PMU_CAP_ERND
),
141 SPE_CAP_EXT_ATTR_ENTRY(count_size
, SPE_PMU_CAP_CNT_SZ
),
142 SPE_CAP_EXT_ATTR_ENTRY(min_interval
, SPE_PMU_CAP_MIN_IVAL
),
146 static struct attribute_group arm_spe_pmu_cap_group
= {
148 .attrs
= arm_spe_pmu_cap_attr
,
152 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
153 #define ATTR_CFG_FLD_ts_enable_LO 0
154 #define ATTR_CFG_FLD_ts_enable_HI 0
155 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
156 #define ATTR_CFG_FLD_pa_enable_LO 1
157 #define ATTR_CFG_FLD_pa_enable_HI 1
158 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
159 #define ATTR_CFG_FLD_pct_enable_LO 2
160 #define ATTR_CFG_FLD_pct_enable_HI 2
161 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
162 #define ATTR_CFG_FLD_jitter_LO 16
163 #define ATTR_CFG_FLD_jitter_HI 16
164 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
165 #define ATTR_CFG_FLD_branch_filter_LO 32
166 #define ATTR_CFG_FLD_branch_filter_HI 32
167 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
168 #define ATTR_CFG_FLD_load_filter_LO 33
169 #define ATTR_CFG_FLD_load_filter_HI 33
170 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
171 #define ATTR_CFG_FLD_store_filter_LO 34
172 #define ATTR_CFG_FLD_store_filter_HI 34
174 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
175 #define ATTR_CFG_FLD_event_filter_LO 0
176 #define ATTR_CFG_FLD_event_filter_HI 63
178 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
179 #define ATTR_CFG_FLD_min_latency_LO 0
180 #define ATTR_CFG_FLD_min_latency_HI 11
182 /* Why does everything I do descend into this? */
183 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
184 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
186 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
187 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
189 #define GEN_PMU_FORMAT_ATTR(name) \
190 PMU_FORMAT_ATTR(name, \
191 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
192 ATTR_CFG_FLD_##name##_LO, \
193 ATTR_CFG_FLD_##name##_HI))
195 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
196 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
198 #define ATTR_CFG_GET_FLD(attr, name) \
199 _ATTR_CFG_GET_FLD(attr, \
200 ATTR_CFG_FLD_##name##_CFG, \
201 ATTR_CFG_FLD_##name##_LO, \
202 ATTR_CFG_FLD_##name##_HI)
204 GEN_PMU_FORMAT_ATTR(ts_enable
);
205 GEN_PMU_FORMAT_ATTR(pa_enable
);
206 GEN_PMU_FORMAT_ATTR(pct_enable
);
207 GEN_PMU_FORMAT_ATTR(jitter
);
208 GEN_PMU_FORMAT_ATTR(branch_filter
);
209 GEN_PMU_FORMAT_ATTR(load_filter
);
210 GEN_PMU_FORMAT_ATTR(store_filter
);
211 GEN_PMU_FORMAT_ATTR(event_filter
);
212 GEN_PMU_FORMAT_ATTR(min_latency
);
214 static struct attribute
*arm_spe_pmu_formats_attr
[] = {
215 &format_attr_ts_enable
.attr
,
216 &format_attr_pa_enable
.attr
,
217 &format_attr_pct_enable
.attr
,
218 &format_attr_jitter
.attr
,
219 &format_attr_branch_filter
.attr
,
220 &format_attr_load_filter
.attr
,
221 &format_attr_store_filter
.attr
,
222 &format_attr_event_filter
.attr
,
223 &format_attr_min_latency
.attr
,
227 static struct attribute_group arm_spe_pmu_format_group
= {
229 .attrs
= arm_spe_pmu_formats_attr
,
232 static ssize_t
arm_spe_pmu_get_attr_cpumask(struct device
*dev
,
233 struct device_attribute
*attr
,
236 struct platform_device
*pdev
= to_platform_device(dev
);
237 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
239 return cpumap_print_to_pagebuf(true, buf
, &spe_pmu
->supported_cpus
);
241 static DEVICE_ATTR(cpumask
, S_IRUGO
, arm_spe_pmu_get_attr_cpumask
, NULL
);
243 static struct attribute
*arm_spe_pmu_attrs
[] = {
244 &dev_attr_cpumask
.attr
,
248 static struct attribute_group arm_spe_pmu_group
= {
249 .attrs
= arm_spe_pmu_attrs
,
252 static const struct attribute_group
*arm_spe_pmu_attr_groups
[] = {
254 &arm_spe_pmu_cap_group
,
255 &arm_spe_pmu_format_group
,
259 /* Convert between user ABI and register values */
260 static u64
arm_spe_event_to_pmscr(struct perf_event
*event
)
262 struct perf_event_attr
*attr
= &event
->attr
;
265 reg
|= ATTR_CFG_GET_FLD(attr
, ts_enable
) << SYS_PMSCR_EL1_TS_SHIFT
;
266 reg
|= ATTR_CFG_GET_FLD(attr
, pa_enable
) << SYS_PMSCR_EL1_PA_SHIFT
;
267 reg
|= ATTR_CFG_GET_FLD(attr
, pct_enable
) << SYS_PMSCR_EL1_PCT_SHIFT
;
269 if (!attr
->exclude_user
)
270 reg
|= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT
);
272 if (!attr
->exclude_kernel
)
273 reg
|= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT
);
275 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR
) && capable(CAP_SYS_ADMIN
))
276 reg
|= BIT(SYS_PMSCR_EL1_CX_SHIFT
);
281 static void arm_spe_event_sanitise_period(struct perf_event
*event
)
283 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
284 u64 period
= event
->hw
.sample_period
;
285 u64 max_period
= SYS_PMSIRR_EL1_INTERVAL_MASK
286 << SYS_PMSIRR_EL1_INTERVAL_SHIFT
;
288 if (period
< spe_pmu
->min_period
)
289 period
= spe_pmu
->min_period
;
290 else if (period
> max_period
)
293 period
&= max_period
;
295 event
->hw
.sample_period
= period
;
298 static u64
arm_spe_event_to_pmsirr(struct perf_event
*event
)
300 struct perf_event_attr
*attr
= &event
->attr
;
303 arm_spe_event_sanitise_period(event
);
305 reg
|= ATTR_CFG_GET_FLD(attr
, jitter
) << SYS_PMSIRR_EL1_RND_SHIFT
;
306 reg
|= event
->hw
.sample_period
;
311 static u64
arm_spe_event_to_pmsfcr(struct perf_event
*event
)
313 struct perf_event_attr
*attr
= &event
->attr
;
316 reg
|= ATTR_CFG_GET_FLD(attr
, load_filter
) << SYS_PMSFCR_EL1_LD_SHIFT
;
317 reg
|= ATTR_CFG_GET_FLD(attr
, store_filter
) << SYS_PMSFCR_EL1_ST_SHIFT
;
318 reg
|= ATTR_CFG_GET_FLD(attr
, branch_filter
) << SYS_PMSFCR_EL1_B_SHIFT
;
321 reg
|= BIT(SYS_PMSFCR_EL1_FT_SHIFT
);
323 if (ATTR_CFG_GET_FLD(attr
, event_filter
))
324 reg
|= BIT(SYS_PMSFCR_EL1_FE_SHIFT
);
326 if (ATTR_CFG_GET_FLD(attr
, min_latency
))
327 reg
|= BIT(SYS_PMSFCR_EL1_FL_SHIFT
);
332 static u64
arm_spe_event_to_pmsevfr(struct perf_event
*event
)
334 struct perf_event_attr
*attr
= &event
->attr
;
335 return ATTR_CFG_GET_FLD(attr
, event_filter
);
338 static u64
arm_spe_event_to_pmslatfr(struct perf_event
*event
)
340 struct perf_event_attr
*attr
= &event
->attr
;
341 return ATTR_CFG_GET_FLD(attr
, min_latency
)
342 << SYS_PMSLATFR_EL1_MINLAT_SHIFT
;
345 static void arm_spe_pmu_pad_buf(struct perf_output_handle
*handle
, int len
)
347 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
348 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
350 memset(buf
->base
+ head
, ARM_SPE_BUF_PAD_BYTE
, len
);
352 perf_aux_output_skip(handle
, len
);
355 static u64
arm_spe_pmu_next_snapshot_off(struct perf_output_handle
*handle
)
357 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
358 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
359 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
360 u64 limit
= buf
->nr_pages
* PAGE_SIZE
;
363 * The trace format isn't parseable in reverse, so clamp
364 * the limit to half of the buffer size in snapshot mode
365 * so that the worst case is half a buffer of records, as
366 * opposed to a single record.
368 if (head
< limit
>> 1)
372 * If we're within max_record_sz of the limit, we must
373 * pad, move the head index and recompute the limit.
375 if (limit
- head
< spe_pmu
->max_record_sz
) {
376 arm_spe_pmu_pad_buf(handle
, limit
- head
);
377 handle
->head
= PERF_IDX2OFF(limit
, buf
);
378 limit
= ((buf
->nr_pages
* PAGE_SIZE
) >> 1) + handle
->head
;
384 static u64
__arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
386 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
387 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
388 const u64 bufsize
= buf
->nr_pages
* PAGE_SIZE
;
390 u64 head
, tail
, wakeup
;
393 * The head can be misaligned for two reasons:
395 * 1. The hardware left PMBPTR pointing to the first byte after
396 * a record when generating a buffer management event.
398 * 2. We used perf_aux_output_skip to consume handle->size bytes
399 * and CIRC_SPACE was used to compute the size, which always
400 * leaves one entry free.
402 * Deal with this by padding to the next alignment boundary and
403 * moving the head index. If we run out of buffer space, we'll
404 * reduce handle->size to zero and end up reporting truncation.
406 head
= PERF_IDX2OFF(handle
->head
, buf
);
407 if (!IS_ALIGNED(head
, spe_pmu
->align
)) {
408 unsigned long delta
= roundup(head
, spe_pmu
->align
) - head
;
410 delta
= min(delta
, handle
->size
);
411 arm_spe_pmu_pad_buf(handle
, delta
);
412 head
= PERF_IDX2OFF(handle
->head
, buf
);
415 /* If we've run out of free space, then nothing more to do */
419 /* Compute the tail and wakeup indices now that we've aligned head */
420 tail
= PERF_IDX2OFF(handle
->head
+ handle
->size
, buf
);
421 wakeup
= PERF_IDX2OFF(handle
->wakeup
, buf
);
424 * Avoid clobbering unconsumed data. We know we have space, so
425 * if we see head == tail we know that the buffer is empty. If
426 * head > tail, then there's nothing to clobber prior to
430 limit
= round_down(tail
, PAGE_SIZE
);
433 * Wakeup may be arbitrarily far into the future. If it's not in
434 * the current generation, either we'll wrap before hitting it,
435 * or it's in the past and has been handled already.
437 * If there's a wakeup before we wrap, arrange to be woken up by
438 * the page boundary following it. Keep the tail boundary if
441 if (handle
->wakeup
< (handle
->head
+ handle
->size
) && head
<= wakeup
)
442 limit
= min(limit
, round_up(wakeup
, PAGE_SIZE
));
447 arm_spe_pmu_pad_buf(handle
, handle
->size
);
449 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
450 perf_aux_output_end(handle
, 0);
454 static u64
arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
456 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
457 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
458 u64 limit
= __arm_spe_pmu_next_off(handle
);
459 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
462 * If the head has come too close to the end of the buffer,
463 * then pad to the end and recompute the limit.
465 if (limit
&& (limit
- head
< spe_pmu
->max_record_sz
)) {
466 arm_spe_pmu_pad_buf(handle
, limit
- head
);
467 limit
= __arm_spe_pmu_next_off(handle
);
473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle
*handle
,
474 struct perf_event
*event
)
477 struct arm_spe_pmu_buf
*buf
;
479 /* Start a new aux session */
480 buf
= perf_aux_output_begin(handle
, event
);
482 event
->hw
.state
|= PERF_HES_STOPPED
;
484 * We still need to clear the limit pointer, since the
485 * profiler might only be disabled by virtue of a fault.
488 goto out_write_limit
;
491 limit
= buf
->snapshot
? arm_spe_pmu_next_snapshot_off(handle
)
492 : arm_spe_pmu_next_off(handle
);
494 limit
|= BIT(SYS_PMBLIMITR_EL1_E_SHIFT
);
496 limit
+= (u64
)buf
->base
;
497 base
= (u64
)buf
->base
+ PERF_IDX2OFF(handle
->head
, buf
);
498 write_sysreg_s(base
, SYS_PMBPTR_EL1
);
501 write_sysreg_s(limit
, SYS_PMBLIMITR_EL1
);
504 static void arm_spe_perf_aux_output_end(struct perf_output_handle
*handle
)
506 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
509 offset
= read_sysreg_s(SYS_PMBPTR_EL1
) - (u64
)buf
->base
;
510 size
= offset
- PERF_IDX2OFF(handle
->head
, buf
);
513 handle
->head
= offset
;
515 perf_aux_output_end(handle
, size
);
518 static void arm_spe_pmu_disable_and_drain_local(void)
520 /* Disable profiling at EL0 and EL1 */
521 write_sysreg_s(0, SYS_PMSCR_EL1
);
524 /* Drain any buffered data */
528 /* Disable the profiling buffer */
529 write_sysreg_s(0, SYS_PMBLIMITR_EL1
);
534 static enum arm_spe_pmu_buf_fault_action
535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle
*handle
)
539 enum arm_spe_pmu_buf_fault_action ret
;
542 * Ensure new profiling data is visible to the CPU and any external
543 * aborts have been resolved.
548 /* Ensure hardware updates to PMBPTR_EL1 are visible */
551 /* Service required? */
552 pmbsr
= read_sysreg_s(SYS_PMBSR_EL1
);
553 if (!(pmbsr
& BIT(SYS_PMBSR_EL1_S_SHIFT
)))
554 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS
;
557 * If we've lost data, disable profiling and also set the PARTIAL
558 * flag to indicate that the last record is corrupted.
560 if (pmbsr
& BIT(SYS_PMBSR_EL1_DL_SHIFT
))
561 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
|
562 PERF_AUX_FLAG_PARTIAL
);
564 /* Report collisions to userspace so that it can up the period */
565 if (pmbsr
& BIT(SYS_PMBSR_EL1_COLL_SHIFT
))
566 perf_aux_output_flag(handle
, PERF_AUX_FLAG_COLLISION
);
568 /* We only expect buffer management events */
569 switch (pmbsr
& (SYS_PMBSR_EL1_EC_MASK
<< SYS_PMBSR_EL1_EC_SHIFT
)) {
570 case SYS_PMBSR_EL1_EC_BUF
:
573 case SYS_PMBSR_EL1_EC_FAULT_S1
:
574 case SYS_PMBSR_EL1_EC_FAULT_S2
:
575 err_str
= "Unexpected buffer fault";
578 err_str
= "Unknown error code";
582 /* Buffer management event */
584 (SYS_PMBSR_EL1_BUF_BSC_MASK
<< SYS_PMBSR_EL1_BUF_BSC_SHIFT
)) {
585 case SYS_PMBSR_EL1_BUF_BSC_FULL
:
586 ret
= SPE_PMU_BUF_FAULT_ACT_OK
;
589 err_str
= "Unknown buffer status code";
593 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
594 err_str
, smp_processor_id(), pmbsr
,
595 read_sysreg_s(SYS_PMBPTR_EL1
),
596 read_sysreg_s(SYS_PMBLIMITR_EL1
));
597 ret
= SPE_PMU_BUF_FAULT_ACT_FATAL
;
600 arm_spe_perf_aux_output_end(handle
);
604 static irqreturn_t
arm_spe_pmu_irq_handler(int irq
, void *dev
)
606 struct perf_output_handle
*handle
= dev
;
607 struct perf_event
*event
= handle
->event
;
608 enum arm_spe_pmu_buf_fault_action act
;
610 if (!perf_get_aux(handle
))
613 act
= arm_spe_pmu_buf_get_fault_act(handle
);
614 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
618 * Ensure perf callbacks have completed, which may disable the
619 * profiling buffer in response to a TRUNCATION flag.
624 case SPE_PMU_BUF_FAULT_ACT_FATAL
:
626 * If a fatal exception occurred then leaving the profiling
627 * buffer enabled is a recipe waiting to happen. Since
628 * fatal faults don't always imply truncation, make sure
629 * that the profiling buffer is disabled explicitly before
630 * clearing the syndrome register.
632 arm_spe_pmu_disable_and_drain_local();
634 case SPE_PMU_BUF_FAULT_ACT_OK
:
636 * We handled the fault (the buffer was full), so resume
637 * profiling as long as we didn't detect truncation.
638 * PMBPTR might be misaligned, but we'll burn that bridge
641 if (!(handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
)) {
642 arm_spe_perf_aux_output_begin(handle
, event
);
646 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS
:
647 /* We've seen you before, but GCC has the memory of a sieve. */
651 /* The buffer pointers are now sane, so resume profiling. */
652 write_sysreg_s(0, SYS_PMBSR_EL1
);
657 static int arm_spe_pmu_event_init(struct perf_event
*event
)
660 struct perf_event_attr
*attr
= &event
->attr
;
661 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
663 /* This is, of course, deeply driver-specific */
664 if (attr
->type
!= event
->pmu
->type
)
667 if (event
->cpu
>= 0 &&
668 !cpumask_test_cpu(event
->cpu
, &spe_pmu
->supported_cpus
))
671 if (arm_spe_event_to_pmsevfr(event
) & SYS_PMSEVFR_EL1_RES0
)
674 if (attr
->exclude_idle
)
678 * Feedback-directed frequency throttling doesn't work when we
679 * have a buffer of samples. We'd need to manually count the
680 * samples in the buffer when it fills up and adjust the event
681 * count to reflect that. Instead, just force the user to specify
687 reg
= arm_spe_event_to_pmsfcr(event
);
688 if ((reg
& BIT(SYS_PMSFCR_EL1_FE_SHIFT
)) &&
689 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_EVT
))
692 if ((reg
& BIT(SYS_PMSFCR_EL1_FT_SHIFT
)) &&
693 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_TYP
))
696 if ((reg
& BIT(SYS_PMSFCR_EL1_FL_SHIFT
)) &&
697 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_LAT
))
700 reg
= arm_spe_event_to_pmscr(event
);
701 if (!capable(CAP_SYS_ADMIN
) &&
702 (reg
& (BIT(SYS_PMSCR_EL1_PA_SHIFT
) |
703 BIT(SYS_PMSCR_EL1_CX_SHIFT
) |
704 BIT(SYS_PMSCR_EL1_PCT_SHIFT
))))
710 static void arm_spe_pmu_start(struct perf_event
*event
, int flags
)
713 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
714 struct hw_perf_event
*hwc
= &event
->hw
;
715 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
718 arm_spe_perf_aux_output_begin(handle
, event
);
722 reg
= arm_spe_event_to_pmsfcr(event
);
723 write_sysreg_s(reg
, SYS_PMSFCR_EL1
);
725 reg
= arm_spe_event_to_pmsevfr(event
);
726 write_sysreg_s(reg
, SYS_PMSEVFR_EL1
);
728 reg
= arm_spe_event_to_pmslatfr(event
);
729 write_sysreg_s(reg
, SYS_PMSLATFR_EL1
);
731 if (flags
& PERF_EF_RELOAD
) {
732 reg
= arm_spe_event_to_pmsirr(event
);
733 write_sysreg_s(reg
, SYS_PMSIRR_EL1
);
735 reg
= local64_read(&hwc
->period_left
);
736 write_sysreg_s(reg
, SYS_PMSICR_EL1
);
739 reg
= arm_spe_event_to_pmscr(event
);
741 write_sysreg_s(reg
, SYS_PMSCR_EL1
);
744 static void arm_spe_pmu_stop(struct perf_event
*event
, int flags
)
746 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
747 struct hw_perf_event
*hwc
= &event
->hw
;
748 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
750 /* If we're already stopped, then nothing to do */
751 if (hwc
->state
& PERF_HES_STOPPED
)
754 /* Stop all trace generation */
755 arm_spe_pmu_disable_and_drain_local();
757 if (flags
& PERF_EF_UPDATE
) {
759 * If there's a fault pending then ensure we contain it
760 * to this buffer, since we might be on the context-switch
763 if (perf_get_aux(handle
)) {
764 enum arm_spe_pmu_buf_fault_action act
;
766 act
= arm_spe_pmu_buf_get_fault_act(handle
);
767 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
768 arm_spe_perf_aux_output_end(handle
);
770 write_sysreg_s(0, SYS_PMBSR_EL1
);
774 * This may also contain ECOUNT, but nobody else should
775 * be looking at period_left, since we forbid frequency
778 local64_set(&hwc
->period_left
, read_sysreg_s(SYS_PMSICR_EL1
));
779 hwc
->state
|= PERF_HES_UPTODATE
;
782 hwc
->state
|= PERF_HES_STOPPED
;
785 static int arm_spe_pmu_add(struct perf_event
*event
, int flags
)
788 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
789 struct hw_perf_event
*hwc
= &event
->hw
;
790 int cpu
= event
->cpu
== -1 ? smp_processor_id() : event
->cpu
;
792 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
795 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
797 if (flags
& PERF_EF_START
) {
798 arm_spe_pmu_start(event
, PERF_EF_RELOAD
);
799 if (hwc
->state
& PERF_HES_STOPPED
)
806 static void arm_spe_pmu_del(struct perf_event
*event
, int flags
)
808 arm_spe_pmu_stop(event
, PERF_EF_UPDATE
);
811 static void arm_spe_pmu_read(struct perf_event
*event
)
815 static void *arm_spe_pmu_setup_aux(int cpu
, void **pages
, int nr_pages
,
819 struct page
**pglist
;
820 struct arm_spe_pmu_buf
*buf
;
822 /* We need at least two pages for this to work. */
827 * We require an even number of pages for snapshot mode, so that
828 * we can effectively treat the buffer as consisting of two equal
829 * parts and give userspace a fighting chance of getting some
830 * useful data out of it.
832 if (!nr_pages
|| (snapshot
&& (nr_pages
& 1)))
836 cpu
= raw_smp_processor_id();
838 buf
= kzalloc_node(sizeof(*buf
), GFP_KERNEL
, cpu_to_node(cpu
));
842 pglist
= kcalloc(nr_pages
, sizeof(*pglist
), GFP_KERNEL
);
846 for (i
= 0; i
< nr_pages
; ++i
) {
847 struct page
*page
= virt_to_page(pages
[i
]);
849 if (PagePrivate(page
)) {
850 pr_warn("unexpected high-order page for auxbuf!");
851 goto out_free_pglist
;
854 pglist
[i
] = virt_to_page(pages
[i
]);
857 buf
->base
= vmap(pglist
, nr_pages
, VM_MAP
, PAGE_KERNEL
);
859 goto out_free_pglist
;
861 buf
->nr_pages
= nr_pages
;
862 buf
->snapshot
= snapshot
;
874 static void arm_spe_pmu_free_aux(void *aux
)
876 struct arm_spe_pmu_buf
*buf
= aux
;
882 /* Initialisation and teardown functions */
883 static int arm_spe_pmu_perf_init(struct arm_spe_pmu
*spe_pmu
)
885 static atomic_t pmu_idx
= ATOMIC_INIT(-1);
889 struct device
*dev
= &spe_pmu
->pdev
->dev
;
891 spe_pmu
->pmu
= (struct pmu
) {
892 .module
= THIS_MODULE
,
893 .capabilities
= PERF_PMU_CAP_EXCLUSIVE
| PERF_PMU_CAP_ITRACE
,
894 .attr_groups
= arm_spe_pmu_attr_groups
,
896 * We hitch a ride on the software context here, so that
897 * we can support per-task profiling (which is not possible
898 * with the invalid context as it doesn't get sched callbacks).
899 * This requires that userspace either uses a dummy event for
900 * perf_event_open, since the aux buffer is not setup until
901 * a subsequent mmap, or creates the profiling event in a
902 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
903 * once the buffer has been created.
905 .task_ctx_nr
= perf_sw_context
,
906 .event_init
= arm_spe_pmu_event_init
,
907 .add
= arm_spe_pmu_add
,
908 .del
= arm_spe_pmu_del
,
909 .start
= arm_spe_pmu_start
,
910 .stop
= arm_spe_pmu_stop
,
911 .read
= arm_spe_pmu_read
,
912 .setup_aux
= arm_spe_pmu_setup_aux
,
913 .free_aux
= arm_spe_pmu_free_aux
,
916 idx
= atomic_inc_return(&pmu_idx
);
917 name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_%d", PMUNAME
, idx
);
918 return perf_pmu_register(&spe_pmu
->pmu
, name
, -1);
921 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu
*spe_pmu
)
923 perf_pmu_unregister(&spe_pmu
->pmu
);
926 static void __arm_spe_pmu_dev_probe(void *info
)
930 struct arm_spe_pmu
*spe_pmu
= info
;
931 struct device
*dev
= &spe_pmu
->pdev
->dev
;
933 fld
= cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1
),
934 ID_AA64DFR0_PMSVER_SHIFT
);
937 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
938 fld
, smp_processor_id());
942 /* Read PMBIDR first to determine whether or not we have access */
943 reg
= read_sysreg_s(SYS_PMBIDR_EL1
);
944 if (reg
& BIT(SYS_PMBIDR_EL1_P_SHIFT
)) {
946 "profiling buffer owned by higher exception level\n");
950 /* Minimum alignment. If it's out-of-range, then fail the probe */
951 fld
= reg
>> SYS_PMBIDR_EL1_ALIGN_SHIFT
& SYS_PMBIDR_EL1_ALIGN_MASK
;
952 spe_pmu
->align
= 1 << fld
;
953 if (spe_pmu
->align
> SZ_2K
) {
954 dev_err(dev
, "unsupported PMBIDR.Align [%d] on CPU %d\n",
955 fld
, smp_processor_id());
959 /* It's now safe to read PMSIDR and figure out what we've got */
960 reg
= read_sysreg_s(SYS_PMSIDR_EL1
);
961 if (reg
& BIT(SYS_PMSIDR_EL1_FE_SHIFT
))
962 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_EVT
;
964 if (reg
& BIT(SYS_PMSIDR_EL1_FT_SHIFT
))
965 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_TYP
;
967 if (reg
& BIT(SYS_PMSIDR_EL1_FL_SHIFT
))
968 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_LAT
;
970 if (reg
& BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT
))
971 spe_pmu
->features
|= SPE_PMU_FEAT_ARCH_INST
;
973 if (reg
& BIT(SYS_PMSIDR_EL1_LDS_SHIFT
))
974 spe_pmu
->features
|= SPE_PMU_FEAT_LDS
;
976 if (reg
& BIT(SYS_PMSIDR_EL1_ERND_SHIFT
))
977 spe_pmu
->features
|= SPE_PMU_FEAT_ERND
;
979 /* This field has a spaced out encoding, so just use a look-up */
980 fld
= reg
>> SYS_PMSIDR_EL1_INTERVAL_SHIFT
& SYS_PMSIDR_EL1_INTERVAL_MASK
;
983 spe_pmu
->min_period
= 256;
986 spe_pmu
->min_period
= 512;
989 spe_pmu
->min_period
= 768;
992 spe_pmu
->min_period
= 1024;
995 spe_pmu
->min_period
= 1536;
998 spe_pmu
->min_period
= 2048;
1001 spe_pmu
->min_period
= 3072;
1004 dev_warn(dev
, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1008 spe_pmu
->min_period
= 4096;
1011 /* Maximum record size. If it's out-of-range, then fail the probe */
1012 fld
= reg
>> SYS_PMSIDR_EL1_MAXSIZE_SHIFT
& SYS_PMSIDR_EL1_MAXSIZE_MASK
;
1013 spe_pmu
->max_record_sz
= 1 << fld
;
1014 if (spe_pmu
->max_record_sz
> SZ_2K
|| spe_pmu
->max_record_sz
< 16) {
1015 dev_err(dev
, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1016 fld
, smp_processor_id());
1020 fld
= reg
>> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT
& SYS_PMSIDR_EL1_COUNTSIZE_MASK
;
1023 dev_warn(dev
, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1027 spe_pmu
->counter_sz
= 12;
1031 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1032 cpumask_pr_args(&spe_pmu
->supported_cpus
),
1033 spe_pmu
->max_record_sz
, spe_pmu
->align
, spe_pmu
->features
);
1035 spe_pmu
->features
|= SPE_PMU_FEAT_DEV_PROBED
;
1039 static void __arm_spe_pmu_reset_local(void)
1042 * This is probably overkill, as we have no idea where we're
1043 * draining any buffered data to...
1045 arm_spe_pmu_disable_and_drain_local();
1047 /* Reset the buffer base pointer */
1048 write_sysreg_s(0, SYS_PMBPTR_EL1
);
1051 /* Clear any pending management interrupts */
1052 write_sysreg_s(0, SYS_PMBSR_EL1
);
1056 static void __arm_spe_pmu_setup_one(void *info
)
1058 struct arm_spe_pmu
*spe_pmu
= info
;
1060 __arm_spe_pmu_reset_local();
1061 enable_percpu_irq(spe_pmu
->irq
, IRQ_TYPE_NONE
);
1064 static void __arm_spe_pmu_stop_one(void *info
)
1066 struct arm_spe_pmu
*spe_pmu
= info
;
1068 disable_percpu_irq(spe_pmu
->irq
);
1069 __arm_spe_pmu_reset_local();
1072 static int arm_spe_pmu_cpu_startup(unsigned int cpu
, struct hlist_node
*node
)
1074 struct arm_spe_pmu
*spe_pmu
;
1076 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1077 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1080 __arm_spe_pmu_setup_one(spe_pmu
);
1084 static int arm_spe_pmu_cpu_teardown(unsigned int cpu
, struct hlist_node
*node
)
1086 struct arm_spe_pmu
*spe_pmu
;
1088 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1089 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1092 __arm_spe_pmu_stop_one(spe_pmu
);
1096 static int arm_spe_pmu_dev_init(struct arm_spe_pmu
*spe_pmu
)
1099 cpumask_t
*mask
= &spe_pmu
->supported_cpus
;
1101 /* Make sure we probe the hardware on a relevant CPU */
1102 ret
= smp_call_function_any(mask
, __arm_spe_pmu_dev_probe
, spe_pmu
, 1);
1103 if (ret
|| !(spe_pmu
->features
& SPE_PMU_FEAT_DEV_PROBED
))
1106 /* Request our PPIs (note that the IRQ is still disabled) */
1107 ret
= request_percpu_irq(spe_pmu
->irq
, arm_spe_pmu_irq_handler
, DRVNAME
,
1113 * Register our hotplug notifier now so we don't miss any events.
1114 * This will enable the IRQ for any supported CPUs that are already
1117 ret
= cpuhp_state_add_instance(arm_spe_pmu_online
,
1118 &spe_pmu
->hotplug_node
);
1120 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1125 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu
*spe_pmu
)
1127 cpuhp_state_remove_instance(arm_spe_pmu_online
, &spe_pmu
->hotplug_node
);
1128 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1131 /* Driver and device probing */
1132 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu
*spe_pmu
)
1134 struct platform_device
*pdev
= spe_pmu
->pdev
;
1135 int irq
= platform_get_irq(pdev
, 0);
1138 dev_err(&pdev
->dev
, "failed to get IRQ (%d)\n", irq
);
1142 if (!irq_is_percpu(irq
)) {
1143 dev_err(&pdev
->dev
, "expected PPI but got SPI (%d)\n", irq
);
1147 if (irq_get_percpu_devid_partition(irq
, &spe_pmu
->supported_cpus
)) {
1148 dev_err(&pdev
->dev
, "failed to get PPI partition (%d)\n", irq
);
1156 static const struct of_device_id arm_spe_pmu_of_match
[] = {
1157 { .compatible
= "arm,statistical-profiling-extension-v1", .data
= (void *)1 },
1161 static int arm_spe_pmu_device_dt_probe(struct platform_device
*pdev
)
1164 struct arm_spe_pmu
*spe_pmu
;
1165 struct device
*dev
= &pdev
->dev
;
1168 * If kernelspace is unmapped when running at EL0, then the SPE
1169 * buffer will fault and prematurely terminate the AUX session.
1171 if (arm64_kernel_unmapped_at_el0()) {
1172 dev_warn_once(dev
, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1176 spe_pmu
= devm_kzalloc(dev
, sizeof(*spe_pmu
), GFP_KERNEL
);
1178 dev_err(dev
, "failed to allocate spe_pmu\n");
1182 spe_pmu
->handle
= alloc_percpu(typeof(*spe_pmu
->handle
));
1183 if (!spe_pmu
->handle
)
1186 spe_pmu
->pdev
= pdev
;
1187 platform_set_drvdata(pdev
, spe_pmu
);
1189 ret
= arm_spe_pmu_irq_probe(spe_pmu
);
1191 goto out_free_handle
;
1193 ret
= arm_spe_pmu_dev_init(spe_pmu
);
1195 goto out_free_handle
;
1197 ret
= arm_spe_pmu_perf_init(spe_pmu
);
1199 goto out_teardown_dev
;
1204 arm_spe_pmu_dev_teardown(spe_pmu
);
1206 free_percpu(spe_pmu
->handle
);
1210 static int arm_spe_pmu_device_remove(struct platform_device
*pdev
)
1212 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
1214 arm_spe_pmu_perf_destroy(spe_pmu
);
1215 arm_spe_pmu_dev_teardown(spe_pmu
);
1216 free_percpu(spe_pmu
->handle
);
1220 static struct platform_driver arm_spe_pmu_driver
= {
1223 .of_match_table
= of_match_ptr(arm_spe_pmu_of_match
),
1225 .probe
= arm_spe_pmu_device_dt_probe
,
1226 .remove
= arm_spe_pmu_device_remove
,
1229 static int __init
arm_spe_pmu_init(void)
1233 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, DRVNAME
,
1234 arm_spe_pmu_cpu_startup
,
1235 arm_spe_pmu_cpu_teardown
);
1238 arm_spe_pmu_online
= ret
;
1240 ret
= platform_driver_register(&arm_spe_pmu_driver
);
1242 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1247 static void __exit
arm_spe_pmu_exit(void)
1249 platform_driver_unregister(&arm_spe_pmu_driver
);
1250 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1253 module_init(arm_spe_pmu_init
);
1254 module_exit(arm_spe_pmu_exit
);
1256 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1257 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1258 MODULE_LICENSE("GPL v2");