Linux 4.16.11
[linux/fpc-iii.git] / drivers / scsi / cxlflash / main.c
blobd8fe7ab870b8660474f7d7af24a5441500579b86
1 /*
2 * CXL Flash Device Driver
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
7 * Copyright (C) 2015 IBM Corporation
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
20 #include <asm/unaligned.h>
22 #include <misc/cxl.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
37 static struct class *cxlflash_class;
38 static u32 cxlflash_major;
39 static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
41 /**
42 * process_cmd_err() - command error handler
43 * @cmd: AFU command that experienced the error.
44 * @scp: SCSI command associated with the AFU command in error.
46 * Translates error bits from AFU command to SCSI command results.
48 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
50 struct afu *afu = cmd->parent;
51 struct cxlflash_cfg *cfg = afu->parent;
52 struct device *dev = &cfg->dev->dev;
53 struct sisl_ioarcb *ioarcb;
54 struct sisl_ioasa *ioasa;
55 u32 resid;
57 if (unlikely(!cmd))
58 return;
60 ioarcb = &(cmd->rcb);
61 ioasa = &(cmd->sa);
63 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
64 resid = ioasa->resid;
65 scsi_set_resid(scp, resid);
66 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
67 __func__, cmd, scp, resid);
70 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
71 dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
72 __func__, cmd, scp);
73 scp->result = (DID_ERROR << 16);
76 dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
77 "afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
78 ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
79 ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
81 if (ioasa->rc.scsi_rc) {
82 /* We have a SCSI status */
83 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
84 memcpy(scp->sense_buffer, ioasa->sense_data,
85 SISL_SENSE_DATA_LEN);
86 scp->result = ioasa->rc.scsi_rc;
87 } else
88 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
92 * We encountered an error. Set scp->result based on nature
93 * of error.
95 if (ioasa->rc.fc_rc) {
96 /* We have an FC status */
97 switch (ioasa->rc.fc_rc) {
98 case SISL_FC_RC_LINKDOWN:
99 scp->result = (DID_REQUEUE << 16);
100 break;
101 case SISL_FC_RC_RESID:
102 /* This indicates an FCP resid underrun */
103 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
104 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
105 * then we will handle this error else where.
106 * If not then we must handle it here.
107 * This is probably an AFU bug.
109 scp->result = (DID_ERROR << 16);
111 break;
112 case SISL_FC_RC_RESIDERR:
113 /* Resid mismatch between adapter and device */
114 case SISL_FC_RC_TGTABORT:
115 case SISL_FC_RC_ABORTOK:
116 case SISL_FC_RC_ABORTFAIL:
117 case SISL_FC_RC_NOLOGI:
118 case SISL_FC_RC_ABORTPEND:
119 case SISL_FC_RC_WRABORTPEND:
120 case SISL_FC_RC_NOEXP:
121 case SISL_FC_RC_INUSE:
122 scp->result = (DID_ERROR << 16);
123 break;
127 if (ioasa->rc.afu_rc) {
128 /* We have an AFU error */
129 switch (ioasa->rc.afu_rc) {
130 case SISL_AFU_RC_NO_CHANNELS:
131 scp->result = (DID_NO_CONNECT << 16);
132 break;
133 case SISL_AFU_RC_DATA_DMA_ERR:
134 switch (ioasa->afu_extra) {
135 case SISL_AFU_DMA_ERR_PAGE_IN:
136 /* Retry */
137 scp->result = (DID_IMM_RETRY << 16);
138 break;
139 case SISL_AFU_DMA_ERR_INVALID_EA:
140 default:
141 scp->result = (DID_ERROR << 16);
143 break;
144 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
145 /* Retry */
146 scp->result = (DID_ALLOC_FAILURE << 16);
147 break;
148 default:
149 scp->result = (DID_ERROR << 16);
155 * cmd_complete() - command completion handler
156 * @cmd: AFU command that has completed.
158 * For SCSI commands this routine prepares and submits commands that have
159 * either completed or timed out to the SCSI stack. For internal commands
160 * (TMF or AFU), this routine simply notifies the originator that the
161 * command has completed.
163 static void cmd_complete(struct afu_cmd *cmd)
165 struct scsi_cmnd *scp;
166 ulong lock_flags;
167 struct afu *afu = cmd->parent;
168 struct cxlflash_cfg *cfg = afu->parent;
169 struct device *dev = &cfg->dev->dev;
170 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
172 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
173 list_del(&cmd->list);
174 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
176 if (cmd->scp) {
177 scp = cmd->scp;
178 if (unlikely(cmd->sa.ioasc))
179 process_cmd_err(cmd, scp);
180 else
181 scp->result = (DID_OK << 16);
183 dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
184 __func__, scp, scp->result, cmd->sa.ioasc);
185 scp->scsi_done(scp);
186 } else if (cmd->cmd_tmf) {
187 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
188 cfg->tmf_active = false;
189 wake_up_all_locked(&cfg->tmf_waitq);
190 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
191 } else
192 complete(&cmd->cevent);
196 * flush_pending_cmds() - flush all pending commands on this hardware queue
197 * @hwq: Hardware queue to flush.
199 * The hardware send queue lock associated with this hardware queue must be
200 * held when calling this routine.
202 static void flush_pending_cmds(struct hwq *hwq)
204 struct cxlflash_cfg *cfg = hwq->afu->parent;
205 struct afu_cmd *cmd, *tmp;
206 struct scsi_cmnd *scp;
207 ulong lock_flags;
209 list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
210 /* Bypass command when on a doneq, cmd_complete() will handle */
211 if (!list_empty(&cmd->queue))
212 continue;
214 list_del(&cmd->list);
216 if (cmd->scp) {
217 scp = cmd->scp;
218 scp->result = (DID_IMM_RETRY << 16);
219 scp->scsi_done(scp);
220 } else {
221 cmd->cmd_aborted = true;
223 if (cmd->cmd_tmf) {
224 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
225 cfg->tmf_active = false;
226 wake_up_all_locked(&cfg->tmf_waitq);
227 spin_unlock_irqrestore(&cfg->tmf_slock,
228 lock_flags);
229 } else
230 complete(&cmd->cevent);
236 * context_reset() - reset context via specified register
237 * @hwq: Hardware queue owning the context to be reset.
238 * @reset_reg: MMIO register to perform reset.
240 * When the reset is successful, the SISLite specification guarantees that
241 * the AFU has aborted all currently pending I/O. Accordingly, these commands
242 * must be flushed.
244 * Return: 0 on success, -errno on failure
246 static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
248 struct cxlflash_cfg *cfg = hwq->afu->parent;
249 struct device *dev = &cfg->dev->dev;
250 int rc = -ETIMEDOUT;
251 int nretry = 0;
252 u64 val = 0x1;
253 ulong lock_flags;
255 dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
257 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
259 writeq_be(val, reset_reg);
260 do {
261 val = readq_be(reset_reg);
262 if ((val & 0x1) == 0x0) {
263 rc = 0;
264 break;
267 /* Double delay each time */
268 udelay(1 << nretry);
269 } while (nretry++ < MC_ROOM_RETRY_CNT);
271 if (!rc)
272 flush_pending_cmds(hwq);
274 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
276 dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
277 __func__, rc, val, nretry);
278 return rc;
282 * context_reset_ioarrin() - reset context via IOARRIN register
283 * @hwq: Hardware queue owning the context to be reset.
285 * Return: 0 on success, -errno on failure
287 static int context_reset_ioarrin(struct hwq *hwq)
289 return context_reset(hwq, &hwq->host_map->ioarrin);
293 * context_reset_sq() - reset context via SQ_CONTEXT_RESET register
294 * @hwq: Hardware queue owning the context to be reset.
296 * Return: 0 on success, -errno on failure
298 static int context_reset_sq(struct hwq *hwq)
300 return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
304 * send_cmd_ioarrin() - sends an AFU command via IOARRIN register
305 * @afu: AFU associated with the host.
306 * @cmd: AFU command to send.
308 * Return:
309 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
311 static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
313 struct cxlflash_cfg *cfg = afu->parent;
314 struct device *dev = &cfg->dev->dev;
315 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
316 int rc = 0;
317 s64 room;
318 ulong lock_flags;
321 * To avoid the performance penalty of MMIO, spread the update of
322 * 'room' over multiple commands.
324 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
325 if (--hwq->room < 0) {
326 room = readq_be(&hwq->host_map->cmd_room);
327 if (room <= 0) {
328 dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
329 "0x%02X, room=0x%016llX\n",
330 __func__, cmd->rcb.cdb[0], room);
331 hwq->room = 0;
332 rc = SCSI_MLQUEUE_HOST_BUSY;
333 goto out;
335 hwq->room = room - 1;
338 list_add(&cmd->list, &hwq->pending_cmds);
339 writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
340 out:
341 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
342 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n", __func__,
343 cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
344 return rc;
348 * send_cmd_sq() - sends an AFU command via SQ ring
349 * @afu: AFU associated with the host.
350 * @cmd: AFU command to send.
352 * Return:
353 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
355 static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
357 struct cxlflash_cfg *cfg = afu->parent;
358 struct device *dev = &cfg->dev->dev;
359 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
360 int rc = 0;
361 int newval;
362 ulong lock_flags;
364 newval = atomic_dec_if_positive(&hwq->hsq_credits);
365 if (newval <= 0) {
366 rc = SCSI_MLQUEUE_HOST_BUSY;
367 goto out;
370 cmd->rcb.ioasa = &cmd->sa;
372 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
374 *hwq->hsq_curr = cmd->rcb;
375 if (hwq->hsq_curr < hwq->hsq_end)
376 hwq->hsq_curr++;
377 else
378 hwq->hsq_curr = hwq->hsq_start;
380 list_add(&cmd->list, &hwq->pending_cmds);
381 writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
383 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
384 out:
385 dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
386 "head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
387 cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
388 readq_be(&hwq->host_map->sq_head),
389 readq_be(&hwq->host_map->sq_tail));
390 return rc;
394 * wait_resp() - polls for a response or timeout to a sent AFU command
395 * @afu: AFU associated with the host.
396 * @cmd: AFU command that was sent.
398 * Return: 0 on success, -errno on failure
400 static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
402 struct cxlflash_cfg *cfg = afu->parent;
403 struct device *dev = &cfg->dev->dev;
404 int rc = 0;
405 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
407 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
408 if (!timeout)
409 rc = -ETIMEDOUT;
411 if (cmd->cmd_aborted)
412 rc = -EAGAIN;
414 if (unlikely(cmd->sa.ioasc != 0)) {
415 dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
416 __func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
417 rc = -EIO;
420 return rc;
424 * cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
425 * @host: SCSI host associated with device.
426 * @scp: SCSI command to send.
427 * @afu: SCSI command to send.
429 * Hashes a command based upon the hardware queue mode.
431 * Return: Trusted index of target hardware queue
433 static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
434 struct afu *afu)
436 u32 tag;
437 u32 hwq = 0;
439 if (afu->num_hwqs == 1)
440 return 0;
442 switch (afu->hwq_mode) {
443 case HWQ_MODE_RR:
444 hwq = afu->hwq_rr_count++ % afu->num_hwqs;
445 break;
446 case HWQ_MODE_TAG:
447 tag = blk_mq_unique_tag(scp->request);
448 hwq = blk_mq_unique_tag_to_hwq(tag);
449 break;
450 case HWQ_MODE_CPU:
451 hwq = smp_processor_id() % afu->num_hwqs;
452 break;
453 default:
454 WARN_ON_ONCE(1);
457 return hwq;
461 * send_tmf() - sends a Task Management Function (TMF)
462 * @cfg: Internal structure associated with the host.
463 * @sdev: SCSI device destined for TMF.
464 * @tmfcmd: TMF command to send.
466 * Return:
467 * 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
469 static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
470 u64 tmfcmd)
472 struct afu *afu = cfg->afu;
473 struct afu_cmd *cmd = NULL;
474 struct device *dev = &cfg->dev->dev;
475 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
476 char *buf = NULL;
477 ulong lock_flags;
478 int rc = 0;
479 ulong to;
481 buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
482 if (unlikely(!buf)) {
483 dev_err(dev, "%s: no memory for command\n", __func__);
484 rc = -ENOMEM;
485 goto out;
488 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
489 INIT_LIST_HEAD(&cmd->queue);
491 /* When Task Management Function is active do not send another */
492 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
493 if (cfg->tmf_active)
494 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
495 !cfg->tmf_active,
496 cfg->tmf_slock);
497 cfg->tmf_active = true;
498 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
500 cmd->parent = afu;
501 cmd->cmd_tmf = true;
502 cmd->hwq_index = hwq->index;
504 cmd->rcb.ctx_id = hwq->ctx_hndl;
505 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
506 cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
507 cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
508 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
509 SISL_REQ_FLAGS_SUP_UNDERRUN |
510 SISL_REQ_FLAGS_TMF_CMD);
511 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
513 rc = afu->send_cmd(afu, cmd);
514 if (unlikely(rc)) {
515 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
516 cfg->tmf_active = false;
517 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
518 goto out;
521 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
522 to = msecs_to_jiffies(5000);
523 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
524 !cfg->tmf_active,
525 cfg->tmf_slock,
526 to);
527 if (!to) {
528 dev_err(dev, "%s: TMF timed out\n", __func__);
529 rc = -ETIMEDOUT;
530 } else if (cmd->cmd_aborted) {
531 dev_err(dev, "%s: TMF aborted\n", __func__);
532 rc = -EAGAIN;
533 } else if (cmd->sa.ioasc) {
534 dev_err(dev, "%s: TMF failed ioasc=%08x\n",
535 __func__, cmd->sa.ioasc);
536 rc = -EIO;
538 cfg->tmf_active = false;
539 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
540 out:
541 kfree(buf);
542 return rc;
546 * cxlflash_driver_info() - information handler for this host driver
547 * @host: SCSI host associated with device.
549 * Return: A string describing the device.
551 static const char *cxlflash_driver_info(struct Scsi_Host *host)
553 return CXLFLASH_ADAPTER_NAME;
557 * cxlflash_queuecommand() - sends a mid-layer request
558 * @host: SCSI host associated with device.
559 * @scp: SCSI command to send.
561 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
563 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
565 struct cxlflash_cfg *cfg = shost_priv(host);
566 struct afu *afu = cfg->afu;
567 struct device *dev = &cfg->dev->dev;
568 struct afu_cmd *cmd = sc_to_afuci(scp);
569 struct scatterlist *sg = scsi_sglist(scp);
570 int hwq_index = cmd_to_target_hwq(host, scp, afu);
571 struct hwq *hwq = get_hwq(afu, hwq_index);
572 u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
573 ulong lock_flags;
574 int rc = 0;
576 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
577 "cdb=(%08x-%08x-%08x-%08x)\n",
578 __func__, scp, host->host_no, scp->device->channel,
579 scp->device->id, scp->device->lun,
580 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
581 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
582 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
583 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
586 * If a Task Management Function is active, wait for it to complete
587 * before continuing with regular commands.
589 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
590 if (cfg->tmf_active) {
591 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
592 rc = SCSI_MLQUEUE_HOST_BUSY;
593 goto out;
595 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
597 switch (cfg->state) {
598 case STATE_PROBING:
599 case STATE_PROBED:
600 case STATE_RESET:
601 dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
602 rc = SCSI_MLQUEUE_HOST_BUSY;
603 goto out;
604 case STATE_FAILTERM:
605 dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
606 scp->result = (DID_NO_CONNECT << 16);
607 scp->scsi_done(scp);
608 rc = 0;
609 goto out;
610 default:
611 break;
614 if (likely(sg)) {
615 cmd->rcb.data_len = sg->length;
616 cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
619 cmd->scp = scp;
620 cmd->parent = afu;
621 cmd->hwq_index = hwq_index;
623 cmd->sa.ioasc = 0;
624 cmd->rcb.ctx_id = hwq->ctx_hndl;
625 cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
626 cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
627 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
629 if (scp->sc_data_direction == DMA_TO_DEVICE)
630 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
632 cmd->rcb.req_flags = req_flags;
633 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
635 rc = afu->send_cmd(afu, cmd);
636 out:
637 return rc;
641 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
642 * @cfg: Internal structure associated with the host.
644 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
646 struct pci_dev *pdev = cfg->dev;
648 if (pci_channel_offline(pdev))
649 wait_event_timeout(cfg->reset_waitq,
650 !pci_channel_offline(pdev),
651 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
655 * free_mem() - free memory associated with the AFU
656 * @cfg: Internal structure associated with the host.
658 static void free_mem(struct cxlflash_cfg *cfg)
660 struct afu *afu = cfg->afu;
662 if (cfg->afu) {
663 free_pages((ulong)afu, get_order(sizeof(struct afu)));
664 cfg->afu = NULL;
669 * cxlflash_reset_sync() - synchronizing point for asynchronous resets
670 * @cfg: Internal structure associated with the host.
672 static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
674 if (cfg->async_reset_cookie == 0)
675 return;
677 /* Wait until all async calls prior to this cookie have completed */
678 async_synchronize_cookie(cfg->async_reset_cookie + 1);
679 cfg->async_reset_cookie = 0;
683 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
684 * @cfg: Internal structure associated with the host.
686 * Safe to call with AFU in a partially allocated/initialized state.
688 * Cancels scheduled worker threads, waits for any active internal AFU
689 * commands to timeout, disables IRQ polling and then unmaps the MMIO space.
691 static void stop_afu(struct cxlflash_cfg *cfg)
693 struct afu *afu = cfg->afu;
694 struct hwq *hwq;
695 int i;
697 cancel_work_sync(&cfg->work_q);
698 if (!current_is_async())
699 cxlflash_reset_sync(cfg);
701 if (likely(afu)) {
702 while (atomic_read(&afu->cmds_active))
703 ssleep(1);
705 if (afu_is_irqpoll_enabled(afu)) {
706 for (i = 0; i < afu->num_hwqs; i++) {
707 hwq = get_hwq(afu, i);
709 irq_poll_disable(&hwq->irqpoll);
713 if (likely(afu->afu_map)) {
714 cfg->ops->psa_unmap(afu->afu_map);
715 afu->afu_map = NULL;
721 * term_intr() - disables all AFU interrupts
722 * @cfg: Internal structure associated with the host.
723 * @level: Depth of allocation, where to begin waterfall tear down.
724 * @index: Index of the hardware queue.
726 * Safe to call with AFU/MC in partially allocated/initialized state.
728 static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
729 u32 index)
731 struct afu *afu = cfg->afu;
732 struct device *dev = &cfg->dev->dev;
733 struct hwq *hwq;
735 if (!afu) {
736 dev_err(dev, "%s: returning with NULL afu\n", __func__);
737 return;
740 hwq = get_hwq(afu, index);
742 if (!hwq->ctx_cookie) {
743 dev_err(dev, "%s: returning with NULL MC\n", __func__);
744 return;
747 switch (level) {
748 case UNMAP_THREE:
749 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
750 if (index == PRIMARY_HWQ)
751 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
752 case UNMAP_TWO:
753 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
754 case UNMAP_ONE:
755 cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
756 case FREE_IRQ:
757 cfg->ops->free_afu_irqs(hwq->ctx_cookie);
758 /* fall through */
759 case UNDO_NOOP:
760 /* No action required */
761 break;
766 * term_mc() - terminates the master context
767 * @cfg: Internal structure associated with the host.
768 * @index: Index of the hardware queue.
770 * Safe to call with AFU/MC in partially allocated/initialized state.
772 static void term_mc(struct cxlflash_cfg *cfg, u32 index)
774 struct afu *afu = cfg->afu;
775 struct device *dev = &cfg->dev->dev;
776 struct hwq *hwq;
777 ulong lock_flags;
779 if (!afu) {
780 dev_err(dev, "%s: returning with NULL afu\n", __func__);
781 return;
784 hwq = get_hwq(afu, index);
786 if (!hwq->ctx_cookie) {
787 dev_err(dev, "%s: returning with NULL MC\n", __func__);
788 return;
791 WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
792 if (index != PRIMARY_HWQ)
793 WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
794 hwq->ctx_cookie = NULL;
796 spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
797 flush_pending_cmds(hwq);
798 spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
802 * term_afu() - terminates the AFU
803 * @cfg: Internal structure associated with the host.
805 * Safe to call with AFU/MC in partially allocated/initialized state.
807 static void term_afu(struct cxlflash_cfg *cfg)
809 struct device *dev = &cfg->dev->dev;
810 int k;
813 * Tear down is carefully orchestrated to ensure
814 * no interrupts can come in when the problem state
815 * area is unmapped.
817 * 1) Disable all AFU interrupts for each master
818 * 2) Unmap the problem state area
819 * 3) Stop each master context
821 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
822 term_intr(cfg, UNMAP_THREE, k);
824 stop_afu(cfg);
826 for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
827 term_mc(cfg, k);
829 dev_dbg(dev, "%s: returning\n", __func__);
833 * notify_shutdown() - notifies device of pending shutdown
834 * @cfg: Internal structure associated with the host.
835 * @wait: Whether to wait for shutdown processing to complete.
837 * This function will notify the AFU that the adapter is being shutdown
838 * and will wait for shutdown processing to complete if wait is true.
839 * This notification should flush pending I/Os to the device and halt
840 * further I/Os until the next AFU reset is issued and device restarted.
842 static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
844 struct afu *afu = cfg->afu;
845 struct device *dev = &cfg->dev->dev;
846 struct dev_dependent_vals *ddv;
847 __be64 __iomem *fc_port_regs;
848 u64 reg, status;
849 int i, retry_cnt = 0;
851 ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
852 if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
853 return;
855 if (!afu || !afu->afu_map) {
856 dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
857 return;
860 /* Notify AFU */
861 for (i = 0; i < cfg->num_fc_ports; i++) {
862 fc_port_regs = get_fc_port_regs(cfg, i);
864 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
865 reg |= SISL_FC_SHUTDOWN_NORMAL;
866 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
869 if (!wait)
870 return;
872 /* Wait up to 1.5 seconds for shutdown processing to complete */
873 for (i = 0; i < cfg->num_fc_ports; i++) {
874 fc_port_regs = get_fc_port_regs(cfg, i);
875 retry_cnt = 0;
877 while (true) {
878 status = readq_be(&fc_port_regs[FC_STATUS / 8]);
879 if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
880 break;
881 if (++retry_cnt >= MC_RETRY_CNT) {
882 dev_dbg(dev, "%s: port %d shutdown processing "
883 "not yet completed\n", __func__, i);
884 break;
886 msleep(100 * retry_cnt);
892 * cxlflash_get_minor() - gets the first available minor number
894 * Return: Unique minor number that can be used to create the character device.
896 static int cxlflash_get_minor(void)
898 int minor;
899 long bit;
901 bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
902 if (bit >= CXLFLASH_MAX_ADAPTERS)
903 return -1;
905 minor = bit & MINORMASK;
906 set_bit(minor, cxlflash_minor);
907 return minor;
911 * cxlflash_put_minor() - releases the minor number
912 * @minor: Minor number that is no longer needed.
914 static void cxlflash_put_minor(int minor)
916 clear_bit(minor, cxlflash_minor);
920 * cxlflash_release_chrdev() - release the character device for the host
921 * @cfg: Internal structure associated with the host.
923 static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
925 device_unregister(cfg->chardev);
926 cfg->chardev = NULL;
927 cdev_del(&cfg->cdev);
928 cxlflash_put_minor(MINOR(cfg->cdev.dev));
932 * cxlflash_remove() - PCI entry point to tear down host
933 * @pdev: PCI device associated with the host.
935 * Safe to use as a cleanup in partially allocated/initialized state. Note that
936 * the reset_waitq is flushed as part of the stop/termination of user contexts.
938 static void cxlflash_remove(struct pci_dev *pdev)
940 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
941 struct device *dev = &pdev->dev;
942 ulong lock_flags;
944 if (!pci_is_enabled(pdev)) {
945 dev_dbg(dev, "%s: Device is disabled\n", __func__);
946 return;
949 /* If a Task Management Function is active, wait for it to complete
950 * before continuing with remove.
952 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
953 if (cfg->tmf_active)
954 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
955 !cfg->tmf_active,
956 cfg->tmf_slock);
957 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
959 /* Notify AFU and wait for shutdown processing to complete */
960 notify_shutdown(cfg, true);
962 cfg->state = STATE_FAILTERM;
963 cxlflash_stop_term_user_contexts(cfg);
965 switch (cfg->init_state) {
966 case INIT_STATE_CDEV:
967 cxlflash_release_chrdev(cfg);
968 case INIT_STATE_SCSI:
969 cxlflash_term_local_luns(cfg);
970 scsi_remove_host(cfg->host);
971 case INIT_STATE_AFU:
972 term_afu(cfg);
973 case INIT_STATE_PCI:
974 pci_disable_device(pdev);
975 case INIT_STATE_NONE:
976 free_mem(cfg);
977 scsi_host_put(cfg->host);
978 break;
981 dev_dbg(dev, "%s: returning\n", __func__);
985 * alloc_mem() - allocates the AFU and its command pool
986 * @cfg: Internal structure associated with the host.
988 * A partially allocated state remains on failure.
990 * Return:
991 * 0 on success
992 * -ENOMEM on failure to allocate memory
994 static int alloc_mem(struct cxlflash_cfg *cfg)
996 int rc = 0;
997 struct device *dev = &cfg->dev->dev;
999 /* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
1000 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1001 get_order(sizeof(struct afu)));
1002 if (unlikely(!cfg->afu)) {
1003 dev_err(dev, "%s: cannot get %d free pages\n",
1004 __func__, get_order(sizeof(struct afu)));
1005 rc = -ENOMEM;
1006 goto out;
1008 cfg->afu->parent = cfg;
1009 cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
1010 cfg->afu->afu_map = NULL;
1011 out:
1012 return rc;
1016 * init_pci() - initializes the host as a PCI device
1017 * @cfg: Internal structure associated with the host.
1019 * Return: 0 on success, -errno on failure
1021 static int init_pci(struct cxlflash_cfg *cfg)
1023 struct pci_dev *pdev = cfg->dev;
1024 struct device *dev = &cfg->dev->dev;
1025 int rc = 0;
1027 rc = pci_enable_device(pdev);
1028 if (rc || pci_channel_offline(pdev)) {
1029 if (pci_channel_offline(pdev)) {
1030 cxlflash_wait_for_pci_err_recovery(cfg);
1031 rc = pci_enable_device(pdev);
1034 if (rc) {
1035 dev_err(dev, "%s: Cannot enable adapter\n", __func__);
1036 cxlflash_wait_for_pci_err_recovery(cfg);
1037 goto out;
1041 out:
1042 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1043 return rc;
1047 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1048 * @cfg: Internal structure associated with the host.
1050 * Return: 0 on success, -errno on failure
1052 static int init_scsi(struct cxlflash_cfg *cfg)
1054 struct pci_dev *pdev = cfg->dev;
1055 struct device *dev = &cfg->dev->dev;
1056 int rc = 0;
1058 rc = scsi_add_host(cfg->host, &pdev->dev);
1059 if (rc) {
1060 dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
1061 goto out;
1064 scsi_scan_host(cfg->host);
1066 out:
1067 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1068 return rc;
1072 * set_port_online() - transitions the specified host FC port to online state
1073 * @fc_regs: Top of MMIO region defined for specified port.
1075 * The provided MMIO region must be mapped prior to call. Online state means
1076 * that the FC link layer has synced, completed the handshaking process, and
1077 * is ready for login to start.
1079 static void set_port_online(__be64 __iomem *fc_regs)
1081 u64 cmdcfg;
1083 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1084 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
1085 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
1086 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1090 * set_port_offline() - transitions the specified host FC port to offline state
1091 * @fc_regs: Top of MMIO region defined for specified port.
1093 * The provided MMIO region must be mapped prior to call.
1095 static void set_port_offline(__be64 __iomem *fc_regs)
1097 u64 cmdcfg;
1099 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
1100 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
1101 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
1102 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
1106 * wait_port_online() - waits for the specified host FC port come online
1107 * @fc_regs: Top of MMIO region defined for specified port.
1108 * @delay_us: Number of microseconds to delay between reading port status.
1109 * @nretry: Number of cycles to retry reading port status.
1111 * The provided MMIO region must be mapped prior to call. This will timeout
1112 * when the cable is not plugged in.
1114 * Return:
1115 * TRUE (1) when the specified port is online
1116 * FALSE (0) when the specified port fails to come online after timeout
1118 static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1120 u64 status;
1122 WARN_ON(delay_us < 1000);
1124 do {
1125 msleep(delay_us / 1000);
1126 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1127 if (status == U64_MAX)
1128 nretry /= 2;
1129 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1130 nretry--);
1132 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1136 * wait_port_offline() - waits for the specified host FC port go offline
1137 * @fc_regs: Top of MMIO region defined for specified port.
1138 * @delay_us: Number of microseconds to delay between reading port status.
1139 * @nretry: Number of cycles to retry reading port status.
1141 * The provided MMIO region must be mapped prior to call.
1143 * Return:
1144 * TRUE (1) when the specified port is offline
1145 * FALSE (0) when the specified port fails to go offline after timeout
1147 static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
1149 u64 status;
1151 WARN_ON(delay_us < 1000);
1153 do {
1154 msleep(delay_us / 1000);
1155 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1156 if (status == U64_MAX)
1157 nretry /= 2;
1158 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1159 nretry--);
1161 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1165 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1166 * @afu: AFU associated with the host that owns the specified FC port.
1167 * @port: Port number being configured.
1168 * @fc_regs: Top of MMIO region defined for specified port.
1169 * @wwpn: The world-wide-port-number previously discovered for port.
1171 * The provided MMIO region must be mapped prior to call. As part of the
1172 * sequence to configure the WWPN, the port is toggled offline and then back
1173 * online. This toggling action can cause this routine to delay up to a few
1174 * seconds. When configured to use the internal LUN feature of the AFU, a
1175 * failure to come online is overridden.
1177 static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1178 u64 wwpn)
1180 struct cxlflash_cfg *cfg = afu->parent;
1181 struct device *dev = &cfg->dev->dev;
1183 set_port_offline(fc_regs);
1184 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1185 FC_PORT_STATUS_RETRY_CNT)) {
1186 dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
1187 __func__, port);
1190 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1192 set_port_online(fc_regs);
1193 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1194 FC_PORT_STATUS_RETRY_CNT)) {
1195 dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
1196 __func__, port);
1201 * afu_link_reset() - resets the specified host FC port
1202 * @afu: AFU associated with the host that owns the specified FC port.
1203 * @port: Port number being configured.
1204 * @fc_regs: Top of MMIO region defined for specified port.
1206 * The provided MMIO region must be mapped prior to call. The sequence to
1207 * reset the port involves toggling it offline and then back online. This
1208 * action can cause this routine to delay up to a few seconds. An effort
1209 * is made to maintain link with the device by switching to host to use
1210 * the alternate port exclusively while the reset takes place.
1211 * failure to come online is overridden.
1213 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1215 struct cxlflash_cfg *cfg = afu->parent;
1216 struct device *dev = &cfg->dev->dev;
1217 u64 port_sel;
1219 /* first switch the AFU to the other links, if any */
1220 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1221 port_sel &= ~(1ULL << port);
1222 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1223 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1225 set_port_offline(fc_regs);
1226 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1227 FC_PORT_STATUS_RETRY_CNT))
1228 dev_err(dev, "%s: wait on port %d to go offline timed out\n",
1229 __func__, port);
1231 set_port_online(fc_regs);
1232 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1233 FC_PORT_STATUS_RETRY_CNT))
1234 dev_err(dev, "%s: wait on port %d to go online timed out\n",
1235 __func__, port);
1237 /* switch back to include this port */
1238 port_sel |= (1ULL << port);
1239 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1240 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1242 dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
1246 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1247 * @afu: AFU associated with the host.
1249 static void afu_err_intr_init(struct afu *afu)
1251 struct cxlflash_cfg *cfg = afu->parent;
1252 __be64 __iomem *fc_port_regs;
1253 int i;
1254 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
1255 u64 reg;
1257 /* global async interrupts: AFU clears afu_ctrl on context exit
1258 * if async interrupts were sent to that context. This prevents
1259 * the AFU form sending further async interrupts when
1260 * there is
1261 * nobody to receive them.
1264 /* mask all */
1265 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1266 /* set LISN# to send and point to primary master context */
1267 reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1269 if (afu->internal_lun)
1270 reg |= 1; /* Bit 63 indicates local lun */
1271 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1272 /* clear all */
1273 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1274 /* unmask bits that are of interest */
1275 /* note: afu can send an interrupt after this step */
1276 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1277 /* clear again in case a bit came on after previous clear but before */
1278 /* unmask */
1279 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1281 /* Clear/Set internal lun bits */
1282 fc_port_regs = get_fc_port_regs(cfg, 0);
1283 reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
1284 reg &= SISL_FC_INTERNAL_MASK;
1285 if (afu->internal_lun)
1286 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1287 writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
1289 /* now clear FC errors */
1290 for (i = 0; i < cfg->num_fc_ports; i++) {
1291 fc_port_regs = get_fc_port_regs(cfg, i);
1293 writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
1294 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1297 /* sync interrupts for master's IOARRIN write */
1298 /* note that unlike asyncs, there can be no pending sync interrupts */
1299 /* at this time (this is a fresh context and master has not written */
1300 /* IOARRIN yet), so there is nothing to clear. */
1302 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1303 for (i = 0; i < afu->num_hwqs; i++) {
1304 hwq = get_hwq(afu, i);
1306 writeq_be(SISL_MSI_SYNC_ERROR, &hwq->host_map->ctx_ctrl);
1307 writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
1312 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1313 * @irq: Interrupt number.
1314 * @data: Private data provided at interrupt registration, the AFU.
1316 * Return: Always return IRQ_HANDLED.
1318 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1320 struct hwq *hwq = (struct hwq *)data;
1321 struct cxlflash_cfg *cfg = hwq->afu->parent;
1322 struct device *dev = &cfg->dev->dev;
1323 u64 reg;
1324 u64 reg_unmasked;
1326 reg = readq_be(&hwq->host_map->intr_status);
1327 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1329 if (reg_unmasked == 0UL) {
1330 dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
1331 __func__, reg);
1332 goto cxlflash_sync_err_irq_exit;
1335 dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
1336 __func__, reg);
1338 writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
1340 cxlflash_sync_err_irq_exit:
1341 return IRQ_HANDLED;
1345 * process_hrrq() - process the read-response queue
1346 * @afu: AFU associated with the host.
1347 * @doneq: Queue of commands harvested from the RRQ.
1348 * @budget: Threshold of RRQ entries to process.
1350 * This routine must be called holding the disabled RRQ spin lock.
1352 * Return: The number of entries processed.
1354 static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
1356 struct afu *afu = hwq->afu;
1357 struct afu_cmd *cmd;
1358 struct sisl_ioasa *ioasa;
1359 struct sisl_ioarcb *ioarcb;
1360 bool toggle = hwq->toggle;
1361 int num_hrrq = 0;
1362 u64 entry,
1363 *hrrq_start = hwq->hrrq_start,
1364 *hrrq_end = hwq->hrrq_end,
1365 *hrrq_curr = hwq->hrrq_curr;
1367 /* Process ready RRQ entries up to the specified budget (if any) */
1368 while (true) {
1369 entry = *hrrq_curr;
1371 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1372 break;
1374 entry &= ~SISL_RESP_HANDLE_T_BIT;
1376 if (afu_is_sq_cmd_mode(afu)) {
1377 ioasa = (struct sisl_ioasa *)entry;
1378 cmd = container_of(ioasa, struct afu_cmd, sa);
1379 } else {
1380 ioarcb = (struct sisl_ioarcb *)entry;
1381 cmd = container_of(ioarcb, struct afu_cmd, rcb);
1384 list_add_tail(&cmd->queue, doneq);
1386 /* Advance to next entry or wrap and flip the toggle bit */
1387 if (hrrq_curr < hrrq_end)
1388 hrrq_curr++;
1389 else {
1390 hrrq_curr = hrrq_start;
1391 toggle ^= SISL_RESP_HANDLE_T_BIT;
1394 atomic_inc(&hwq->hsq_credits);
1395 num_hrrq++;
1397 if (budget > 0 && num_hrrq >= budget)
1398 break;
1401 hwq->hrrq_curr = hrrq_curr;
1402 hwq->toggle = toggle;
1404 return num_hrrq;
1408 * process_cmd_doneq() - process a queue of harvested RRQ commands
1409 * @doneq: Queue of completed commands.
1411 * Note that upon return the queue can no longer be trusted.
1413 static void process_cmd_doneq(struct list_head *doneq)
1415 struct afu_cmd *cmd, *tmp;
1417 WARN_ON(list_empty(doneq));
1419 list_for_each_entry_safe(cmd, tmp, doneq, queue)
1420 cmd_complete(cmd);
1424 * cxlflash_irqpoll() - process a queue of harvested RRQ commands
1425 * @irqpoll: IRQ poll structure associated with queue to poll.
1426 * @budget: Threshold of RRQ entries to process per poll.
1428 * Return: The number of entries processed.
1430 static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
1432 struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
1433 unsigned long hrrq_flags;
1434 LIST_HEAD(doneq);
1435 int num_entries = 0;
1437 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1439 num_entries = process_hrrq(hwq, &doneq, budget);
1440 if (num_entries < budget)
1441 irq_poll_complete(irqpoll);
1443 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1445 process_cmd_doneq(&doneq);
1446 return num_entries;
1450 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1451 * @irq: Interrupt number.
1452 * @data: Private data provided at interrupt registration, the AFU.
1454 * Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
1456 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1458 struct hwq *hwq = (struct hwq *)data;
1459 struct afu *afu = hwq->afu;
1460 unsigned long hrrq_flags;
1461 LIST_HEAD(doneq);
1462 int num_entries = 0;
1464 spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
1466 if (afu_is_irqpoll_enabled(afu)) {
1467 irq_poll_sched(&hwq->irqpoll);
1468 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1469 return IRQ_HANDLED;
1472 num_entries = process_hrrq(hwq, &doneq, -1);
1473 spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
1475 if (num_entries == 0)
1476 return IRQ_NONE;
1478 process_cmd_doneq(&doneq);
1479 return IRQ_HANDLED;
1483 * Asynchronous interrupt information table
1485 * NOTE:
1486 * - Order matters here as this array is indexed by bit position.
1488 * - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
1489 * as complex and complains due to a lack of parentheses/braces.
1491 #define ASTATUS_FC(_a, _b, _c, _d) \
1492 { SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
1494 #define BUILD_SISL_ASTATUS_FC_PORT(_a) \
1495 ASTATUS_FC(_a, LINK_UP, "link up", 0), \
1496 ASTATUS_FC(_a, LINK_DN, "link down", 0), \
1497 ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
1498 ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
1499 ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
1500 ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
1501 ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
1502 ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
1504 static const struct asyc_intr_info ainfo[] = {
1505 BUILD_SISL_ASTATUS_FC_PORT(1),
1506 BUILD_SISL_ASTATUS_FC_PORT(0),
1507 BUILD_SISL_ASTATUS_FC_PORT(3),
1508 BUILD_SISL_ASTATUS_FC_PORT(2)
1512 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1513 * @irq: Interrupt number.
1514 * @data: Private data provided at interrupt registration, the AFU.
1516 * Return: Always return IRQ_HANDLED.
1518 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1520 struct hwq *hwq = (struct hwq *)data;
1521 struct afu *afu = hwq->afu;
1522 struct cxlflash_cfg *cfg = afu->parent;
1523 struct device *dev = &cfg->dev->dev;
1524 const struct asyc_intr_info *info;
1525 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1526 __be64 __iomem *fc_port_regs;
1527 u64 reg_unmasked;
1528 u64 reg;
1529 u64 bit;
1530 u8 port;
1532 reg = readq_be(&global->regs.aintr_status);
1533 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1535 if (unlikely(reg_unmasked == 0)) {
1536 dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
1537 __func__, reg);
1538 goto out;
1541 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1542 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1544 /* Check each bit that is on */
1545 for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
1546 if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
1547 WARN_ON_ONCE(1);
1548 continue;
1551 info = &ainfo[bit];
1552 if (unlikely(info->status != 1ULL << bit)) {
1553 WARN_ON_ONCE(1);
1554 continue;
1557 port = info->port;
1558 fc_port_regs = get_fc_port_regs(cfg, port);
1560 dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
1561 __func__, port, info->desc,
1562 readq_be(&fc_port_regs[FC_STATUS / 8]));
1565 * Do link reset first, some OTHER errors will set FC_ERROR
1566 * again if cleared before or w/o a reset
1568 if (info->action & LINK_RESET) {
1569 dev_err(dev, "%s: FC Port %d: resetting link\n",
1570 __func__, port);
1571 cfg->lr_state = LINK_RESET_REQUIRED;
1572 cfg->lr_port = port;
1573 schedule_work(&cfg->work_q);
1576 if (info->action & CLR_FC_ERROR) {
1577 reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
1580 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1581 * should be the same and tracing one is sufficient.
1584 dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
1585 __func__, port, reg);
1587 writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
1588 writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
1591 if (info->action & SCAN_HOST) {
1592 atomic_inc(&cfg->scan_host_needed);
1593 schedule_work(&cfg->work_q);
1597 out:
1598 return IRQ_HANDLED;
1602 * read_vpd() - obtains the WWPNs from VPD
1603 * @cfg: Internal structure associated with the host.
1604 * @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
1606 * Return: 0 on success, -errno on failure
1608 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1610 struct device *dev = &cfg->dev->dev;
1611 struct pci_dev *pdev = cfg->dev;
1612 int rc = 0;
1613 int ro_start, ro_size, i, j, k;
1614 ssize_t vpd_size;
1615 char vpd_data[CXLFLASH_VPD_LEN];
1616 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1617 const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
1618 cfg->dev_id->driver_data;
1619 const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
1620 const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
1622 /* Get the VPD data from the device */
1623 vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
1624 if (unlikely(vpd_size <= 0)) {
1625 dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
1626 __func__, vpd_size);
1627 rc = -ENODEV;
1628 goto out;
1631 /* Get the read only section offset */
1632 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1633 PCI_VPD_LRDT_RO_DATA);
1634 if (unlikely(ro_start < 0)) {
1635 dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
1636 rc = -ENODEV;
1637 goto out;
1640 /* Get the read only section size, cap when extends beyond read VPD */
1641 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1642 j = ro_size;
1643 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1644 if (unlikely((i + j) > vpd_size)) {
1645 dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
1646 __func__, (i + j), vpd_size);
1647 ro_size = vpd_size - i;
1651 * Find the offset of the WWPN tag within the read only
1652 * VPD data and validate the found field (partials are
1653 * no good to us). Convert the ASCII data to an integer
1654 * value. Note that we must copy to a temporary buffer
1655 * because the conversion service requires that the ASCII
1656 * string be terminated.
1658 * Allow for WWPN not being found for all devices, setting
1659 * the returned WWPN to zero when not found. Notify with a
1660 * log error for cards that should have had WWPN keywords
1661 * in the VPD - cards requiring WWPN will not have their
1662 * ports programmed and operate in an undefined state.
1664 for (k = 0; k < cfg->num_fc_ports; k++) {
1665 j = ro_size;
1666 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1668 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1669 if (i < 0) {
1670 if (wwpn_vpd_required)
1671 dev_err(dev, "%s: Port %d WWPN not found\n",
1672 __func__, k);
1673 wwpn[k] = 0ULL;
1674 continue;
1677 j = pci_vpd_info_field_size(&vpd_data[i]);
1678 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1679 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1680 dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
1681 __func__, k);
1682 rc = -ENODEV;
1683 goto out;
1686 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1687 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1688 if (unlikely(rc)) {
1689 dev_err(dev, "%s: WWPN conversion failed for port %d\n",
1690 __func__, k);
1691 rc = -ENODEV;
1692 goto out;
1695 dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
1698 out:
1699 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1700 return rc;
1704 * init_pcr() - initialize the provisioning and control registers
1705 * @cfg: Internal structure associated with the host.
1707 * Also sets up fast access to the mapped registers and initializes AFU
1708 * command fields that never change.
1710 static void init_pcr(struct cxlflash_cfg *cfg)
1712 struct afu *afu = cfg->afu;
1713 struct sisl_ctrl_map __iomem *ctrl_map;
1714 struct hwq *hwq;
1715 void *cookie;
1716 int i;
1718 for (i = 0; i < MAX_CONTEXT; i++) {
1719 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1720 /* Disrupt any clients that could be running */
1721 /* e.g. clients that survived a master restart */
1722 writeq_be(0, &ctrl_map->rht_start);
1723 writeq_be(0, &ctrl_map->rht_cnt_id);
1724 writeq_be(0, &ctrl_map->ctx_cap);
1727 /* Copy frequently used fields into hwq */
1728 for (i = 0; i < afu->num_hwqs; i++) {
1729 hwq = get_hwq(afu, i);
1730 cookie = hwq->ctx_cookie;
1732 hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
1733 hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
1734 hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
1736 /* Program the Endian Control for the master context */
1737 writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
1742 * init_global() - initialize AFU global registers
1743 * @cfg: Internal structure associated with the host.
1745 static int init_global(struct cxlflash_cfg *cfg)
1747 struct afu *afu = cfg->afu;
1748 struct device *dev = &cfg->dev->dev;
1749 struct hwq *hwq;
1750 struct sisl_host_map __iomem *hmap;
1751 __be64 __iomem *fc_port_regs;
1752 u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
1753 int i = 0, num_ports = 0;
1754 int rc = 0;
1755 u64 reg;
1757 rc = read_vpd(cfg, &wwpn[0]);
1758 if (rc) {
1759 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1760 goto out;
1763 /* Set up RRQ and SQ in HWQ for master issued cmds */
1764 for (i = 0; i < afu->num_hwqs; i++) {
1765 hwq = get_hwq(afu, i);
1766 hmap = hwq->host_map;
1768 writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
1769 writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
1771 if (afu_is_sq_cmd_mode(afu)) {
1772 writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
1773 writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
1777 /* AFU configuration */
1778 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1779 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1780 /* enable all auto retry options and control endianness */
1781 /* leave others at default: */
1782 /* CTX_CAP write protected, mbox_r does not clear on read and */
1783 /* checker on if dual afu */
1784 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1786 /* Global port select: select either port */
1787 if (afu->internal_lun) {
1788 /* Only use port 0 */
1789 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1790 num_ports = 0;
1791 } else {
1792 writeq_be(PORT_MASK(cfg->num_fc_ports),
1793 &afu->afu_map->global.regs.afu_port_sel);
1794 num_ports = cfg->num_fc_ports;
1797 for (i = 0; i < num_ports; i++) {
1798 fc_port_regs = get_fc_port_regs(cfg, i);
1800 /* Unmask all errors (but they are still masked at AFU) */
1801 writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
1802 /* Clear CRC error cnt & set a threshold */
1803 (void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
1804 writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
1806 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1807 if (wwpn[i] != 0)
1808 afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
1809 /* Programming WWPN back to back causes additional
1810 * offline/online transitions and a PLOGI
1812 msleep(100);
1815 /* Set up master's own CTX_CAP to allow real mode, host translation */
1816 /* tables, afu cmds and read/write GSCSI cmds. */
1817 /* First, unlock ctx_cap write by reading mbox */
1818 for (i = 0; i < afu->num_hwqs; i++) {
1819 hwq = get_hwq(afu, i);
1821 (void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
1822 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1823 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1824 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1825 &hwq->ctrl_map->ctx_cap);
1829 * Determine write-same unmap support for host by evaluating the unmap
1830 * sector support bit of the context control register associated with
1831 * the primary hardware queue. Note that while this status is reflected
1832 * in a context register, the outcome can be assumed to be host-wide.
1834 hwq = get_hwq(afu, PRIMARY_HWQ);
1835 reg = readq_be(&hwq->host_map->ctx_ctrl);
1836 if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
1837 cfg->ws_unmap = true;
1839 /* Initialize heartbeat */
1840 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1841 out:
1842 return rc;
1846 * start_afu() - initializes and starts the AFU
1847 * @cfg: Internal structure associated with the host.
1849 static int start_afu(struct cxlflash_cfg *cfg)
1851 struct afu *afu = cfg->afu;
1852 struct device *dev = &cfg->dev->dev;
1853 struct hwq *hwq;
1854 int rc = 0;
1855 int i;
1857 init_pcr(cfg);
1859 /* Initialize each HWQ */
1860 for (i = 0; i < afu->num_hwqs; i++) {
1861 hwq = get_hwq(afu, i);
1863 /* After an AFU reset, RRQ entries are stale, clear them */
1864 memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
1866 /* Initialize RRQ pointers */
1867 hwq->hrrq_start = &hwq->rrq_entry[0];
1868 hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
1869 hwq->hrrq_curr = hwq->hrrq_start;
1870 hwq->toggle = 1;
1872 /* Initialize spin locks */
1873 spin_lock_init(&hwq->hrrq_slock);
1874 spin_lock_init(&hwq->hsq_slock);
1876 /* Initialize SQ */
1877 if (afu_is_sq_cmd_mode(afu)) {
1878 memset(&hwq->sq, 0, sizeof(hwq->sq));
1879 hwq->hsq_start = &hwq->sq[0];
1880 hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
1881 hwq->hsq_curr = hwq->hsq_start;
1883 atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
1886 /* Initialize IRQ poll */
1887 if (afu_is_irqpoll_enabled(afu))
1888 irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
1889 cxlflash_irqpoll);
1893 rc = init_global(cfg);
1895 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
1896 return rc;
1900 * init_intr() - setup interrupt handlers for the master context
1901 * @cfg: Internal structure associated with the host.
1902 * @hwq: Hardware queue to initialize.
1904 * Return: 0 on success, -errno on failure
1906 static enum undo_level init_intr(struct cxlflash_cfg *cfg,
1907 struct hwq *hwq)
1909 struct device *dev = &cfg->dev->dev;
1910 void *ctx = hwq->ctx_cookie;
1911 int rc = 0;
1912 enum undo_level level = UNDO_NOOP;
1913 bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
1914 int num_irqs = is_primary_hwq ? 3 : 2;
1916 rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
1917 if (unlikely(rc)) {
1918 dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
1919 __func__, rc);
1920 level = UNDO_NOOP;
1921 goto out;
1924 rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
1925 "SISL_MSI_SYNC_ERROR");
1926 if (unlikely(rc <= 0)) {
1927 dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
1928 level = FREE_IRQ;
1929 goto out;
1932 rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
1933 "SISL_MSI_RRQ_UPDATED");
1934 if (unlikely(rc <= 0)) {
1935 dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
1936 level = UNMAP_ONE;
1937 goto out;
1940 /* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
1941 if (!is_primary_hwq)
1942 goto out;
1944 rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
1945 "SISL_MSI_ASYNC_ERROR");
1946 if (unlikely(rc <= 0)) {
1947 dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
1948 level = UNMAP_TWO;
1949 goto out;
1951 out:
1952 return level;
1956 * init_mc() - create and register as the master context
1957 * @cfg: Internal structure associated with the host.
1958 * index: HWQ Index of the master context.
1960 * Return: 0 on success, -errno on failure
1962 static int init_mc(struct cxlflash_cfg *cfg, u32 index)
1964 void *ctx;
1965 struct device *dev = &cfg->dev->dev;
1966 struct hwq *hwq = get_hwq(cfg->afu, index);
1967 int rc = 0;
1968 enum undo_level level;
1970 hwq->afu = cfg->afu;
1971 hwq->index = index;
1972 INIT_LIST_HEAD(&hwq->pending_cmds);
1974 if (index == PRIMARY_HWQ)
1975 ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
1976 else
1977 ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
1978 if (IS_ERR_OR_NULL(ctx)) {
1979 rc = -ENOMEM;
1980 goto err1;
1983 WARN_ON(hwq->ctx_cookie);
1984 hwq->ctx_cookie = ctx;
1986 /* Set it up as a master with the CXL */
1987 cfg->ops->set_master(ctx);
1989 /* Reset AFU when initializing primary context */
1990 if (index == PRIMARY_HWQ) {
1991 rc = cfg->ops->afu_reset(ctx);
1992 if (unlikely(rc)) {
1993 dev_err(dev, "%s: AFU reset failed rc=%d\n",
1994 __func__, rc);
1995 goto err1;
1999 level = init_intr(cfg, hwq);
2000 if (unlikely(level)) {
2001 dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
2002 goto err2;
2005 /* Finally, activate the context by starting it */
2006 rc = cfg->ops->start_context(hwq->ctx_cookie);
2007 if (unlikely(rc)) {
2008 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
2009 level = UNMAP_THREE;
2010 goto err2;
2013 out:
2014 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2015 return rc;
2016 err2:
2017 term_intr(cfg, level, index);
2018 if (index != PRIMARY_HWQ)
2019 cfg->ops->release_context(ctx);
2020 err1:
2021 hwq->ctx_cookie = NULL;
2022 goto out;
2026 * get_num_afu_ports() - determines and configures the number of AFU ports
2027 * @cfg: Internal structure associated with the host.
2029 * This routine determines the number of AFU ports by converting the global
2030 * port selection mask. The converted value is only valid following an AFU
2031 * reset (explicit or power-on). This routine must be invoked shortly after
2032 * mapping as other routines are dependent on the number of ports during the
2033 * initialization sequence.
2035 * To support legacy AFUs that might not have reflected an initial global
2036 * port mask (value read is 0), default to the number of ports originally
2037 * supported by the cxlflash driver (2) before hardware with other port
2038 * offerings was introduced.
2040 static void get_num_afu_ports(struct cxlflash_cfg *cfg)
2042 struct afu *afu = cfg->afu;
2043 struct device *dev = &cfg->dev->dev;
2044 u64 port_mask;
2045 int num_fc_ports = LEGACY_FC_PORTS;
2047 port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
2048 if (port_mask != 0ULL)
2049 num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
2051 dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
2052 __func__, port_mask, num_fc_ports);
2054 cfg->num_fc_ports = num_fc_ports;
2055 cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
2059 * init_afu() - setup as master context and start AFU
2060 * @cfg: Internal structure associated with the host.
2062 * This routine is a higher level of control for configuring the
2063 * AFU on probe and reset paths.
2065 * Return: 0 on success, -errno on failure
2067 static int init_afu(struct cxlflash_cfg *cfg)
2069 u64 reg;
2070 int rc = 0;
2071 struct afu *afu = cfg->afu;
2072 struct device *dev = &cfg->dev->dev;
2073 struct hwq *hwq;
2074 int i;
2076 cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
2078 afu->num_hwqs = afu->desired_hwqs;
2079 for (i = 0; i < afu->num_hwqs; i++) {
2080 rc = init_mc(cfg, i);
2081 if (rc) {
2082 dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
2083 __func__, rc, i);
2084 goto err1;
2088 /* Map the entire MMIO space of the AFU using the first context */
2089 hwq = get_hwq(afu, PRIMARY_HWQ);
2090 afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
2091 if (!afu->afu_map) {
2092 dev_err(dev, "%s: psa_map failed\n", __func__);
2093 rc = -ENOMEM;
2094 goto err1;
2097 /* No byte reverse on reading afu_version or string will be backwards */
2098 reg = readq(&afu->afu_map->global.regs.afu_version);
2099 memcpy(afu->version, &reg, sizeof(reg));
2100 afu->interface_version =
2101 readq_be(&afu->afu_map->global.regs.interface_version);
2102 if ((afu->interface_version + 1) == 0) {
2103 dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
2104 "interface version %016llx\n", afu->version,
2105 afu->interface_version);
2106 rc = -EINVAL;
2107 goto err1;
2110 if (afu_is_sq_cmd_mode(afu)) {
2111 afu->send_cmd = send_cmd_sq;
2112 afu->context_reset = context_reset_sq;
2113 } else {
2114 afu->send_cmd = send_cmd_ioarrin;
2115 afu->context_reset = context_reset_ioarrin;
2118 dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
2119 afu->version, afu->interface_version);
2121 get_num_afu_ports(cfg);
2123 rc = start_afu(cfg);
2124 if (rc) {
2125 dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
2126 goto err1;
2129 afu_err_intr_init(cfg->afu);
2130 for (i = 0; i < afu->num_hwqs; i++) {
2131 hwq = get_hwq(afu, i);
2133 hwq->room = readq_be(&hwq->host_map->cmd_room);
2136 /* Restore the LUN mappings */
2137 cxlflash_restore_luntable(cfg);
2138 out:
2139 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2140 return rc;
2142 err1:
2143 for (i = afu->num_hwqs - 1; i >= 0; i--) {
2144 term_intr(cfg, UNMAP_THREE, i);
2145 term_mc(cfg, i);
2147 goto out;
2151 * afu_reset() - resets the AFU
2152 * @cfg: Internal structure associated with the host.
2154 * Return: 0 on success, -errno on failure
2156 static int afu_reset(struct cxlflash_cfg *cfg)
2158 struct device *dev = &cfg->dev->dev;
2159 int rc = 0;
2161 /* Stop the context before the reset. Since the context is
2162 * no longer available restart it after the reset is complete
2164 term_afu(cfg);
2166 rc = init_afu(cfg);
2168 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2169 return rc;
2173 * drain_ioctls() - wait until all currently executing ioctls have completed
2174 * @cfg: Internal structure associated with the host.
2176 * Obtain write access to read/write semaphore that wraps ioctl
2177 * handling to 'drain' ioctls currently executing.
2179 static void drain_ioctls(struct cxlflash_cfg *cfg)
2181 down_write(&cfg->ioctl_rwsem);
2182 up_write(&cfg->ioctl_rwsem);
2186 * cxlflash_async_reset_host() - asynchronous host reset handler
2187 * @data: Private data provided while scheduling reset.
2188 * @cookie: Cookie that can be used for checkpointing.
2190 static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
2192 struct cxlflash_cfg *cfg = data;
2193 struct device *dev = &cfg->dev->dev;
2194 int rc = 0;
2196 if (cfg->state != STATE_RESET) {
2197 dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
2198 __func__, cfg->state);
2199 goto out;
2202 drain_ioctls(cfg);
2203 cxlflash_mark_contexts_error(cfg);
2204 rc = afu_reset(cfg);
2205 if (rc)
2206 cfg->state = STATE_FAILTERM;
2207 else
2208 cfg->state = STATE_NORMAL;
2209 wake_up_all(&cfg->reset_waitq);
2211 out:
2212 scsi_unblock_requests(cfg->host);
2216 * cxlflash_schedule_async_reset() - schedule an asynchronous host reset
2217 * @cfg: Internal structure associated with the host.
2219 static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
2221 struct device *dev = &cfg->dev->dev;
2223 if (cfg->state != STATE_NORMAL) {
2224 dev_dbg(dev, "%s: Not performing reset state=%d\n",
2225 __func__, cfg->state);
2226 return;
2229 cfg->state = STATE_RESET;
2230 scsi_block_requests(cfg->host);
2231 cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
2232 cfg);
2236 * send_afu_cmd() - builds and sends an internal AFU command
2237 * @afu: AFU associated with the host.
2238 * @rcb: Pre-populated IOARCB describing command to send.
2240 * The AFU can only take one internal AFU command at a time. This limitation is
2241 * enforced by using a mutex to provide exclusive access to the AFU during the
2242 * operation. This design point requires calling threads to not be on interrupt
2243 * context due to the possibility of sleeping during concurrent AFU operations.
2245 * The command status is optionally passed back to the caller when the caller
2246 * populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
2248 * Return:
2249 * 0 on success, -errno on failure
2251 static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
2253 struct cxlflash_cfg *cfg = afu->parent;
2254 struct device *dev = &cfg->dev->dev;
2255 struct afu_cmd *cmd = NULL;
2256 struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
2257 char *buf = NULL;
2258 int rc = 0;
2259 int nretry = 0;
2260 static DEFINE_MUTEX(sync_active);
2262 if (cfg->state != STATE_NORMAL) {
2263 dev_dbg(dev, "%s: Sync not required state=%u\n",
2264 __func__, cfg->state);
2265 return 0;
2268 mutex_lock(&sync_active);
2269 atomic_inc(&afu->cmds_active);
2270 buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
2271 if (unlikely(!buf)) {
2272 dev_err(dev, "%s: no memory for command\n", __func__);
2273 rc = -ENOMEM;
2274 goto out;
2277 cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
2279 retry:
2280 memset(cmd, 0, sizeof(*cmd));
2281 memcpy(&cmd->rcb, rcb, sizeof(*rcb));
2282 INIT_LIST_HEAD(&cmd->queue);
2283 init_completion(&cmd->cevent);
2284 cmd->parent = afu;
2285 cmd->hwq_index = hwq->index;
2286 cmd->rcb.ctx_id = hwq->ctx_hndl;
2288 dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
2289 __func__, afu, cmd, cmd->rcb.cdb[0], nretry);
2291 rc = afu->send_cmd(afu, cmd);
2292 if (unlikely(rc)) {
2293 rc = -ENOBUFS;
2294 goto out;
2297 rc = wait_resp(afu, cmd);
2298 switch (rc) {
2299 case -ETIMEDOUT:
2300 rc = afu->context_reset(hwq);
2301 if (rc) {
2302 cxlflash_schedule_async_reset(cfg);
2303 break;
2305 /* fall through to retry */
2306 case -EAGAIN:
2307 if (++nretry < 2)
2308 goto retry;
2309 /* fall through to exit */
2310 default:
2311 break;
2314 if (rcb->ioasa)
2315 *rcb->ioasa = cmd->sa;
2316 out:
2317 atomic_dec(&afu->cmds_active);
2318 mutex_unlock(&sync_active);
2319 kfree(buf);
2320 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2321 return rc;
2325 * cxlflash_afu_sync() - builds and sends an AFU sync command
2326 * @afu: AFU associated with the host.
2327 * @ctx: Identifies context requesting sync.
2328 * @res: Identifies resource requesting sync.
2329 * @mode: Type of sync to issue (lightweight, heavyweight, global).
2331 * AFU sync operations are only necessary and allowed when the device is
2332 * operating normally. When not operating normally, sync requests can occur as
2333 * part of cleaning up resources associated with an adapter prior to removal.
2334 * In this scenario, these requests are simply ignored (safe due to the AFU
2335 * going away).
2337 * Return:
2338 * 0 on success, -errno on failure
2340 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
2342 struct cxlflash_cfg *cfg = afu->parent;
2343 struct device *dev = &cfg->dev->dev;
2344 struct sisl_ioarcb rcb = { 0 };
2346 dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
2347 __func__, afu, ctx, res, mode);
2349 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
2350 rcb.msi = SISL_MSI_RRQ_UPDATED;
2351 rcb.timeout = MC_AFU_SYNC_TIMEOUT;
2353 rcb.cdb[0] = SISL_AFU_CMD_SYNC;
2354 rcb.cdb[1] = mode;
2355 put_unaligned_be16(ctx, &rcb.cdb[2]);
2356 put_unaligned_be32(res, &rcb.cdb[4]);
2358 return send_afu_cmd(afu, &rcb);
2362 * cxlflash_eh_abort_handler() - abort a SCSI command
2363 * @scp: SCSI command to abort.
2365 * CXL Flash devices do not support a single command abort. Reset the context
2366 * as per SISLite specification. Flush any pending commands in the hardware
2367 * queue before the reset.
2369 * Return: SUCCESS/FAILED as defined in scsi/scsi.h
2371 static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
2373 int rc = FAILED;
2374 struct Scsi_Host *host = scp->device->host;
2375 struct cxlflash_cfg *cfg = shost_priv(host);
2376 struct afu_cmd *cmd = sc_to_afuc(scp);
2377 struct device *dev = &cfg->dev->dev;
2378 struct afu *afu = cfg->afu;
2379 struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
2381 dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
2382 "cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
2383 scp->device->channel, scp->device->id, scp->device->lun,
2384 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
2385 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
2386 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
2387 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
2389 /* When the state is not normal, another reset/reload is in progress.
2390 * Return failed and the mid-layer will invoke host reset handler.
2392 if (cfg->state != STATE_NORMAL) {
2393 dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
2394 __func__, cfg->state);
2395 goto out;
2398 rc = afu->context_reset(hwq);
2399 if (unlikely(rc))
2400 goto out;
2402 rc = SUCCESS;
2404 out:
2405 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2406 return rc;
2410 * cxlflash_eh_device_reset_handler() - reset a single LUN
2411 * @scp: SCSI command to send.
2413 * Return:
2414 * SUCCESS as defined in scsi/scsi.h
2415 * FAILED as defined in scsi/scsi.h
2417 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
2419 int rc = SUCCESS;
2420 struct scsi_device *sdev = scp->device;
2421 struct Scsi_Host *host = sdev->host;
2422 struct cxlflash_cfg *cfg = shost_priv(host);
2423 struct device *dev = &cfg->dev->dev;
2424 int rcr = 0;
2426 dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
2427 host->host_no, sdev->channel, sdev->id, sdev->lun);
2428 retry:
2429 switch (cfg->state) {
2430 case STATE_NORMAL:
2431 rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
2432 if (unlikely(rcr))
2433 rc = FAILED;
2434 break;
2435 case STATE_RESET:
2436 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2437 goto retry;
2438 default:
2439 rc = FAILED;
2440 break;
2443 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2444 return rc;
2448 * cxlflash_eh_host_reset_handler() - reset the host adapter
2449 * @scp: SCSI command from stack identifying host.
2451 * Following a reset, the state is evaluated again in case an EEH occurred
2452 * during the reset. In such a scenario, the host reset will either yield
2453 * until the EEH recovery is complete or return success or failure based
2454 * upon the current device state.
2456 * Return:
2457 * SUCCESS as defined in scsi/scsi.h
2458 * FAILED as defined in scsi/scsi.h
2460 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
2462 int rc = SUCCESS;
2463 int rcr = 0;
2464 struct Scsi_Host *host = scp->device->host;
2465 struct cxlflash_cfg *cfg = shost_priv(host);
2466 struct device *dev = &cfg->dev->dev;
2468 dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
2470 switch (cfg->state) {
2471 case STATE_NORMAL:
2472 cfg->state = STATE_RESET;
2473 drain_ioctls(cfg);
2474 cxlflash_mark_contexts_error(cfg);
2475 rcr = afu_reset(cfg);
2476 if (rcr) {
2477 rc = FAILED;
2478 cfg->state = STATE_FAILTERM;
2479 } else
2480 cfg->state = STATE_NORMAL;
2481 wake_up_all(&cfg->reset_waitq);
2482 ssleep(1);
2483 /* fall through */
2484 case STATE_RESET:
2485 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2486 if (cfg->state == STATE_NORMAL)
2487 break;
2488 /* fall through */
2489 default:
2490 rc = FAILED;
2491 break;
2494 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
2495 return rc;
2499 * cxlflash_change_queue_depth() - change the queue depth for the device
2500 * @sdev: SCSI device destined for queue depth change.
2501 * @qdepth: Requested queue depth value to set.
2503 * The requested queue depth is capped to the maximum supported value.
2505 * Return: The actual queue depth set.
2507 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2510 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2511 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2513 scsi_change_queue_depth(sdev, qdepth);
2514 return sdev->queue_depth;
2518 * cxlflash_show_port_status() - queries and presents the current port status
2519 * @port: Desired port for status reporting.
2520 * @cfg: Internal structure associated with the host.
2521 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2523 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2525 static ssize_t cxlflash_show_port_status(u32 port,
2526 struct cxlflash_cfg *cfg,
2527 char *buf)
2529 struct device *dev = &cfg->dev->dev;
2530 char *disp_status;
2531 u64 status;
2532 __be64 __iomem *fc_port_regs;
2534 WARN_ON(port >= MAX_FC_PORTS);
2536 if (port >= cfg->num_fc_ports) {
2537 dev_info(dev, "%s: Port %d not supported on this card.\n",
2538 __func__, port);
2539 return -EINVAL;
2542 fc_port_regs = get_fc_port_regs(cfg, port);
2543 status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
2544 status &= FC_MTIP_STATUS_MASK;
2546 if (status == FC_MTIP_STATUS_ONLINE)
2547 disp_status = "online";
2548 else if (status == FC_MTIP_STATUS_OFFLINE)
2549 disp_status = "offline";
2550 else
2551 disp_status = "unknown";
2553 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2557 * port0_show() - queries and presents the current status of port 0
2558 * @dev: Generic device associated with the host owning the port.
2559 * @attr: Device attribute representing the port.
2560 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2562 * Return: The size of the ASCII string returned in @buf.
2564 static ssize_t port0_show(struct device *dev,
2565 struct device_attribute *attr,
2566 char *buf)
2568 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2570 return cxlflash_show_port_status(0, cfg, buf);
2574 * port1_show() - queries and presents the current status of port 1
2575 * @dev: Generic device associated with the host owning the port.
2576 * @attr: Device attribute representing the port.
2577 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2579 * Return: The size of the ASCII string returned in @buf.
2581 static ssize_t port1_show(struct device *dev,
2582 struct device_attribute *attr,
2583 char *buf)
2585 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2587 return cxlflash_show_port_status(1, cfg, buf);
2591 * port2_show() - queries and presents the current status of port 2
2592 * @dev: Generic device associated with the host owning the port.
2593 * @attr: Device attribute representing the port.
2594 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2596 * Return: The size of the ASCII string returned in @buf.
2598 static ssize_t port2_show(struct device *dev,
2599 struct device_attribute *attr,
2600 char *buf)
2602 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2604 return cxlflash_show_port_status(2, cfg, buf);
2608 * port3_show() - queries and presents the current status of port 3
2609 * @dev: Generic device associated with the host owning the port.
2610 * @attr: Device attribute representing the port.
2611 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2613 * Return: The size of the ASCII string returned in @buf.
2615 static ssize_t port3_show(struct device *dev,
2616 struct device_attribute *attr,
2617 char *buf)
2619 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2621 return cxlflash_show_port_status(3, cfg, buf);
2625 * lun_mode_show() - presents the current LUN mode of the host
2626 * @dev: Generic device associated with the host.
2627 * @attr: Device attribute representing the LUN mode.
2628 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2630 * Return: The size of the ASCII string returned in @buf.
2632 static ssize_t lun_mode_show(struct device *dev,
2633 struct device_attribute *attr, char *buf)
2635 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2636 struct afu *afu = cfg->afu;
2638 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2642 * lun_mode_store() - sets the LUN mode of the host
2643 * @dev: Generic device associated with the host.
2644 * @attr: Device attribute representing the LUN mode.
2645 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2646 * @count: Length of data resizing in @buf.
2648 * The CXL Flash AFU supports a dummy LUN mode where the external
2649 * links and storage are not required. Space on the FPGA is used
2650 * to create 1 or 2 small LUNs which are presented to the system
2651 * as if they were a normal storage device. This feature is useful
2652 * during development and also provides manufacturing with a way
2653 * to test the AFU without an actual device.
2655 * 0 = external LUN[s] (default)
2656 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2657 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2658 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2659 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2661 * Return: The size of the ASCII string returned in @buf.
2663 static ssize_t lun_mode_store(struct device *dev,
2664 struct device_attribute *attr,
2665 const char *buf, size_t count)
2667 struct Scsi_Host *shost = class_to_shost(dev);
2668 struct cxlflash_cfg *cfg = shost_priv(shost);
2669 struct afu *afu = cfg->afu;
2670 int rc;
2671 u32 lun_mode;
2673 rc = kstrtouint(buf, 10, &lun_mode);
2674 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2675 afu->internal_lun = lun_mode;
2678 * When configured for internal LUN, there is only one channel,
2679 * channel number 0, else there will be one less than the number
2680 * of fc ports for this card.
2682 if (afu->internal_lun)
2683 shost->max_channel = 0;
2684 else
2685 shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
2687 afu_reset(cfg);
2688 scsi_scan_host(cfg->host);
2691 return count;
2695 * ioctl_version_show() - presents the current ioctl version of the host
2696 * @dev: Generic device associated with the host.
2697 * @attr: Device attribute representing the ioctl version.
2698 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2700 * Return: The size of the ASCII string returned in @buf.
2702 static ssize_t ioctl_version_show(struct device *dev,
2703 struct device_attribute *attr, char *buf)
2705 ssize_t bytes = 0;
2707 bytes = scnprintf(buf, PAGE_SIZE,
2708 "disk: %u\n", DK_CXLFLASH_VERSION_0);
2709 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2710 "host: %u\n", HT_CXLFLASH_VERSION_0);
2712 return bytes;
2716 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2717 * @port: Desired port for status reporting.
2718 * @cfg: Internal structure associated with the host.
2719 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2721 * Return: The size of the ASCII string returned in @buf or -EINVAL.
2723 static ssize_t cxlflash_show_port_lun_table(u32 port,
2724 struct cxlflash_cfg *cfg,
2725 char *buf)
2727 struct device *dev = &cfg->dev->dev;
2728 __be64 __iomem *fc_port_luns;
2729 int i;
2730 ssize_t bytes = 0;
2732 WARN_ON(port >= MAX_FC_PORTS);
2734 if (port >= cfg->num_fc_ports) {
2735 dev_info(dev, "%s: Port %d not supported on this card.\n",
2736 __func__, port);
2737 return -EINVAL;
2740 fc_port_luns = get_fc_port_luns(cfg, port);
2742 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2743 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2744 "%03d: %016llx\n",
2745 i, readq_be(&fc_port_luns[i]));
2746 return bytes;
2750 * port0_lun_table_show() - presents the current LUN table of port 0
2751 * @dev: Generic device associated with the host owning the port.
2752 * @attr: Device attribute representing the port.
2753 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2755 * Return: The size of the ASCII string returned in @buf.
2757 static ssize_t port0_lun_table_show(struct device *dev,
2758 struct device_attribute *attr,
2759 char *buf)
2761 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2763 return cxlflash_show_port_lun_table(0, cfg, buf);
2767 * port1_lun_table_show() - presents the current LUN table of port 1
2768 * @dev: Generic device associated with the host owning the port.
2769 * @attr: Device attribute representing the port.
2770 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2772 * Return: The size of the ASCII string returned in @buf.
2774 static ssize_t port1_lun_table_show(struct device *dev,
2775 struct device_attribute *attr,
2776 char *buf)
2778 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2780 return cxlflash_show_port_lun_table(1, cfg, buf);
2784 * port2_lun_table_show() - presents the current LUN table of port 2
2785 * @dev: Generic device associated with the host owning the port.
2786 * @attr: Device attribute representing the port.
2787 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2789 * Return: The size of the ASCII string returned in @buf.
2791 static ssize_t port2_lun_table_show(struct device *dev,
2792 struct device_attribute *attr,
2793 char *buf)
2795 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2797 return cxlflash_show_port_lun_table(2, cfg, buf);
2801 * port3_lun_table_show() - presents the current LUN table of port 3
2802 * @dev: Generic device associated with the host owning the port.
2803 * @attr: Device attribute representing the port.
2804 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2806 * Return: The size of the ASCII string returned in @buf.
2808 static ssize_t port3_lun_table_show(struct device *dev,
2809 struct device_attribute *attr,
2810 char *buf)
2812 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2814 return cxlflash_show_port_lun_table(3, cfg, buf);
2818 * irqpoll_weight_show() - presents the current IRQ poll weight for the host
2819 * @dev: Generic device associated with the host.
2820 * @attr: Device attribute representing the IRQ poll weight.
2821 * @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
2822 * weight in ASCII.
2824 * An IRQ poll weight of 0 indicates polling is disabled.
2826 * Return: The size of the ASCII string returned in @buf.
2828 static ssize_t irqpoll_weight_show(struct device *dev,
2829 struct device_attribute *attr, char *buf)
2831 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2832 struct afu *afu = cfg->afu;
2834 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
2838 * irqpoll_weight_store() - sets the current IRQ poll weight for the host
2839 * @dev: Generic device associated with the host.
2840 * @attr: Device attribute representing the IRQ poll weight.
2841 * @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
2842 * weight in ASCII.
2843 * @count: Length of data resizing in @buf.
2845 * An IRQ poll weight of 0 indicates polling is disabled.
2847 * Return: The size of the ASCII string returned in @buf.
2849 static ssize_t irqpoll_weight_store(struct device *dev,
2850 struct device_attribute *attr,
2851 const char *buf, size_t count)
2853 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2854 struct device *cfgdev = &cfg->dev->dev;
2855 struct afu *afu = cfg->afu;
2856 struct hwq *hwq;
2857 u32 weight;
2858 int rc, i;
2860 rc = kstrtouint(buf, 10, &weight);
2861 if (rc)
2862 return -EINVAL;
2864 if (weight > 256) {
2865 dev_info(cfgdev,
2866 "Invalid IRQ poll weight. It must be 256 or less.\n");
2867 return -EINVAL;
2870 if (weight == afu->irqpoll_weight) {
2871 dev_info(cfgdev,
2872 "Current IRQ poll weight has the same weight.\n");
2873 return -EINVAL;
2876 if (afu_is_irqpoll_enabled(afu)) {
2877 for (i = 0; i < afu->num_hwqs; i++) {
2878 hwq = get_hwq(afu, i);
2880 irq_poll_disable(&hwq->irqpoll);
2884 afu->irqpoll_weight = weight;
2886 if (weight > 0) {
2887 for (i = 0; i < afu->num_hwqs; i++) {
2888 hwq = get_hwq(afu, i);
2890 irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
2894 return count;
2898 * num_hwqs_show() - presents the number of hardware queues for the host
2899 * @dev: Generic device associated with the host.
2900 * @attr: Device attribute representing the number of hardware queues.
2901 * @buf: Buffer of length PAGE_SIZE to report back the number of hardware
2902 * queues in ASCII.
2904 * Return: The size of the ASCII string returned in @buf.
2906 static ssize_t num_hwqs_show(struct device *dev,
2907 struct device_attribute *attr, char *buf)
2909 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2910 struct afu *afu = cfg->afu;
2912 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
2916 * num_hwqs_store() - sets the number of hardware queues for the host
2917 * @dev: Generic device associated with the host.
2918 * @attr: Device attribute representing the number of hardware queues.
2919 * @buf: Buffer of length PAGE_SIZE containing the number of hardware
2920 * queues in ASCII.
2921 * @count: Length of data resizing in @buf.
2923 * n > 0: num_hwqs = n
2924 * n = 0: num_hwqs = num_online_cpus()
2925 * n < 0: num_online_cpus() / abs(n)
2927 * Return: The size of the ASCII string returned in @buf.
2929 static ssize_t num_hwqs_store(struct device *dev,
2930 struct device_attribute *attr,
2931 const char *buf, size_t count)
2933 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2934 struct afu *afu = cfg->afu;
2935 int rc;
2936 int nhwqs, num_hwqs;
2938 rc = kstrtoint(buf, 10, &nhwqs);
2939 if (rc)
2940 return -EINVAL;
2942 if (nhwqs >= 1)
2943 num_hwqs = nhwqs;
2944 else if (nhwqs == 0)
2945 num_hwqs = num_online_cpus();
2946 else
2947 num_hwqs = num_online_cpus() / abs(nhwqs);
2949 afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
2950 WARN_ON_ONCE(afu->desired_hwqs == 0);
2952 retry:
2953 switch (cfg->state) {
2954 case STATE_NORMAL:
2955 cfg->state = STATE_RESET;
2956 drain_ioctls(cfg);
2957 cxlflash_mark_contexts_error(cfg);
2958 rc = afu_reset(cfg);
2959 if (rc)
2960 cfg->state = STATE_FAILTERM;
2961 else
2962 cfg->state = STATE_NORMAL;
2963 wake_up_all(&cfg->reset_waitq);
2964 break;
2965 case STATE_RESET:
2966 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
2967 if (cfg->state == STATE_NORMAL)
2968 goto retry;
2969 default:
2970 /* Ideally should not happen */
2971 dev_err(dev, "%s: Device is not ready, state=%d\n",
2972 __func__, cfg->state);
2973 break;
2976 return count;
2979 static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
2982 * hwq_mode_show() - presents the HWQ steering mode for the host
2983 * @dev: Generic device associated with the host.
2984 * @attr: Device attribute representing the HWQ steering mode.
2985 * @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
2986 * as a character string.
2988 * Return: The size of the ASCII string returned in @buf.
2990 static ssize_t hwq_mode_show(struct device *dev,
2991 struct device_attribute *attr, char *buf)
2993 struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
2994 struct afu *afu = cfg->afu;
2996 return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
3000 * hwq_mode_store() - sets the HWQ steering mode for the host
3001 * @dev: Generic device associated with the host.
3002 * @attr: Device attribute representing the HWQ steering mode.
3003 * @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
3004 * as a character string.
3005 * @count: Length of data resizing in @buf.
3007 * rr = Round-Robin
3008 * tag = Block MQ Tagging
3009 * cpu = CPU Affinity
3011 * Return: The size of the ASCII string returned in @buf.
3013 static ssize_t hwq_mode_store(struct device *dev,
3014 struct device_attribute *attr,
3015 const char *buf, size_t count)
3017 struct Scsi_Host *shost = class_to_shost(dev);
3018 struct cxlflash_cfg *cfg = shost_priv(shost);
3019 struct device *cfgdev = &cfg->dev->dev;
3020 struct afu *afu = cfg->afu;
3021 int i;
3022 u32 mode = MAX_HWQ_MODE;
3024 for (i = 0; i < MAX_HWQ_MODE; i++) {
3025 if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
3026 mode = i;
3027 break;
3031 if (mode >= MAX_HWQ_MODE) {
3032 dev_info(cfgdev, "Invalid HWQ steering mode.\n");
3033 return -EINVAL;
3036 if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
3037 dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
3038 "HWQ steering mode.\n");
3039 return -EINVAL;
3042 afu->hwq_mode = mode;
3044 return count;
3048 * mode_show() - presents the current mode of the device
3049 * @dev: Generic device associated with the device.
3050 * @attr: Device attribute representing the device mode.
3051 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
3053 * Return: The size of the ASCII string returned in @buf.
3055 static ssize_t mode_show(struct device *dev,
3056 struct device_attribute *attr, char *buf)
3058 struct scsi_device *sdev = to_scsi_device(dev);
3060 return scnprintf(buf, PAGE_SIZE, "%s\n",
3061 sdev->hostdata ? "superpipe" : "legacy");
3065 * Host attributes
3067 static DEVICE_ATTR_RO(port0);
3068 static DEVICE_ATTR_RO(port1);
3069 static DEVICE_ATTR_RO(port2);
3070 static DEVICE_ATTR_RO(port3);
3071 static DEVICE_ATTR_RW(lun_mode);
3072 static DEVICE_ATTR_RO(ioctl_version);
3073 static DEVICE_ATTR_RO(port0_lun_table);
3074 static DEVICE_ATTR_RO(port1_lun_table);
3075 static DEVICE_ATTR_RO(port2_lun_table);
3076 static DEVICE_ATTR_RO(port3_lun_table);
3077 static DEVICE_ATTR_RW(irqpoll_weight);
3078 static DEVICE_ATTR_RW(num_hwqs);
3079 static DEVICE_ATTR_RW(hwq_mode);
3081 static struct device_attribute *cxlflash_host_attrs[] = {
3082 &dev_attr_port0,
3083 &dev_attr_port1,
3084 &dev_attr_port2,
3085 &dev_attr_port3,
3086 &dev_attr_lun_mode,
3087 &dev_attr_ioctl_version,
3088 &dev_attr_port0_lun_table,
3089 &dev_attr_port1_lun_table,
3090 &dev_attr_port2_lun_table,
3091 &dev_attr_port3_lun_table,
3092 &dev_attr_irqpoll_weight,
3093 &dev_attr_num_hwqs,
3094 &dev_attr_hwq_mode,
3095 NULL
3099 * Device attributes
3101 static DEVICE_ATTR_RO(mode);
3103 static struct device_attribute *cxlflash_dev_attrs[] = {
3104 &dev_attr_mode,
3105 NULL
3109 * Host template
3111 static struct scsi_host_template driver_template = {
3112 .module = THIS_MODULE,
3113 .name = CXLFLASH_ADAPTER_NAME,
3114 .info = cxlflash_driver_info,
3115 .ioctl = cxlflash_ioctl,
3116 .proc_name = CXLFLASH_NAME,
3117 .queuecommand = cxlflash_queuecommand,
3118 .eh_abort_handler = cxlflash_eh_abort_handler,
3119 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
3120 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
3121 .change_queue_depth = cxlflash_change_queue_depth,
3122 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
3123 .can_queue = CXLFLASH_MAX_CMDS,
3124 .cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
3125 .this_id = -1,
3126 .sg_tablesize = 1, /* No scatter gather support */
3127 .max_sectors = CXLFLASH_MAX_SECTORS,
3128 .use_clustering = ENABLE_CLUSTERING,
3129 .shost_attrs = cxlflash_host_attrs,
3130 .sdev_attrs = cxlflash_dev_attrs,
3134 * Device dependent values
3136 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
3137 CXLFLASH_WWPN_VPD_REQUIRED };
3138 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
3139 CXLFLASH_NOTIFY_SHUTDOWN };
3140 static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
3141 CXLFLASH_NOTIFY_SHUTDOWN };
3144 * PCI device binding table
3146 static struct pci_device_id cxlflash_pci_table[] = {
3147 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
3148 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
3149 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
3150 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
3151 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
3152 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
3156 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
3159 * cxlflash_worker_thread() - work thread handler for the AFU
3160 * @work: Work structure contained within cxlflash associated with host.
3162 * Handles the following events:
3163 * - Link reset which cannot be performed on interrupt context due to
3164 * blocking up to a few seconds
3165 * - Rescan the host
3167 static void cxlflash_worker_thread(struct work_struct *work)
3169 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
3170 work_q);
3171 struct afu *afu = cfg->afu;
3172 struct device *dev = &cfg->dev->dev;
3173 __be64 __iomem *fc_port_regs;
3174 int port;
3175 ulong lock_flags;
3177 /* Avoid MMIO if the device has failed */
3179 if (cfg->state != STATE_NORMAL)
3180 return;
3182 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3184 if (cfg->lr_state == LINK_RESET_REQUIRED) {
3185 port = cfg->lr_port;
3186 if (port < 0)
3187 dev_err(dev, "%s: invalid port index %d\n",
3188 __func__, port);
3189 else {
3190 spin_unlock_irqrestore(cfg->host->host_lock,
3191 lock_flags);
3193 /* The reset can block... */
3194 fc_port_regs = get_fc_port_regs(cfg, port);
3195 afu_link_reset(afu, port, fc_port_regs);
3196 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
3199 cfg->lr_state = LINK_RESET_COMPLETE;
3202 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
3204 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
3205 scsi_scan_host(cfg->host);
3209 * cxlflash_chr_open() - character device open handler
3210 * @inode: Device inode associated with this character device.
3211 * @file: File pointer for this device.
3213 * Only users with admin privileges are allowed to open the character device.
3215 * Return: 0 on success, -errno on failure
3217 static int cxlflash_chr_open(struct inode *inode, struct file *file)
3219 struct cxlflash_cfg *cfg;
3221 if (!capable(CAP_SYS_ADMIN))
3222 return -EACCES;
3224 cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
3225 file->private_data = cfg;
3227 return 0;
3231 * decode_hioctl() - translates encoded host ioctl to easily identifiable string
3232 * @cmd: The host ioctl command to decode.
3234 * Return: A string identifying the decoded host ioctl.
3236 static char *decode_hioctl(int cmd)
3238 switch (cmd) {
3239 case HT_CXLFLASH_LUN_PROVISION:
3240 return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
3243 return "UNKNOWN";
3247 * cxlflash_lun_provision() - host LUN provisioning handler
3248 * @cfg: Internal structure associated with the host.
3249 * @arg: Kernel copy of userspace ioctl data structure.
3251 * Return: 0 on success, -errno on failure
3253 static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
3254 struct ht_cxlflash_lun_provision *lunprov)
3256 struct afu *afu = cfg->afu;
3257 struct device *dev = &cfg->dev->dev;
3258 struct sisl_ioarcb rcb;
3259 struct sisl_ioasa asa;
3260 __be64 __iomem *fc_port_regs;
3261 u16 port = lunprov->port;
3262 u16 scmd = lunprov->hdr.subcmd;
3263 u16 type;
3264 u64 reg;
3265 u64 size;
3266 u64 lun_id;
3267 int rc = 0;
3269 if (!afu_is_lun_provision(afu)) {
3270 rc = -ENOTSUPP;
3271 goto out;
3274 if (port >= cfg->num_fc_ports) {
3275 rc = -EINVAL;
3276 goto out;
3279 switch (scmd) {
3280 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
3281 type = SISL_AFU_LUN_PROVISION_CREATE;
3282 size = lunprov->size;
3283 lun_id = 0;
3284 break;
3285 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
3286 type = SISL_AFU_LUN_PROVISION_DELETE;
3287 size = 0;
3288 lun_id = lunprov->lun_id;
3289 break;
3290 case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
3291 fc_port_regs = get_fc_port_regs(cfg, port);
3293 reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
3294 lunprov->max_num_luns = reg;
3295 reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
3296 lunprov->cur_num_luns = reg;
3297 reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
3298 lunprov->max_cap_port = reg;
3299 reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
3300 lunprov->cur_cap_port = reg;
3302 goto out;
3303 default:
3304 rc = -EINVAL;
3305 goto out;
3308 memset(&rcb, 0, sizeof(rcb));
3309 memset(&asa, 0, sizeof(asa));
3310 rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
3311 rcb.lun_id = lun_id;
3312 rcb.msi = SISL_MSI_RRQ_UPDATED;
3313 rcb.timeout = MC_LUN_PROV_TIMEOUT;
3314 rcb.ioasa = &asa;
3316 rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
3317 rcb.cdb[1] = type;
3318 rcb.cdb[2] = port;
3319 put_unaligned_be64(size, &rcb.cdb[8]);
3321 rc = send_afu_cmd(afu, &rcb);
3322 if (rc) {
3323 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3324 __func__, rc, asa.ioasc, asa.afu_extra);
3325 goto out;
3328 if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
3329 lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
3330 memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
3332 out:
3333 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3334 return rc;
3338 * cxlflash_afu_debug() - host AFU debug handler
3339 * @cfg: Internal structure associated with the host.
3340 * @arg: Kernel copy of userspace ioctl data structure.
3342 * For debug requests requiring a data buffer, always provide an aligned
3343 * (cache line) buffer to the AFU to appease any alignment requirements.
3345 * Return: 0 on success, -errno on failure
3347 static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
3348 struct ht_cxlflash_afu_debug *afu_dbg)
3350 struct afu *afu = cfg->afu;
3351 struct device *dev = &cfg->dev->dev;
3352 struct sisl_ioarcb rcb;
3353 struct sisl_ioasa asa;
3354 char *buf = NULL;
3355 char *kbuf = NULL;
3356 void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
3357 u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
3358 u32 ulen = afu_dbg->data_len;
3359 bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
3360 int rc = 0;
3362 if (!afu_is_afu_debug(afu)) {
3363 rc = -ENOTSUPP;
3364 goto out;
3367 if (ulen) {
3368 req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
3370 if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
3371 rc = -EINVAL;
3372 goto out;
3375 buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
3376 if (unlikely(!buf)) {
3377 rc = -ENOMEM;
3378 goto out;
3381 kbuf = PTR_ALIGN(buf, cache_line_size());
3383 if (is_write) {
3384 req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
3386 if (copy_from_user(kbuf, ubuf, ulen)) {
3387 rc = -EFAULT;
3388 goto out;
3393 memset(&rcb, 0, sizeof(rcb));
3394 memset(&asa, 0, sizeof(asa));
3396 rcb.req_flags = req_flags;
3397 rcb.msi = SISL_MSI_RRQ_UPDATED;
3398 rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
3399 rcb.ioasa = &asa;
3401 if (ulen) {
3402 rcb.data_len = ulen;
3403 rcb.data_ea = (uintptr_t)kbuf;
3406 rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
3407 memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
3408 HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
3410 rc = send_afu_cmd(afu, &rcb);
3411 if (rc) {
3412 dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
3413 __func__, rc, asa.ioasc, asa.afu_extra);
3414 goto out;
3417 if (ulen && !is_write) {
3418 if (copy_to_user(ubuf, kbuf, ulen))
3419 rc = -EFAULT;
3421 out:
3422 kfree(buf);
3423 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3424 return rc;
3428 * cxlflash_chr_ioctl() - character device IOCTL handler
3429 * @file: File pointer for this device.
3430 * @cmd: IOCTL command.
3431 * @arg: Userspace ioctl data structure.
3433 * A read/write semaphore is used to implement a 'drain' of currently
3434 * running ioctls. The read semaphore is taken at the beginning of each
3435 * ioctl thread and released upon concluding execution. Additionally the
3436 * semaphore should be released and then reacquired in any ioctl execution
3437 * path which will wait for an event to occur that is outside the scope of
3438 * the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
3439 * a thread simply needs to acquire the write semaphore.
3441 * Return: 0 on success, -errno on failure
3443 static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
3444 unsigned long arg)
3446 typedef int (*hioctl) (struct cxlflash_cfg *, void *);
3448 struct cxlflash_cfg *cfg = file->private_data;
3449 struct device *dev = &cfg->dev->dev;
3450 char buf[sizeof(union cxlflash_ht_ioctls)];
3451 void __user *uarg = (void __user *)arg;
3452 struct ht_cxlflash_hdr *hdr;
3453 size_t size = 0;
3454 bool known_ioctl = false;
3455 int idx = 0;
3456 int rc = 0;
3457 hioctl do_ioctl = NULL;
3459 static const struct {
3460 size_t size;
3461 hioctl ioctl;
3462 } ioctl_tbl[] = { /* NOTE: order matters here */
3463 { sizeof(struct ht_cxlflash_lun_provision),
3464 (hioctl)cxlflash_lun_provision },
3465 { sizeof(struct ht_cxlflash_afu_debug),
3466 (hioctl)cxlflash_afu_debug },
3469 /* Hold read semaphore so we can drain if needed */
3470 down_read(&cfg->ioctl_rwsem);
3472 dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
3473 __func__, cmd, idx, sizeof(ioctl_tbl));
3475 switch (cmd) {
3476 case HT_CXLFLASH_LUN_PROVISION:
3477 case HT_CXLFLASH_AFU_DEBUG:
3478 known_ioctl = true;
3479 idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
3480 size = ioctl_tbl[idx].size;
3481 do_ioctl = ioctl_tbl[idx].ioctl;
3483 if (likely(do_ioctl))
3484 break;
3486 /* fall through */
3487 default:
3488 rc = -EINVAL;
3489 goto out;
3492 if (unlikely(copy_from_user(&buf, uarg, size))) {
3493 dev_err(dev, "%s: copy_from_user() fail "
3494 "size=%lu cmd=%d (%s) uarg=%p\n",
3495 __func__, size, cmd, decode_hioctl(cmd), uarg);
3496 rc = -EFAULT;
3497 goto out;
3500 hdr = (struct ht_cxlflash_hdr *)&buf;
3501 if (hdr->version != HT_CXLFLASH_VERSION_0) {
3502 dev_dbg(dev, "%s: Version %u not supported for %s\n",
3503 __func__, hdr->version, decode_hioctl(cmd));
3504 rc = -EINVAL;
3505 goto out;
3508 if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
3509 dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
3510 rc = -EINVAL;
3511 goto out;
3514 rc = do_ioctl(cfg, (void *)&buf);
3515 if (likely(!rc))
3516 if (unlikely(copy_to_user(uarg, &buf, size))) {
3517 dev_err(dev, "%s: copy_to_user() fail "
3518 "size=%lu cmd=%d (%s) uarg=%p\n",
3519 __func__, size, cmd, decode_hioctl(cmd), uarg);
3520 rc = -EFAULT;
3523 /* fall through to exit */
3525 out:
3526 up_read(&cfg->ioctl_rwsem);
3527 if (unlikely(rc && known_ioctl))
3528 dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3529 __func__, decode_hioctl(cmd), cmd, rc);
3530 else
3531 dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
3532 __func__, decode_hioctl(cmd), cmd, rc);
3533 return rc;
3537 * Character device file operations
3539 static const struct file_operations cxlflash_chr_fops = {
3540 .owner = THIS_MODULE,
3541 .open = cxlflash_chr_open,
3542 .unlocked_ioctl = cxlflash_chr_ioctl,
3543 .compat_ioctl = cxlflash_chr_ioctl,
3547 * init_chrdev() - initialize the character device for the host
3548 * @cfg: Internal structure associated with the host.
3550 * Return: 0 on success, -errno on failure
3552 static int init_chrdev(struct cxlflash_cfg *cfg)
3554 struct device *dev = &cfg->dev->dev;
3555 struct device *char_dev;
3556 dev_t devno;
3557 int minor;
3558 int rc = 0;
3560 minor = cxlflash_get_minor();
3561 if (unlikely(minor < 0)) {
3562 dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
3563 rc = -ENOSPC;
3564 goto out;
3567 devno = MKDEV(cxlflash_major, minor);
3568 cdev_init(&cfg->cdev, &cxlflash_chr_fops);
3570 rc = cdev_add(&cfg->cdev, devno, 1);
3571 if (rc) {
3572 dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
3573 goto err1;
3576 char_dev = device_create(cxlflash_class, NULL, devno,
3577 NULL, "cxlflash%d", minor);
3578 if (IS_ERR(char_dev)) {
3579 rc = PTR_ERR(char_dev);
3580 dev_err(dev, "%s: device_create failed rc=%d\n",
3581 __func__, rc);
3582 goto err2;
3585 cfg->chardev = char_dev;
3586 out:
3587 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3588 return rc;
3589 err2:
3590 cdev_del(&cfg->cdev);
3591 err1:
3592 cxlflash_put_minor(minor);
3593 goto out;
3597 * cxlflash_probe() - PCI entry point to add host
3598 * @pdev: PCI device associated with the host.
3599 * @dev_id: PCI device id associated with device.
3601 * The device will initially start out in a 'probing' state and
3602 * transition to the 'normal' state at the end of a successful
3603 * probe. Should an EEH event occur during probe, the notification
3604 * thread (error_detected()) will wait until the probe handler
3605 * is nearly complete. At that time, the device will be moved to
3606 * a 'probed' state and the EEH thread woken up to drive the slot
3607 * reset and recovery (device moves to 'normal' state). Meanwhile,
3608 * the probe will be allowed to exit successfully.
3610 * Return: 0 on success, -errno on failure
3612 static int cxlflash_probe(struct pci_dev *pdev,
3613 const struct pci_device_id *dev_id)
3615 struct Scsi_Host *host;
3616 struct cxlflash_cfg *cfg = NULL;
3617 struct device *dev = &pdev->dev;
3618 struct dev_dependent_vals *ddv;
3619 int rc = 0;
3620 int k;
3622 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
3623 __func__, pdev->irq);
3625 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
3626 driver_template.max_sectors = ddv->max_sectors;
3628 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
3629 if (!host) {
3630 dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
3631 rc = -ENOMEM;
3632 goto out;
3635 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
3636 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
3637 host->unique_id = host->host_no;
3638 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
3640 cfg = shost_priv(host);
3641 cfg->host = host;
3642 rc = alloc_mem(cfg);
3643 if (rc) {
3644 dev_err(dev, "%s: alloc_mem failed\n", __func__);
3645 rc = -ENOMEM;
3646 scsi_host_put(cfg->host);
3647 goto out;
3650 cfg->init_state = INIT_STATE_NONE;
3651 cfg->dev = pdev;
3652 cfg->ops = &cxlflash_cxl_ops;
3653 cfg->cxl_fops = cxlflash_cxl_fops;
3656 * Promoted LUNs move to the top of the LUN table. The rest stay on
3657 * the bottom half. The bottom half grows from the end (index = 255),
3658 * whereas the top half grows from the beginning (index = 0).
3660 * Initialize the last LUN index for all possible ports.
3662 cfg->promote_lun_index = 0;
3664 for (k = 0; k < MAX_FC_PORTS; k++)
3665 cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
3667 cfg->dev_id = (struct pci_device_id *)dev_id;
3669 init_waitqueue_head(&cfg->tmf_waitq);
3670 init_waitqueue_head(&cfg->reset_waitq);
3672 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
3673 cfg->lr_state = LINK_RESET_INVALID;
3674 cfg->lr_port = -1;
3675 spin_lock_init(&cfg->tmf_slock);
3676 mutex_init(&cfg->ctx_tbl_list_mutex);
3677 mutex_init(&cfg->ctx_recovery_mutex);
3678 init_rwsem(&cfg->ioctl_rwsem);
3679 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
3680 INIT_LIST_HEAD(&cfg->lluns);
3682 pci_set_drvdata(pdev, cfg);
3684 cfg->afu_cookie = cfg->ops->create_afu(pdev);
3686 rc = init_pci(cfg);
3687 if (rc) {
3688 dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
3689 goto out_remove;
3691 cfg->init_state = INIT_STATE_PCI;
3693 rc = init_afu(cfg);
3694 if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
3695 dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
3696 goto out_remove;
3698 cfg->init_state = INIT_STATE_AFU;
3700 rc = init_scsi(cfg);
3701 if (rc) {
3702 dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
3703 goto out_remove;
3705 cfg->init_state = INIT_STATE_SCSI;
3707 rc = init_chrdev(cfg);
3708 if (rc) {
3709 dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
3710 goto out_remove;
3712 cfg->init_state = INIT_STATE_CDEV;
3714 if (wq_has_sleeper(&cfg->reset_waitq)) {
3715 cfg->state = STATE_PROBED;
3716 wake_up_all(&cfg->reset_waitq);
3717 } else
3718 cfg->state = STATE_NORMAL;
3719 out:
3720 dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
3721 return rc;
3723 out_remove:
3724 cxlflash_remove(pdev);
3725 goto out;
3729 * cxlflash_pci_error_detected() - called when a PCI error is detected
3730 * @pdev: PCI device struct.
3731 * @state: PCI channel state.
3733 * When an EEH occurs during an active reset, wait until the reset is
3734 * complete and then take action based upon the device state.
3736 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
3738 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
3739 pci_channel_state_t state)
3741 int rc = 0;
3742 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3743 struct device *dev = &cfg->dev->dev;
3745 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
3747 switch (state) {
3748 case pci_channel_io_frozen:
3749 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
3750 cfg->state != STATE_PROBING);
3751 if (cfg->state == STATE_FAILTERM)
3752 return PCI_ERS_RESULT_DISCONNECT;
3754 cfg->state = STATE_RESET;
3755 scsi_block_requests(cfg->host);
3756 drain_ioctls(cfg);
3757 rc = cxlflash_mark_contexts_error(cfg);
3758 if (unlikely(rc))
3759 dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
3760 __func__, rc);
3761 term_afu(cfg);
3762 return PCI_ERS_RESULT_NEED_RESET;
3763 case pci_channel_io_perm_failure:
3764 cfg->state = STATE_FAILTERM;
3765 wake_up_all(&cfg->reset_waitq);
3766 scsi_unblock_requests(cfg->host);
3767 return PCI_ERS_RESULT_DISCONNECT;
3768 default:
3769 break;
3771 return PCI_ERS_RESULT_NEED_RESET;
3775 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
3776 * @pdev: PCI device struct.
3778 * This routine is called by the pci error recovery code after the PCI
3779 * slot has been reset, just before we should resume normal operations.
3781 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
3783 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
3785 int rc = 0;
3786 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3787 struct device *dev = &cfg->dev->dev;
3789 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3791 rc = init_afu(cfg);
3792 if (unlikely(rc)) {
3793 dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
3794 return PCI_ERS_RESULT_DISCONNECT;
3797 return PCI_ERS_RESULT_RECOVERED;
3801 * cxlflash_pci_resume() - called when normal operation can resume
3802 * @pdev: PCI device struct
3804 static void cxlflash_pci_resume(struct pci_dev *pdev)
3806 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
3807 struct device *dev = &cfg->dev->dev;
3809 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
3811 cfg->state = STATE_NORMAL;
3812 wake_up_all(&cfg->reset_waitq);
3813 scsi_unblock_requests(cfg->host);
3817 * cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
3818 * @dev: Character device.
3819 * @mode: Mode that can be used to verify access.
3821 * Return: Allocated string describing the devtmpfs structure.
3823 static char *cxlflash_devnode(struct device *dev, umode_t *mode)
3825 return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
3829 * cxlflash_class_init() - create character device class
3831 * Return: 0 on success, -errno on failure
3833 static int cxlflash_class_init(void)
3835 dev_t devno;
3836 int rc = 0;
3838 rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
3839 if (unlikely(rc)) {
3840 pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
3841 goto out;
3844 cxlflash_major = MAJOR(devno);
3846 cxlflash_class = class_create(THIS_MODULE, "cxlflash");
3847 if (IS_ERR(cxlflash_class)) {
3848 rc = PTR_ERR(cxlflash_class);
3849 pr_err("%s: class_create failed rc=%d\n", __func__, rc);
3850 goto err;
3853 cxlflash_class->devnode = cxlflash_devnode;
3854 out:
3855 pr_debug("%s: returning rc=%d\n", __func__, rc);
3856 return rc;
3857 err:
3858 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3859 goto out;
3863 * cxlflash_class_exit() - destroy character device class
3865 static void cxlflash_class_exit(void)
3867 dev_t devno = MKDEV(cxlflash_major, 0);
3869 class_destroy(cxlflash_class);
3870 unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
3873 static const struct pci_error_handlers cxlflash_err_handler = {
3874 .error_detected = cxlflash_pci_error_detected,
3875 .slot_reset = cxlflash_pci_slot_reset,
3876 .resume = cxlflash_pci_resume,
3880 * PCI device structure
3882 static struct pci_driver cxlflash_driver = {
3883 .name = CXLFLASH_NAME,
3884 .id_table = cxlflash_pci_table,
3885 .probe = cxlflash_probe,
3886 .remove = cxlflash_remove,
3887 .shutdown = cxlflash_remove,
3888 .err_handler = &cxlflash_err_handler,
3892 * init_cxlflash() - module entry point
3894 * Return: 0 on success, -errno on failure
3896 static int __init init_cxlflash(void)
3898 int rc;
3900 check_sizes();
3901 cxlflash_list_init();
3902 rc = cxlflash_class_init();
3903 if (unlikely(rc))
3904 goto out;
3906 rc = pci_register_driver(&cxlflash_driver);
3907 if (unlikely(rc))
3908 goto err;
3909 out:
3910 pr_debug("%s: returning rc=%d\n", __func__, rc);
3911 return rc;
3912 err:
3913 cxlflash_class_exit();
3914 goto out;
3918 * exit_cxlflash() - module exit point
3920 static void __exit exit_cxlflash(void)
3922 cxlflash_term_global_luns();
3923 cxlflash_free_errpage();
3925 pci_unregister_driver(&cxlflash_driver);
3926 cxlflash_class_exit();
3929 module_init(init_cxlflash);
3930 module_exit(exit_cxlflash);