Linux 4.16.11
[linux/fpc-iii.git] / drivers / scsi / libsas / sas_expander.c
blob6a4f8198b78e5223eabd11bd6cd602105157c887
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list *t)
46 struct sas_task_slow *slow = from_timer(slow, t, timer);
47 struct sas_task *task = slow->task;
48 unsigned long flags;
50 spin_lock_irqsave(&task->task_state_lock, flags);
51 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
52 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
53 spin_unlock_irqrestore(&task->task_state_lock, flags);
55 complete(&task->slow_task->completion);
58 static void smp_task_done(struct sas_task *task)
60 if (!del_timer(&task->slow_task->timer))
61 return;
62 complete(&task->slow_task->completion);
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
68 static int smp_execute_task_sg(struct domain_device *dev,
69 struct scatterlist *req, struct scatterlist *resp)
71 int res, retry;
72 struct sas_task *task = NULL;
73 struct sas_internal *i =
74 to_sas_internal(dev->port->ha->core.shost->transportt);
76 mutex_lock(&dev->ex_dev.cmd_mutex);
77 for (retry = 0; retry < 3; retry++) {
78 if (test_bit(SAS_DEV_GONE, &dev->state)) {
79 res = -ECOMM;
80 break;
83 task = sas_alloc_slow_task(GFP_KERNEL);
84 if (!task) {
85 res = -ENOMEM;
86 break;
88 task->dev = dev;
89 task->task_proto = dev->tproto;
90 task->smp_task.smp_req = *req;
91 task->smp_task.smp_resp = *resp;
93 task->task_done = smp_task_done;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 void *resp, int resp_size)
157 struct scatterlist req_sg;
158 struct scatterlist resp_sg;
160 sg_init_one(&req_sg, req, req_size);
161 sg_init_one(&resp_sg, resp, resp_size);
162 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
165 /* ---------- Allocations ---------- */
167 static inline void *alloc_smp_req(int size)
169 u8 *p = kzalloc(size, GFP_KERNEL);
170 if (p)
171 p[0] = SMP_REQUEST;
172 return p;
175 static inline void *alloc_smp_resp(int size)
177 return kzalloc(size, GFP_KERNEL);
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
182 switch (phy->routing_attr) {
183 case TABLE_ROUTING:
184 if (dev->ex_dev.t2t_supp)
185 return 'U';
186 else
187 return 'T';
188 case DIRECT_ROUTING:
189 return 'D';
190 case SUBTRACTIVE_ROUTING:
191 return 'S';
192 default:
193 return '?';
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
199 /* This is detecting a failure to transmit initial dev to host
200 * FIS as described in section J.5 of sas-2 r16
202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 return SAS_SATA_PENDING;
205 else
206 return dr->attached_dev_type;
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
211 enum sas_device_type dev_type;
212 enum sas_linkrate linkrate;
213 u8 sas_addr[SAS_ADDR_SIZE];
214 struct smp_resp *resp = rsp;
215 struct discover_resp *dr = &resp->disc;
216 struct sas_ha_struct *ha = dev->port->ha;
217 struct expander_device *ex = &dev->ex_dev;
218 struct ex_phy *phy = &ex->ex_phy[phy_id];
219 struct sas_rphy *rphy = dev->rphy;
220 bool new_phy = !phy->phy;
221 char *type;
223 if (new_phy) {
224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
225 return;
226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
228 /* FIXME: error_handling */
229 BUG_ON(!phy->phy);
232 switch (resp->result) {
233 case SMP_RESP_PHY_VACANT:
234 phy->phy_state = PHY_VACANT;
235 break;
236 default:
237 phy->phy_state = PHY_NOT_PRESENT;
238 break;
239 case SMP_RESP_FUNC_ACC:
240 phy->phy_state = PHY_EMPTY; /* do not know yet */
241 break;
244 /* check if anything important changed to squelch debug */
245 dev_type = phy->attached_dev_type;
246 linkrate = phy->linkrate;
247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
249 /* Handle vacant phy - rest of dr data is not valid so skip it */
250 if (phy->phy_state == PHY_VACANT) {
251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 phy->attached_dev_type = SAS_PHY_UNUSED;
253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 phy->phy_id = phy_id;
255 goto skip;
256 } else
257 goto out;
260 phy->attached_dev_type = to_dev_type(dr);
261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
262 goto out;
263 phy->phy_id = phy_id;
264 phy->linkrate = dr->linkrate;
265 phy->attached_sata_host = dr->attached_sata_host;
266 phy->attached_sata_dev = dr->attached_sata_dev;
267 phy->attached_sata_ps = dr->attached_sata_ps;
268 phy->attached_iproto = dr->iproto << 1;
269 phy->attached_tproto = dr->tproto << 1;
270 /* help some expanders that fail to zero sas_address in the 'no
271 * device' case
273 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
276 else
277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 phy->attached_phy_id = dr->attached_phy_id;
279 phy->phy_change_count = dr->change_count;
280 phy->routing_attr = dr->routing_attr;
281 phy->virtual = dr->virtual;
282 phy->last_da_index = -1;
284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 phy->phy->identify.device_type = dr->attached_dev_type;
286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 if (!phy->attached_tproto && dr->attached_sata_dev)
289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 phy->phy->identify.phy_identifier = phy_id;
291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 phy->phy->negotiated_linkrate = phy->linkrate;
296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
298 skip:
299 if (new_phy)
300 if (sas_phy_add(phy->phy)) {
301 sas_phy_free(phy->phy);
302 return;
305 out:
306 switch (phy->attached_dev_type) {
307 case SAS_SATA_PENDING:
308 type = "stp pending";
309 break;
310 case SAS_PHY_UNUSED:
311 type = "no device";
312 break;
313 case SAS_END_DEVICE:
314 if (phy->attached_iproto) {
315 if (phy->attached_tproto)
316 type = "host+target";
317 else
318 type = "host";
319 } else {
320 if (dr->attached_sata_dev)
321 type = "stp";
322 else
323 type = "ssp";
325 break;
326 case SAS_EDGE_EXPANDER_DEVICE:
327 case SAS_FANOUT_EXPANDER_DEVICE:
328 type = "smp";
329 break;
330 default:
331 type = "unknown";
334 /* this routine is polled by libata error recovery so filter
335 * unimportant messages
337 if (new_phy || phy->attached_dev_type != dev_type ||
338 phy->linkrate != linkrate ||
339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
340 /* pass */;
341 else
342 return;
344 /* if the attached device type changed and ata_eh is active,
345 * make sure we run revalidation when eh completes (see:
346 * sas_enable_revalidation)
348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
351 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 SAS_ADDR(dev->sas_addr), phy->phy_id,
354 sas_route_char(dev, phy), phy->linkrate,
355 SAS_ADDR(phy->attached_sas_addr), type);
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 struct domain_device *dev;
363 struct sas_rphy *rphy;
365 if (!ex_phy->port)
366 return NULL;
368 rphy = ex_phy->port->rphy;
369 if (!rphy)
370 return NULL;
372 dev = sas_find_dev_by_rphy(rphy);
374 if (dev && dev_is_sata(dev))
375 return dev;
377 return NULL;
380 #define DISCOVER_REQ_SIZE 16
381 #define DISCOVER_RESP_SIZE 56
383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 u8 *disc_resp, int single)
386 struct discover_resp *dr;
387 int res;
389 disc_req[9] = single;
391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 disc_resp, DISCOVER_RESP_SIZE);
393 if (res)
394 return res;
395 dr = &((struct smp_resp *)disc_resp)->disc;
396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 sas_printk("Found loopback topology, just ignore it!\n");
398 return 0;
400 sas_set_ex_phy(dev, single, disc_resp);
401 return 0;
404 int sas_ex_phy_discover(struct domain_device *dev, int single)
406 struct expander_device *ex = &dev->ex_dev;
407 int res = 0;
408 u8 *disc_req;
409 u8 *disc_resp;
411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
412 if (!disc_req)
413 return -ENOMEM;
415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
416 if (!disc_resp) {
417 kfree(disc_req);
418 return -ENOMEM;
421 disc_req[1] = SMP_DISCOVER;
423 if (0 <= single && single < ex->num_phys) {
424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
425 } else {
426 int i;
428 for (i = 0; i < ex->num_phys; i++) {
429 res = sas_ex_phy_discover_helper(dev, disc_req,
430 disc_resp, i);
431 if (res)
432 goto out_err;
435 out_err:
436 kfree(disc_resp);
437 kfree(disc_req);
438 return res;
441 static int sas_expander_discover(struct domain_device *dev)
443 struct expander_device *ex = &dev->ex_dev;
444 int res = -ENOMEM;
446 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
447 if (!ex->ex_phy)
448 return -ENOMEM;
450 res = sas_ex_phy_discover(dev, -1);
451 if (res)
452 goto out_err;
454 return 0;
455 out_err:
456 kfree(ex->ex_phy);
457 ex->ex_phy = NULL;
458 return res;
461 #define MAX_EXPANDER_PHYS 128
463 static void ex_assign_report_general(struct domain_device *dev,
464 struct smp_resp *resp)
466 struct report_general_resp *rg = &resp->rg;
468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 dev->ex_dev.t2t_supp = rg->t2t_supp;
472 dev->ex_dev.conf_route_table = rg->conf_route_table;
473 dev->ex_dev.configuring = rg->configuring;
474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
477 #define RG_REQ_SIZE 8
478 #define RG_RESP_SIZE 32
480 static int sas_ex_general(struct domain_device *dev)
482 u8 *rg_req;
483 struct smp_resp *rg_resp;
484 int res;
485 int i;
487 rg_req = alloc_smp_req(RG_REQ_SIZE);
488 if (!rg_req)
489 return -ENOMEM;
491 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
492 if (!rg_resp) {
493 kfree(rg_req);
494 return -ENOMEM;
497 rg_req[1] = SMP_REPORT_GENERAL;
499 for (i = 0; i < 5; i++) {
500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
501 RG_RESP_SIZE);
503 if (res) {
504 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505 SAS_ADDR(dev->sas_addr), res);
506 goto out;
507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509 SAS_ADDR(dev->sas_addr), rg_resp->result);
510 res = rg_resp->result;
511 goto out;
514 ex_assign_report_general(dev, rg_resp);
516 if (dev->ex_dev.configuring) {
517 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518 SAS_ADDR(dev->sas_addr));
519 schedule_timeout_interruptible(5*HZ);
520 } else
521 break;
523 out:
524 kfree(rg_req);
525 kfree(rg_resp);
526 return res;
529 static void ex_assign_manuf_info(struct domain_device *dev, void
530 *_mi_resp)
532 u8 *mi_resp = _mi_resp;
533 struct sas_rphy *rphy = dev->rphy;
534 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 memcpy(edev->product_rev, mi_resp + 36,
539 SAS_EXPANDER_PRODUCT_REV_LEN);
541 if (mi_resp[8] & 1) {
542 memcpy(edev->component_vendor_id, mi_resp + 40,
543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 edev->component_revision_id = mi_resp[50];
549 #define MI_REQ_SIZE 8
550 #define MI_RESP_SIZE 64
552 static int sas_ex_manuf_info(struct domain_device *dev)
554 u8 *mi_req;
555 u8 *mi_resp;
556 int res;
558 mi_req = alloc_smp_req(MI_REQ_SIZE);
559 if (!mi_req)
560 return -ENOMEM;
562 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
563 if (!mi_resp) {
564 kfree(mi_req);
565 return -ENOMEM;
568 mi_req[1] = SMP_REPORT_MANUF_INFO;
570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
571 if (res) {
572 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573 SAS_ADDR(dev->sas_addr), res);
574 goto out;
575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577 SAS_ADDR(dev->sas_addr), mi_resp[2]);
578 goto out;
581 ex_assign_manuf_info(dev, mi_resp);
582 out:
583 kfree(mi_req);
584 kfree(mi_resp);
585 return res;
588 #define PC_REQ_SIZE 44
589 #define PC_RESP_SIZE 8
591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 enum phy_func phy_func,
593 struct sas_phy_linkrates *rates)
595 u8 *pc_req;
596 u8 *pc_resp;
597 int res;
599 pc_req = alloc_smp_req(PC_REQ_SIZE);
600 if (!pc_req)
601 return -ENOMEM;
603 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
604 if (!pc_resp) {
605 kfree(pc_req);
606 return -ENOMEM;
609 pc_req[1] = SMP_PHY_CONTROL;
610 pc_req[9] = phy_id;
611 pc_req[10]= phy_func;
612 if (rates) {
613 pc_req[32] = rates->minimum_linkrate << 4;
614 pc_req[33] = rates->maximum_linkrate << 4;
617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
619 kfree(pc_resp);
620 kfree(pc_req);
621 return res;
624 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
626 struct expander_device *ex = &dev->ex_dev;
627 struct ex_phy *phy = &ex->ex_phy[phy_id];
629 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
630 phy->linkrate = SAS_PHY_DISABLED;
633 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
635 struct expander_device *ex = &dev->ex_dev;
636 int i;
638 for (i = 0; i < ex->num_phys; i++) {
639 struct ex_phy *phy = &ex->ex_phy[i];
641 if (phy->phy_state == PHY_VACANT ||
642 phy->phy_state == PHY_NOT_PRESENT)
643 continue;
645 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
646 sas_ex_disable_phy(dev, i);
650 static int sas_dev_present_in_domain(struct asd_sas_port *port,
651 u8 *sas_addr)
653 struct domain_device *dev;
655 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
656 return 1;
657 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
658 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
659 return 1;
661 return 0;
664 #define RPEL_REQ_SIZE 16
665 #define RPEL_RESP_SIZE 32
666 int sas_smp_get_phy_events(struct sas_phy *phy)
668 int res;
669 u8 *req;
670 u8 *resp;
671 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
672 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
674 req = alloc_smp_req(RPEL_REQ_SIZE);
675 if (!req)
676 return -ENOMEM;
678 resp = alloc_smp_resp(RPEL_RESP_SIZE);
679 if (!resp) {
680 kfree(req);
681 return -ENOMEM;
684 req[1] = SMP_REPORT_PHY_ERR_LOG;
685 req[9] = phy->number;
687 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
688 resp, RPEL_RESP_SIZE);
690 if (res)
691 goto out;
693 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
694 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
695 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
696 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
698 out:
699 kfree(req);
700 kfree(resp);
701 return res;
705 #ifdef CONFIG_SCSI_SAS_ATA
707 #define RPS_REQ_SIZE 16
708 #define RPS_RESP_SIZE 60
710 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
711 struct smp_resp *rps_resp)
713 int res;
714 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
715 u8 *resp = (u8 *)rps_resp;
717 if (!rps_req)
718 return -ENOMEM;
720 rps_req[1] = SMP_REPORT_PHY_SATA;
721 rps_req[9] = phy_id;
723 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
724 rps_resp, RPS_RESP_SIZE);
726 /* 0x34 is the FIS type for the D2H fis. There's a potential
727 * standards cockup here. sas-2 explicitly specifies the FIS
728 * should be encoded so that FIS type is in resp[24].
729 * However, some expanders endian reverse this. Undo the
730 * reversal here */
731 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
732 int i;
734 for (i = 0; i < 5; i++) {
735 int j = 24 + (i*4);
736 u8 a, b;
737 a = resp[j + 0];
738 b = resp[j + 1];
739 resp[j + 0] = resp[j + 3];
740 resp[j + 1] = resp[j + 2];
741 resp[j + 2] = b;
742 resp[j + 3] = a;
746 kfree(rps_req);
747 return res;
749 #endif
751 static void sas_ex_get_linkrate(struct domain_device *parent,
752 struct domain_device *child,
753 struct ex_phy *parent_phy)
755 struct expander_device *parent_ex = &parent->ex_dev;
756 struct sas_port *port;
757 int i;
759 child->pathways = 0;
761 port = parent_phy->port;
763 for (i = 0; i < parent_ex->num_phys; i++) {
764 struct ex_phy *phy = &parent_ex->ex_phy[i];
766 if (phy->phy_state == PHY_VACANT ||
767 phy->phy_state == PHY_NOT_PRESENT)
768 continue;
770 if (SAS_ADDR(phy->attached_sas_addr) ==
771 SAS_ADDR(child->sas_addr)) {
773 child->min_linkrate = min(parent->min_linkrate,
774 phy->linkrate);
775 child->max_linkrate = max(parent->max_linkrate,
776 phy->linkrate);
777 child->pathways++;
778 sas_port_add_phy(port, phy->phy);
781 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
782 child->pathways = min(child->pathways, parent->pathways);
785 static struct domain_device *sas_ex_discover_end_dev(
786 struct domain_device *parent, int phy_id)
788 struct expander_device *parent_ex = &parent->ex_dev;
789 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
790 struct domain_device *child = NULL;
791 struct sas_rphy *rphy;
792 int res;
794 if (phy->attached_sata_host || phy->attached_sata_ps)
795 return NULL;
797 child = sas_alloc_device();
798 if (!child)
799 return NULL;
801 kref_get(&parent->kref);
802 child->parent = parent;
803 child->port = parent->port;
804 child->iproto = phy->attached_iproto;
805 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
806 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
807 if (!phy->port) {
808 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
809 if (unlikely(!phy->port))
810 goto out_err;
811 if (unlikely(sas_port_add(phy->port) != 0)) {
812 sas_port_free(phy->port);
813 goto out_err;
816 sas_ex_get_linkrate(parent, child, phy);
817 sas_device_set_phy(child, phy->port);
819 #ifdef CONFIG_SCSI_SAS_ATA
820 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
821 res = sas_get_ata_info(child, phy);
822 if (res)
823 goto out_free;
825 sas_init_dev(child);
826 res = sas_ata_init(child);
827 if (res)
828 goto out_free;
829 rphy = sas_end_device_alloc(phy->port);
830 if (!rphy)
831 goto out_free;
833 child->rphy = rphy;
834 get_device(&rphy->dev);
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
838 res = sas_discover_sata(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841 "%016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
846 } else
847 #endif
848 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
849 child->dev_type = SAS_END_DEVICE;
850 rphy = sas_end_device_alloc(phy->port);
851 /* FIXME: error handling */
852 if (unlikely(!rphy))
853 goto out_free;
854 child->tproto = phy->attached_tproto;
855 sas_init_dev(child);
857 child->rphy = rphy;
858 get_device(&rphy->dev);
859 sas_fill_in_rphy(child, rphy);
861 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
863 res = sas_discover_end_dev(child);
864 if (res) {
865 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866 "at %016llx:0x%x returned 0x%x\n",
867 SAS_ADDR(child->sas_addr),
868 SAS_ADDR(parent->sas_addr), phy_id, res);
869 goto out_list_del;
871 } else {
872 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874 phy_id);
875 goto out_free;
878 list_add_tail(&child->siblings, &parent_ex->children);
879 return child;
881 out_list_del:
882 sas_rphy_free(child->rphy);
883 list_del(&child->disco_list_node);
884 spin_lock_irq(&parent->port->dev_list_lock);
885 list_del(&child->dev_list_node);
886 spin_unlock_irq(&parent->port->dev_list_lock);
887 out_free:
888 sas_port_delete(phy->port);
889 out_err:
890 phy->port = NULL;
891 sas_put_device(child);
892 return NULL;
895 /* See if this phy is part of a wide port */
896 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 int i;
901 for (i = 0; i < parent->ex_dev.num_phys; i++) {
902 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
904 if (ephy == phy)
905 continue;
907 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
908 SAS_ADDR_SIZE) && ephy->port) {
909 sas_port_add_phy(ephy->port, phy->phy);
910 phy->port = ephy->port;
911 phy->phy_state = PHY_DEVICE_DISCOVERED;
912 return true;
916 return false;
919 static struct domain_device *sas_ex_discover_expander(
920 struct domain_device *parent, int phy_id)
922 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
923 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
924 struct domain_device *child = NULL;
925 struct sas_rphy *rphy;
926 struct sas_expander_device *edev;
927 struct asd_sas_port *port;
928 int res;
930 if (phy->routing_attr == DIRECT_ROUTING) {
931 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
932 "allowed\n",
933 SAS_ADDR(parent->sas_addr), phy_id,
934 SAS_ADDR(phy->attached_sas_addr),
935 phy->attached_phy_id);
936 return NULL;
938 child = sas_alloc_device();
939 if (!child)
940 return NULL;
942 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
943 /* FIXME: better error handling */
944 BUG_ON(sas_port_add(phy->port) != 0);
947 switch (phy->attached_dev_type) {
948 case SAS_EDGE_EXPANDER_DEVICE:
949 rphy = sas_expander_alloc(phy->port,
950 SAS_EDGE_EXPANDER_DEVICE);
951 break;
952 case SAS_FANOUT_EXPANDER_DEVICE:
953 rphy = sas_expander_alloc(phy->port,
954 SAS_FANOUT_EXPANDER_DEVICE);
955 break;
956 default:
957 rphy = NULL; /* shut gcc up */
958 BUG();
960 port = parent->port;
961 child->rphy = rphy;
962 get_device(&rphy->dev);
963 edev = rphy_to_expander_device(rphy);
964 child->dev_type = phy->attached_dev_type;
965 kref_get(&parent->kref);
966 child->parent = parent;
967 child->port = port;
968 child->iproto = phy->attached_iproto;
969 child->tproto = phy->attached_tproto;
970 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
971 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
972 sas_ex_get_linkrate(parent, child, phy);
973 edev->level = parent_ex->level + 1;
974 parent->port->disc.max_level = max(parent->port->disc.max_level,
975 edev->level);
976 sas_init_dev(child);
977 sas_fill_in_rphy(child, rphy);
978 sas_rphy_add(rphy);
980 spin_lock_irq(&parent->port->dev_list_lock);
981 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
982 spin_unlock_irq(&parent->port->dev_list_lock);
984 res = sas_discover_expander(child);
985 if (res) {
986 sas_rphy_delete(rphy);
987 spin_lock_irq(&parent->port->dev_list_lock);
988 list_del(&child->dev_list_node);
989 spin_unlock_irq(&parent->port->dev_list_lock);
990 sas_put_device(child);
991 return NULL;
993 list_add_tail(&child->siblings, &parent->ex_dev.children);
994 return child;
997 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
999 struct expander_device *ex = &dev->ex_dev;
1000 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1001 struct domain_device *child = NULL;
1002 int res = 0;
1004 /* Phy state */
1005 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1006 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1007 res = sas_ex_phy_discover(dev, phy_id);
1008 if (res)
1009 return res;
1012 /* Parent and domain coherency */
1013 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1014 SAS_ADDR(dev->port->sas_addr))) {
1015 sas_add_parent_port(dev, phy_id);
1016 return 0;
1018 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1019 SAS_ADDR(dev->parent->sas_addr))) {
1020 sas_add_parent_port(dev, phy_id);
1021 if (ex_phy->routing_attr == TABLE_ROUTING)
1022 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023 return 0;
1026 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1027 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1029 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1030 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1031 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1032 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1034 return 0;
1035 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1036 return 0;
1038 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1039 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1040 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1041 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1042 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043 "phy 0x%x\n", ex_phy->attached_dev_type,
1044 SAS_ADDR(dev->sas_addr),
1045 phy_id);
1046 return 0;
1049 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1050 if (res) {
1051 SAS_DPRINTK("configure routing for dev %016llx "
1052 "reported 0x%x. Forgotten\n",
1053 SAS_ADDR(ex_phy->attached_sas_addr), res);
1054 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1055 return res;
1058 if (sas_ex_join_wide_port(dev, phy_id)) {
1059 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1061 return res;
1064 switch (ex_phy->attached_dev_type) {
1065 case SAS_END_DEVICE:
1066 case SAS_SATA_PENDING:
1067 child = sas_ex_discover_end_dev(dev, phy_id);
1068 break;
1069 case SAS_FANOUT_EXPANDER_DEVICE:
1070 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1071 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072 "attached to ex %016llx phy 0x%x\n",
1073 SAS_ADDR(ex_phy->attached_sas_addr),
1074 ex_phy->attached_phy_id,
1075 SAS_ADDR(dev->sas_addr),
1076 phy_id);
1077 sas_ex_disable_phy(dev, phy_id);
1078 break;
1079 } else
1080 memcpy(dev->port->disc.fanout_sas_addr,
1081 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1082 /* fallthrough */
1083 case SAS_EDGE_EXPANDER_DEVICE:
1084 child = sas_ex_discover_expander(dev, phy_id);
1085 break;
1086 default:
1087 break;
1090 if (child) {
1091 int i;
1093 for (i = 0; i < ex->num_phys; i++) {
1094 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1095 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1096 continue;
1098 * Due to races, the phy might not get added to the
1099 * wide port, so we add the phy to the wide port here.
1101 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1102 SAS_ADDR(child->sas_addr)) {
1103 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1104 if (sas_ex_join_wide_port(dev, i))
1105 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1112 return res;
1115 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1117 struct expander_device *ex = &dev->ex_dev;
1118 int i;
1120 for (i = 0; i < ex->num_phys; i++) {
1121 struct ex_phy *phy = &ex->ex_phy[i];
1123 if (phy->phy_state == PHY_VACANT ||
1124 phy->phy_state == PHY_NOT_PRESENT)
1125 continue;
1127 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1128 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1129 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1131 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1133 return 1;
1136 return 0;
1139 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1141 struct expander_device *ex = &dev->ex_dev;
1142 struct domain_device *child;
1143 u8 sub_addr[8] = {0, };
1145 list_for_each_entry(child, &ex->children, siblings) {
1146 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1147 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1148 continue;
1149 if (sub_addr[0] == 0) {
1150 sas_find_sub_addr(child, sub_addr);
1151 continue;
1152 } else {
1153 u8 s2[8];
1155 if (sas_find_sub_addr(child, s2) &&
1156 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1158 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159 "diverges from subtractive "
1160 "boundary %016llx\n",
1161 SAS_ADDR(dev->sas_addr),
1162 SAS_ADDR(child->sas_addr),
1163 SAS_ADDR(s2),
1164 SAS_ADDR(sub_addr));
1166 sas_ex_disable_port(child, s2);
1170 return 0;
1173 * sas_ex_discover_devices -- discover devices attached to this expander
1174 * dev: pointer to the expander domain device
1175 * single: if you want to do a single phy, else set to -1;
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1180 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1182 struct expander_device *ex = &dev->ex_dev;
1183 int i = 0, end = ex->num_phys;
1184 int res = 0;
1186 if (0 <= single && single < end) {
1187 i = single;
1188 end = i+1;
1191 for ( ; i < end; i++) {
1192 struct ex_phy *ex_phy = &ex->ex_phy[i];
1194 if (ex_phy->phy_state == PHY_VACANT ||
1195 ex_phy->phy_state == PHY_NOT_PRESENT ||
1196 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1197 continue;
1199 switch (ex_phy->linkrate) {
1200 case SAS_PHY_DISABLED:
1201 case SAS_PHY_RESET_PROBLEM:
1202 case SAS_SATA_PORT_SELECTOR:
1203 continue;
1204 default:
1205 res = sas_ex_discover_dev(dev, i);
1206 if (res)
1207 break;
1208 continue;
1212 if (!res)
1213 sas_check_level_subtractive_boundary(dev);
1215 return res;
1218 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1220 struct expander_device *ex = &dev->ex_dev;
1221 int i;
1222 u8 *sub_sas_addr = NULL;
1224 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1225 return 0;
1227 for (i = 0; i < ex->num_phys; i++) {
1228 struct ex_phy *phy = &ex->ex_phy[i];
1230 if (phy->phy_state == PHY_VACANT ||
1231 phy->phy_state == PHY_NOT_PRESENT)
1232 continue;
1234 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1235 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1236 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1238 if (!sub_sas_addr)
1239 sub_sas_addr = &phy->attached_sas_addr[0];
1240 else if (SAS_ADDR(sub_sas_addr) !=
1241 SAS_ADDR(phy->attached_sas_addr)) {
1243 SAS_DPRINTK("ex %016llx phy 0x%x "
1244 "diverges(%016llx) on subtractive "
1245 "boundary(%016llx). Disabled\n",
1246 SAS_ADDR(dev->sas_addr), i,
1247 SAS_ADDR(phy->attached_sas_addr),
1248 SAS_ADDR(sub_sas_addr));
1249 sas_ex_disable_phy(dev, i);
1253 return 0;
1256 static void sas_print_parent_topology_bug(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1260 static const char *ex_type[] = {
1261 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1262 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1264 struct domain_device *parent = child->parent;
1266 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267 "phy 0x%x has %c:%c routing link!\n",
1269 ex_type[parent->dev_type],
1270 SAS_ADDR(parent->sas_addr),
1271 parent_phy->phy_id,
1273 ex_type[child->dev_type],
1274 SAS_ADDR(child->sas_addr),
1275 child_phy->phy_id,
1277 sas_route_char(parent, parent_phy),
1278 sas_route_char(child, child_phy));
1281 static int sas_check_eeds(struct domain_device *child,
1282 struct ex_phy *parent_phy,
1283 struct ex_phy *child_phy)
1285 int res = 0;
1286 struct domain_device *parent = child->parent;
1288 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1289 res = -ENODEV;
1290 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291 "phy S:0x%x, while there is a fanout ex %016llx\n",
1292 SAS_ADDR(parent->sas_addr),
1293 parent_phy->phy_id,
1294 SAS_ADDR(child->sas_addr),
1295 child_phy->phy_id,
1296 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1297 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1298 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1299 SAS_ADDR_SIZE);
1300 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1301 SAS_ADDR_SIZE);
1302 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1303 SAS_ADDR(parent->sas_addr)) ||
1304 (SAS_ADDR(parent->port->disc.eeds_a) ==
1305 SAS_ADDR(child->sas_addr)))
1307 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1308 SAS_ADDR(parent->sas_addr)) ||
1309 (SAS_ADDR(parent->port->disc.eeds_b) ==
1310 SAS_ADDR(child->sas_addr))))
1312 else {
1313 res = -ENODEV;
1314 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315 "phy 0x%x link forms a third EEDS!\n",
1316 SAS_ADDR(parent->sas_addr),
1317 parent_phy->phy_id,
1318 SAS_ADDR(child->sas_addr),
1319 child_phy->phy_id);
1322 return res;
1325 /* Here we spill over 80 columns. It is intentional.
1327 static int sas_check_parent_topology(struct domain_device *child)
1329 struct expander_device *child_ex = &child->ex_dev;
1330 struct expander_device *parent_ex;
1331 int i;
1332 int res = 0;
1334 if (!child->parent)
1335 return 0;
1337 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1338 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1339 return 0;
1341 parent_ex = &child->parent->ex_dev;
1343 for (i = 0; i < parent_ex->num_phys; i++) {
1344 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1345 struct ex_phy *child_phy;
1347 if (parent_phy->phy_state == PHY_VACANT ||
1348 parent_phy->phy_state == PHY_NOT_PRESENT)
1349 continue;
1351 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1352 continue;
1354 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1356 switch (child->parent->dev_type) {
1357 case SAS_EDGE_EXPANDER_DEVICE:
1358 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1359 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1360 child_phy->routing_attr != TABLE_ROUTING) {
1361 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1362 res = -ENODEV;
1364 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1365 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1366 res = sas_check_eeds(child, parent_phy, child_phy);
1367 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1368 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1369 res = -ENODEV;
1371 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1372 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1373 (child_phy->routing_attr == TABLE_ROUTING &&
1374 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1375 /* All good */;
1376 } else {
1377 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1378 res = -ENODEV;
1381 break;
1382 case SAS_FANOUT_EXPANDER_DEVICE:
1383 if (parent_phy->routing_attr != TABLE_ROUTING ||
1384 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1385 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 res = -ENODEV;
1388 break;
1389 default:
1390 break;
1394 return res;
1397 #define RRI_REQ_SIZE 16
1398 #define RRI_RESP_SIZE 44
1400 static int sas_configure_present(struct domain_device *dev, int phy_id,
1401 u8 *sas_addr, int *index, int *present)
1403 int i, res = 0;
1404 struct expander_device *ex = &dev->ex_dev;
1405 struct ex_phy *phy = &ex->ex_phy[phy_id];
1406 u8 *rri_req;
1407 u8 *rri_resp;
1409 *present = 0;
1410 *index = 0;
1412 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1413 if (!rri_req)
1414 return -ENOMEM;
1416 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1417 if (!rri_resp) {
1418 kfree(rri_req);
1419 return -ENOMEM;
1422 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1423 rri_req[9] = phy_id;
1425 for (i = 0; i < ex->max_route_indexes ; i++) {
1426 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1427 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1428 RRI_RESP_SIZE);
1429 if (res)
1430 goto out;
1431 res = rri_resp[2];
1432 if (res == SMP_RESP_NO_INDEX) {
1433 SAS_DPRINTK("overflow of indexes: dev %016llx "
1434 "phy 0x%x index 0x%x\n",
1435 SAS_ADDR(dev->sas_addr), phy_id, i);
1436 goto out;
1437 } else if (res != SMP_RESP_FUNC_ACC) {
1438 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439 "result 0x%x\n", __func__,
1440 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1441 goto out;
1443 if (SAS_ADDR(sas_addr) != 0) {
1444 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1445 *index = i;
1446 if ((rri_resp[12] & 0x80) == 0x80)
1447 *present = 0;
1448 else
1449 *present = 1;
1450 goto out;
1451 } else if (SAS_ADDR(rri_resp+16) == 0) {
1452 *index = i;
1453 *present = 0;
1454 goto out;
1456 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1457 phy->last_da_index < i) {
1458 phy->last_da_index = i;
1459 *index = i;
1460 *present = 0;
1461 goto out;
1464 res = -1;
1465 out:
1466 kfree(rri_req);
1467 kfree(rri_resp);
1468 return res;
1471 #define CRI_REQ_SIZE 44
1472 #define CRI_RESP_SIZE 8
1474 static int sas_configure_set(struct domain_device *dev, int phy_id,
1475 u8 *sas_addr, int index, int include)
1477 int res;
1478 u8 *cri_req;
1479 u8 *cri_resp;
1481 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1482 if (!cri_req)
1483 return -ENOMEM;
1485 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1486 if (!cri_resp) {
1487 kfree(cri_req);
1488 return -ENOMEM;
1491 cri_req[1] = SMP_CONF_ROUTE_INFO;
1492 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1493 cri_req[9] = phy_id;
1494 if (SAS_ADDR(sas_addr) == 0 || !include)
1495 cri_req[12] |= 0x80;
1496 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1498 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1499 CRI_RESP_SIZE);
1500 if (res)
1501 goto out;
1502 res = cri_resp[2];
1503 if (res == SMP_RESP_NO_INDEX) {
1504 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1505 "index 0x%x\n",
1506 SAS_ADDR(dev->sas_addr), phy_id, index);
1508 out:
1509 kfree(cri_req);
1510 kfree(cri_resp);
1511 return res;
1514 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1515 u8 *sas_addr, int include)
1517 int index;
1518 int present;
1519 int res;
1521 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1522 if (res)
1523 return res;
1524 if (include ^ present)
1525 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1527 return res;
1531 * sas_configure_parent -- configure routing table of parent
1532 * parent: parent expander
1533 * child: child expander
1534 * sas_addr: SAS port identifier of device directly attached to child
1536 static int sas_configure_parent(struct domain_device *parent,
1537 struct domain_device *child,
1538 u8 *sas_addr, int include)
1540 struct expander_device *ex_parent = &parent->ex_dev;
1541 int res = 0;
1542 int i;
1544 if (parent->parent) {
1545 res = sas_configure_parent(parent->parent, parent, sas_addr,
1546 include);
1547 if (res)
1548 return res;
1551 if (ex_parent->conf_route_table == 0) {
1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553 SAS_ADDR(parent->sas_addr));
1554 return 0;
1557 for (i = 0; i < ex_parent->num_phys; i++) {
1558 struct ex_phy *phy = &ex_parent->ex_phy[i];
1560 if ((phy->routing_attr == TABLE_ROUTING) &&
1561 (SAS_ADDR(phy->attached_sas_addr) ==
1562 SAS_ADDR(child->sas_addr))) {
1563 res = sas_configure_phy(parent, i, sas_addr, include);
1564 if (res)
1565 return res;
1569 return res;
1573 * sas_configure_routing -- configure routing
1574 * dev: expander device
1575 * sas_addr: port identifier of device directly attached to the expander device
1577 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1579 if (dev->parent)
1580 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1581 return 0;
1584 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1586 if (dev->parent)
1587 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1588 return 0;
1592 * sas_discover_expander -- expander discovery
1593 * @ex: pointer to expander domain device
1595 * See comment in sas_discover_sata().
1597 static int sas_discover_expander(struct domain_device *dev)
1599 int res;
1601 res = sas_notify_lldd_dev_found(dev);
1602 if (res)
1603 return res;
1605 res = sas_ex_general(dev);
1606 if (res)
1607 goto out_err;
1608 res = sas_ex_manuf_info(dev);
1609 if (res)
1610 goto out_err;
1612 res = sas_expander_discover(dev);
1613 if (res) {
1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615 SAS_ADDR(dev->sas_addr), res);
1616 goto out_err;
1619 sas_check_ex_subtractive_boundary(dev);
1620 res = sas_check_parent_topology(dev);
1621 if (res)
1622 goto out_err;
1623 return 0;
1624 out_err:
1625 sas_notify_lldd_dev_gone(dev);
1626 return res;
1629 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1631 int res = 0;
1632 struct domain_device *dev;
1634 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1635 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1636 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1637 struct sas_expander_device *ex =
1638 rphy_to_expander_device(dev->rphy);
1640 if (level == ex->level)
1641 res = sas_ex_discover_devices(dev, -1);
1642 else if (level > 0)
1643 res = sas_ex_discover_devices(port->port_dev, -1);
1648 return res;
1651 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1653 int res;
1654 int level;
1656 do {
1657 level = port->disc.max_level;
1658 res = sas_ex_level_discovery(port, level);
1659 mb();
1660 } while (level < port->disc.max_level);
1662 return res;
1665 int sas_discover_root_expander(struct domain_device *dev)
1667 int res;
1668 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1670 res = sas_rphy_add(dev->rphy);
1671 if (res)
1672 goto out_err;
1674 ex->level = dev->port->disc.max_level; /* 0 */
1675 res = sas_discover_expander(dev);
1676 if (res)
1677 goto out_err2;
1679 sas_ex_bfs_disc(dev->port);
1681 return res;
1683 out_err2:
1684 sas_rphy_remove(dev->rphy);
1685 out_err:
1686 return res;
1689 /* ---------- Domain revalidation ---------- */
1691 static int sas_get_phy_discover(struct domain_device *dev,
1692 int phy_id, struct smp_resp *disc_resp)
1694 int res;
1695 u8 *disc_req;
1697 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1698 if (!disc_req)
1699 return -ENOMEM;
1701 disc_req[1] = SMP_DISCOVER;
1702 disc_req[9] = phy_id;
1704 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1705 disc_resp, DISCOVER_RESP_SIZE);
1706 if (res)
1707 goto out;
1708 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1709 res = disc_resp->result;
1710 goto out;
1712 out:
1713 kfree(disc_req);
1714 return res;
1717 static int sas_get_phy_change_count(struct domain_device *dev,
1718 int phy_id, int *pcc)
1720 int res;
1721 struct smp_resp *disc_resp;
1723 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1724 if (!disc_resp)
1725 return -ENOMEM;
1727 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1728 if (!res)
1729 *pcc = disc_resp->disc.change_count;
1731 kfree(disc_resp);
1732 return res;
1735 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1736 u8 *sas_addr, enum sas_device_type *type)
1738 int res;
1739 struct smp_resp *disc_resp;
1740 struct discover_resp *dr;
1742 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1743 if (!disc_resp)
1744 return -ENOMEM;
1745 dr = &disc_resp->disc;
1747 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1748 if (res == 0) {
1749 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1750 *type = to_dev_type(dr);
1751 if (*type == 0)
1752 memset(sas_addr, 0, 8);
1754 kfree(disc_resp);
1755 return res;
1758 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1759 int from_phy, bool update)
1761 struct expander_device *ex = &dev->ex_dev;
1762 int res = 0;
1763 int i;
1765 for (i = from_phy; i < ex->num_phys; i++) {
1766 int phy_change_count = 0;
1768 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1769 switch (res) {
1770 case SMP_RESP_PHY_VACANT:
1771 case SMP_RESP_NO_PHY:
1772 continue;
1773 case SMP_RESP_FUNC_ACC:
1774 break;
1775 default:
1776 return res;
1779 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1780 if (update)
1781 ex->ex_phy[i].phy_change_count =
1782 phy_change_count;
1783 *phy_id = i;
1784 return 0;
1787 return 0;
1790 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1792 int res;
1793 u8 *rg_req;
1794 struct smp_resp *rg_resp;
1796 rg_req = alloc_smp_req(RG_REQ_SIZE);
1797 if (!rg_req)
1798 return -ENOMEM;
1800 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1801 if (!rg_resp) {
1802 kfree(rg_req);
1803 return -ENOMEM;
1806 rg_req[1] = SMP_REPORT_GENERAL;
1808 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1809 RG_RESP_SIZE);
1810 if (res)
1811 goto out;
1812 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1813 res = rg_resp->result;
1814 goto out;
1817 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1818 out:
1819 kfree(rg_resp);
1820 kfree(rg_req);
1821 return res;
1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1825 * @dev:domain device to be detect.
1826 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 * Add self-configuration expander support. Suppose two expander cascading,
1829 * when the first level expander is self-configuring, hotplug the disks in
1830 * second level expander, BROADCAST(CHANGE) will not only be originated
1831 * in the second level expander, but also be originated in the first level
1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833 * expander changed count in two level expanders will all increment at least
1834 * once, but the phy which chang count has changed is the source device which
1835 * we concerned.
1838 static int sas_find_bcast_dev(struct domain_device *dev,
1839 struct domain_device **src_dev)
1841 struct expander_device *ex = &dev->ex_dev;
1842 int ex_change_count = -1;
1843 int phy_id = -1;
1844 int res;
1845 struct domain_device *ch;
1847 res = sas_get_ex_change_count(dev, &ex_change_count);
1848 if (res)
1849 goto out;
1850 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1851 /* Just detect if this expander phys phy change count changed,
1852 * in order to determine if this expander originate BROADCAST,
1853 * and do not update phy change count field in our structure.
1855 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1856 if (phy_id != -1) {
1857 *src_dev = dev;
1858 ex->ex_change_count = ex_change_count;
1859 SAS_DPRINTK("Expander phy change count has changed\n");
1860 return res;
1861 } else
1862 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 list_for_each_entry(ch, &ex->children, siblings) {
1865 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1866 res = sas_find_bcast_dev(ch, src_dev);
1867 if (*src_dev)
1868 return res;
1871 out:
1872 return res;
1875 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1877 struct expander_device *ex = &dev->ex_dev;
1878 struct domain_device *child, *n;
1880 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1881 set_bit(SAS_DEV_GONE, &child->state);
1882 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1883 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1884 sas_unregister_ex_tree(port, child);
1885 else
1886 sas_unregister_dev(port, child);
1888 sas_unregister_dev(port, dev);
1891 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1892 int phy_id, bool last)
1894 struct expander_device *ex_dev = &parent->ex_dev;
1895 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1896 struct domain_device *child, *n, *found = NULL;
1897 if (last) {
1898 list_for_each_entry_safe(child, n,
1899 &ex_dev->children, siblings) {
1900 if (SAS_ADDR(child->sas_addr) ==
1901 SAS_ADDR(phy->attached_sas_addr)) {
1902 set_bit(SAS_DEV_GONE, &child->state);
1903 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1904 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1905 sas_unregister_ex_tree(parent->port, child);
1906 else
1907 sas_unregister_dev(parent->port, child);
1908 found = child;
1909 break;
1912 sas_disable_routing(parent, phy->attached_sas_addr);
1914 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1915 if (phy->port) {
1916 sas_port_delete_phy(phy->port, phy->phy);
1917 sas_device_set_phy(found, phy->port);
1918 if (phy->port->num_phys == 0)
1919 list_add_tail(&phy->port->del_list,
1920 &parent->port->sas_port_del_list);
1921 phy->port = NULL;
1925 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1926 const int level)
1928 struct expander_device *ex_root = &root->ex_dev;
1929 struct domain_device *child;
1930 int res = 0;
1932 list_for_each_entry(child, &ex_root->children, siblings) {
1933 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1934 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1935 struct sas_expander_device *ex =
1936 rphy_to_expander_device(child->rphy);
1938 if (level > ex->level)
1939 res = sas_discover_bfs_by_root_level(child,
1940 level);
1941 else if (level == ex->level)
1942 res = sas_ex_discover_devices(child, -1);
1945 return res;
1948 static int sas_discover_bfs_by_root(struct domain_device *dev)
1950 int res;
1951 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1952 int level = ex->level+1;
1954 res = sas_ex_discover_devices(dev, -1);
1955 if (res)
1956 goto out;
1957 do {
1958 res = sas_discover_bfs_by_root_level(dev, level);
1959 mb();
1960 level += 1;
1961 } while (level <= dev->port->disc.max_level);
1962 out:
1963 return res;
1966 static int sas_discover_new(struct domain_device *dev, int phy_id)
1968 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1969 struct domain_device *child;
1970 int res;
1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973 SAS_ADDR(dev->sas_addr), phy_id);
1974 res = sas_ex_phy_discover(dev, phy_id);
1975 if (res)
1976 return res;
1978 if (sas_ex_join_wide_port(dev, phy_id))
1979 return 0;
1981 res = sas_ex_discover_devices(dev, phy_id);
1982 if (res)
1983 return res;
1984 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1985 if (SAS_ADDR(child->sas_addr) ==
1986 SAS_ADDR(ex_phy->attached_sas_addr)) {
1987 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1988 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1989 res = sas_discover_bfs_by_root(child);
1990 break;
1993 return res;
1996 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1998 if (old == new)
1999 return true;
2001 /* treat device directed resets as flutter, if we went
2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2005 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2006 return true;
2008 return false;
2011 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2013 struct expander_device *ex = &dev->ex_dev;
2014 struct ex_phy *phy = &ex->ex_phy[phy_id];
2015 enum sas_device_type type = SAS_PHY_UNUSED;
2016 u8 sas_addr[8];
2017 int res;
2019 memset(sas_addr, 0, 8);
2020 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2021 switch (res) {
2022 case SMP_RESP_NO_PHY:
2023 phy->phy_state = PHY_NOT_PRESENT;
2024 sas_unregister_devs_sas_addr(dev, phy_id, last);
2025 return res;
2026 case SMP_RESP_PHY_VACANT:
2027 phy->phy_state = PHY_VACANT;
2028 sas_unregister_devs_sas_addr(dev, phy_id, last);
2029 return res;
2030 case SMP_RESP_FUNC_ACC:
2031 break;
2032 case -ECOMM:
2033 break;
2034 default:
2035 return res;
2038 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2039 phy->phy_state = PHY_EMPTY;
2040 sas_unregister_devs_sas_addr(dev, phy_id, last);
2041 return res;
2042 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2043 dev_type_flutter(type, phy->attached_dev_type)) {
2044 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2045 char *action = "";
2047 sas_ex_phy_discover(dev, phy_id);
2049 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2050 action = ", needs recovery";
2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052 SAS_ADDR(dev->sas_addr), phy_id, action);
2053 return res;
2056 /* delete the old link */
2057 if (SAS_ADDR(phy->attached_sas_addr) &&
2058 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2059 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2060 SAS_ADDR(dev->sas_addr), phy_id,
2061 SAS_ADDR(phy->attached_sas_addr));
2062 sas_unregister_devs_sas_addr(dev, phy_id, last);
2065 return sas_discover_new(dev, phy_id);
2069 * sas_rediscover - revalidate the domain.
2070 * @dev:domain device to be detect.
2071 * @phy_id: the phy id will be detected.
2073 * NOTE: this process _must_ quit (return) as soon as any connection
2074 * errors are encountered. Connection recovery is done elsewhere.
2075 * Discover process only interrogates devices in order to discover the
2076 * domain.For plugging out, we un-register the device only when it is
2077 * the last phy in the port, for other phys in this port, we just delete it
2078 * from the port.For inserting, we do discovery when it is the
2079 * first phy,for other phys in this port, we add it to the port to
2080 * forming the wide-port.
2082 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2084 struct expander_device *ex = &dev->ex_dev;
2085 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2086 int res = 0;
2087 int i;
2088 bool last = true; /* is this the last phy of the port */
2090 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2091 SAS_ADDR(dev->sas_addr), phy_id);
2093 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2094 for (i = 0; i < ex->num_phys; i++) {
2095 struct ex_phy *phy = &ex->ex_phy[i];
2097 if (i == phy_id)
2098 continue;
2099 if (SAS_ADDR(phy->attached_sas_addr) ==
2100 SAS_ADDR(changed_phy->attached_sas_addr)) {
2101 SAS_DPRINTK("phy%d part of wide port with "
2102 "phy%d\n", phy_id, i);
2103 last = false;
2104 break;
2107 res = sas_rediscover_dev(dev, phy_id, last);
2108 } else
2109 res = sas_discover_new(dev, phy_id);
2110 return res;
2114 * sas_revalidate_domain -- revalidate the domain
2115 * @port: port to the domain of interest
2117 * NOTE: this process _must_ quit (return) as soon as any connection
2118 * errors are encountered. Connection recovery is done elsewhere.
2119 * Discover process only interrogates devices in order to discover the
2120 * domain.
2122 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2124 int res;
2125 struct domain_device *dev = NULL;
2127 res = sas_find_bcast_dev(port_dev, &dev);
2128 if (res == 0 && dev) {
2129 struct expander_device *ex = &dev->ex_dev;
2130 int i = 0, phy_id;
2132 do {
2133 phy_id = -1;
2134 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2135 if (phy_id == -1)
2136 break;
2137 res = sas_rediscover(dev, phy_id);
2138 i = phy_id + 1;
2139 } while (i < ex->num_phys);
2141 return res;
2144 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2145 struct sas_rphy *rphy)
2147 struct domain_device *dev;
2148 unsigned int rcvlen = 0;
2149 int ret = -EINVAL;
2151 /* no rphy means no smp target support (ie aic94xx host) */
2152 if (!rphy)
2153 return sas_smp_host_handler(job, shost);
2155 switch (rphy->identify.device_type) {
2156 case SAS_EDGE_EXPANDER_DEVICE:
2157 case SAS_FANOUT_EXPANDER_DEVICE:
2158 break;
2159 default:
2160 printk("%s: can we send a smp request to a device?\n",
2161 __func__);
2162 goto out;
2165 dev = sas_find_dev_by_rphy(rphy);
2166 if (!dev) {
2167 printk("%s: fail to find a domain_device?\n", __func__);
2168 goto out;
2171 /* do we need to support multiple segments? */
2172 if (job->request_payload.sg_cnt > 1 ||
2173 job->reply_payload.sg_cnt > 1) {
2174 printk("%s: multiple segments req %u, rsp %u\n",
2175 __func__, job->request_payload.payload_len,
2176 job->reply_payload.payload_len);
2177 goto out;
2180 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2181 job->reply_payload.sg_list);
2182 if (ret >= 0) {
2183 /* bsg_job_done() requires the length received */
2184 rcvlen = job->reply_payload.payload_len - ret;
2185 ret = 0;
2188 out:
2189 bsg_job_done(job, ret, rcvlen);