2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
29 #include "sas_internal.h"
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
36 static int sas_discover_expander(struct domain_device
*dev
);
37 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
);
38 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
39 u8
*sas_addr
, int include
);
40 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
);
42 /* ---------- SMP task management ---------- */
44 static void smp_task_timedout(struct timer_list
*t
)
46 struct sas_task_slow
*slow
= from_timer(slow
, t
, timer
);
47 struct sas_task
*task
= slow
->task
;
50 spin_lock_irqsave(&task
->task_state_lock
, flags
);
51 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
))
52 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
53 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
55 complete(&task
->slow_task
->completion
);
58 static void smp_task_done(struct sas_task
*task
)
60 if (!del_timer(&task
->slow_task
->timer
))
62 complete(&task
->slow_task
->completion
);
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
68 static int smp_execute_task_sg(struct domain_device
*dev
,
69 struct scatterlist
*req
, struct scatterlist
*resp
)
72 struct sas_task
*task
= NULL
;
73 struct sas_internal
*i
=
74 to_sas_internal(dev
->port
->ha
->core
.shost
->transportt
);
76 mutex_lock(&dev
->ex_dev
.cmd_mutex
);
77 for (retry
= 0; retry
< 3; retry
++) {
78 if (test_bit(SAS_DEV_GONE
, &dev
->state
)) {
83 task
= sas_alloc_slow_task(GFP_KERNEL
);
89 task
->task_proto
= dev
->tproto
;
90 task
->smp_task
.smp_req
= *req
;
91 task
->smp_task
.smp_resp
= *resp
;
93 task
->task_done
= smp_task_done
;
95 task
->slow_task
->timer
.function
= smp_task_timedout
;
96 task
->slow_task
->timer
.expires
= jiffies
+ SMP_TIMEOUT
*HZ
;
97 add_timer(&task
->slow_task
->timer
);
99 res
= i
->dft
->lldd_execute_task(task
, GFP_KERNEL
);
102 del_timer(&task
->slow_task
->timer
);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res
);
107 wait_for_completion(&task
->slow_task
->completion
);
109 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i
->dft
->lldd_abort_task(task
);
112 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
117 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
118 task
->task_status
.stat
== SAM_STAT_GOOD
) {
122 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
123 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
124 /* no error, but return the number of bytes of
126 res
= task
->task_status
.residual
;
129 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
130 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
134 if (task
->task_status
.resp
== SAS_TASK_UNDELIVERED
&&
135 task
->task_status
.stat
== SAS_DEVICE_UNKNOWN
)
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__
,
140 SAS_ADDR(dev
->sas_addr
),
141 task
->task_status
.resp
,
142 task
->task_status
.stat
);
147 mutex_unlock(&dev
->ex_dev
.cmd_mutex
);
149 BUG_ON(retry
== 3 && task
!= NULL
);
154 static int smp_execute_task(struct domain_device
*dev
, void *req
, int req_size
,
155 void *resp
, int resp_size
)
157 struct scatterlist req_sg
;
158 struct scatterlist resp_sg
;
160 sg_init_one(&req_sg
, req
, req_size
);
161 sg_init_one(&resp_sg
, resp
, resp_size
);
162 return smp_execute_task_sg(dev
, &req_sg
, &resp_sg
);
165 /* ---------- Allocations ---------- */
167 static inline void *alloc_smp_req(int size
)
169 u8
*p
= kzalloc(size
, GFP_KERNEL
);
175 static inline void *alloc_smp_resp(int size
)
177 return kzalloc(size
, GFP_KERNEL
);
180 static char sas_route_char(struct domain_device
*dev
, struct ex_phy
*phy
)
182 switch (phy
->routing_attr
) {
184 if (dev
->ex_dev
.t2t_supp
)
190 case SUBTRACTIVE_ROUTING
:
197 static enum sas_device_type
to_dev_type(struct discover_resp
*dr
)
199 /* This is detecting a failure to transmit initial dev to host
200 * FIS as described in section J.5 of sas-2 r16
202 if (dr
->attached_dev_type
== SAS_PHY_UNUSED
&& dr
->attached_sata_dev
&&
203 dr
->linkrate
>= SAS_LINK_RATE_1_5_GBPS
)
204 return SAS_SATA_PENDING
;
206 return dr
->attached_dev_type
;
209 static void sas_set_ex_phy(struct domain_device
*dev
, int phy_id
, void *rsp
)
211 enum sas_device_type dev_type
;
212 enum sas_linkrate linkrate
;
213 u8 sas_addr
[SAS_ADDR_SIZE
];
214 struct smp_resp
*resp
= rsp
;
215 struct discover_resp
*dr
= &resp
->disc
;
216 struct sas_ha_struct
*ha
= dev
->port
->ha
;
217 struct expander_device
*ex
= &dev
->ex_dev
;
218 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
219 struct sas_rphy
*rphy
= dev
->rphy
;
220 bool new_phy
= !phy
->phy
;
224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)))
226 phy
->phy
= sas_phy_alloc(&rphy
->dev
, phy_id
);
228 /* FIXME: error_handling */
232 switch (resp
->result
) {
233 case SMP_RESP_PHY_VACANT
:
234 phy
->phy_state
= PHY_VACANT
;
237 phy
->phy_state
= PHY_NOT_PRESENT
;
239 case SMP_RESP_FUNC_ACC
:
240 phy
->phy_state
= PHY_EMPTY
; /* do not know yet */
244 /* check if anything important changed to squelch debug */
245 dev_type
= phy
->attached_dev_type
;
246 linkrate
= phy
->linkrate
;
247 memcpy(sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
249 /* Handle vacant phy - rest of dr data is not valid so skip it */
250 if (phy
->phy_state
== PHY_VACANT
) {
251 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
252 phy
->attached_dev_type
= SAS_PHY_UNUSED
;
253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
)) {
254 phy
->phy_id
= phy_id
;
260 phy
->attached_dev_type
= to_dev_type(dr
);
261 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
263 phy
->phy_id
= phy_id
;
264 phy
->linkrate
= dr
->linkrate
;
265 phy
->attached_sata_host
= dr
->attached_sata_host
;
266 phy
->attached_sata_dev
= dr
->attached_sata_dev
;
267 phy
->attached_sata_ps
= dr
->attached_sata_ps
;
268 phy
->attached_iproto
= dr
->iproto
<< 1;
269 phy
->attached_tproto
= dr
->tproto
<< 1;
270 /* help some expanders that fail to zero sas_address in the 'no
273 if (phy
->attached_dev_type
== SAS_PHY_UNUSED
||
274 phy
->linkrate
< SAS_LINK_RATE_1_5_GBPS
)
275 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
277 memcpy(phy
->attached_sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
);
278 phy
->attached_phy_id
= dr
->attached_phy_id
;
279 phy
->phy_change_count
= dr
->change_count
;
280 phy
->routing_attr
= dr
->routing_attr
;
281 phy
->virtual = dr
->virtual;
282 phy
->last_da_index
= -1;
284 phy
->phy
->identify
.sas_address
= SAS_ADDR(phy
->attached_sas_addr
);
285 phy
->phy
->identify
.device_type
= dr
->attached_dev_type
;
286 phy
->phy
->identify
.initiator_port_protocols
= phy
->attached_iproto
;
287 phy
->phy
->identify
.target_port_protocols
= phy
->attached_tproto
;
288 if (!phy
->attached_tproto
&& dr
->attached_sata_dev
)
289 phy
->phy
->identify
.target_port_protocols
= SAS_PROTOCOL_SATA
;
290 phy
->phy
->identify
.phy_identifier
= phy_id
;
291 phy
->phy
->minimum_linkrate_hw
= dr
->hmin_linkrate
;
292 phy
->phy
->maximum_linkrate_hw
= dr
->hmax_linkrate
;
293 phy
->phy
->minimum_linkrate
= dr
->pmin_linkrate
;
294 phy
->phy
->maximum_linkrate
= dr
->pmax_linkrate
;
295 phy
->phy
->negotiated_linkrate
= phy
->linkrate
;
296 phy
->phy
->enabled
= (phy
->linkrate
!= SAS_PHY_DISABLED
);
300 if (sas_phy_add(phy
->phy
)) {
301 sas_phy_free(phy
->phy
);
306 switch (phy
->attached_dev_type
) {
307 case SAS_SATA_PENDING
:
308 type
= "stp pending";
314 if (phy
->attached_iproto
) {
315 if (phy
->attached_tproto
)
316 type
= "host+target";
320 if (dr
->attached_sata_dev
)
326 case SAS_EDGE_EXPANDER_DEVICE
:
327 case SAS_FANOUT_EXPANDER_DEVICE
:
334 /* this routine is polled by libata error recovery so filter
335 * unimportant messages
337 if (new_phy
|| phy
->attached_dev_type
!= dev_type
||
338 phy
->linkrate
!= linkrate
||
339 SAS_ADDR(phy
->attached_sas_addr
) != SAS_ADDR(sas_addr
))
344 /* if the attached device type changed and ata_eh is active,
345 * make sure we run revalidation when eh completes (see:
346 * sas_enable_revalidation)
348 if (test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
))
349 set_bit(DISCE_REVALIDATE_DOMAIN
, &dev
->port
->disc
.pending
);
351 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 test_bit(SAS_HA_ATA_EH_ACTIVE
, &ha
->state
) ? "ata: " : "",
353 SAS_ADDR(dev
->sas_addr
), phy
->phy_id
,
354 sas_route_char(dev
, phy
), phy
->linkrate
,
355 SAS_ADDR(phy
->attached_sas_addr
), type
);
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device
*sas_ex_to_ata(struct domain_device
*ex_dev
, int phy_id
)
361 struct ex_phy
*ex_phy
= &ex_dev
->ex_dev
.ex_phy
[phy_id
];
362 struct domain_device
*dev
;
363 struct sas_rphy
*rphy
;
368 rphy
= ex_phy
->port
->rphy
;
372 dev
= sas_find_dev_by_rphy(rphy
);
374 if (dev
&& dev_is_sata(dev
))
380 #define DISCOVER_REQ_SIZE 16
381 #define DISCOVER_RESP_SIZE 56
383 static int sas_ex_phy_discover_helper(struct domain_device
*dev
, u8
*disc_req
,
384 u8
*disc_resp
, int single
)
386 struct discover_resp
*dr
;
389 disc_req
[9] = single
;
391 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
392 disc_resp
, DISCOVER_RESP_SIZE
);
395 dr
= &((struct smp_resp
*)disc_resp
)->disc
;
396 if (memcmp(dev
->sas_addr
, dr
->attached_sas_addr
, SAS_ADDR_SIZE
) == 0) {
397 sas_printk("Found loopback topology, just ignore it!\n");
400 sas_set_ex_phy(dev
, single
, disc_resp
);
404 int sas_ex_phy_discover(struct domain_device
*dev
, int single
)
406 struct expander_device
*ex
= &dev
->ex_dev
;
411 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
415 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
421 disc_req
[1] = SMP_DISCOVER
;
423 if (0 <= single
&& single
< ex
->num_phys
) {
424 res
= sas_ex_phy_discover_helper(dev
, disc_req
, disc_resp
, single
);
428 for (i
= 0; i
< ex
->num_phys
; i
++) {
429 res
= sas_ex_phy_discover_helper(dev
, disc_req
,
441 static int sas_expander_discover(struct domain_device
*dev
)
443 struct expander_device
*ex
= &dev
->ex_dev
;
446 ex
->ex_phy
= kzalloc(sizeof(*ex
->ex_phy
)*ex
->num_phys
, GFP_KERNEL
);
450 res
= sas_ex_phy_discover(dev
, -1);
461 #define MAX_EXPANDER_PHYS 128
463 static void ex_assign_report_general(struct domain_device
*dev
,
464 struct smp_resp
*resp
)
466 struct report_general_resp
*rg
= &resp
->rg
;
468 dev
->ex_dev
.ex_change_count
= be16_to_cpu(rg
->change_count
);
469 dev
->ex_dev
.max_route_indexes
= be16_to_cpu(rg
->route_indexes
);
470 dev
->ex_dev
.num_phys
= min(rg
->num_phys
, (u8
)MAX_EXPANDER_PHYS
);
471 dev
->ex_dev
.t2t_supp
= rg
->t2t_supp
;
472 dev
->ex_dev
.conf_route_table
= rg
->conf_route_table
;
473 dev
->ex_dev
.configuring
= rg
->configuring
;
474 memcpy(dev
->ex_dev
.enclosure_logical_id
, rg
->enclosure_logical_id
, 8);
477 #define RG_REQ_SIZE 8
478 #define RG_RESP_SIZE 32
480 static int sas_ex_general(struct domain_device
*dev
)
483 struct smp_resp
*rg_resp
;
487 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
491 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
497 rg_req
[1] = SMP_REPORT_GENERAL
;
499 for (i
= 0; i
< 5; i
++) {
500 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
504 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
505 SAS_ADDR(dev
->sas_addr
), res
);
507 } else if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
508 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
509 SAS_ADDR(dev
->sas_addr
), rg_resp
->result
);
510 res
= rg_resp
->result
;
514 ex_assign_report_general(dev
, rg_resp
);
516 if (dev
->ex_dev
.configuring
) {
517 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
518 SAS_ADDR(dev
->sas_addr
));
519 schedule_timeout_interruptible(5*HZ
);
529 static void ex_assign_manuf_info(struct domain_device
*dev
, void
532 u8
*mi_resp
= _mi_resp
;
533 struct sas_rphy
*rphy
= dev
->rphy
;
534 struct sas_expander_device
*edev
= rphy_to_expander_device(rphy
);
536 memcpy(edev
->vendor_id
, mi_resp
+ 12, SAS_EXPANDER_VENDOR_ID_LEN
);
537 memcpy(edev
->product_id
, mi_resp
+ 20, SAS_EXPANDER_PRODUCT_ID_LEN
);
538 memcpy(edev
->product_rev
, mi_resp
+ 36,
539 SAS_EXPANDER_PRODUCT_REV_LEN
);
541 if (mi_resp
[8] & 1) {
542 memcpy(edev
->component_vendor_id
, mi_resp
+ 40,
543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN
);
544 edev
->component_id
= mi_resp
[48] << 8 | mi_resp
[49];
545 edev
->component_revision_id
= mi_resp
[50];
549 #define MI_REQ_SIZE 8
550 #define MI_RESP_SIZE 64
552 static int sas_ex_manuf_info(struct domain_device
*dev
)
558 mi_req
= alloc_smp_req(MI_REQ_SIZE
);
562 mi_resp
= alloc_smp_resp(MI_RESP_SIZE
);
568 mi_req
[1] = SMP_REPORT_MANUF_INFO
;
570 res
= smp_execute_task(dev
, mi_req
, MI_REQ_SIZE
, mi_resp
,MI_RESP_SIZE
);
572 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
573 SAS_ADDR(dev
->sas_addr
), res
);
575 } else if (mi_resp
[2] != SMP_RESP_FUNC_ACC
) {
576 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
577 SAS_ADDR(dev
->sas_addr
), mi_resp
[2]);
581 ex_assign_manuf_info(dev
, mi_resp
);
588 #define PC_REQ_SIZE 44
589 #define PC_RESP_SIZE 8
591 int sas_smp_phy_control(struct domain_device
*dev
, int phy_id
,
592 enum phy_func phy_func
,
593 struct sas_phy_linkrates
*rates
)
599 pc_req
= alloc_smp_req(PC_REQ_SIZE
);
603 pc_resp
= alloc_smp_resp(PC_RESP_SIZE
);
609 pc_req
[1] = SMP_PHY_CONTROL
;
611 pc_req
[10]= phy_func
;
613 pc_req
[32] = rates
->minimum_linkrate
<< 4;
614 pc_req
[33] = rates
->maximum_linkrate
<< 4;
617 res
= smp_execute_task(dev
, pc_req
, PC_REQ_SIZE
, pc_resp
,PC_RESP_SIZE
);
624 static void sas_ex_disable_phy(struct domain_device
*dev
, int phy_id
)
626 struct expander_device
*ex
= &dev
->ex_dev
;
627 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
629 sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_DISABLE
, NULL
);
630 phy
->linkrate
= SAS_PHY_DISABLED
;
633 static void sas_ex_disable_port(struct domain_device
*dev
, u8
*sas_addr
)
635 struct expander_device
*ex
= &dev
->ex_dev
;
638 for (i
= 0; i
< ex
->num_phys
; i
++) {
639 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
641 if (phy
->phy_state
== PHY_VACANT
||
642 phy
->phy_state
== PHY_NOT_PRESENT
)
645 if (SAS_ADDR(phy
->attached_sas_addr
) == SAS_ADDR(sas_addr
))
646 sas_ex_disable_phy(dev
, i
);
650 static int sas_dev_present_in_domain(struct asd_sas_port
*port
,
653 struct domain_device
*dev
;
655 if (SAS_ADDR(port
->sas_addr
) == SAS_ADDR(sas_addr
))
657 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
658 if (SAS_ADDR(dev
->sas_addr
) == SAS_ADDR(sas_addr
))
664 #define RPEL_REQ_SIZE 16
665 #define RPEL_RESP_SIZE 32
666 int sas_smp_get_phy_events(struct sas_phy
*phy
)
671 struct sas_rphy
*rphy
= dev_to_rphy(phy
->dev
.parent
);
672 struct domain_device
*dev
= sas_find_dev_by_rphy(rphy
);
674 req
= alloc_smp_req(RPEL_REQ_SIZE
);
678 resp
= alloc_smp_resp(RPEL_RESP_SIZE
);
684 req
[1] = SMP_REPORT_PHY_ERR_LOG
;
685 req
[9] = phy
->number
;
687 res
= smp_execute_task(dev
, req
, RPEL_REQ_SIZE
,
688 resp
, RPEL_RESP_SIZE
);
693 phy
->invalid_dword_count
= scsi_to_u32(&resp
[12]);
694 phy
->running_disparity_error_count
= scsi_to_u32(&resp
[16]);
695 phy
->loss_of_dword_sync_count
= scsi_to_u32(&resp
[20]);
696 phy
->phy_reset_problem_count
= scsi_to_u32(&resp
[24]);
705 #ifdef CONFIG_SCSI_SAS_ATA
707 #define RPS_REQ_SIZE 16
708 #define RPS_RESP_SIZE 60
710 int sas_get_report_phy_sata(struct domain_device
*dev
, int phy_id
,
711 struct smp_resp
*rps_resp
)
714 u8
*rps_req
= alloc_smp_req(RPS_REQ_SIZE
);
715 u8
*resp
= (u8
*)rps_resp
;
720 rps_req
[1] = SMP_REPORT_PHY_SATA
;
723 res
= smp_execute_task(dev
, rps_req
, RPS_REQ_SIZE
,
724 rps_resp
, RPS_RESP_SIZE
);
726 /* 0x34 is the FIS type for the D2H fis. There's a potential
727 * standards cockup here. sas-2 explicitly specifies the FIS
728 * should be encoded so that FIS type is in resp[24].
729 * However, some expanders endian reverse this. Undo the
731 if (!res
&& resp
[27] == 0x34 && resp
[24] != 0x34) {
734 for (i
= 0; i
< 5; i
++) {
739 resp
[j
+ 0] = resp
[j
+ 3];
740 resp
[j
+ 1] = resp
[j
+ 2];
751 static void sas_ex_get_linkrate(struct domain_device
*parent
,
752 struct domain_device
*child
,
753 struct ex_phy
*parent_phy
)
755 struct expander_device
*parent_ex
= &parent
->ex_dev
;
756 struct sas_port
*port
;
761 port
= parent_phy
->port
;
763 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
764 struct ex_phy
*phy
= &parent_ex
->ex_phy
[i
];
766 if (phy
->phy_state
== PHY_VACANT
||
767 phy
->phy_state
== PHY_NOT_PRESENT
)
770 if (SAS_ADDR(phy
->attached_sas_addr
) ==
771 SAS_ADDR(child
->sas_addr
)) {
773 child
->min_linkrate
= min(parent
->min_linkrate
,
775 child
->max_linkrate
= max(parent
->max_linkrate
,
778 sas_port_add_phy(port
, phy
->phy
);
781 child
->linkrate
= min(parent_phy
->linkrate
, child
->max_linkrate
);
782 child
->pathways
= min(child
->pathways
, parent
->pathways
);
785 static struct domain_device
*sas_ex_discover_end_dev(
786 struct domain_device
*parent
, int phy_id
)
788 struct expander_device
*parent_ex
= &parent
->ex_dev
;
789 struct ex_phy
*phy
= &parent_ex
->ex_phy
[phy_id
];
790 struct domain_device
*child
= NULL
;
791 struct sas_rphy
*rphy
;
794 if (phy
->attached_sata_host
|| phy
->attached_sata_ps
)
797 child
= sas_alloc_device();
801 kref_get(&parent
->kref
);
802 child
->parent
= parent
;
803 child
->port
= parent
->port
;
804 child
->iproto
= phy
->attached_iproto
;
805 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
806 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
808 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
809 if (unlikely(!phy
->port
))
811 if (unlikely(sas_port_add(phy
->port
) != 0)) {
812 sas_port_free(phy
->port
);
816 sas_ex_get_linkrate(parent
, child
, phy
);
817 sas_device_set_phy(child
, phy
->port
);
819 #ifdef CONFIG_SCSI_SAS_ATA
820 if ((phy
->attached_tproto
& SAS_PROTOCOL_STP
) || phy
->attached_sata_dev
) {
821 res
= sas_get_ata_info(child
, phy
);
826 res
= sas_ata_init(child
);
829 rphy
= sas_end_device_alloc(phy
->port
);
834 get_device(&rphy
->dev
);
836 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
838 res
= sas_discover_sata(child
);
840 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
841 "%016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child
->sas_addr
),
843 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
848 if (phy
->attached_tproto
& SAS_PROTOCOL_SSP
) {
849 child
->dev_type
= SAS_END_DEVICE
;
850 rphy
= sas_end_device_alloc(phy
->port
);
851 /* FIXME: error handling */
854 child
->tproto
= phy
->attached_tproto
;
858 get_device(&rphy
->dev
);
859 sas_fill_in_rphy(child
, rphy
);
861 list_add_tail(&child
->disco_list_node
, &parent
->port
->disco_list
);
863 res
= sas_discover_end_dev(child
);
865 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
866 "at %016llx:0x%x returned 0x%x\n",
867 SAS_ADDR(child
->sas_addr
),
868 SAS_ADDR(parent
->sas_addr
), phy_id
, res
);
872 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
873 phy
->attached_tproto
, SAS_ADDR(parent
->sas_addr
),
878 list_add_tail(&child
->siblings
, &parent_ex
->children
);
882 sas_rphy_free(child
->rphy
);
883 list_del(&child
->disco_list_node
);
884 spin_lock_irq(&parent
->port
->dev_list_lock
);
885 list_del(&child
->dev_list_node
);
886 spin_unlock_irq(&parent
->port
->dev_list_lock
);
888 sas_port_delete(phy
->port
);
891 sas_put_device(child
);
895 /* See if this phy is part of a wide port */
896 static bool sas_ex_join_wide_port(struct domain_device
*parent
, int phy_id
)
898 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
901 for (i
= 0; i
< parent
->ex_dev
.num_phys
; i
++) {
902 struct ex_phy
*ephy
= &parent
->ex_dev
.ex_phy
[i
];
907 if (!memcmp(phy
->attached_sas_addr
, ephy
->attached_sas_addr
,
908 SAS_ADDR_SIZE
) && ephy
->port
) {
909 sas_port_add_phy(ephy
->port
, phy
->phy
);
910 phy
->port
= ephy
->port
;
911 phy
->phy_state
= PHY_DEVICE_DISCOVERED
;
919 static struct domain_device
*sas_ex_discover_expander(
920 struct domain_device
*parent
, int phy_id
)
922 struct sas_expander_device
*parent_ex
= rphy_to_expander_device(parent
->rphy
);
923 struct ex_phy
*phy
= &parent
->ex_dev
.ex_phy
[phy_id
];
924 struct domain_device
*child
= NULL
;
925 struct sas_rphy
*rphy
;
926 struct sas_expander_device
*edev
;
927 struct asd_sas_port
*port
;
930 if (phy
->routing_attr
== DIRECT_ROUTING
) {
931 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
933 SAS_ADDR(parent
->sas_addr
), phy_id
,
934 SAS_ADDR(phy
->attached_sas_addr
),
935 phy
->attached_phy_id
);
938 child
= sas_alloc_device();
942 phy
->port
= sas_port_alloc(&parent
->rphy
->dev
, phy_id
);
943 /* FIXME: better error handling */
944 BUG_ON(sas_port_add(phy
->port
) != 0);
947 switch (phy
->attached_dev_type
) {
948 case SAS_EDGE_EXPANDER_DEVICE
:
949 rphy
= sas_expander_alloc(phy
->port
,
950 SAS_EDGE_EXPANDER_DEVICE
);
952 case SAS_FANOUT_EXPANDER_DEVICE
:
953 rphy
= sas_expander_alloc(phy
->port
,
954 SAS_FANOUT_EXPANDER_DEVICE
);
957 rphy
= NULL
; /* shut gcc up */
962 get_device(&rphy
->dev
);
963 edev
= rphy_to_expander_device(rphy
);
964 child
->dev_type
= phy
->attached_dev_type
;
965 kref_get(&parent
->kref
);
966 child
->parent
= parent
;
968 child
->iproto
= phy
->attached_iproto
;
969 child
->tproto
= phy
->attached_tproto
;
970 memcpy(child
->sas_addr
, phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
971 sas_hash_addr(child
->hashed_sas_addr
, child
->sas_addr
);
972 sas_ex_get_linkrate(parent
, child
, phy
);
973 edev
->level
= parent_ex
->level
+ 1;
974 parent
->port
->disc
.max_level
= max(parent
->port
->disc
.max_level
,
977 sas_fill_in_rphy(child
, rphy
);
980 spin_lock_irq(&parent
->port
->dev_list_lock
);
981 list_add_tail(&child
->dev_list_node
, &parent
->port
->dev_list
);
982 spin_unlock_irq(&parent
->port
->dev_list_lock
);
984 res
= sas_discover_expander(child
);
986 sas_rphy_delete(rphy
);
987 spin_lock_irq(&parent
->port
->dev_list_lock
);
988 list_del(&child
->dev_list_node
);
989 spin_unlock_irq(&parent
->port
->dev_list_lock
);
990 sas_put_device(child
);
993 list_add_tail(&child
->siblings
, &parent
->ex_dev
.children
);
997 static int sas_ex_discover_dev(struct domain_device
*dev
, int phy_id
)
999 struct expander_device
*ex
= &dev
->ex_dev
;
1000 struct ex_phy
*ex_phy
= &ex
->ex_phy
[phy_id
];
1001 struct domain_device
*child
= NULL
;
1005 if (ex_phy
->linkrate
== SAS_SATA_SPINUP_HOLD
) {
1006 if (!sas_smp_phy_control(dev
, phy_id
, PHY_FUNC_LINK_RESET
, NULL
))
1007 res
= sas_ex_phy_discover(dev
, phy_id
);
1012 /* Parent and domain coherency */
1013 if (!dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1014 SAS_ADDR(dev
->port
->sas_addr
))) {
1015 sas_add_parent_port(dev
, phy_id
);
1018 if (dev
->parent
&& (SAS_ADDR(ex_phy
->attached_sas_addr
) ==
1019 SAS_ADDR(dev
->parent
->sas_addr
))) {
1020 sas_add_parent_port(dev
, phy_id
);
1021 if (ex_phy
->routing_attr
== TABLE_ROUTING
)
1022 sas_configure_phy(dev
, phy_id
, dev
->port
->sas_addr
, 1);
1026 if (sas_dev_present_in_domain(dev
->port
, ex_phy
->attached_sas_addr
))
1027 sas_ex_disable_port(dev
, ex_phy
->attached_sas_addr
);
1029 if (ex_phy
->attached_dev_type
== SAS_PHY_UNUSED
) {
1030 if (ex_phy
->routing_attr
== DIRECT_ROUTING
) {
1031 memset(ex_phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1032 sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1035 } else if (ex_phy
->linkrate
== SAS_LINK_RATE_UNKNOWN
)
1038 if (ex_phy
->attached_dev_type
!= SAS_END_DEVICE
&&
1039 ex_phy
->attached_dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
&&
1040 ex_phy
->attached_dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1041 ex_phy
->attached_dev_type
!= SAS_SATA_PENDING
) {
1042 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1043 "phy 0x%x\n", ex_phy
->attached_dev_type
,
1044 SAS_ADDR(dev
->sas_addr
),
1049 res
= sas_configure_routing(dev
, ex_phy
->attached_sas_addr
);
1051 SAS_DPRINTK("configure routing for dev %016llx "
1052 "reported 0x%x. Forgotten\n",
1053 SAS_ADDR(ex_phy
->attached_sas_addr
), res
);
1054 sas_disable_routing(dev
, ex_phy
->attached_sas_addr
);
1058 if (sas_ex_join_wide_port(dev
, phy_id
)) {
1059 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1060 phy_id
, SAS_ADDR(ex_phy
->attached_sas_addr
));
1064 switch (ex_phy
->attached_dev_type
) {
1065 case SAS_END_DEVICE
:
1066 case SAS_SATA_PENDING
:
1067 child
= sas_ex_discover_end_dev(dev
, phy_id
);
1069 case SAS_FANOUT_EXPANDER_DEVICE
:
1070 if (SAS_ADDR(dev
->port
->disc
.fanout_sas_addr
)) {
1071 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1072 "attached to ex %016llx phy 0x%x\n",
1073 SAS_ADDR(ex_phy
->attached_sas_addr
),
1074 ex_phy
->attached_phy_id
,
1075 SAS_ADDR(dev
->sas_addr
),
1077 sas_ex_disable_phy(dev
, phy_id
);
1080 memcpy(dev
->port
->disc
.fanout_sas_addr
,
1081 ex_phy
->attached_sas_addr
, SAS_ADDR_SIZE
);
1083 case SAS_EDGE_EXPANDER_DEVICE
:
1084 child
= sas_ex_discover_expander(dev
, phy_id
);
1093 for (i
= 0; i
< ex
->num_phys
; i
++) {
1094 if (ex
->ex_phy
[i
].phy_state
== PHY_VACANT
||
1095 ex
->ex_phy
[i
].phy_state
== PHY_NOT_PRESENT
)
1098 * Due to races, the phy might not get added to the
1099 * wide port, so we add the phy to the wide port here.
1101 if (SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
) ==
1102 SAS_ADDR(child
->sas_addr
)) {
1103 ex
->ex_phy
[i
].phy_state
= PHY_DEVICE_DISCOVERED
;
1104 if (sas_ex_join_wide_port(dev
, i
))
1105 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1106 i
, SAS_ADDR(ex
->ex_phy
[i
].attached_sas_addr
));
1115 static int sas_find_sub_addr(struct domain_device
*dev
, u8
*sub_addr
)
1117 struct expander_device
*ex
= &dev
->ex_dev
;
1120 for (i
= 0; i
< ex
->num_phys
; i
++) {
1121 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1123 if (phy
->phy_state
== PHY_VACANT
||
1124 phy
->phy_state
== PHY_NOT_PRESENT
)
1127 if ((phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1128 phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) &&
1129 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1131 memcpy(sub_addr
, phy
->attached_sas_addr
,SAS_ADDR_SIZE
);
1139 static int sas_check_level_subtractive_boundary(struct domain_device
*dev
)
1141 struct expander_device
*ex
= &dev
->ex_dev
;
1142 struct domain_device
*child
;
1143 u8 sub_addr
[8] = {0, };
1145 list_for_each_entry(child
, &ex
->children
, siblings
) {
1146 if (child
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1147 child
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1149 if (sub_addr
[0] == 0) {
1150 sas_find_sub_addr(child
, sub_addr
);
1155 if (sas_find_sub_addr(child
, s2
) &&
1156 (SAS_ADDR(sub_addr
) != SAS_ADDR(s2
))) {
1158 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1159 "diverges from subtractive "
1160 "boundary %016llx\n",
1161 SAS_ADDR(dev
->sas_addr
),
1162 SAS_ADDR(child
->sas_addr
),
1164 SAS_ADDR(sub_addr
));
1166 sas_ex_disable_port(child
, s2
);
1173 * sas_ex_discover_devices -- discover devices attached to this expander
1174 * dev: pointer to the expander domain device
1175 * single: if you want to do a single phy, else set to -1;
1177 * Configure this expander for use with its devices and register the
1178 * devices of this expander.
1180 static int sas_ex_discover_devices(struct domain_device
*dev
, int single
)
1182 struct expander_device
*ex
= &dev
->ex_dev
;
1183 int i
= 0, end
= ex
->num_phys
;
1186 if (0 <= single
&& single
< end
) {
1191 for ( ; i
< end
; i
++) {
1192 struct ex_phy
*ex_phy
= &ex
->ex_phy
[i
];
1194 if (ex_phy
->phy_state
== PHY_VACANT
||
1195 ex_phy
->phy_state
== PHY_NOT_PRESENT
||
1196 ex_phy
->phy_state
== PHY_DEVICE_DISCOVERED
)
1199 switch (ex_phy
->linkrate
) {
1200 case SAS_PHY_DISABLED
:
1201 case SAS_PHY_RESET_PROBLEM
:
1202 case SAS_SATA_PORT_SELECTOR
:
1205 res
= sas_ex_discover_dev(dev
, i
);
1213 sas_check_level_subtractive_boundary(dev
);
1218 static int sas_check_ex_subtractive_boundary(struct domain_device
*dev
)
1220 struct expander_device
*ex
= &dev
->ex_dev
;
1222 u8
*sub_sas_addr
= NULL
;
1224 if (dev
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
)
1227 for (i
= 0; i
< ex
->num_phys
; i
++) {
1228 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
1230 if (phy
->phy_state
== PHY_VACANT
||
1231 phy
->phy_state
== PHY_NOT_PRESENT
)
1234 if ((phy
->attached_dev_type
== SAS_FANOUT_EXPANDER_DEVICE
||
1235 phy
->attached_dev_type
== SAS_EDGE_EXPANDER_DEVICE
) &&
1236 phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1239 sub_sas_addr
= &phy
->attached_sas_addr
[0];
1240 else if (SAS_ADDR(sub_sas_addr
) !=
1241 SAS_ADDR(phy
->attached_sas_addr
)) {
1243 SAS_DPRINTK("ex %016llx phy 0x%x "
1244 "diverges(%016llx) on subtractive "
1245 "boundary(%016llx). Disabled\n",
1246 SAS_ADDR(dev
->sas_addr
), i
,
1247 SAS_ADDR(phy
->attached_sas_addr
),
1248 SAS_ADDR(sub_sas_addr
));
1249 sas_ex_disable_phy(dev
, i
);
1256 static void sas_print_parent_topology_bug(struct domain_device
*child
,
1257 struct ex_phy
*parent_phy
,
1258 struct ex_phy
*child_phy
)
1260 static const char *ex_type
[] = {
1261 [SAS_EDGE_EXPANDER_DEVICE
] = "edge",
1262 [SAS_FANOUT_EXPANDER_DEVICE
] = "fanout",
1264 struct domain_device
*parent
= child
->parent
;
1266 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1267 "phy 0x%x has %c:%c routing link!\n",
1269 ex_type
[parent
->dev_type
],
1270 SAS_ADDR(parent
->sas_addr
),
1273 ex_type
[child
->dev_type
],
1274 SAS_ADDR(child
->sas_addr
),
1277 sas_route_char(parent
, parent_phy
),
1278 sas_route_char(child
, child_phy
));
1281 static int sas_check_eeds(struct domain_device
*child
,
1282 struct ex_phy
*parent_phy
,
1283 struct ex_phy
*child_phy
)
1286 struct domain_device
*parent
= child
->parent
;
1288 if (SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
) != 0) {
1290 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1291 "phy S:0x%x, while there is a fanout ex %016llx\n",
1292 SAS_ADDR(parent
->sas_addr
),
1294 SAS_ADDR(child
->sas_addr
),
1296 SAS_ADDR(parent
->port
->disc
.fanout_sas_addr
));
1297 } else if (SAS_ADDR(parent
->port
->disc
.eeds_a
) == 0) {
1298 memcpy(parent
->port
->disc
.eeds_a
, parent
->sas_addr
,
1300 memcpy(parent
->port
->disc
.eeds_b
, child
->sas_addr
,
1302 } else if (((SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1303 SAS_ADDR(parent
->sas_addr
)) ||
1304 (SAS_ADDR(parent
->port
->disc
.eeds_a
) ==
1305 SAS_ADDR(child
->sas_addr
)))
1307 ((SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1308 SAS_ADDR(parent
->sas_addr
)) ||
1309 (SAS_ADDR(parent
->port
->disc
.eeds_b
) ==
1310 SAS_ADDR(child
->sas_addr
))))
1314 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1315 "phy 0x%x link forms a third EEDS!\n",
1316 SAS_ADDR(parent
->sas_addr
),
1318 SAS_ADDR(child
->sas_addr
),
1325 /* Here we spill over 80 columns. It is intentional.
1327 static int sas_check_parent_topology(struct domain_device
*child
)
1329 struct expander_device
*child_ex
= &child
->ex_dev
;
1330 struct expander_device
*parent_ex
;
1337 if (child
->parent
->dev_type
!= SAS_EDGE_EXPANDER_DEVICE
&&
1338 child
->parent
->dev_type
!= SAS_FANOUT_EXPANDER_DEVICE
)
1341 parent_ex
= &child
->parent
->ex_dev
;
1343 for (i
= 0; i
< parent_ex
->num_phys
; i
++) {
1344 struct ex_phy
*parent_phy
= &parent_ex
->ex_phy
[i
];
1345 struct ex_phy
*child_phy
;
1347 if (parent_phy
->phy_state
== PHY_VACANT
||
1348 parent_phy
->phy_state
== PHY_NOT_PRESENT
)
1351 if (SAS_ADDR(parent_phy
->attached_sas_addr
) != SAS_ADDR(child
->sas_addr
))
1354 child_phy
= &child_ex
->ex_phy
[parent_phy
->attached_phy_id
];
1356 switch (child
->parent
->dev_type
) {
1357 case SAS_EDGE_EXPANDER_DEVICE
:
1358 if (child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1359 if (parent_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
||
1360 child_phy
->routing_attr
!= TABLE_ROUTING
) {
1361 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1364 } else if (parent_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1365 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
) {
1366 res
= sas_check_eeds(child
, parent_phy
, child_phy
);
1367 } else if (child_phy
->routing_attr
!= TABLE_ROUTING
) {
1368 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1371 } else if (parent_phy
->routing_attr
== TABLE_ROUTING
) {
1372 if (child_phy
->routing_attr
== SUBTRACTIVE_ROUTING
||
1373 (child_phy
->routing_attr
== TABLE_ROUTING
&&
1374 child_ex
->t2t_supp
&& parent_ex
->t2t_supp
)) {
1377 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1382 case SAS_FANOUT_EXPANDER_DEVICE
:
1383 if (parent_phy
->routing_attr
!= TABLE_ROUTING
||
1384 child_phy
->routing_attr
!= SUBTRACTIVE_ROUTING
) {
1385 sas_print_parent_topology_bug(child
, parent_phy
, child_phy
);
1397 #define RRI_REQ_SIZE 16
1398 #define RRI_RESP_SIZE 44
1400 static int sas_configure_present(struct domain_device
*dev
, int phy_id
,
1401 u8
*sas_addr
, int *index
, int *present
)
1404 struct expander_device
*ex
= &dev
->ex_dev
;
1405 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
1412 rri_req
= alloc_smp_req(RRI_REQ_SIZE
);
1416 rri_resp
= alloc_smp_resp(RRI_RESP_SIZE
);
1422 rri_req
[1] = SMP_REPORT_ROUTE_INFO
;
1423 rri_req
[9] = phy_id
;
1425 for (i
= 0; i
< ex
->max_route_indexes
; i
++) {
1426 *(__be16
*)(rri_req
+6) = cpu_to_be16(i
);
1427 res
= smp_execute_task(dev
, rri_req
, RRI_REQ_SIZE
, rri_resp
,
1432 if (res
== SMP_RESP_NO_INDEX
) {
1433 SAS_DPRINTK("overflow of indexes: dev %016llx "
1434 "phy 0x%x index 0x%x\n",
1435 SAS_ADDR(dev
->sas_addr
), phy_id
, i
);
1437 } else if (res
!= SMP_RESP_FUNC_ACC
) {
1438 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1439 "result 0x%x\n", __func__
,
1440 SAS_ADDR(dev
->sas_addr
), phy_id
, i
, res
);
1443 if (SAS_ADDR(sas_addr
) != 0) {
1444 if (SAS_ADDR(rri_resp
+16) == SAS_ADDR(sas_addr
)) {
1446 if ((rri_resp
[12] & 0x80) == 0x80)
1451 } else if (SAS_ADDR(rri_resp
+16) == 0) {
1456 } else if (SAS_ADDR(rri_resp
+16) == 0 &&
1457 phy
->last_da_index
< i
) {
1458 phy
->last_da_index
= i
;
1471 #define CRI_REQ_SIZE 44
1472 #define CRI_RESP_SIZE 8
1474 static int sas_configure_set(struct domain_device
*dev
, int phy_id
,
1475 u8
*sas_addr
, int index
, int include
)
1481 cri_req
= alloc_smp_req(CRI_REQ_SIZE
);
1485 cri_resp
= alloc_smp_resp(CRI_RESP_SIZE
);
1491 cri_req
[1] = SMP_CONF_ROUTE_INFO
;
1492 *(__be16
*)(cri_req
+6) = cpu_to_be16(index
);
1493 cri_req
[9] = phy_id
;
1494 if (SAS_ADDR(sas_addr
) == 0 || !include
)
1495 cri_req
[12] |= 0x80;
1496 memcpy(cri_req
+16, sas_addr
, SAS_ADDR_SIZE
);
1498 res
= smp_execute_task(dev
, cri_req
, CRI_REQ_SIZE
, cri_resp
,
1503 if (res
== SMP_RESP_NO_INDEX
) {
1504 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1506 SAS_ADDR(dev
->sas_addr
), phy_id
, index
);
1514 static int sas_configure_phy(struct domain_device
*dev
, int phy_id
,
1515 u8
*sas_addr
, int include
)
1521 res
= sas_configure_present(dev
, phy_id
, sas_addr
, &index
, &present
);
1524 if (include
^ present
)
1525 return sas_configure_set(dev
, phy_id
, sas_addr
, index
,include
);
1531 * sas_configure_parent -- configure routing table of parent
1532 * parent: parent expander
1533 * child: child expander
1534 * sas_addr: SAS port identifier of device directly attached to child
1536 static int sas_configure_parent(struct domain_device
*parent
,
1537 struct domain_device
*child
,
1538 u8
*sas_addr
, int include
)
1540 struct expander_device
*ex_parent
= &parent
->ex_dev
;
1544 if (parent
->parent
) {
1545 res
= sas_configure_parent(parent
->parent
, parent
, sas_addr
,
1551 if (ex_parent
->conf_route_table
== 0) {
1552 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1553 SAS_ADDR(parent
->sas_addr
));
1557 for (i
= 0; i
< ex_parent
->num_phys
; i
++) {
1558 struct ex_phy
*phy
= &ex_parent
->ex_phy
[i
];
1560 if ((phy
->routing_attr
== TABLE_ROUTING
) &&
1561 (SAS_ADDR(phy
->attached_sas_addr
) ==
1562 SAS_ADDR(child
->sas_addr
))) {
1563 res
= sas_configure_phy(parent
, i
, sas_addr
, include
);
1573 * sas_configure_routing -- configure routing
1574 * dev: expander device
1575 * sas_addr: port identifier of device directly attached to the expander device
1577 static int sas_configure_routing(struct domain_device
*dev
, u8
*sas_addr
)
1580 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 1);
1584 static int sas_disable_routing(struct domain_device
*dev
, u8
*sas_addr
)
1587 return sas_configure_parent(dev
->parent
, dev
, sas_addr
, 0);
1592 * sas_discover_expander -- expander discovery
1593 * @ex: pointer to expander domain device
1595 * See comment in sas_discover_sata().
1597 static int sas_discover_expander(struct domain_device
*dev
)
1601 res
= sas_notify_lldd_dev_found(dev
);
1605 res
= sas_ex_general(dev
);
1608 res
= sas_ex_manuf_info(dev
);
1612 res
= sas_expander_discover(dev
);
1614 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1615 SAS_ADDR(dev
->sas_addr
), res
);
1619 sas_check_ex_subtractive_boundary(dev
);
1620 res
= sas_check_parent_topology(dev
);
1625 sas_notify_lldd_dev_gone(dev
);
1629 static int sas_ex_level_discovery(struct asd_sas_port
*port
, const int level
)
1632 struct domain_device
*dev
;
1634 list_for_each_entry(dev
, &port
->dev_list
, dev_list_node
) {
1635 if (dev
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1636 dev
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1637 struct sas_expander_device
*ex
=
1638 rphy_to_expander_device(dev
->rphy
);
1640 if (level
== ex
->level
)
1641 res
= sas_ex_discover_devices(dev
, -1);
1643 res
= sas_ex_discover_devices(port
->port_dev
, -1);
1651 static int sas_ex_bfs_disc(struct asd_sas_port
*port
)
1657 level
= port
->disc
.max_level
;
1658 res
= sas_ex_level_discovery(port
, level
);
1660 } while (level
< port
->disc
.max_level
);
1665 int sas_discover_root_expander(struct domain_device
*dev
)
1668 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1670 res
= sas_rphy_add(dev
->rphy
);
1674 ex
->level
= dev
->port
->disc
.max_level
; /* 0 */
1675 res
= sas_discover_expander(dev
);
1679 sas_ex_bfs_disc(dev
->port
);
1684 sas_rphy_remove(dev
->rphy
);
1689 /* ---------- Domain revalidation ---------- */
1691 static int sas_get_phy_discover(struct domain_device
*dev
,
1692 int phy_id
, struct smp_resp
*disc_resp
)
1697 disc_req
= alloc_smp_req(DISCOVER_REQ_SIZE
);
1701 disc_req
[1] = SMP_DISCOVER
;
1702 disc_req
[9] = phy_id
;
1704 res
= smp_execute_task(dev
, disc_req
, DISCOVER_REQ_SIZE
,
1705 disc_resp
, DISCOVER_RESP_SIZE
);
1708 else if (disc_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1709 res
= disc_resp
->result
;
1717 static int sas_get_phy_change_count(struct domain_device
*dev
,
1718 int phy_id
, int *pcc
)
1721 struct smp_resp
*disc_resp
;
1723 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1727 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1729 *pcc
= disc_resp
->disc
.change_count
;
1735 static int sas_get_phy_attached_dev(struct domain_device
*dev
, int phy_id
,
1736 u8
*sas_addr
, enum sas_device_type
*type
)
1739 struct smp_resp
*disc_resp
;
1740 struct discover_resp
*dr
;
1742 disc_resp
= alloc_smp_resp(DISCOVER_RESP_SIZE
);
1745 dr
= &disc_resp
->disc
;
1747 res
= sas_get_phy_discover(dev
, phy_id
, disc_resp
);
1749 memcpy(sas_addr
, disc_resp
->disc
.attached_sas_addr
, 8);
1750 *type
= to_dev_type(dr
);
1752 memset(sas_addr
, 0, 8);
1758 static int sas_find_bcast_phy(struct domain_device
*dev
, int *phy_id
,
1759 int from_phy
, bool update
)
1761 struct expander_device
*ex
= &dev
->ex_dev
;
1765 for (i
= from_phy
; i
< ex
->num_phys
; i
++) {
1766 int phy_change_count
= 0;
1768 res
= sas_get_phy_change_count(dev
, i
, &phy_change_count
);
1770 case SMP_RESP_PHY_VACANT
:
1771 case SMP_RESP_NO_PHY
:
1773 case SMP_RESP_FUNC_ACC
:
1779 if (phy_change_count
!= ex
->ex_phy
[i
].phy_change_count
) {
1781 ex
->ex_phy
[i
].phy_change_count
=
1790 static int sas_get_ex_change_count(struct domain_device
*dev
, int *ecc
)
1794 struct smp_resp
*rg_resp
;
1796 rg_req
= alloc_smp_req(RG_REQ_SIZE
);
1800 rg_resp
= alloc_smp_resp(RG_RESP_SIZE
);
1806 rg_req
[1] = SMP_REPORT_GENERAL
;
1808 res
= smp_execute_task(dev
, rg_req
, RG_REQ_SIZE
, rg_resp
,
1812 if (rg_resp
->result
!= SMP_RESP_FUNC_ACC
) {
1813 res
= rg_resp
->result
;
1817 *ecc
= be16_to_cpu(rg_resp
->rg
.change_count
);
1824 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1825 * @dev:domain device to be detect.
1826 * @src_dev: the device which originated BROADCAST(CHANGE).
1828 * Add self-configuration expander support. Suppose two expander cascading,
1829 * when the first level expander is self-configuring, hotplug the disks in
1830 * second level expander, BROADCAST(CHANGE) will not only be originated
1831 * in the second level expander, but also be originated in the first level
1832 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1833 * expander changed count in two level expanders will all increment at least
1834 * once, but the phy which chang count has changed is the source device which
1838 static int sas_find_bcast_dev(struct domain_device
*dev
,
1839 struct domain_device
**src_dev
)
1841 struct expander_device
*ex
= &dev
->ex_dev
;
1842 int ex_change_count
= -1;
1845 struct domain_device
*ch
;
1847 res
= sas_get_ex_change_count(dev
, &ex_change_count
);
1850 if (ex_change_count
!= -1 && ex_change_count
!= ex
->ex_change_count
) {
1851 /* Just detect if this expander phys phy change count changed,
1852 * in order to determine if this expander originate BROADCAST,
1853 * and do not update phy change count field in our structure.
1855 res
= sas_find_bcast_phy(dev
, &phy_id
, 0, false);
1858 ex
->ex_change_count
= ex_change_count
;
1859 SAS_DPRINTK("Expander phy change count has changed\n");
1862 SAS_DPRINTK("Expander phys DID NOT change\n");
1864 list_for_each_entry(ch
, &ex
->children
, siblings
) {
1865 if (ch
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
|| ch
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1866 res
= sas_find_bcast_dev(ch
, src_dev
);
1875 static void sas_unregister_ex_tree(struct asd_sas_port
*port
, struct domain_device
*dev
)
1877 struct expander_device
*ex
= &dev
->ex_dev
;
1878 struct domain_device
*child
, *n
;
1880 list_for_each_entry_safe(child
, n
, &ex
->children
, siblings
) {
1881 set_bit(SAS_DEV_GONE
, &child
->state
);
1882 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1883 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1884 sas_unregister_ex_tree(port
, child
);
1886 sas_unregister_dev(port
, child
);
1888 sas_unregister_dev(port
, dev
);
1891 static void sas_unregister_devs_sas_addr(struct domain_device
*parent
,
1892 int phy_id
, bool last
)
1894 struct expander_device
*ex_dev
= &parent
->ex_dev
;
1895 struct ex_phy
*phy
= &ex_dev
->ex_phy
[phy_id
];
1896 struct domain_device
*child
, *n
, *found
= NULL
;
1898 list_for_each_entry_safe(child
, n
,
1899 &ex_dev
->children
, siblings
) {
1900 if (SAS_ADDR(child
->sas_addr
) ==
1901 SAS_ADDR(phy
->attached_sas_addr
)) {
1902 set_bit(SAS_DEV_GONE
, &child
->state
);
1903 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1904 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1905 sas_unregister_ex_tree(parent
->port
, child
);
1907 sas_unregister_dev(parent
->port
, child
);
1912 sas_disable_routing(parent
, phy
->attached_sas_addr
);
1914 memset(phy
->attached_sas_addr
, 0, SAS_ADDR_SIZE
);
1916 sas_port_delete_phy(phy
->port
, phy
->phy
);
1917 sas_device_set_phy(found
, phy
->port
);
1918 if (phy
->port
->num_phys
== 0)
1919 list_add_tail(&phy
->port
->del_list
,
1920 &parent
->port
->sas_port_del_list
);
1925 static int sas_discover_bfs_by_root_level(struct domain_device
*root
,
1928 struct expander_device
*ex_root
= &root
->ex_dev
;
1929 struct domain_device
*child
;
1932 list_for_each_entry(child
, &ex_root
->children
, siblings
) {
1933 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1934 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
) {
1935 struct sas_expander_device
*ex
=
1936 rphy_to_expander_device(child
->rphy
);
1938 if (level
> ex
->level
)
1939 res
= sas_discover_bfs_by_root_level(child
,
1941 else if (level
== ex
->level
)
1942 res
= sas_ex_discover_devices(child
, -1);
1948 static int sas_discover_bfs_by_root(struct domain_device
*dev
)
1951 struct sas_expander_device
*ex
= rphy_to_expander_device(dev
->rphy
);
1952 int level
= ex
->level
+1;
1954 res
= sas_ex_discover_devices(dev
, -1);
1958 res
= sas_discover_bfs_by_root_level(dev
, level
);
1961 } while (level
<= dev
->port
->disc
.max_level
);
1966 static int sas_discover_new(struct domain_device
*dev
, int phy_id
)
1968 struct ex_phy
*ex_phy
= &dev
->ex_dev
.ex_phy
[phy_id
];
1969 struct domain_device
*child
;
1972 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1973 SAS_ADDR(dev
->sas_addr
), phy_id
);
1974 res
= sas_ex_phy_discover(dev
, phy_id
);
1978 if (sas_ex_join_wide_port(dev
, phy_id
))
1981 res
= sas_ex_discover_devices(dev
, phy_id
);
1984 list_for_each_entry(child
, &dev
->ex_dev
.children
, siblings
) {
1985 if (SAS_ADDR(child
->sas_addr
) ==
1986 SAS_ADDR(ex_phy
->attached_sas_addr
)) {
1987 if (child
->dev_type
== SAS_EDGE_EXPANDER_DEVICE
||
1988 child
->dev_type
== SAS_FANOUT_EXPANDER_DEVICE
)
1989 res
= sas_discover_bfs_by_root(child
);
1996 static bool dev_type_flutter(enum sas_device_type
new, enum sas_device_type old
)
2001 /* treat device directed resets as flutter, if we went
2002 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2004 if ((old
== SAS_SATA_PENDING
&& new == SAS_END_DEVICE
) ||
2005 (old
== SAS_END_DEVICE
&& new == SAS_SATA_PENDING
))
2011 static int sas_rediscover_dev(struct domain_device
*dev
, int phy_id
, bool last
)
2013 struct expander_device
*ex
= &dev
->ex_dev
;
2014 struct ex_phy
*phy
= &ex
->ex_phy
[phy_id
];
2015 enum sas_device_type type
= SAS_PHY_UNUSED
;
2019 memset(sas_addr
, 0, 8);
2020 res
= sas_get_phy_attached_dev(dev
, phy_id
, sas_addr
, &type
);
2022 case SMP_RESP_NO_PHY
:
2023 phy
->phy_state
= PHY_NOT_PRESENT
;
2024 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2026 case SMP_RESP_PHY_VACANT
:
2027 phy
->phy_state
= PHY_VACANT
;
2028 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2030 case SMP_RESP_FUNC_ACC
:
2038 if ((SAS_ADDR(sas_addr
) == 0) || (res
== -ECOMM
)) {
2039 phy
->phy_state
= PHY_EMPTY
;
2040 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2042 } else if (SAS_ADDR(sas_addr
) == SAS_ADDR(phy
->attached_sas_addr
) &&
2043 dev_type_flutter(type
, phy
->attached_dev_type
)) {
2044 struct domain_device
*ata_dev
= sas_ex_to_ata(dev
, phy_id
);
2047 sas_ex_phy_discover(dev
, phy_id
);
2049 if (ata_dev
&& phy
->attached_dev_type
== SAS_SATA_PENDING
)
2050 action
= ", needs recovery";
2051 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2052 SAS_ADDR(dev
->sas_addr
), phy_id
, action
);
2056 /* delete the old link */
2057 if (SAS_ADDR(phy
->attached_sas_addr
) &&
2058 SAS_ADDR(sas_addr
) != SAS_ADDR(phy
->attached_sas_addr
)) {
2059 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2060 SAS_ADDR(dev
->sas_addr
), phy_id
,
2061 SAS_ADDR(phy
->attached_sas_addr
));
2062 sas_unregister_devs_sas_addr(dev
, phy_id
, last
);
2065 return sas_discover_new(dev
, phy_id
);
2069 * sas_rediscover - revalidate the domain.
2070 * @dev:domain device to be detect.
2071 * @phy_id: the phy id will be detected.
2073 * NOTE: this process _must_ quit (return) as soon as any connection
2074 * errors are encountered. Connection recovery is done elsewhere.
2075 * Discover process only interrogates devices in order to discover the
2076 * domain.For plugging out, we un-register the device only when it is
2077 * the last phy in the port, for other phys in this port, we just delete it
2078 * from the port.For inserting, we do discovery when it is the
2079 * first phy,for other phys in this port, we add it to the port to
2080 * forming the wide-port.
2082 static int sas_rediscover(struct domain_device
*dev
, const int phy_id
)
2084 struct expander_device
*ex
= &dev
->ex_dev
;
2085 struct ex_phy
*changed_phy
= &ex
->ex_phy
[phy_id
];
2088 bool last
= true; /* is this the last phy of the port */
2090 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2091 SAS_ADDR(dev
->sas_addr
), phy_id
);
2093 if (SAS_ADDR(changed_phy
->attached_sas_addr
) != 0) {
2094 for (i
= 0; i
< ex
->num_phys
; i
++) {
2095 struct ex_phy
*phy
= &ex
->ex_phy
[i
];
2099 if (SAS_ADDR(phy
->attached_sas_addr
) ==
2100 SAS_ADDR(changed_phy
->attached_sas_addr
)) {
2101 SAS_DPRINTK("phy%d part of wide port with "
2102 "phy%d\n", phy_id
, i
);
2107 res
= sas_rediscover_dev(dev
, phy_id
, last
);
2109 res
= sas_discover_new(dev
, phy_id
);
2114 * sas_revalidate_domain -- revalidate the domain
2115 * @port: port to the domain of interest
2117 * NOTE: this process _must_ quit (return) as soon as any connection
2118 * errors are encountered. Connection recovery is done elsewhere.
2119 * Discover process only interrogates devices in order to discover the
2122 int sas_ex_revalidate_domain(struct domain_device
*port_dev
)
2125 struct domain_device
*dev
= NULL
;
2127 res
= sas_find_bcast_dev(port_dev
, &dev
);
2128 if (res
== 0 && dev
) {
2129 struct expander_device
*ex
= &dev
->ex_dev
;
2134 res
= sas_find_bcast_phy(dev
, &phy_id
, i
, true);
2137 res
= sas_rediscover(dev
, phy_id
);
2139 } while (i
< ex
->num_phys
);
2144 void sas_smp_handler(struct bsg_job
*job
, struct Scsi_Host
*shost
,
2145 struct sas_rphy
*rphy
)
2147 struct domain_device
*dev
;
2148 unsigned int rcvlen
= 0;
2151 /* no rphy means no smp target support (ie aic94xx host) */
2153 return sas_smp_host_handler(job
, shost
);
2155 switch (rphy
->identify
.device_type
) {
2156 case SAS_EDGE_EXPANDER_DEVICE
:
2157 case SAS_FANOUT_EXPANDER_DEVICE
:
2160 printk("%s: can we send a smp request to a device?\n",
2165 dev
= sas_find_dev_by_rphy(rphy
);
2167 printk("%s: fail to find a domain_device?\n", __func__
);
2171 /* do we need to support multiple segments? */
2172 if (job
->request_payload
.sg_cnt
> 1 ||
2173 job
->reply_payload
.sg_cnt
> 1) {
2174 printk("%s: multiple segments req %u, rsp %u\n",
2175 __func__
, job
->request_payload
.payload_len
,
2176 job
->reply_payload
.payload_len
);
2180 ret
= smp_execute_task_sg(dev
, job
->request_payload
.sg_list
,
2181 job
->reply_payload
.sg_list
);
2183 /* bsg_job_done() requires the length received */
2184 rcvlen
= job
->reply_payload
.payload_len
- ret
;
2189 bsg_job_done(job
, ret
, rcvlen
);