2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2014 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <linux/uaccess.h>
15 * NVRAM support routines
19 * qla2x00_lock_nvram_access() -
23 qla2x00_lock_nvram_access(struct qla_hw_data
*ha
)
26 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
28 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
29 data
= RD_REG_WORD(®
->nvram
);
30 while (data
& NVR_BUSY
) {
32 data
= RD_REG_WORD(®
->nvram
);
36 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
37 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
39 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
40 while ((data
& BIT_0
) == 0) {
43 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
44 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
46 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
52 * qla2x00_unlock_nvram_access() -
56 qla2x00_unlock_nvram_access(struct qla_hw_data
*ha
)
58 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
60 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
61 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0);
62 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
69 * @data: Serial interface selector
72 qla2x00_nv_write(struct qla_hw_data
*ha
, uint16_t data
)
74 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
76 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
77 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
79 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_CLOCK
|
81 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
83 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
84 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
104 qla2x00_nvram_request(struct qla_hw_data
*ha
, uint32_t nv_cmd
)
107 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
111 /* Send command to NVRAM. */
113 for (cnt
= 0; cnt
< 11; cnt
++) {
115 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
117 qla2x00_nv_write(ha
, 0);
121 /* Read data from NVRAM. */
122 for (cnt
= 0; cnt
< 16; cnt
++) {
123 WRT_REG_WORD(®
->nvram
, NVR_SELECT
| NVR_CLOCK
);
124 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
127 reg_data
= RD_REG_WORD(®
->nvram
);
128 if (reg_data
& NVR_DATA_IN
)
130 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
131 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
136 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
137 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
153 qla2x00_get_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
)
159 nv_cmd
|= NV_READ_OP
;
160 data
= qla2x00_nvram_request(ha
, nv_cmd
);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
170 qla2x00_nv_deselect(struct qla_hw_data
*ha
)
172 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
174 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
175 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
180 * qla2x00_write_nvram_word() - Write NVRAM data.
182 * @addr: Address in NVRAM to write
183 * @data: word to program
186 qla2x00_write_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
, uint16_t data
)
190 uint32_t nv_cmd
, wait_cnt
;
191 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
192 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
194 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
195 qla2x00_nv_write(ha
, 0);
196 qla2x00_nv_write(ha
, 0);
198 for (word
= 0; word
< 8; word
++)
199 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
201 qla2x00_nv_deselect(ha
);
204 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
207 for (count
= 0; count
< 27; count
++) {
209 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
211 qla2x00_nv_write(ha
, 0);
216 qla2x00_nv_deselect(ha
);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
220 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
221 wait_cnt
= NVR_WAIT_CNT
;
224 ql_dbg(ql_dbg_user
, vha
, 0x708d,
225 "NVRAM didn't go ready...\n");
229 word
= RD_REG_WORD(®
->nvram
);
230 } while ((word
& NVR_DATA_IN
) == 0);
232 qla2x00_nv_deselect(ha
);
235 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
236 for (count
= 0; count
< 10; count
++)
237 qla2x00_nv_write(ha
, 0);
239 qla2x00_nv_deselect(ha
);
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data
*ha
, uint32_t addr
,
244 uint16_t data
, uint32_t tmo
)
249 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
253 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
254 qla2x00_nv_write(ha
, 0);
255 qla2x00_nv_write(ha
, 0);
257 for (word
= 0; word
< 8; word
++)
258 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
260 qla2x00_nv_deselect(ha
);
263 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
266 for (count
= 0; count
< 27; count
++) {
268 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
270 qla2x00_nv_write(ha
, 0);
275 qla2x00_nv_deselect(ha
);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
279 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
282 word
= RD_REG_WORD(®
->nvram
);
284 ret
= QLA_FUNCTION_FAILED
;
287 } while ((word
& NVR_DATA_IN
) == 0);
289 qla2x00_nv_deselect(ha
);
292 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
293 for (count
= 0; count
< 10; count
++)
294 qla2x00_nv_write(ha
, 0);
296 qla2x00_nv_deselect(ha
);
302 * qla2x00_clear_nvram_protection() -
306 qla2x00_clear_nvram_protection(struct qla_hw_data
*ha
)
309 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
310 uint32_t word
, wait_cnt
;
311 uint16_t wprot
, wprot_old
;
312 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
314 /* Clear NVRAM write protection. */
315 ret
= QLA_FUNCTION_FAILED
;
317 wprot_old
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
318 stat
= qla2x00_write_nvram_word_tmo(ha
, ha
->nvram_base
,
319 cpu_to_le16(0x1234), 100000);
320 wprot
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
321 if (stat
!= QLA_SUCCESS
|| wprot
!= 0x1234) {
323 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
324 qla2x00_nv_write(ha
, 0);
325 qla2x00_nv_write(ha
, 0);
326 for (word
= 0; word
< 8; word
++)
327 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
329 qla2x00_nv_deselect(ha
);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
333 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
334 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
335 for (word
= 0; word
< 8; word
++)
336 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
338 qla2x00_nv_deselect(ha
);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
342 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
343 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
344 for (word
= 0; word
< 8; word
++)
345 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
347 qla2x00_nv_deselect(ha
);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
351 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
352 wait_cnt
= NVR_WAIT_CNT
;
355 ql_dbg(ql_dbg_user
, vha
, 0x708e,
356 "NVRAM didn't go ready...\n");
360 word
= RD_REG_WORD(®
->nvram
);
361 } while ((word
& NVR_DATA_IN
) == 0);
366 qla2x00_write_nvram_word(ha
, ha
->nvram_base
, wprot_old
);
372 qla2x00_set_nvram_protection(struct qla_hw_data
*ha
, int stat
)
374 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
375 uint32_t word
, wait_cnt
;
376 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
378 if (stat
!= QLA_SUCCESS
)
381 /* Set NVRAM write protection. */
383 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
384 qla2x00_nv_write(ha
, 0);
385 qla2x00_nv_write(ha
, 0);
386 for (word
= 0; word
< 8; word
++)
387 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
389 qla2x00_nv_deselect(ha
);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
393 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
394 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
395 for (word
= 0; word
< 8; word
++)
396 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
398 qla2x00_nv_deselect(ha
);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
402 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
403 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
404 for (word
= 0; word
< 8; word
++)
405 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
407 qla2x00_nv_deselect(ha
);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
411 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
412 wait_cnt
= NVR_WAIT_CNT
;
415 ql_dbg(ql_dbg_user
, vha
, 0x708f,
416 "NVRAM didn't go ready...\n");
420 word
= RD_REG_WORD(®
->nvram
);
421 } while ((word
& NVR_DATA_IN
) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
432 return ha
->flash_conf_off
| faddr
;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
438 return ha
->flash_data_off
| faddr
;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
444 return ha
->nvram_conf_off
| naddr
;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
450 return ha
->nvram_data_off
| naddr
;
454 qla24xx_read_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
)
458 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
460 WRT_REG_DWORD(®
->flash_addr
, addr
& ~FARX_DATA_FLAG
);
461 /* Wait for READ cycle to complete. */
464 (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) == 0 &&
465 rval
== QLA_SUCCESS
; cnt
--) {
469 rval
= QLA_FUNCTION_TIMEOUT
;
473 /* TODO: What happens if we time out? */
475 if (rval
== QLA_SUCCESS
)
476 data
= RD_REG_DWORD(®
->flash_data
);
482 qla24xx_read_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
486 struct qla_hw_data
*ha
= vha
->hw
;
488 /* Dword reads to flash. */
489 for (i
= 0; i
< dwords
; i
++, faddr
++)
490 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
491 flash_data_addr(ha
, faddr
)));
497 qla24xx_write_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
, uint32_t data
)
501 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
503 WRT_REG_DWORD(®
->flash_data
, data
);
504 RD_REG_DWORD(®
->flash_data
); /* PCI Posting. */
505 WRT_REG_DWORD(®
->flash_addr
, addr
| FARX_DATA_FLAG
);
506 /* Wait for Write cycle to complete. */
508 for (cnt
= 500000; (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) &&
509 rval
== QLA_SUCCESS
; cnt
--) {
513 rval
= QLA_FUNCTION_TIMEOUT
;
520 qla24xx_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
525 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x03ab));
527 *flash_id
= MSB(ids
);
529 /* Check if man_id and flash_id are valid. */
530 if (ids
!= 0xDEADDEAD && (*man_id
== 0 || *flash_id
== 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x009f));
539 *flash_id
= MSB(ids
);
544 qla2xxx_find_flt_start(scsi_qla_host_t
*vha
, uint32_t *start
)
546 const char *loc
, *locations
[] = { "DEF", "PCI" };
547 uint32_t pcihdr
, pcids
;
549 uint8_t *buf
, *bcode
, last_image
;
550 uint16_t cnt
, chksum
, *wptr
;
551 struct qla_flt_location
*fltl
;
552 struct qla_hw_data
*ha
= vha
->hw
;
553 struct req_que
*req
= ha
->req_q_map
[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
562 if (IS_QLA24XX_TYPE(ha
))
563 *start
= FA_FLASH_LAYOUT_ADDR_24
;
564 else if (IS_QLA25XX(ha
))
565 *start
= FA_FLASH_LAYOUT_ADDR
;
566 else if (IS_QLA81XX(ha
))
567 *start
= FA_FLASH_LAYOUT_ADDR_81
;
568 else if (IS_P3P_TYPE(ha
)) {
569 *start
= FA_FLASH_LAYOUT_ADDR_82
;
571 } else if (IS_QLA83XX(ha
) || IS_QLA27XX(ha
)) {
572 *start
= FA_FLASH_LAYOUT_ADDR_83
;
575 /* Begin with first PCI expansion ROM header. */
576 buf
= (uint8_t *)req
->ring
;
577 dcode
= (uint32_t *)req
->ring
;
581 /* Verify PCI expansion ROM header. */
582 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
583 bcode
= buf
+ (pcihdr
% 4);
584 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa)
587 /* Locate PCI data structure. */
588 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
589 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
590 bcode
= buf
+ (pcihdr
% 4);
592 /* Validate signature of PCI data structure. */
593 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
594 bcode
[0x2] != 'I' || bcode
[0x3] != 'R')
597 last_image
= bcode
[0x15] & BIT_7
;
599 /* Locate next PCI expansion ROM. */
600 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
601 } while (!last_image
);
603 /* Now verify FLT-location structure. */
604 fltl
= (struct qla_flt_location
*)req
->ring
;
605 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2,
606 sizeof(struct qla_flt_location
) >> 2);
607 if (fltl
->sig
[0] != 'Q' || fltl
->sig
[1] != 'F' ||
608 fltl
->sig
[2] != 'L' || fltl
->sig
[3] != 'T')
611 wptr
= (uint16_t *)req
->ring
;
612 cnt
= sizeof(struct qla_flt_location
) >> 1;
613 for (chksum
= 0; cnt
--; wptr
++)
614 chksum
+= le16_to_cpu(*wptr
);
616 ql_log(ql_log_fatal
, vha
, 0x0045,
617 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum
);
618 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010e,
619 buf
, sizeof(struct qla_flt_location
));
620 return QLA_FUNCTION_FAILED
;
623 /* Good data. Use specified location. */
625 *start
= (le16_to_cpu(fltl
->start_hi
) << 16 |
626 le16_to_cpu(fltl
->start_lo
)) >> 2;
628 ql_dbg(ql_dbg_init
, vha
, 0x0046,
629 "FLTL[%s] = 0x%x.\n",
635 qla2xxx_get_flt_info(scsi_qla_host_t
*vha
, uint32_t flt_addr
)
637 const char *loc
, *locations
[] = { "DEF", "FLT" };
638 const uint32_t def_fw
[] =
639 { FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR_81
};
640 const uint32_t def_boot
[] =
641 { FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR_81
};
642 const uint32_t def_vpd_nvram
[] =
643 { FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR_81
};
644 const uint32_t def_vpd0
[] =
645 { 0, 0, FA_VPD0_ADDR_81
};
646 const uint32_t def_vpd1
[] =
647 { 0, 0, FA_VPD1_ADDR_81
};
648 const uint32_t def_nvram0
[] =
649 { 0, 0, FA_NVRAM0_ADDR_81
};
650 const uint32_t def_nvram1
[] =
651 { 0, 0, FA_NVRAM1_ADDR_81
};
652 const uint32_t def_fdt
[] =
653 { FA_FLASH_DESCR_ADDR_24
, FA_FLASH_DESCR_ADDR
,
654 FA_FLASH_DESCR_ADDR_81
};
655 const uint32_t def_npiv_conf0
[] =
656 { FA_NPIV_CONF0_ADDR_24
, FA_NPIV_CONF0_ADDR
,
657 FA_NPIV_CONF0_ADDR_81
};
658 const uint32_t def_npiv_conf1
[] =
659 { FA_NPIV_CONF1_ADDR_24
, FA_NPIV_CONF1_ADDR
,
660 FA_NPIV_CONF1_ADDR_81
};
661 const uint32_t fcp_prio_cfg0
[] =
662 { FA_FCP_PRIO0_ADDR
, FA_FCP_PRIO0_ADDR_25
,
664 const uint32_t fcp_prio_cfg1
[] =
665 { FA_FCP_PRIO1_ADDR
, FA_FCP_PRIO1_ADDR_25
,
669 uint16_t cnt
, chksum
;
671 struct qla_flt_header
*flt
;
672 struct qla_flt_region
*region
;
673 struct qla_hw_data
*ha
= vha
->hw
;
674 struct req_que
*req
= ha
->req_q_map
[0];
679 else if (IS_QLA81XX(ha
))
682 /* Assign FCP prio region since older adapters may not have FLT, or
683 FCP prio region in it's FLT.
685 ha
->flt_region_fcp_prio
= (ha
->port_no
== 0) ?
686 fcp_prio_cfg0
[def
] : fcp_prio_cfg1
[def
];
688 ha
->flt_region_flt
= flt_addr
;
689 wptr
= (uint16_t *)req
->ring
;
690 flt
= (struct qla_flt_header
*)req
->ring
;
691 region
= (struct qla_flt_region
*)&flt
[1];
692 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
693 flt_addr
<< 2, OPTROM_BURST_SIZE
);
694 if (*wptr
== cpu_to_le16(0xffff))
696 if (flt
->version
!= cpu_to_le16(1)) {
697 ql_log(ql_log_warn
, vha
, 0x0047,
698 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
700 le16_to_cpu(flt
->checksum
));
704 cnt
= (sizeof(struct qla_flt_header
) + le16_to_cpu(flt
->length
)) >> 1;
705 for (chksum
= 0; cnt
--; wptr
++)
706 chksum
+= le16_to_cpu(*wptr
);
708 ql_log(ql_log_fatal
, vha
, 0x0048,
709 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
711 le16_to_cpu(flt
->checksum
));
716 cnt
= le16_to_cpu(flt
->length
) / sizeof(struct qla_flt_region
);
717 for ( ; cnt
; cnt
--, region
++) {
718 /* Store addresses as DWORD offsets. */
719 start
= le32_to_cpu(region
->start
) >> 2;
720 ql_dbg(ql_dbg_init
, vha
, 0x0049,
721 "FLT[%02x]: start=0x%x "
722 "end=0x%x size=0x%x.\n", le32_to_cpu(region
->code
) & 0xff,
723 start
, le32_to_cpu(region
->end
) >> 2,
724 le32_to_cpu(region
->size
));
726 switch (le32_to_cpu(region
->code
) & 0xff) {
727 case FLT_REG_FCOE_FW
:
730 ha
->flt_region_fw
= start
;
735 ha
->flt_region_fw
= start
;
737 case FLT_REG_BOOT_CODE
:
738 ha
->flt_region_boot
= start
;
743 ha
->flt_region_vpd_nvram
= start
;
746 if (ha
->port_no
== 0)
747 ha
->flt_region_vpd
= start
;
750 if (IS_P3P_TYPE(ha
) || IS_QLA8031(ha
))
752 if (ha
->port_no
== 1)
753 ha
->flt_region_vpd
= start
;
758 if (ha
->port_no
== 2)
759 ha
->flt_region_vpd
= start
;
764 if (ha
->port_no
== 3)
765 ha
->flt_region_vpd
= start
;
767 case FLT_REG_NVRAM_0
:
770 if (ha
->port_no
== 0)
771 ha
->flt_region_nvram
= start
;
773 case FLT_REG_NVRAM_1
:
776 if (ha
->port_no
== 1)
777 ha
->flt_region_nvram
= start
;
779 case FLT_REG_NVRAM_2
:
782 if (ha
->port_no
== 2)
783 ha
->flt_region_nvram
= start
;
785 case FLT_REG_NVRAM_3
:
788 if (ha
->port_no
== 3)
789 ha
->flt_region_nvram
= start
;
792 ha
->flt_region_fdt
= start
;
794 case FLT_REG_NPIV_CONF_0
:
795 if (ha
->port_no
== 0)
796 ha
->flt_region_npiv_conf
= start
;
798 case FLT_REG_NPIV_CONF_1
:
799 if (ha
->port_no
== 1)
800 ha
->flt_region_npiv_conf
= start
;
802 case FLT_REG_GOLD_FW
:
803 ha
->flt_region_gold_fw
= start
;
805 case FLT_REG_FCP_PRIO_0
:
806 if (ha
->port_no
== 0)
807 ha
->flt_region_fcp_prio
= start
;
809 case FLT_REG_FCP_PRIO_1
:
810 if (ha
->port_no
== 1)
811 ha
->flt_region_fcp_prio
= start
;
813 case FLT_REG_BOOT_CODE_82XX
:
814 ha
->flt_region_boot
= start
;
816 case FLT_REG_BOOT_CODE_8044
:
818 ha
->flt_region_boot
= start
;
820 case FLT_REG_FW_82XX
:
821 ha
->flt_region_fw
= start
;
824 if (IS_CNA_CAPABLE(ha
))
825 ha
->flt_region_fw
= start
;
827 case FLT_REG_GOLD_FW_82XX
:
828 ha
->flt_region_gold_fw
= start
;
830 case FLT_REG_BOOTLOAD_82XX
:
831 ha
->flt_region_bootload
= start
;
833 case FLT_REG_VPD_8XXX
:
834 if (IS_CNA_CAPABLE(ha
))
835 ha
->flt_region_vpd
= start
;
837 case FLT_REG_FCOE_NVRAM_0
:
838 if (!(IS_QLA8031(ha
) || IS_QLA8044(ha
)))
840 if (ha
->port_no
== 0)
841 ha
->flt_region_nvram
= start
;
843 case FLT_REG_FCOE_NVRAM_1
:
844 if (!(IS_QLA8031(ha
) || IS_QLA8044(ha
)))
846 if (ha
->port_no
== 1)
847 ha
->flt_region_nvram
= start
;
849 case FLT_REG_IMG_PRI_27XX
:
851 ha
->flt_region_img_status_pri
= start
;
853 case FLT_REG_IMG_SEC_27XX
:
855 ha
->flt_region_img_status_sec
= start
;
857 case FLT_REG_FW_SEC_27XX
:
859 ha
->flt_region_fw_sec
= start
;
861 case FLT_REG_BOOTLOAD_SEC_27XX
:
863 ha
->flt_region_boot_sec
= start
;
865 case FLT_REG_VPD_SEC_27XX_0
:
867 ha
->flt_region_vpd_sec
= start
;
869 case FLT_REG_VPD_SEC_27XX_1
:
871 ha
->flt_region_vpd_sec
= start
;
873 case FLT_REG_VPD_SEC_27XX_2
:
875 ha
->flt_region_vpd_sec
= start
;
877 case FLT_REG_VPD_SEC_27XX_3
:
879 ha
->flt_region_vpd_sec
= start
;
886 /* Use hardcoded defaults. */
888 ha
->flt_region_fw
= def_fw
[def
];
889 ha
->flt_region_boot
= def_boot
[def
];
890 ha
->flt_region_vpd_nvram
= def_vpd_nvram
[def
];
891 ha
->flt_region_vpd
= (ha
->port_no
== 0) ?
892 def_vpd0
[def
] : def_vpd1
[def
];
893 ha
->flt_region_nvram
= (ha
->port_no
== 0) ?
894 def_nvram0
[def
] : def_nvram1
[def
];
895 ha
->flt_region_fdt
= def_fdt
[def
];
896 ha
->flt_region_npiv_conf
= (ha
->port_no
== 0) ?
897 def_npiv_conf0
[def
] : def_npiv_conf1
[def
];
899 ql_dbg(ql_dbg_init
, vha
, 0x004a,
900 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
901 "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
902 loc
, ha
->flt_region_boot
, ha
->flt_region_fw
,
903 ha
->flt_region_vpd_nvram
, ha
->flt_region_vpd
, ha
->flt_region_nvram
,
904 ha
->flt_region_fdt
, ha
->flt_region_flt
, ha
->flt_region_npiv_conf
,
905 ha
->flt_region_fcp_prio
);
909 qla2xxx_get_fdt_info(scsi_qla_host_t
*vha
)
911 #define FLASH_BLK_SIZE_4K 0x1000
912 #define FLASH_BLK_SIZE_32K 0x8000
913 #define FLASH_BLK_SIZE_64K 0x10000
914 const char *loc
, *locations
[] = { "MID", "FDT" };
915 uint16_t cnt
, chksum
;
917 struct qla_fdt_layout
*fdt
;
918 uint8_t man_id
, flash_id
;
919 uint16_t mid
= 0, fid
= 0;
920 struct qla_hw_data
*ha
= vha
->hw
;
921 struct req_que
*req
= ha
->req_q_map
[0];
923 wptr
= (uint16_t *)req
->ring
;
924 fdt
= (struct qla_fdt_layout
*)req
->ring
;
925 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
926 ha
->flt_region_fdt
<< 2, OPTROM_BURST_SIZE
);
927 if (*wptr
== cpu_to_le16(0xffff))
929 if (fdt
->sig
[0] != 'Q' || fdt
->sig
[1] != 'L' || fdt
->sig
[2] != 'I' ||
933 for (cnt
= 0, chksum
= 0; cnt
< sizeof(*fdt
) >> 1; cnt
++, wptr
++)
934 chksum
+= le16_to_cpu(*wptr
);
936 ql_dbg(ql_dbg_init
, vha
, 0x004c,
937 "Inconsistent FDT detected:"
938 " checksum=0x%x id=%c version0x%x.\n", chksum
,
939 fdt
->sig
[0], le16_to_cpu(fdt
->version
));
940 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x0113,
941 (uint8_t *)fdt
, sizeof(*fdt
));
946 mid
= le16_to_cpu(fdt
->man_id
);
947 fid
= le16_to_cpu(fdt
->id
);
948 ha
->fdt_wrt_disable
= fdt
->wrt_disable_bits
;
949 ha
->fdt_wrt_enable
= fdt
->wrt_enable_bits
;
950 ha
->fdt_wrt_sts_reg_cmd
= fdt
->wrt_sts_reg_cmd
;
952 ha
->fdt_erase_cmd
= fdt
->erase_cmd
;
955 flash_conf_addr(ha
, 0x0300 | fdt
->erase_cmd
);
956 ha
->fdt_block_size
= le32_to_cpu(fdt
->block_size
);
957 if (fdt
->unprotect_sec_cmd
) {
958 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0300 |
959 fdt
->unprotect_sec_cmd
);
960 ha
->fdt_protect_sec_cmd
= fdt
->protect_sec_cmd
?
961 flash_conf_addr(ha
, 0x0300 | fdt
->protect_sec_cmd
):
962 flash_conf_addr(ha
, 0x0336);
967 if (IS_P3P_TYPE(ha
)) {
968 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
971 qla24xx_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
974 ha
->fdt_wrt_disable
= 0x9c;
975 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x03d8);
977 case 0xbf: /* STT flash. */
978 if (flash_id
== 0x8e)
979 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
981 ha
->fdt_block_size
= FLASH_BLK_SIZE_32K
;
983 if (flash_id
== 0x80)
984 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0352);
986 case 0x13: /* ST M25P80. */
987 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
989 case 0x1f: /* Atmel 26DF081A. */
990 ha
->fdt_block_size
= FLASH_BLK_SIZE_4K
;
991 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0320);
992 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0339);
993 ha
->fdt_protect_sec_cmd
= flash_conf_addr(ha
, 0x0336);
996 /* Default to 64 kb sector size. */
997 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
1001 ql_dbg(ql_dbg_init
, vha
, 0x004d,
1002 "FDT[%s]: (0x%x/0x%x) erase=0x%x "
1003 "pr=%x wrtd=0x%x blk=0x%x.\n",
1005 ha
->fdt_erase_cmd
, ha
->fdt_protect_sec_cmd
,
1006 ha
->fdt_wrt_disable
, ha
->fdt_block_size
);
1011 qla2xxx_get_idc_param(scsi_qla_host_t
*vha
)
1013 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
1015 struct qla_hw_data
*ha
= vha
->hw
;
1016 struct req_que
*req
= ha
->req_q_map
[0];
1018 if (!(IS_P3P_TYPE(ha
)))
1021 wptr
= (uint32_t *)req
->ring
;
1022 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
1023 QLA82XX_IDC_PARAM_ADDR
, 8);
1025 if (*wptr
== cpu_to_le32(0xffffffff)) {
1026 ha
->fcoe_dev_init_timeout
= QLA82XX_ROM_DEV_INIT_TIMEOUT
;
1027 ha
->fcoe_reset_timeout
= QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT
;
1029 ha
->fcoe_dev_init_timeout
= le32_to_cpu(*wptr
);
1031 ha
->fcoe_reset_timeout
= le32_to_cpu(*wptr
);
1033 ql_dbg(ql_dbg_init
, vha
, 0x004e,
1034 "fcoe_dev_init_timeout=%d "
1035 "fcoe_reset_timeout=%d.\n", ha
->fcoe_dev_init_timeout
,
1036 ha
->fcoe_reset_timeout
);
1041 qla2xxx_get_flash_info(scsi_qla_host_t
*vha
)
1045 struct qla_hw_data
*ha
= vha
->hw
;
1047 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) &&
1048 !IS_CNA_CAPABLE(ha
) && !IS_QLA2031(ha
) && !IS_QLA27XX(ha
))
1051 ret
= qla2xxx_find_flt_start(vha
, &flt_addr
);
1052 if (ret
!= QLA_SUCCESS
)
1055 qla2xxx_get_flt_info(vha
, flt_addr
);
1056 qla2xxx_get_fdt_info(vha
);
1057 qla2xxx_get_idc_param(vha
);
1063 qla2xxx_flash_npiv_conf(scsi_qla_host_t
*vha
)
1065 #define NPIV_CONFIG_SIZE (16*1024)
1068 uint16_t cnt
, chksum
;
1070 struct qla_npiv_header hdr
;
1071 struct qla_npiv_entry
*entry
;
1072 struct qla_hw_data
*ha
= vha
->hw
;
1074 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) &&
1075 !IS_CNA_CAPABLE(ha
) && !IS_QLA2031(ha
))
1078 if (ha
->flags
.nic_core_reset_hdlr_active
)
1084 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&hdr
,
1085 ha
->flt_region_npiv_conf
<< 2, sizeof(struct qla_npiv_header
));
1086 if (hdr
.version
== cpu_to_le16(0xffff))
1088 if (hdr
.version
!= cpu_to_le16(1)) {
1089 ql_dbg(ql_dbg_user
, vha
, 0x7090,
1090 "Unsupported NPIV-Config "
1091 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1092 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
1093 le16_to_cpu(hdr
.checksum
));
1097 data
= kmalloc(NPIV_CONFIG_SIZE
, GFP_KERNEL
);
1099 ql_log(ql_log_warn
, vha
, 0x7091,
1100 "Unable to allocate memory for data.\n");
1104 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)data
,
1105 ha
->flt_region_npiv_conf
<< 2, NPIV_CONFIG_SIZE
);
1107 cnt
= (sizeof(hdr
) + le16_to_cpu(hdr
.entries
) * sizeof(*entry
)) >> 1;
1108 for (wptr
= data
, chksum
= 0; cnt
--; wptr
++)
1109 chksum
+= le16_to_cpu(*wptr
);
1111 ql_dbg(ql_dbg_user
, vha
, 0x7092,
1112 "Inconsistent NPIV-Config "
1113 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1114 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
1115 le16_to_cpu(hdr
.checksum
));
1119 entry
= data
+ sizeof(struct qla_npiv_header
);
1120 cnt
= le16_to_cpu(hdr
.entries
);
1121 for (i
= 0; cnt
; cnt
--, entry
++, i
++) {
1123 struct fc_vport_identifiers vid
;
1124 struct fc_vport
*vport
;
1126 memcpy(&ha
->npiv_info
[i
], entry
, sizeof(struct qla_npiv_entry
));
1128 flags
= le16_to_cpu(entry
->flags
);
1129 if (flags
== 0xffff)
1131 if ((flags
& BIT_0
) == 0)
1134 memset(&vid
, 0, sizeof(vid
));
1135 vid
.roles
= FC_PORT_ROLE_FCP_INITIATOR
;
1136 vid
.vport_type
= FC_PORTTYPE_NPIV
;
1137 vid
.disable
= false;
1138 vid
.port_name
= wwn_to_u64(entry
->port_name
);
1139 vid
.node_name
= wwn_to_u64(entry
->node_name
);
1141 ql_dbg(ql_dbg_user
, vha
, 0x7093,
1142 "NPIV[%02x]: wwpn=%llx "
1143 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt
,
1144 (unsigned long long)vid
.port_name
,
1145 (unsigned long long)vid
.node_name
,
1146 le16_to_cpu(entry
->vf_id
),
1147 entry
->q_qos
, entry
->f_qos
);
1149 if (i
< QLA_PRECONFIG_VPORTS
) {
1150 vport
= fc_vport_create(vha
->host
, 0, &vid
);
1152 ql_log(ql_log_warn
, vha
, 0x7094,
1153 "NPIV-Config Failed to create vport [%02x]: "
1154 "wwpn=%llx wwnn=%llx.\n", cnt
,
1155 (unsigned long long)vid
.port_name
,
1156 (unsigned long long)vid
.node_name
);
1164 qla24xx_unprotect_flash(scsi_qla_host_t
*vha
)
1166 struct qla_hw_data
*ha
= vha
->hw
;
1167 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1169 if (ha
->flags
.fac_supported
)
1170 return qla81xx_fac_do_write_enable(vha
, 1);
1172 /* Enable flash write. */
1173 WRT_REG_DWORD(®
->ctrl_status
,
1174 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1175 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1177 if (!ha
->fdt_wrt_disable
)
1180 /* Disable flash write-protection, first clear SR protection bit */
1181 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1182 /* Then write zero again to clear remaining SR bits.*/
1183 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1189 qla24xx_protect_flash(scsi_qla_host_t
*vha
)
1192 struct qla_hw_data
*ha
= vha
->hw
;
1193 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1195 if (ha
->flags
.fac_supported
)
1196 return qla81xx_fac_do_write_enable(vha
, 0);
1198 if (!ha
->fdt_wrt_disable
)
1199 goto skip_wrt_protect
;
1201 /* Enable flash write-protection and wait for completion. */
1202 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101),
1203 ha
->fdt_wrt_disable
);
1204 for (cnt
= 300; cnt
&&
1205 qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x005)) & BIT_0
;
1211 /* Disable flash write. */
1212 WRT_REG_DWORD(®
->ctrl_status
,
1213 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1214 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1220 qla24xx_erase_sector(scsi_qla_host_t
*vha
, uint32_t fdata
)
1222 struct qla_hw_data
*ha
= vha
->hw
;
1223 uint32_t start
, finish
;
1225 if (ha
->flags
.fac_supported
) {
1227 finish
= start
+ (ha
->fdt_block_size
>> 2) - 1;
1228 return qla81xx_fac_erase_sector(vha
, flash_data_addr(ha
,
1229 start
), flash_data_addr(ha
, finish
));
1232 return qla24xx_write_flash_dword(ha
, ha
->fdt_erase_cmd
,
1233 (fdata
& 0xff00) | ((fdata
<< 16) & 0xff0000) |
1234 ((fdata
>> 16) & 0xff));
1238 qla24xx_write_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
1243 uint32_t sec_mask
, rest_addr
;
1245 dma_addr_t optrom_dma
;
1246 void *optrom
= NULL
;
1247 struct qla_hw_data
*ha
= vha
->hw
;
1249 /* Prepare burst-capable write on supported ISPs. */
1250 if ((IS_QLA25XX(ha
) || IS_QLA81XX(ha
) || IS_QLA83XX(ha
) ||
1252 !(faddr
& 0xfff) && dwords
> OPTROM_BURST_DWORDS
) {
1253 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
1254 &optrom_dma
, GFP_KERNEL
);
1256 ql_log(ql_log_warn
, vha
, 0x7095,
1257 "Unable to allocate "
1258 "memory for optrom burst write (%x KB).\n",
1259 OPTROM_BURST_SIZE
/ 1024);
1263 rest_addr
= (ha
->fdt_block_size
>> 2) - 1;
1264 sec_mask
= ~rest_addr
;
1266 ret
= qla24xx_unprotect_flash(vha
);
1267 if (ret
!= QLA_SUCCESS
) {
1268 ql_log(ql_log_warn
, vha
, 0x7096,
1269 "Unable to unprotect flash for update.\n");
1273 for (liter
= 0; liter
< dwords
; liter
++, faddr
++, dwptr
++) {
1274 fdata
= (faddr
& sec_mask
) << 2;
1276 /* Are we at the beginning of a sector? */
1277 if ((faddr
& rest_addr
) == 0) {
1278 /* Do sector unprotect. */
1279 if (ha
->fdt_unprotect_sec_cmd
)
1280 qla24xx_write_flash_dword(ha
,
1281 ha
->fdt_unprotect_sec_cmd
,
1282 (fdata
& 0xff00) | ((fdata
<< 16) &
1283 0xff0000) | ((fdata
>> 16) & 0xff));
1284 ret
= qla24xx_erase_sector(vha
, fdata
);
1285 if (ret
!= QLA_SUCCESS
) {
1286 ql_dbg(ql_dbg_user
, vha
, 0x7007,
1287 "Unable to erase erase sector: address=%x.\n",
1293 /* Go with burst-write. */
1294 if (optrom
&& (liter
+ OPTROM_BURST_DWORDS
) <= dwords
) {
1295 /* Copy data to DMA'ble buffer. */
1296 memcpy(optrom
, dwptr
, OPTROM_BURST_SIZE
);
1298 ret
= qla2x00_load_ram(vha
, optrom_dma
,
1299 flash_data_addr(ha
, faddr
),
1300 OPTROM_BURST_DWORDS
);
1301 if (ret
!= QLA_SUCCESS
) {
1302 ql_log(ql_log_warn
, vha
, 0x7097,
1303 "Unable to burst-write optrom segment "
1304 "(%x/%x/%llx).\n", ret
,
1305 flash_data_addr(ha
, faddr
),
1306 (unsigned long long)optrom_dma
);
1307 ql_log(ql_log_warn
, vha
, 0x7098,
1308 "Reverting to slow-write.\n");
1310 dma_free_coherent(&ha
->pdev
->dev
,
1311 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1314 liter
+= OPTROM_BURST_DWORDS
- 1;
1315 faddr
+= OPTROM_BURST_DWORDS
- 1;
1316 dwptr
+= OPTROM_BURST_DWORDS
- 1;
1321 ret
= qla24xx_write_flash_dword(ha
,
1322 flash_data_addr(ha
, faddr
), cpu_to_le32(*dwptr
));
1323 if (ret
!= QLA_SUCCESS
) {
1324 ql_dbg(ql_dbg_user
, vha
, 0x7006,
1325 "Unable to program flash address=%x data=%x.\n",
1330 /* Do sector protect. */
1331 if (ha
->fdt_unprotect_sec_cmd
&&
1332 ((faddr
& rest_addr
) == rest_addr
))
1333 qla24xx_write_flash_dword(ha
,
1334 ha
->fdt_protect_sec_cmd
,
1335 (fdata
& 0xff00) | ((fdata
<< 16) &
1336 0xff0000) | ((fdata
>> 16) & 0xff));
1339 ret
= qla24xx_protect_flash(vha
);
1340 if (ret
!= QLA_SUCCESS
)
1341 ql_log(ql_log_warn
, vha
, 0x7099,
1342 "Unable to protect flash after update.\n");
1345 dma_free_coherent(&ha
->pdev
->dev
,
1346 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1352 qla2x00_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1357 struct qla_hw_data
*ha
= vha
->hw
;
1359 /* Word reads to NVRAM via registers. */
1360 wptr
= (uint16_t *)buf
;
1361 qla2x00_lock_nvram_access(ha
);
1362 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++)
1363 wptr
[i
] = cpu_to_le16(qla2x00_get_nvram_word(ha
,
1365 qla2x00_unlock_nvram_access(ha
);
1371 qla24xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1376 struct qla_hw_data
*ha
= vha
->hw
;
1378 if (IS_P3P_TYPE(ha
))
1381 /* Dword reads to flash. */
1382 dwptr
= (uint32_t *)buf
;
1383 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1384 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1385 nvram_data_addr(ha
, naddr
)));
1391 qla2x00_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1397 unsigned long flags
;
1398 struct qla_hw_data
*ha
= vha
->hw
;
1402 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1403 qla2x00_lock_nvram_access(ha
);
1405 /* Disable NVRAM write-protection. */
1406 stat
= qla2x00_clear_nvram_protection(ha
);
1408 wptr
= (uint16_t *)buf
;
1409 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++) {
1410 qla2x00_write_nvram_word(ha
, naddr
,
1411 cpu_to_le16(*wptr
));
1415 /* Enable NVRAM write-protection. */
1416 qla2x00_set_nvram_protection(ha
, stat
);
1418 qla2x00_unlock_nvram_access(ha
);
1419 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1425 qla24xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1431 struct qla_hw_data
*ha
= vha
->hw
;
1432 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1436 if (IS_P3P_TYPE(ha
))
1439 /* Enable flash write. */
1440 WRT_REG_DWORD(®
->ctrl_status
,
1441 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1442 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1444 /* Disable NVRAM write-protection. */
1445 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1446 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1448 /* Dword writes to flash. */
1449 dwptr
= (uint32_t *)buf
;
1450 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++, dwptr
++) {
1451 ret
= qla24xx_write_flash_dword(ha
,
1452 nvram_data_addr(ha
, naddr
), cpu_to_le32(*dwptr
));
1453 if (ret
!= QLA_SUCCESS
) {
1454 ql_dbg(ql_dbg_user
, vha
, 0x709a,
1455 "Unable to program nvram address=%x data=%x.\n",
1461 /* Enable NVRAM write-protection. */
1462 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0x8c);
1464 /* Disable flash write. */
1465 WRT_REG_DWORD(®
->ctrl_status
,
1466 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1467 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1473 qla25xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1478 struct qla_hw_data
*ha
= vha
->hw
;
1480 /* Dword reads to flash. */
1481 dwptr
= (uint32_t *)buf
;
1482 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1483 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1484 flash_data_addr(ha
, ha
->flt_region_vpd_nvram
| naddr
)));
1490 qla25xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1493 struct qla_hw_data
*ha
= vha
->hw
;
1494 #define RMW_BUFFER_SIZE (64 * 1024)
1497 dbuf
= vmalloc(RMW_BUFFER_SIZE
);
1499 return QLA_MEMORY_ALLOC_FAILED
;
1500 ha
->isp_ops
->read_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1502 memcpy(dbuf
+ (naddr
<< 2), buf
, bytes
);
1503 ha
->isp_ops
->write_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1511 qla2x00_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1513 if (IS_QLA2322(ha
)) {
1514 /* Flip all colors. */
1515 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1517 ha
->beacon_color_state
= 0;
1518 *pflags
= GPIO_LED_ALL_OFF
;
1521 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1522 *pflags
= GPIO_LED_RGA_ON
;
1525 /* Flip green led only. */
1526 if (ha
->beacon_color_state
== QLA_LED_GRN_ON
) {
1528 ha
->beacon_color_state
= 0;
1529 *pflags
= GPIO_LED_GREEN_OFF_AMBER_OFF
;
1532 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1533 *pflags
= GPIO_LED_GREEN_ON_AMBER_OFF
;
1538 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1541 qla2x00_beacon_blink(struct scsi_qla_host
*vha
)
1543 uint16_t gpio_enable
;
1545 uint16_t led_color
= 0;
1546 unsigned long flags
;
1547 struct qla_hw_data
*ha
= vha
->hw
;
1548 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1550 if (IS_P3P_TYPE(ha
))
1553 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1555 /* Save the Original GPIOE. */
1556 if (ha
->pio_address
) {
1557 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1558 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1560 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1561 gpio_data
= RD_REG_WORD(®
->gpiod
);
1564 /* Set the modified gpio_enable values */
1565 gpio_enable
|= GPIO_LED_MASK
;
1567 if (ha
->pio_address
) {
1568 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1570 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1571 RD_REG_WORD(®
->gpioe
);
1574 qla2x00_flip_colors(ha
, &led_color
);
1576 /* Clear out any previously set LED color. */
1577 gpio_data
&= ~GPIO_LED_MASK
;
1579 /* Set the new input LED color to GPIOD. */
1580 gpio_data
|= led_color
;
1582 /* Set the modified gpio_data values */
1583 if (ha
->pio_address
) {
1584 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1586 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1587 RD_REG_WORD(®
->gpiod
);
1590 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1594 qla2x00_beacon_on(struct scsi_qla_host
*vha
)
1596 uint16_t gpio_enable
;
1598 unsigned long flags
;
1599 struct qla_hw_data
*ha
= vha
->hw
;
1600 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1602 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1603 ha
->fw_options
[1] |= FO1_DISABLE_GPIO6_7
;
1605 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1606 ql_log(ql_log_warn
, vha
, 0x709b,
1607 "Unable to update fw options (beacon on).\n");
1608 return QLA_FUNCTION_FAILED
;
1611 /* Turn off LEDs. */
1612 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1613 if (ha
->pio_address
) {
1614 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1615 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1617 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1618 gpio_data
= RD_REG_WORD(®
->gpiod
);
1620 gpio_enable
|= GPIO_LED_MASK
;
1622 /* Set the modified gpio_enable values. */
1623 if (ha
->pio_address
) {
1624 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1626 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1627 RD_REG_WORD(®
->gpioe
);
1630 /* Clear out previously set LED colour. */
1631 gpio_data
&= ~GPIO_LED_MASK
;
1632 if (ha
->pio_address
) {
1633 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1635 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1636 RD_REG_WORD(®
->gpiod
);
1638 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1641 * Let the per HBA timer kick off the blinking process based on
1642 * the following flags. No need to do anything else now.
1644 ha
->beacon_blink_led
= 1;
1645 ha
->beacon_color_state
= 0;
1651 qla2x00_beacon_off(struct scsi_qla_host
*vha
)
1653 int rval
= QLA_SUCCESS
;
1654 struct qla_hw_data
*ha
= vha
->hw
;
1656 ha
->beacon_blink_led
= 0;
1658 /* Set the on flag so when it gets flipped it will be off. */
1660 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1662 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1664 ha
->isp_ops
->beacon_blink(vha
); /* This turns green LED off */
1666 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1667 ha
->fw_options
[1] &= ~FO1_DISABLE_GPIO6_7
;
1669 rval
= qla2x00_set_fw_options(vha
, ha
->fw_options
);
1670 if (rval
!= QLA_SUCCESS
)
1671 ql_log(ql_log_warn
, vha
, 0x709c,
1672 "Unable to update fw options (beacon off).\n");
1678 qla24xx_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1680 /* Flip all colors. */
1681 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1683 ha
->beacon_color_state
= 0;
1687 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1688 *pflags
= GPDX_LED_YELLOW_ON
| GPDX_LED_AMBER_ON
;
1693 qla24xx_beacon_blink(struct scsi_qla_host
*vha
)
1695 uint16_t led_color
= 0;
1697 unsigned long flags
;
1698 struct qla_hw_data
*ha
= vha
->hw
;
1699 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1701 /* Save the Original GPIOD. */
1702 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1703 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1705 /* Enable the gpio_data reg for update. */
1706 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1708 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1709 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1711 /* Set the color bits. */
1712 qla24xx_flip_colors(ha
, &led_color
);
1714 /* Clear out any previously set LED color. */
1715 gpio_data
&= ~GPDX_LED_COLOR_MASK
;
1717 /* Set the new input LED color to GPIOD. */
1718 gpio_data
|= led_color
;
1720 /* Set the modified gpio_data values. */
1721 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1722 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1723 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1727 qla83xx_select_led_port(struct qla_hw_data
*ha
)
1729 uint32_t led_select_value
= 0;
1731 if (!IS_QLA83XX(ha
) && !IS_QLA27XX(ha
))
1734 if (ha
->port_no
== 0)
1735 led_select_value
= QLA83XX_LED_PORT0
;
1737 led_select_value
= QLA83XX_LED_PORT1
;
1740 return led_select_value
;
1744 qla83xx_beacon_blink(struct scsi_qla_host
*vha
)
1746 uint32_t led_select_value
;
1747 struct qla_hw_data
*ha
= vha
->hw
;
1748 uint16_t led_cfg
[6];
1749 uint16_t orig_led_cfg
[6];
1750 uint32_t led_10_value
, led_43_value
;
1752 if (!IS_QLA83XX(ha
) && !IS_QLA81XX(ha
) && !IS_QLA27XX(ha
))
1755 if (!ha
->beacon_blink_led
)
1758 if (IS_QLA27XX(ha
)) {
1759 qla2x00_write_ram_word(vha
, 0x1003, 0x40000230);
1760 qla2x00_write_ram_word(vha
, 0x1004, 0x40000230);
1761 } else if (IS_QLA2031(ha
)) {
1762 led_select_value
= qla83xx_select_led_port(ha
);
1764 qla83xx_wr_reg(vha
, led_select_value
, 0x40000230);
1765 qla83xx_wr_reg(vha
, led_select_value
+ 4, 0x40000230);
1766 } else if (IS_QLA8031(ha
)) {
1767 led_select_value
= qla83xx_select_led_port(ha
);
1769 qla83xx_rd_reg(vha
, led_select_value
, &led_10_value
);
1770 qla83xx_rd_reg(vha
, led_select_value
+ 0x10, &led_43_value
);
1771 qla83xx_wr_reg(vha
, led_select_value
, 0x01f44000);
1773 qla83xx_wr_reg(vha
, led_select_value
, 0x400001f4);
1775 qla83xx_wr_reg(vha
, led_select_value
, led_10_value
);
1776 qla83xx_wr_reg(vha
, led_select_value
+ 0x10, led_43_value
);
1777 } else if (IS_QLA81XX(ha
)) {
1781 rval
= qla81xx_get_led_config(vha
, orig_led_cfg
);
1783 if (rval
== QLA_SUCCESS
) {
1784 if (IS_QLA81XX(ha
)) {
1785 led_cfg
[0] = 0x4000;
1786 led_cfg
[1] = 0x2000;
1792 led_cfg
[0] = 0x4000;
1793 led_cfg
[1] = 0x4000;
1794 led_cfg
[2] = 0x4000;
1795 led_cfg
[3] = 0x2000;
1797 led_cfg
[5] = 0x2000;
1799 rval
= qla81xx_set_led_config(vha
, led_cfg
);
1801 if (IS_QLA81XX(ha
)) {
1802 led_cfg
[0] = 0x4000;
1803 led_cfg
[1] = 0x2000;
1806 led_cfg
[0] = 0x4000;
1807 led_cfg
[1] = 0x2000;
1808 led_cfg
[2] = 0x4000;
1809 led_cfg
[3] = 0x4000;
1811 led_cfg
[5] = 0x2000;
1813 rval
= qla81xx_set_led_config(vha
, led_cfg
);
1815 /* On exit, restore original (presumes no status change) */
1816 qla81xx_set_led_config(vha
, orig_led_cfg
);
1821 qla24xx_beacon_on(struct scsi_qla_host
*vha
)
1824 unsigned long flags
;
1825 struct qla_hw_data
*ha
= vha
->hw
;
1826 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1828 if (IS_P3P_TYPE(ha
))
1831 if (IS_QLA8031(ha
) || IS_QLA81XX(ha
))
1832 goto skip_gpio
; /* let blink handle it */
1834 if (ha
->beacon_blink_led
== 0) {
1835 /* Enable firmware for update */
1836 ha
->fw_options
[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1838 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
)
1839 return QLA_FUNCTION_FAILED
;
1841 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) !=
1843 ql_log(ql_log_warn
, vha
, 0x7009,
1844 "Unable to update fw options (beacon on).\n");
1845 return QLA_FUNCTION_FAILED
;
1848 if (IS_QLA2031(ha
) || IS_QLA27XX(ha
))
1851 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1852 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1854 /* Enable the gpio_data reg for update. */
1855 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1856 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1857 RD_REG_DWORD(®
->gpiod
);
1859 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1862 /* So all colors blink together. */
1863 ha
->beacon_color_state
= 0;
1866 /* Let the per HBA timer kick off the blinking process. */
1867 ha
->beacon_blink_led
= 1;
1873 qla24xx_beacon_off(struct scsi_qla_host
*vha
)
1876 unsigned long flags
;
1877 struct qla_hw_data
*ha
= vha
->hw
;
1878 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1880 if (IS_P3P_TYPE(ha
))
1883 ha
->beacon_blink_led
= 0;
1885 if (IS_QLA2031(ha
) || IS_QLA27XX(ha
))
1886 goto set_fw_options
;
1888 if (IS_QLA8031(ha
) || IS_QLA81XX(ha
))
1891 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1893 ha
->isp_ops
->beacon_blink(vha
); /* Will flip to all off. */
1895 /* Give control back to firmware. */
1896 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1897 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1899 /* Disable the gpio_data reg for update. */
1900 gpio_data
&= ~GPDX_LED_UPDATE_MASK
;
1901 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1902 RD_REG_DWORD(®
->gpiod
);
1903 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1906 ha
->fw_options
[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1908 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1909 ql_log(ql_log_warn
, vha
, 0x704d,
1910 "Unable to update fw options (beacon on).\n");
1911 return QLA_FUNCTION_FAILED
;
1914 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1915 ql_log(ql_log_warn
, vha
, 0x704e,
1916 "Unable to update fw options (beacon on).\n");
1917 return QLA_FUNCTION_FAILED
;
1925 * Flash support routines
1929 * qla2x00_flash_enable() - Setup flash for reading and writing.
1933 qla2x00_flash_enable(struct qla_hw_data
*ha
)
1936 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1938 data
= RD_REG_WORD(®
->ctrl_status
);
1939 data
|= CSR_FLASH_ENABLE
;
1940 WRT_REG_WORD(®
->ctrl_status
, data
);
1941 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1945 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1949 qla2x00_flash_disable(struct qla_hw_data
*ha
)
1952 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1954 data
= RD_REG_WORD(®
->ctrl_status
);
1955 data
&= ~(CSR_FLASH_ENABLE
);
1956 WRT_REG_WORD(®
->ctrl_status
, data
);
1957 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1961 * qla2x00_read_flash_byte() - Reads a byte from flash
1963 * @addr: Address in flash to read
1965 * A word is read from the chip, but, only the lower byte is valid.
1967 * Returns the byte read from flash @addr.
1970 qla2x00_read_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
)
1973 uint16_t bank_select
;
1974 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1976 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1978 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1979 /* Specify 64K address range: */
1980 /* clear out Module Select and Flash Address bits [19:16]. */
1981 bank_select
&= ~0xf8;
1982 bank_select
|= addr
>> 12 & 0xf0;
1983 bank_select
|= CSR_FLASH_64K_BANK
;
1984 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1985 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1987 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1988 data
= RD_REG_WORD(®
->flash_data
);
1990 return (uint8_t)data
;
1993 /* Setup bit 16 of flash address. */
1994 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1995 bank_select
|= CSR_FLASH_64K_BANK
;
1996 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1997 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1998 } else if (((addr
& BIT_16
) == 0) &&
1999 (bank_select
& CSR_FLASH_64K_BANK
)) {
2000 bank_select
&= ~(CSR_FLASH_64K_BANK
);
2001 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2002 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2005 /* Always perform IO mapped accesses to the FLASH registers. */
2006 if (ha
->pio_address
) {
2009 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
2011 data
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
2014 data2
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
2015 } while (data
!= data2
);
2017 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
2018 data
= qla2x00_debounce_register(®
->flash_data
);
2021 return (uint8_t)data
;
2025 * qla2x00_write_flash_byte() - Write a byte to flash
2027 * @addr: Address in flash to write
2028 * @data: Data to write
2031 qla2x00_write_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t data
)
2033 uint16_t bank_select
;
2034 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2036 bank_select
= RD_REG_WORD(®
->ctrl_status
);
2037 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2038 /* Specify 64K address range: */
2039 /* clear out Module Select and Flash Address bits [19:16]. */
2040 bank_select
&= ~0xf8;
2041 bank_select
|= addr
>> 12 & 0xf0;
2042 bank_select
|= CSR_FLASH_64K_BANK
;
2043 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2044 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2046 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
2047 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2048 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
2049 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2054 /* Setup bit 16 of flash address. */
2055 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
2056 bank_select
|= CSR_FLASH_64K_BANK
;
2057 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2058 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2059 } else if (((addr
& BIT_16
) == 0) &&
2060 (bank_select
& CSR_FLASH_64K_BANK
)) {
2061 bank_select
&= ~(CSR_FLASH_64K_BANK
);
2062 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
2063 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2066 /* Always perform IO mapped accesses to the FLASH registers. */
2067 if (ha
->pio_address
) {
2068 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
2069 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_data
), (uint16_t)data
);
2071 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
2072 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2073 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
2074 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
2079 * qla2x00_poll_flash() - Polls flash for completion.
2081 * @addr: Address in flash to poll
2082 * @poll_data: Data to be polled
2083 * @man_id: Flash manufacturer ID
2084 * @flash_id: Flash ID
2086 * This function polls the device until bit 7 of what is read matches data
2087 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
2088 * out (a fatal error). The flash book recommeds reading bit 7 again after
2089 * reading bit 5 as a 1.
2091 * Returns 0 on success, else non-zero.
2094 qla2x00_poll_flash(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t poll_data
,
2095 uint8_t man_id
, uint8_t flash_id
)
2103 /* Wait for 30 seconds for command to finish. */
2105 for (cnt
= 3000000; cnt
; cnt
--) {
2106 flash_data
= qla2x00_read_flash_byte(ha
, addr
);
2107 if ((flash_data
& BIT_7
) == poll_data
) {
2112 if (man_id
!= 0x40 && man_id
!= 0xda) {
2113 if ((flash_data
& BIT_5
) && cnt
> 2)
2124 * qla2x00_program_flash_address() - Programs a flash address
2126 * @addr: Address in flash to program
2127 * @data: Data to be written in flash
2128 * @man_id: Flash manufacturer ID
2129 * @flash_id: Flash ID
2131 * Returns 0 on success, else non-zero.
2134 qla2x00_program_flash_address(struct qla_hw_data
*ha
, uint32_t addr
,
2135 uint8_t data
, uint8_t man_id
, uint8_t flash_id
)
2137 /* Write Program Command Sequence. */
2138 if (IS_OEM_001(ha
)) {
2139 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2140 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2141 qla2x00_write_flash_byte(ha
, 0xaaa, 0xa0);
2142 qla2x00_write_flash_byte(ha
, addr
, data
);
2144 if (man_id
== 0xda && flash_id
== 0xc1) {
2145 qla2x00_write_flash_byte(ha
, addr
, data
);
2149 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2150 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2151 qla2x00_write_flash_byte(ha
, 0x5555, 0xa0);
2152 qla2x00_write_flash_byte(ha
, addr
, data
);
2158 /* Wait for write to complete. */
2159 return qla2x00_poll_flash(ha
, addr
, data
, man_id
, flash_id
);
2163 * qla2x00_erase_flash() - Erase the flash.
2165 * @man_id: Flash manufacturer ID
2166 * @flash_id: Flash ID
2168 * Returns 0 on success, else non-zero.
2171 qla2x00_erase_flash(struct qla_hw_data
*ha
, uint8_t man_id
, uint8_t flash_id
)
2173 /* Individual Sector Erase Command Sequence */
2174 if (IS_OEM_001(ha
)) {
2175 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2176 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2177 qla2x00_write_flash_byte(ha
, 0xaaa, 0x80);
2178 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
2179 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
2180 qla2x00_write_flash_byte(ha
, 0xaaa, 0x10);
2182 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2183 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2184 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
2185 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2186 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2187 qla2x00_write_flash_byte(ha
, 0x5555, 0x10);
2192 /* Wait for erase to complete. */
2193 return qla2x00_poll_flash(ha
, 0x00, 0x80, man_id
, flash_id
);
2197 * qla2x00_erase_flash_sector() - Erase a flash sector.
2199 * @addr: Flash sector to erase
2200 * @sec_mask: Sector address mask
2201 * @man_id: Flash manufacturer ID
2202 * @flash_id: Flash ID
2204 * Returns 0 on success, else non-zero.
2207 qla2x00_erase_flash_sector(struct qla_hw_data
*ha
, uint32_t addr
,
2208 uint32_t sec_mask
, uint8_t man_id
, uint8_t flash_id
)
2210 /* Individual Sector Erase Command Sequence */
2211 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2212 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2213 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
2214 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2215 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2216 if (man_id
== 0x1f && flash_id
== 0x13)
2217 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x10);
2219 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x30);
2223 /* Wait for erase to complete. */
2224 return qla2x00_poll_flash(ha
, addr
, 0x80, man_id
, flash_id
);
2228 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2229 * @man_id: Flash manufacturer ID
2230 * @flash_id: Flash ID
2233 qla2x00_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
2236 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2237 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2238 qla2x00_write_flash_byte(ha
, 0x5555, 0x90);
2239 *man_id
= qla2x00_read_flash_byte(ha
, 0x0000);
2240 *flash_id
= qla2x00_read_flash_byte(ha
, 0x0001);
2241 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2242 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2243 qla2x00_write_flash_byte(ha
, 0x5555, 0xf0);
2247 qla2x00_read_flash_data(struct qla_hw_data
*ha
, uint8_t *tmp_buf
,
2248 uint32_t saddr
, uint32_t length
)
2250 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2251 uint32_t midpoint
, ilength
;
2254 midpoint
= length
/ 2;
2256 WRT_REG_WORD(®
->nvram
, 0);
2257 RD_REG_WORD(®
->nvram
);
2258 for (ilength
= 0; ilength
< length
; saddr
++, ilength
++, tmp_buf
++) {
2259 if (ilength
== midpoint
) {
2260 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2261 RD_REG_WORD(®
->nvram
);
2263 data
= qla2x00_read_flash_byte(ha
, saddr
);
2272 qla2x00_suspend_hba(struct scsi_qla_host
*vha
)
2275 unsigned long flags
;
2276 struct qla_hw_data
*ha
= vha
->hw
;
2277 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2280 scsi_block_requests(vha
->host
);
2281 ha
->isp_ops
->disable_intrs(ha
);
2282 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2285 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
2286 WRT_REG_WORD(®
->hccr
, HCCR_PAUSE_RISC
);
2287 RD_REG_WORD(®
->hccr
);
2288 if (IS_QLA2100(ha
) || IS_QLA2200(ha
) || IS_QLA2300(ha
)) {
2289 for (cnt
= 0; cnt
< 30000; cnt
++) {
2290 if ((RD_REG_WORD(®
->hccr
) & HCCR_RISC_PAUSE
) != 0)
2297 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
2301 qla2x00_resume_hba(struct scsi_qla_host
*vha
)
2303 struct qla_hw_data
*ha
= vha
->hw
;
2306 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2307 set_bit(ISP_ABORT_NEEDED
, &vha
->dpc_flags
);
2308 qla2xxx_wake_dpc(vha
);
2309 qla2x00_wait_for_chip_reset(vha
);
2310 scsi_unblock_requests(vha
->host
);
2314 qla2x00_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2315 uint32_t offset
, uint32_t length
)
2317 uint32_t addr
, midpoint
;
2319 struct qla_hw_data
*ha
= vha
->hw
;
2320 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2323 qla2x00_suspend_hba(vha
);
2326 midpoint
= ha
->optrom_size
/ 2;
2328 qla2x00_flash_enable(ha
);
2329 WRT_REG_WORD(®
->nvram
, 0);
2330 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2331 for (addr
= offset
, data
= buf
; addr
< length
; addr
++, data
++) {
2332 if (addr
== midpoint
) {
2333 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2334 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2337 *data
= qla2x00_read_flash_byte(ha
, addr
);
2339 qla2x00_flash_disable(ha
);
2342 qla2x00_resume_hba(vha
);
2348 qla2x00_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2349 uint32_t offset
, uint32_t length
)
2353 uint8_t man_id
, flash_id
, sec_number
, data
;
2355 uint32_t addr
, liter
, sec_mask
, rest_addr
;
2356 struct qla_hw_data
*ha
= vha
->hw
;
2357 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2360 qla2x00_suspend_hba(vha
);
2365 /* Reset ISP chip. */
2366 WRT_REG_WORD(®
->ctrl_status
, CSR_ISP_SOFT_RESET
);
2367 pci_read_config_word(ha
->pdev
, PCI_COMMAND
, &wd
);
2369 /* Go with write. */
2370 qla2x00_flash_enable(ha
);
2371 do { /* Loop once to provide quick error exit */
2372 /* Structure of flash memory based on manufacturer */
2373 if (IS_OEM_001(ha
)) {
2374 /* OEM variant with special flash part. */
2375 man_id
= flash_id
= 0;
2380 qla2x00_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
2382 case 0x20: /* ST flash. */
2383 if (flash_id
== 0xd2 || flash_id
== 0xe3) {
2385 * ST m29w008at part - 64kb sector size with
2386 * 32kb,8kb,8kb,16kb sectors at memory address
2394 * ST m29w010b part - 16kb sector size
2395 * Default to 16kb sectors
2400 case 0x40: /* Mostel flash. */
2401 /* Mostel v29c51001 part - 512 byte sector size. */
2405 case 0xbf: /* SST flash. */
2406 /* SST39sf10 part - 4kb sector size. */
2410 case 0xda: /* Winbond flash. */
2411 /* Winbond W29EE011 part - 256 byte sector size. */
2415 case 0xc2: /* Macronix flash. */
2416 /* 64k sector size. */
2417 if (flash_id
== 0x38 || flash_id
== 0x4f) {
2422 /* Fall through... */
2424 case 0x1f: /* Atmel flash. */
2425 /* 512k sector size. */
2426 if (flash_id
== 0x13) {
2427 rest_addr
= 0x7fffffff;
2428 sec_mask
= 0x80000000;
2431 /* Fall through... */
2433 case 0x01: /* AMD flash. */
2434 if (flash_id
== 0x38 || flash_id
== 0x40 ||
2436 /* Am29LV081 part - 64kb sector size. */
2437 /* Am29LV002BT part - 64kb sector size. */
2441 } else if (flash_id
== 0x3e) {
2443 * Am29LV008b part - 64kb sector size with
2444 * 32kb,8kb,8kb,16kb sector at memory address
2450 } else if (flash_id
== 0x20 || flash_id
== 0x6e) {
2452 * Am29LV010 part or AM29f010 - 16kb sector
2458 } else if (flash_id
== 0x6d) {
2459 /* Am29LV001 part - 8kb sector size. */
2466 /* Default to 16 kb sector size. */
2473 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2474 if (qla2x00_erase_flash(ha
, man_id
, flash_id
)) {
2475 rval
= QLA_FUNCTION_FAILED
;
2480 for (addr
= offset
, liter
= 0; liter
< length
; liter
++,
2483 /* Are we at the beginning of a sector? */
2484 if ((addr
& rest_addr
) == 0) {
2485 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2486 if (addr
>= 0x10000UL
) {
2487 if (((addr
>> 12) & 0xf0) &&
2489 flash_id
== 0x3e) ||
2491 flash_id
== 0xd2))) {
2493 if (sec_number
== 1) {
2514 } else if (addr
== ha
->optrom_size
/ 2) {
2515 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2516 RD_REG_WORD(®
->nvram
);
2519 if (flash_id
== 0xda && man_id
== 0xc1) {
2520 qla2x00_write_flash_byte(ha
, 0x5555,
2522 qla2x00_write_flash_byte(ha
, 0x2aaa,
2524 qla2x00_write_flash_byte(ha
, 0x5555,
2526 } else if (!IS_QLA2322(ha
) && !IS_QLA6322(ha
)) {
2528 if (qla2x00_erase_flash_sector(ha
,
2529 addr
, sec_mask
, man_id
,
2531 rval
= QLA_FUNCTION_FAILED
;
2534 if (man_id
== 0x01 && flash_id
== 0x6d)
2539 if (man_id
== 0x01 && flash_id
== 0x6d) {
2540 if (sec_number
== 1 &&
2541 addr
== (rest_addr
- 1)) {
2544 } else if (sec_number
== 3 && (addr
& 0x7ffe)) {
2550 if (qla2x00_program_flash_address(ha
, addr
, data
,
2551 man_id
, flash_id
)) {
2552 rval
= QLA_FUNCTION_FAILED
;
2558 qla2x00_flash_disable(ha
);
2561 qla2x00_resume_hba(vha
);
2567 qla24xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2568 uint32_t offset
, uint32_t length
)
2570 struct qla_hw_data
*ha
= vha
->hw
;
2573 scsi_block_requests(vha
->host
);
2574 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2577 qla24xx_read_flash_data(vha
, (uint32_t *)buf
, offset
>> 2, length
>> 2);
2580 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2581 scsi_unblock_requests(vha
->host
);
2587 qla24xx_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2588 uint32_t offset
, uint32_t length
)
2591 struct qla_hw_data
*ha
= vha
->hw
;
2594 scsi_block_requests(vha
->host
);
2595 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2597 /* Go with write. */
2598 rval
= qla24xx_write_flash_data(vha
, (uint32_t *)buf
, offset
>> 2,
2601 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2602 scsi_unblock_requests(vha
->host
);
2608 qla25xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2609 uint32_t offset
, uint32_t length
)
2612 dma_addr_t optrom_dma
;
2615 uint32_t faddr
, left
, burst
;
2616 struct qla_hw_data
*ha
= vha
->hw
;
2618 if (IS_QLA25XX(ha
) || IS_QLA81XX(ha
) || IS_QLA83XX(ha
) ||
2623 if (length
< OPTROM_BURST_SIZE
)
2627 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2628 &optrom_dma
, GFP_KERNEL
);
2630 ql_log(ql_log_warn
, vha
, 0x00cc,
2631 "Unable to allocate memory for optrom burst read (%x KB).\n",
2632 OPTROM_BURST_SIZE
/ 1024);
2637 faddr
= offset
>> 2;
2639 burst
= OPTROM_BURST_DWORDS
;
2644 rval
= qla2x00_dump_ram(vha
, optrom_dma
,
2645 flash_data_addr(ha
, faddr
), burst
);
2647 ql_log(ql_log_warn
, vha
, 0x00f5,
2648 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2649 rval
, flash_data_addr(ha
, faddr
),
2650 (unsigned long long)optrom_dma
);
2651 ql_log(ql_log_warn
, vha
, 0x00f6,
2652 "Reverting to slow-read.\n");
2654 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2655 optrom
, optrom_dma
);
2659 memcpy(pbuf
, optrom
, burst
* 4);
2666 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
, optrom
,
2672 return qla24xx_read_optrom_data(vha
, buf
, offset
, length
);
2676 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2678 * @pcids: Pointer to the FCODE PCI data structure
2680 * The process of retrieving the FCODE version information is at best
2681 * described as interesting.
2683 * Within the first 100h bytes of the image an ASCII string is present
2684 * which contains several pieces of information including the FCODE
2685 * version. Unfortunately it seems the only reliable way to retrieve
2686 * the version is by scanning for another sentinel within the string,
2687 * the FCODE build date:
2689 * ... 2.00.02 10/17/02 ...
2691 * Returns QLA_SUCCESS on successful retrieval of version.
2694 qla2x00_get_fcode_version(struct qla_hw_data
*ha
, uint32_t pcids
)
2696 int ret
= QLA_FUNCTION_FAILED
;
2697 uint32_t istart
, iend
, iter
, vend
;
2698 uint8_t do_next
, rbyte
, *vbyte
;
2700 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2702 /* Skip the PCI data structure. */
2704 ((qla2x00_read_flash_byte(ha
, pcids
+ 0x0B) << 8) |
2705 qla2x00_read_flash_byte(ha
, pcids
+ 0x0A));
2706 iend
= istart
+ 0x100;
2708 /* Scan for the sentinel date string...eeewww. */
2711 while ((iter
< iend
) && !do_next
) {
2713 if (qla2x00_read_flash_byte(ha
, iter
) == '/') {
2714 if (qla2x00_read_flash_byte(ha
, iter
+ 2) ==
2717 else if (qla2x00_read_flash_byte(ha
,
2725 /* Backtrack to previous ' ' (space). */
2727 while ((iter
> istart
) && !do_next
) {
2729 if (qla2x00_read_flash_byte(ha
, iter
) == ' ')
2736 * Mark end of version tag, and find previous ' ' (space) or
2737 * string length (recent FCODE images -- major hack ahead!!!).
2741 while ((iter
> istart
) && !do_next
) {
2743 rbyte
= qla2x00_read_flash_byte(ha
, iter
);
2744 if (rbyte
== ' ' || rbyte
== 0xd || rbyte
== 0x10)
2750 /* Mark beginning of version tag, and copy data. */
2752 if ((vend
- iter
) &&
2753 ((vend
- iter
) < sizeof(ha
->fcode_revision
))) {
2754 vbyte
= ha
->fcode_revision
;
2755 while (iter
<= vend
) {
2756 *vbyte
++ = qla2x00_read_flash_byte(ha
, iter
);
2763 if (ret
!= QLA_SUCCESS
)
2764 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2768 qla2x00_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2770 int ret
= QLA_SUCCESS
;
2771 uint8_t code_type
, last_image
;
2772 uint32_t pcihdr
, pcids
;
2775 struct qla_hw_data
*ha
= vha
->hw
;
2777 if (!ha
->pio_address
|| !mbuf
)
2778 return QLA_FUNCTION_FAILED
;
2780 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2781 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2782 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2783 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2785 qla2x00_flash_enable(ha
);
2787 /* Begin with first PCI expansion ROM header. */
2791 /* Verify PCI expansion ROM header. */
2792 if (qla2x00_read_flash_byte(ha
, pcihdr
) != 0x55 ||
2793 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x01) != 0xaa) {
2795 ql_log(ql_log_fatal
, vha
, 0x0050,
2796 "No matching ROM signature.\n");
2797 ret
= QLA_FUNCTION_FAILED
;
2801 /* Locate PCI data structure. */
2803 ((qla2x00_read_flash_byte(ha
, pcihdr
+ 0x19) << 8) |
2804 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x18));
2806 /* Validate signature of PCI data structure. */
2807 if (qla2x00_read_flash_byte(ha
, pcids
) != 'P' ||
2808 qla2x00_read_flash_byte(ha
, pcids
+ 0x1) != 'C' ||
2809 qla2x00_read_flash_byte(ha
, pcids
+ 0x2) != 'I' ||
2810 qla2x00_read_flash_byte(ha
, pcids
+ 0x3) != 'R') {
2811 /* Incorrect header. */
2812 ql_log(ql_log_fatal
, vha
, 0x0051,
2813 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2814 ret
= QLA_FUNCTION_FAILED
;
2819 code_type
= qla2x00_read_flash_byte(ha
, pcids
+ 0x14);
2820 switch (code_type
) {
2821 case ROM_CODE_TYPE_BIOS
:
2822 /* Intel x86, PC-AT compatible. */
2823 ha
->bios_revision
[0] =
2824 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2825 ha
->bios_revision
[1] =
2826 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2827 ql_dbg(ql_dbg_init
, vha
, 0x0052,
2828 "Read BIOS %d.%d.\n",
2829 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2831 case ROM_CODE_TYPE_FCODE
:
2832 /* Open Firmware standard for PCI (FCode). */
2834 qla2x00_get_fcode_version(ha
, pcids
);
2836 case ROM_CODE_TYPE_EFI
:
2837 /* Extensible Firmware Interface (EFI). */
2838 ha
->efi_revision
[0] =
2839 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2840 ha
->efi_revision
[1] =
2841 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2842 ql_dbg(ql_dbg_init
, vha
, 0x0053,
2843 "Read EFI %d.%d.\n",
2844 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2847 ql_log(ql_log_warn
, vha
, 0x0054,
2848 "Unrecognized code type %x at pcids %x.\n",
2853 last_image
= qla2x00_read_flash_byte(ha
, pcids
+ 0x15) & BIT_7
;
2855 /* Locate next PCI expansion ROM. */
2856 pcihdr
+= ((qla2x00_read_flash_byte(ha
, pcids
+ 0x11) << 8) |
2857 qla2x00_read_flash_byte(ha
, pcids
+ 0x10)) * 512;
2858 } while (!last_image
);
2860 if (IS_QLA2322(ha
)) {
2861 /* Read firmware image information. */
2862 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2864 memset(dbyte
, 0, 8);
2865 dcode
= (uint16_t *)dbyte
;
2867 qla2x00_read_flash_data(ha
, dbyte
, ha
->flt_region_fw
* 4 + 10,
2869 ql_dbg(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010a,
2871 "ver from flash:.\n");
2872 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010b,
2873 (uint8_t *)dbyte
, 8);
2875 if ((dcode
[0] == 0xffff && dcode
[1] == 0xffff &&
2876 dcode
[2] == 0xffff && dcode
[3] == 0xffff) ||
2877 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2879 ql_log(ql_log_warn
, vha
, 0x0057,
2880 "Unrecognized fw revision at %x.\n",
2881 ha
->flt_region_fw
* 4);
2883 /* values are in big endian */
2884 ha
->fw_revision
[0] = dbyte
[0] << 16 | dbyte
[1];
2885 ha
->fw_revision
[1] = dbyte
[2] << 16 | dbyte
[3];
2886 ha
->fw_revision
[2] = dbyte
[4] << 16 | dbyte
[5];
2887 ql_dbg(ql_dbg_init
, vha
, 0x0058,
2889 "%d.%d.%d.\n", ha
->fw_revision
[0],
2890 ha
->fw_revision
[1], ha
->fw_revision
[2]);
2894 qla2x00_flash_disable(ha
);
2900 qla82xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2902 int ret
= QLA_SUCCESS
;
2903 uint32_t pcihdr
, pcids
;
2906 uint8_t code_type
, last_image
;
2907 struct qla_hw_data
*ha
= vha
->hw
;
2910 return QLA_FUNCTION_FAILED
;
2912 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2913 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2914 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2915 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2919 /* Begin with first PCI expansion ROM header. */
2920 pcihdr
= ha
->flt_region_boot
<< 2;
2923 /* Verify PCI expansion ROM header. */
2924 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, pcihdr
,
2926 bcode
= mbuf
+ (pcihdr
% 4);
2927 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
2929 ql_log(ql_log_fatal
, vha
, 0x0154,
2930 "No matching ROM signature.\n");
2931 ret
= QLA_FUNCTION_FAILED
;
2935 /* Locate PCI data structure. */
2936 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
2938 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, pcids
,
2940 bcode
= mbuf
+ (pcihdr
% 4);
2942 /* Validate signature of PCI data structure. */
2943 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
2944 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
2945 /* Incorrect header. */
2946 ql_log(ql_log_fatal
, vha
, 0x0155,
2947 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2948 ret
= QLA_FUNCTION_FAILED
;
2953 code_type
= bcode
[0x14];
2954 switch (code_type
) {
2955 case ROM_CODE_TYPE_BIOS
:
2956 /* Intel x86, PC-AT compatible. */
2957 ha
->bios_revision
[0] = bcode
[0x12];
2958 ha
->bios_revision
[1] = bcode
[0x13];
2959 ql_dbg(ql_dbg_init
, vha
, 0x0156,
2960 "Read BIOS %d.%d.\n",
2961 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2963 case ROM_CODE_TYPE_FCODE
:
2964 /* Open Firmware standard for PCI (FCode). */
2965 ha
->fcode_revision
[0] = bcode
[0x12];
2966 ha
->fcode_revision
[1] = bcode
[0x13];
2967 ql_dbg(ql_dbg_init
, vha
, 0x0157,
2968 "Read FCODE %d.%d.\n",
2969 ha
->fcode_revision
[1], ha
->fcode_revision
[0]);
2971 case ROM_CODE_TYPE_EFI
:
2972 /* Extensible Firmware Interface (EFI). */
2973 ha
->efi_revision
[0] = bcode
[0x12];
2974 ha
->efi_revision
[1] = bcode
[0x13];
2975 ql_dbg(ql_dbg_init
, vha
, 0x0158,
2976 "Read EFI %d.%d.\n",
2977 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2980 ql_log(ql_log_warn
, vha
, 0x0159,
2981 "Unrecognized code type %x at pcids %x.\n",
2986 last_image
= bcode
[0x15] & BIT_7
;
2988 /* Locate next PCI expansion ROM. */
2989 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
2990 } while (!last_image
);
2992 /* Read firmware image information. */
2993 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2995 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
, ha
->flt_region_fw
<< 2,
2997 bcode
= mbuf
+ (pcihdr
% 4);
2999 /* Validate signature of PCI data structure. */
3000 if (bcode
[0x0] == 0x3 && bcode
[0x1] == 0x0 &&
3001 bcode
[0x2] == 0x40 && bcode
[0x3] == 0x40) {
3002 ha
->fw_revision
[0] = bcode
[0x4];
3003 ha
->fw_revision
[1] = bcode
[0x5];
3004 ha
->fw_revision
[2] = bcode
[0x6];
3005 ql_dbg(ql_dbg_init
, vha
, 0x0153,
3006 "Firmware revision %d.%d.%d\n",
3007 ha
->fw_revision
[0], ha
->fw_revision
[1],
3008 ha
->fw_revision
[2]);
3015 qla24xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
3017 int ret
= QLA_SUCCESS
;
3018 uint32_t pcihdr
, pcids
;
3021 uint8_t code_type
, last_image
;
3023 struct qla_hw_data
*ha
= vha
->hw
;
3028 if (IS_P3P_TYPE(ha
))
3032 return QLA_FUNCTION_FAILED
;
3034 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
3035 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
3036 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
3037 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
3040 pcihdr
= ha
->flt_region_boot
<< 2;
3041 if (IS_QLA27XX(ha
) &&
3042 qla27xx_find_valid_image(vha
) == QLA27XX_SECONDARY_IMAGE
)
3043 pcihdr
= ha
->flt_region_boot_sec
<< 2;
3047 /* Verify PCI expansion ROM header. */
3048 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
3049 bcode
= mbuf
+ (pcihdr
% 4);
3050 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
3052 ql_log(ql_log_fatal
, vha
, 0x0059,
3053 "No matching ROM signature.\n");
3054 ret
= QLA_FUNCTION_FAILED
;
3058 /* Locate PCI data structure. */
3059 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
3061 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
3062 bcode
= mbuf
+ (pcihdr
% 4);
3064 /* Validate signature of PCI data structure. */
3065 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
3066 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
3067 /* Incorrect header. */
3068 ql_log(ql_log_fatal
, vha
, 0x005a,
3069 "PCI data struct not found pcir_adr=%x.\n", pcids
);
3070 ret
= QLA_FUNCTION_FAILED
;
3075 code_type
= bcode
[0x14];
3076 switch (code_type
) {
3077 case ROM_CODE_TYPE_BIOS
:
3078 /* Intel x86, PC-AT compatible. */
3079 ha
->bios_revision
[0] = bcode
[0x12];
3080 ha
->bios_revision
[1] = bcode
[0x13];
3081 ql_dbg(ql_dbg_init
, vha
, 0x005b,
3082 "Read BIOS %d.%d.\n",
3083 ha
->bios_revision
[1], ha
->bios_revision
[0]);
3085 case ROM_CODE_TYPE_FCODE
:
3086 /* Open Firmware standard for PCI (FCode). */
3087 ha
->fcode_revision
[0] = bcode
[0x12];
3088 ha
->fcode_revision
[1] = bcode
[0x13];
3089 ql_dbg(ql_dbg_init
, vha
, 0x005c,
3090 "Read FCODE %d.%d.\n",
3091 ha
->fcode_revision
[1], ha
->fcode_revision
[0]);
3093 case ROM_CODE_TYPE_EFI
:
3094 /* Extensible Firmware Interface (EFI). */
3095 ha
->efi_revision
[0] = bcode
[0x12];
3096 ha
->efi_revision
[1] = bcode
[0x13];
3097 ql_dbg(ql_dbg_init
, vha
, 0x005d,
3098 "Read EFI %d.%d.\n",
3099 ha
->efi_revision
[1], ha
->efi_revision
[0]);
3102 ql_log(ql_log_warn
, vha
, 0x005e,
3103 "Unrecognized code type %x at pcids %x.\n",
3108 last_image
= bcode
[0x15] & BIT_7
;
3110 /* Locate next PCI expansion ROM. */
3111 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
3112 } while (!last_image
);
3114 /* Read firmware image information. */
3115 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
3117 faddr
= ha
->flt_region_fw
;
3118 if (IS_QLA27XX(ha
) &&
3119 qla27xx_find_valid_image(vha
) == QLA27XX_SECONDARY_IMAGE
)
3120 faddr
= ha
->flt_region_fw_sec
;
3122 qla24xx_read_flash_data(vha
, dcode
, faddr
+ 4, 4);
3123 for (i
= 0; i
< 4; i
++)
3124 dcode
[i
] = be32_to_cpu(dcode
[i
]);
3126 if ((dcode
[0] == 0xffffffff && dcode
[1] == 0xffffffff &&
3127 dcode
[2] == 0xffffffff && dcode
[3] == 0xffffffff) ||
3128 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
3130 ql_log(ql_log_warn
, vha
, 0x005f,
3131 "Unrecognized fw revision at %x.\n",
3132 ha
->flt_region_fw
* 4);
3134 ha
->fw_revision
[0] = dcode
[0];
3135 ha
->fw_revision
[1] = dcode
[1];
3136 ha
->fw_revision
[2] = dcode
[2];
3137 ha
->fw_revision
[3] = dcode
[3];
3138 ql_dbg(ql_dbg_init
, vha
, 0x0060,
3139 "Firmware revision %d.%d.%d (%x).\n",
3140 ha
->fw_revision
[0], ha
->fw_revision
[1],
3141 ha
->fw_revision
[2], ha
->fw_revision
[3]);
3144 /* Check for golden firmware and get version if available */
3145 if (!IS_QLA81XX(ha
)) {
3146 /* Golden firmware is not present in non 81XX adapters */
3150 memset(ha
->gold_fw_version
, 0, sizeof(ha
->gold_fw_version
));
3152 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
,
3153 ha
->flt_region_gold_fw
<< 2, 32);
3155 if (dcode
[4] == 0xFFFFFFFF && dcode
[5] == 0xFFFFFFFF &&
3156 dcode
[6] == 0xFFFFFFFF && dcode
[7] == 0xFFFFFFFF) {
3157 ql_log(ql_log_warn
, vha
, 0x0056,
3158 "Unrecognized golden fw at 0x%x.\n",
3159 ha
->flt_region_gold_fw
* 4);
3163 for (i
= 4; i
< 8; i
++)
3164 ha
->gold_fw_version
[i
-4] = be32_to_cpu(dcode
[i
]);
3170 qla2xxx_is_vpd_valid(uint8_t *pos
, uint8_t *end
)
3172 if (pos
>= end
|| *pos
!= 0x82)
3176 if (pos
>= end
|| *pos
!= 0x90)
3180 if (pos
>= end
|| *pos
!= 0x78)
3187 qla2xxx_get_vpd_field(scsi_qla_host_t
*vha
, char *key
, char *str
, size_t size
)
3189 struct qla_hw_data
*ha
= vha
->hw
;
3190 uint8_t *pos
= ha
->vpd
;
3191 uint8_t *end
= pos
+ ha
->vpd_size
;
3194 if (!IS_FWI2_CAPABLE(ha
) || !qla2xxx_is_vpd_valid(pos
, end
))
3197 while (pos
< end
&& *pos
!= 0x78) {
3198 len
= (*pos
== 0x82) ? pos
[1] : pos
[2];
3200 if (!strncmp(pos
, key
, strlen(key
)))
3203 if (*pos
!= 0x90 && *pos
!= 0x91)
3209 if (pos
< end
- len
&& *pos
!= 0x78)
3210 return scnprintf(str
, size
, "%.*s", len
, pos
+ 3);
3216 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t
*vha
)
3219 uint32_t fcp_prio_addr
;
3220 struct qla_hw_data
*ha
= vha
->hw
;
3222 if (!ha
->fcp_prio_cfg
) {
3223 ha
->fcp_prio_cfg
= vmalloc(FCP_PRIO_CFG_SIZE
);
3224 if (!ha
->fcp_prio_cfg
) {
3225 ql_log(ql_log_warn
, vha
, 0x00d5,
3226 "Unable to allocate memory for fcp priority data (%x).\n",
3228 return QLA_FUNCTION_FAILED
;
3231 memset(ha
->fcp_prio_cfg
, 0, FCP_PRIO_CFG_SIZE
);
3233 fcp_prio_addr
= ha
->flt_region_fcp_prio
;
3235 /* first read the fcp priority data header from flash */
3236 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)ha
->fcp_prio_cfg
,
3237 fcp_prio_addr
<< 2, FCP_PRIO_CFG_HDR_SIZE
);
3239 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 0))
3242 /* read remaining FCP CMD config data from flash */
3243 fcp_prio_addr
+= (FCP_PRIO_CFG_HDR_SIZE
>> 2);
3244 len
= ha
->fcp_prio_cfg
->num_entries
* FCP_PRIO_CFG_ENTRY_SIZE
;
3245 max_len
= FCP_PRIO_CFG_SIZE
- FCP_PRIO_CFG_HDR_SIZE
;
3247 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&ha
->fcp_prio_cfg
->entry
[0],
3248 fcp_prio_addr
<< 2, (len
< max_len
? len
: max_len
));
3250 /* revalidate the entire FCP priority config data, including entries */
3251 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 1))
3254 ha
->flags
.fcp_prio_enabled
= 1;
3257 vfree(ha
->fcp_prio_cfg
);
3258 ha
->fcp_prio_cfg
= NULL
;
3259 return QLA_FUNCTION_FAILED
;