2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
37 #include "spi-pxa2xx.h"
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
44 #define TIMOUT_DFLT 1000
47 * for testing SSCR1 changes that require SSP restart, basically
48 * everything except the service and interrupt enables, the pxa270 developer
49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50 * list, but the PXA255 dev man says all bits without really meaning the
51 * service and interrupt enables
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
61 | QUARK_X1000_SSCR1_EFWR \
62 | QUARK_X1000_SSCR1_RFT \
63 | QUARK_X1000_SSCR1_TFT \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT 9
77 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
80 /* LPSS offset from drv_data->ioaddr */
82 /* Register offsets from drv_data->lpss_base or -1 */
91 /* Chip select control */
92 unsigned cs_sel_shift
;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms
[] = {
104 .reg_capabilities
= -1,
106 .tx_threshold_lo
= 160,
107 .tx_threshold_hi
= 224,
114 .reg_capabilities
= -1,
116 .tx_threshold_lo
= 160,
117 .tx_threshold_hi
= 224,
124 .reg_capabilities
= -1,
126 .tx_threshold_lo
= 160,
127 .tx_threshold_hi
= 224,
129 .cs_sel_mask
= 1 << 2,
137 .reg_capabilities
= -1,
139 .tx_threshold_lo
= 32,
140 .tx_threshold_hi
= 56,
147 .reg_capabilities
= 0xfc,
149 .tx_threshold_lo
= 16,
150 .tx_threshold_hi
= 48,
152 .cs_sel_mask
= 3 << 8,
159 .reg_capabilities
= 0xfc,
161 .tx_threshold_lo
= 32,
162 .tx_threshold_hi
= 56,
164 .cs_sel_mask
= 3 << 8,
168 static inline const struct lpss_config
169 *lpss_get_config(const struct driver_data
*drv_data
)
171 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
174 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
176 switch (drv_data
->ssp_type
) {
189 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
191 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
194 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
196 switch (drv_data
->ssp_type
) {
197 case QUARK_X1000_SSP
:
198 return QUARK_X1000_SSCR1_CHANGE_MASK
;
200 return CE4100_SSCR1_CHANGE_MASK
;
202 return SSCR1_CHANGE_MASK
;
207 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
209 switch (drv_data
->ssp_type
) {
210 case QUARK_X1000_SSP
:
211 return RX_THRESH_QUARK_X1000_DFLT
;
213 return RX_THRESH_CE4100_DFLT
;
215 return RX_THRESH_DFLT
;
219 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
223 switch (drv_data
->ssp_type
) {
224 case QUARK_X1000_SSP
:
225 mask
= QUARK_X1000_SSSR_TFL_MASK
;
228 mask
= CE4100_SSSR_TFL_MASK
;
231 mask
= SSSR_TFL_MASK
;
235 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
238 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
243 switch (drv_data
->ssp_type
) {
244 case QUARK_X1000_SSP
:
245 mask
= QUARK_X1000_SSCR1_RFT
;
248 mask
= CE4100_SSCR1_RFT
;
257 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
258 u32
*sccr1_reg
, u32 threshold
)
260 switch (drv_data
->ssp_type
) {
261 case QUARK_X1000_SSP
:
262 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
265 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
268 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
273 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
274 u32 clk_div
, u8 bits
)
276 switch (drv_data
->ssp_type
) {
277 case QUARK_X1000_SSP
:
279 | QUARK_X1000_SSCR0_Motorola
280 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
285 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
287 | (bits
> 16 ? SSCR0_EDSS
: 0);
292 * Read and write LPSS SSP private registers. Caller must first check that
293 * is_lpss_ssp() returns true before these can be called.
295 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
297 WARN_ON(!drv_data
->lpss_base
);
298 return readl(drv_data
->lpss_base
+ offset
);
301 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
302 unsigned offset
, u32 value
)
304 WARN_ON(!drv_data
->lpss_base
);
305 writel(value
, drv_data
->lpss_base
+ offset
);
309 * lpss_ssp_setup - perform LPSS SSP specific setup
310 * @drv_data: pointer to the driver private data
312 * Perform LPSS SSP specific setup. This function must be called first if
313 * one is going to use LPSS SSP private registers.
315 static void lpss_ssp_setup(struct driver_data
*drv_data
)
317 const struct lpss_config
*config
;
320 config
= lpss_get_config(drv_data
);
321 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
323 /* Enable software chip select control */
324 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
325 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
326 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
327 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
329 /* Enable multiblock DMA transfers */
330 if (drv_data
->master_info
->enable_dma
) {
331 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
333 if (config
->reg_general
>= 0) {
334 value
= __lpss_ssp_read_priv(drv_data
,
335 config
->reg_general
);
336 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
337 __lpss_ssp_write_priv(drv_data
,
338 config
->reg_general
, value
);
343 static void lpss_ssp_select_cs(struct driver_data
*drv_data
,
344 const struct lpss_config
*config
)
348 if (!config
->cs_sel_mask
)
351 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
353 cs
= drv_data
->master
->cur_msg
->spi
->chip_select
;
354 cs
<<= config
->cs_sel_shift
;
355 if (cs
!= (value
& config
->cs_sel_mask
)) {
357 * When switching another chip select output active the
358 * output must be selected first and wait 2 ssp_clk cycles
359 * before changing state to active. Otherwise a short
360 * glitch will occur on the previous chip select since
361 * output select is latched but state control is not.
363 value
&= ~config
->cs_sel_mask
;
365 __lpss_ssp_write_priv(drv_data
,
366 config
->reg_cs_ctrl
, value
);
368 (drv_data
->master
->max_speed_hz
/ 2));
372 static void lpss_ssp_cs_control(struct driver_data
*drv_data
, bool enable
)
374 const struct lpss_config
*config
;
377 config
= lpss_get_config(drv_data
);
380 lpss_ssp_select_cs(drv_data
, config
);
382 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
384 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
386 value
|= LPSS_CS_CONTROL_CS_HIGH
;
387 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
390 static void cs_assert(struct driver_data
*drv_data
)
392 struct chip_data
*chip
=
393 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
395 if (drv_data
->ssp_type
== CE4100_SSP
) {
396 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
400 if (chip
->cs_control
) {
401 chip
->cs_control(PXA2XX_CS_ASSERT
);
405 if (chip
->gpiod_cs
) {
406 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
410 if (is_lpss_ssp(drv_data
))
411 lpss_ssp_cs_control(drv_data
, true);
414 static void cs_deassert(struct driver_data
*drv_data
)
416 struct chip_data
*chip
=
417 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
419 if (drv_data
->ssp_type
== CE4100_SSP
)
422 if (chip
->cs_control
) {
423 chip
->cs_control(PXA2XX_CS_DEASSERT
);
427 if (chip
->gpiod_cs
) {
428 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
432 if (is_lpss_ssp(drv_data
))
433 lpss_ssp_cs_control(drv_data
, false);
436 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
438 unsigned long limit
= loops_per_jiffy
<< 1;
441 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
442 pxa2xx_spi_read(drv_data
, SSDR
);
443 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
444 write_SSSR_CS(drv_data
, SSSR_ROR
);
449 static int null_writer(struct driver_data
*drv_data
)
451 u8 n_bytes
= drv_data
->n_bytes
;
453 if (pxa2xx_spi_txfifo_full(drv_data
)
454 || (drv_data
->tx
== drv_data
->tx_end
))
457 pxa2xx_spi_write(drv_data
, SSDR
, 0);
458 drv_data
->tx
+= n_bytes
;
463 static int null_reader(struct driver_data
*drv_data
)
465 u8 n_bytes
= drv_data
->n_bytes
;
467 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
468 && (drv_data
->rx
< drv_data
->rx_end
)) {
469 pxa2xx_spi_read(drv_data
, SSDR
);
470 drv_data
->rx
+= n_bytes
;
473 return drv_data
->rx
== drv_data
->rx_end
;
476 static int u8_writer(struct driver_data
*drv_data
)
478 if (pxa2xx_spi_txfifo_full(drv_data
)
479 || (drv_data
->tx
== drv_data
->tx_end
))
482 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
488 static int u8_reader(struct driver_data
*drv_data
)
490 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
491 && (drv_data
->rx
< drv_data
->rx_end
)) {
492 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
496 return drv_data
->rx
== drv_data
->rx_end
;
499 static int u16_writer(struct driver_data
*drv_data
)
501 if (pxa2xx_spi_txfifo_full(drv_data
)
502 || (drv_data
->tx
== drv_data
->tx_end
))
505 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
511 static int u16_reader(struct driver_data
*drv_data
)
513 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
514 && (drv_data
->rx
< drv_data
->rx_end
)) {
515 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
519 return drv_data
->rx
== drv_data
->rx_end
;
522 static int u32_writer(struct driver_data
*drv_data
)
524 if (pxa2xx_spi_txfifo_full(drv_data
)
525 || (drv_data
->tx
== drv_data
->tx_end
))
528 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
534 static int u32_reader(struct driver_data
*drv_data
)
536 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
537 && (drv_data
->rx
< drv_data
->rx_end
)) {
538 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
542 return drv_data
->rx
== drv_data
->rx_end
;
545 void *pxa2xx_spi_next_transfer(struct driver_data
*drv_data
)
547 struct spi_message
*msg
= drv_data
->master
->cur_msg
;
548 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
550 /* Move to next transfer */
551 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
552 drv_data
->cur_transfer
=
553 list_entry(trans
->transfer_list
.next
,
556 return RUNNING_STATE
;
561 /* caller already set message->status; dma and pio irqs are blocked */
562 static void giveback(struct driver_data
*drv_data
)
564 struct spi_transfer
* last_transfer
;
565 struct spi_message
*msg
;
566 unsigned long timeout
;
568 msg
= drv_data
->master
->cur_msg
;
569 drv_data
->cur_transfer
= NULL
;
571 last_transfer
= list_last_entry(&msg
->transfers
, struct spi_transfer
,
574 /* Delay if requested before any change in chip select */
575 if (last_transfer
->delay_usecs
)
576 udelay(last_transfer
->delay_usecs
);
578 /* Wait until SSP becomes idle before deasserting the CS */
579 timeout
= jiffies
+ msecs_to_jiffies(10);
580 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
581 !time_after(jiffies
, timeout
))
584 /* Drop chip select UNLESS cs_change is true or we are returning
585 * a message with an error, or next message is for another chip
587 if (!last_transfer
->cs_change
)
588 cs_deassert(drv_data
);
590 struct spi_message
*next_msg
;
592 /* Holding of cs was hinted, but we need to make sure
593 * the next message is for the same chip. Don't waste
594 * time with the following tests unless this was hinted.
596 * We cannot postpone this until pump_messages, because
597 * after calling msg->complete (below) the driver that
598 * sent the current message could be unloaded, which
599 * could invalidate the cs_control() callback...
602 /* get a pointer to the next message, if any */
603 next_msg
= spi_get_next_queued_message(drv_data
->master
);
605 /* see if the next and current messages point
608 if ((next_msg
&& next_msg
->spi
!= msg
->spi
) ||
609 msg
->state
== ERROR_STATE
)
610 cs_deassert(drv_data
);
613 spi_finalize_current_message(drv_data
->master
);
616 static void reset_sccr1(struct driver_data
*drv_data
)
618 struct chip_data
*chip
=
619 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
622 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
623 switch (drv_data
->ssp_type
) {
624 case QUARK_X1000_SSP
:
625 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
628 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
631 sccr1_reg
&= ~SSCR1_RFT
;
634 sccr1_reg
|= chip
->threshold
;
635 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
638 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
640 /* Stop and reset SSP */
641 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
642 reset_sccr1(drv_data
);
643 if (!pxa25x_ssp_comp(drv_data
))
644 pxa2xx_spi_write(drv_data
, SSTO
, 0);
645 pxa2xx_spi_flush(drv_data
);
646 pxa2xx_spi_write(drv_data
, SSCR0
,
647 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
649 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
651 drv_data
->master
->cur_msg
->state
= ERROR_STATE
;
652 tasklet_schedule(&drv_data
->pump_transfers
);
655 static void int_transfer_complete(struct driver_data
*drv_data
)
657 /* Clear and disable interrupts */
658 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
659 reset_sccr1(drv_data
);
660 if (!pxa25x_ssp_comp(drv_data
))
661 pxa2xx_spi_write(drv_data
, SSTO
, 0);
663 /* Update total byte transferred return count actual bytes read */
664 drv_data
->master
->cur_msg
->actual_length
+= drv_data
->len
-
665 (drv_data
->rx_end
- drv_data
->rx
);
667 /* Transfer delays and chip select release are
668 * handled in pump_transfers or giveback
671 /* Move to next transfer */
672 drv_data
->master
->cur_msg
->state
= pxa2xx_spi_next_transfer(drv_data
);
674 /* Schedule transfer tasklet */
675 tasklet_schedule(&drv_data
->pump_transfers
);
678 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
680 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
681 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
683 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
685 if (irq_status
& SSSR_ROR
) {
686 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
690 if (irq_status
& SSSR_TINT
) {
691 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
692 if (drv_data
->read(drv_data
)) {
693 int_transfer_complete(drv_data
);
698 /* Drain rx fifo, Fill tx fifo and prevent overruns */
700 if (drv_data
->read(drv_data
)) {
701 int_transfer_complete(drv_data
);
704 } while (drv_data
->write(drv_data
));
706 if (drv_data
->read(drv_data
)) {
707 int_transfer_complete(drv_data
);
711 if (drv_data
->tx
== drv_data
->tx_end
) {
715 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
716 sccr1_reg
&= ~SSCR1_TIE
;
719 * PXA25x_SSP has no timeout, set up rx threshould for the
720 * remaining RX bytes.
722 if (pxa25x_ssp_comp(drv_data
)) {
725 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
727 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
728 switch (drv_data
->n_bytes
) {
735 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
736 if (rx_thre
> bytes_left
)
737 rx_thre
= bytes_left
;
739 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
741 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
744 /* We did something */
748 static void handle_bad_msg(struct driver_data
*drv_data
)
750 pxa2xx_spi_write(drv_data
, SSCR0
,
751 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
752 pxa2xx_spi_write(drv_data
, SSCR1
,
753 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
754 if (!pxa25x_ssp_comp(drv_data
))
755 pxa2xx_spi_write(drv_data
, SSTO
, 0);
756 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
758 dev_err(&drv_data
->pdev
->dev
,
759 "bad message state in interrupt handler\n");
762 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
764 struct driver_data
*drv_data
= dev_id
;
766 u32 mask
= drv_data
->mask_sr
;
770 * The IRQ might be shared with other peripherals so we must first
771 * check that are we RPM suspended or not. If we are we assume that
772 * the IRQ was not for us (we shouldn't be RPM suspended when the
773 * interrupt is enabled).
775 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
779 * If the device is not yet in RPM suspended state and we get an
780 * interrupt that is meant for another device, check if status bits
781 * are all set to one. That means that the device is already
784 status
= pxa2xx_spi_read(drv_data
, SSSR
);
788 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
790 /* Ignore possible writes if we don't need to write */
791 if (!(sccr1_reg
& SSCR1_TIE
))
794 /* Ignore RX timeout interrupt if it is disabled */
795 if (!(sccr1_reg
& SSCR1_TINTE
))
798 if (!(status
& mask
))
801 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
802 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
804 if (!drv_data
->master
->cur_msg
) {
805 handle_bad_msg(drv_data
);
810 return drv_data
->transfer_handler(drv_data
);
814 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
815 * input frequency by fractions of 2^24. It also has a divider by 5.
817 * There are formulas to get baud rate value for given input frequency and
818 * divider parameters, such as DDS_CLK_RATE and SCR:
822 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
823 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
825 * DDS_CLK_RATE either 2^n or 2^n / 5.
826 * SCR is in range 0 .. 255
828 * Divisor = 5^i * 2^j * 2 * k
829 * i = [0, 1] i = 1 iff j = 0 or j > 3
830 * j = [0, 23] j = 0 iff i = 1
832 * Special case: j = 0, i = 1: Divisor = 2 / 5
834 * Accordingly to the specification the recommended values for DDS_CLK_RATE
836 * Case 1: 2^n, n = [0, 23]
837 * Case 2: 2^24 * 2 / 5 (0x666666)
838 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
840 * In all cases the lowest possible value is better.
842 * The function calculates parameters for all cases and chooses the one closest
843 * to the asked baud rate.
845 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
847 unsigned long xtal
= 200000000;
848 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
851 unsigned long fref1
= fref
/ 2; /* case 1 */
852 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
854 unsigned long q
, q1
, q2
;
860 /* Set initial value for DDS_CLK_RATE */
861 mul
= (1 << 24) >> 1;
863 /* Calculate initial quot */
864 q1
= DIV_ROUND_UP(fref1
, rate
);
866 /* Scale q1 if it's too big */
868 /* Scale q1 to range [1, 512] */
869 scale
= fls_long(q1
- 1);
875 /* Round the result if we have a remainder */
879 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
884 /* Get the remainder */
885 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
889 q2
= DIV_ROUND_UP(fref2
, rate
);
890 r2
= abs(fref2
/ q2
- rate
);
893 * Choose the best between two: less remainder we have the better. We
894 * can't go case 2 if q2 is greater than 256 since SCR register can
895 * hold only values 0 .. 255.
897 if (r2
>= r1
|| q2
> 256) {
898 /* case 1 is better */
902 /* case 2 is better */
905 mul
= (1 << 24) * 2 / 5;
908 /* Check case 3 only if the divisor is big enough */
909 if (fref
/ rate
>= 80) {
913 /* Calculate initial quot */
914 q1
= DIV_ROUND_UP(fref
, rate
);
917 /* Get the remainder */
918 fssp
= (u64
)fref
* m
;
919 do_div(fssp
, 1 << 24);
920 r1
= abs(fssp
- rate
);
922 /* Choose this one if it suits better */
924 /* case 3 is better */
934 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
936 unsigned long ssp_clk
= drv_data
->master
->max_speed_hz
;
937 const struct ssp_device
*ssp
= drv_data
->ssp
;
939 rate
= min_t(int, ssp_clk
, rate
);
941 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
942 return (ssp_clk
/ (2 * rate
) - 1) & 0xff;
944 return (ssp_clk
/ rate
- 1) & 0xfff;
947 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
950 struct chip_data
*chip
=
951 spi_get_ctldata(drv_data
->master
->cur_msg
->spi
);
952 unsigned int clk_div
;
954 switch (drv_data
->ssp_type
) {
955 case QUARK_X1000_SSP
:
956 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
959 clk_div
= ssp_get_clk_div(drv_data
, rate
);
965 static bool pxa2xx_spi_can_dma(struct spi_master
*master
,
966 struct spi_device
*spi
,
967 struct spi_transfer
*xfer
)
969 struct chip_data
*chip
= spi_get_ctldata(spi
);
971 return chip
->enable_dma
&&
972 xfer
->len
<= MAX_DMA_LEN
&&
973 xfer
->len
>= chip
->dma_burst_size
;
976 static void pump_transfers(unsigned long data
)
978 struct driver_data
*drv_data
= (struct driver_data
*)data
;
979 struct spi_master
*master
= drv_data
->master
;
980 struct spi_message
*message
= master
->cur_msg
;
981 struct chip_data
*chip
= spi_get_ctldata(message
->spi
);
982 u32 dma_thresh
= chip
->dma_threshold
;
983 u32 dma_burst
= chip
->dma_burst_size
;
984 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
985 struct spi_transfer
*transfer
;
986 struct spi_transfer
*previous
;
995 /* Get current state information */
996 transfer
= drv_data
->cur_transfer
;
998 /* Handle for abort */
999 if (message
->state
== ERROR_STATE
) {
1000 message
->status
= -EIO
;
1005 /* Handle end of message */
1006 if (message
->state
== DONE_STATE
) {
1007 message
->status
= 0;
1012 /* Delay if requested at end of transfer before CS change */
1013 if (message
->state
== RUNNING_STATE
) {
1014 previous
= list_entry(transfer
->transfer_list
.prev
,
1015 struct spi_transfer
,
1017 if (previous
->delay_usecs
)
1018 udelay(previous
->delay_usecs
);
1020 /* Drop chip select only if cs_change is requested */
1021 if (previous
->cs_change
)
1022 cs_deassert(drv_data
);
1025 /* Check if we can DMA this transfer */
1026 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
1028 /* reject already-mapped transfers; PIO won't always work */
1029 if (message
->is_dma_mapped
1030 || transfer
->rx_dma
|| transfer
->tx_dma
) {
1031 dev_err(&drv_data
->pdev
->dev
,
1032 "pump_transfers: mapped transfer length of "
1033 "%u is greater than %d\n",
1034 transfer
->len
, MAX_DMA_LEN
);
1035 message
->status
= -EINVAL
;
1040 /* warn ... we force this to PIO mode */
1041 dev_warn_ratelimited(&message
->spi
->dev
,
1042 "pump_transfers: DMA disabled for transfer length %ld "
1043 "greater than %d\n",
1044 (long)drv_data
->len
, MAX_DMA_LEN
);
1047 /* Setup the transfer state based on the type of transfer */
1048 if (pxa2xx_spi_flush(drv_data
) == 0) {
1049 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
1050 message
->status
= -EIO
;
1054 drv_data
->n_bytes
= chip
->n_bytes
;
1055 drv_data
->tx
= (void *)transfer
->tx_buf
;
1056 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
1057 drv_data
->rx
= transfer
->rx_buf
;
1058 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
1059 drv_data
->len
= transfer
->len
;
1060 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
1061 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
1063 /* Change speed and bit per word on a per transfer */
1064 bits
= transfer
->bits_per_word
;
1065 speed
= transfer
->speed_hz
;
1067 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
1070 drv_data
->n_bytes
= 1;
1071 drv_data
->read
= drv_data
->read
!= null_reader
?
1072 u8_reader
: null_reader
;
1073 drv_data
->write
= drv_data
->write
!= null_writer
?
1074 u8_writer
: null_writer
;
1075 } else if (bits
<= 16) {
1076 drv_data
->n_bytes
= 2;
1077 drv_data
->read
= drv_data
->read
!= null_reader
?
1078 u16_reader
: null_reader
;
1079 drv_data
->write
= drv_data
->write
!= null_writer
?
1080 u16_writer
: null_writer
;
1081 } else if (bits
<= 32) {
1082 drv_data
->n_bytes
= 4;
1083 drv_data
->read
= drv_data
->read
!= null_reader
?
1084 u32_reader
: null_reader
;
1085 drv_data
->write
= drv_data
->write
!= null_writer
?
1086 u32_writer
: null_writer
;
1089 * if bits/word is changed in dma mode, then must check the
1090 * thresholds and burst also
1092 if (chip
->enable_dma
) {
1093 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1097 dev_warn_ratelimited(&message
->spi
->dev
,
1098 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1101 message
->state
= RUNNING_STATE
;
1103 dma_mapped
= master
->can_dma
&&
1104 master
->can_dma(master
, message
->spi
, transfer
) &&
1105 master
->cur_msg_mapped
;
1108 /* Ensure we have the correct interrupt handler */
1109 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1111 err
= pxa2xx_spi_dma_prepare(drv_data
, dma_burst
);
1113 message
->status
= err
;
1118 /* Clear status and start DMA engine */
1119 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1120 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1122 pxa2xx_spi_dma_start(drv_data
);
1124 /* Ensure we have the correct interrupt handler */
1125 drv_data
->transfer_handler
= interrupt_transfer
;
1128 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1129 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1132 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1133 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1134 if (!pxa25x_ssp_comp(drv_data
))
1135 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1136 master
->max_speed_hz
1137 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1138 dma_mapped
? "DMA" : "PIO");
1140 dev_dbg(&message
->spi
->dev
, "%u Hz actual, %s\n",
1141 master
->max_speed_hz
/ 2
1142 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1143 dma_mapped
? "DMA" : "PIO");
1145 if (is_lpss_ssp(drv_data
)) {
1146 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1147 != chip
->lpss_rx_threshold
)
1148 pxa2xx_spi_write(drv_data
, SSIRF
,
1149 chip
->lpss_rx_threshold
);
1150 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1151 != chip
->lpss_tx_threshold
)
1152 pxa2xx_spi_write(drv_data
, SSITF
,
1153 chip
->lpss_tx_threshold
);
1156 if (is_quark_x1000_ssp(drv_data
) &&
1157 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1158 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1160 /* see if we need to reload the config registers */
1161 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1162 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1163 != (cr1
& change_mask
)) {
1164 /* stop the SSP, and update the other bits */
1165 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1166 if (!pxa25x_ssp_comp(drv_data
))
1167 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1168 /* first set CR1 without interrupt and service enables */
1169 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1170 /* restart the SSP */
1171 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1174 if (!pxa25x_ssp_comp(drv_data
))
1175 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1178 cs_assert(drv_data
);
1180 /* after chip select, release the data by enabling service
1181 * requests and interrupts, without changing any mode bits */
1182 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1185 static int pxa2xx_spi_transfer_one_message(struct spi_master
*master
,
1186 struct spi_message
*msg
)
1188 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1190 /* Initial message state*/
1191 msg
->state
= START_STATE
;
1192 drv_data
->cur_transfer
= list_entry(msg
->transfers
.next
,
1193 struct spi_transfer
,
1196 /* Mark as busy and launch transfers */
1197 tasklet_schedule(&drv_data
->pump_transfers
);
1201 static int pxa2xx_spi_unprepare_transfer(struct spi_master
*master
)
1203 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1205 /* Disable the SSP now */
1206 pxa2xx_spi_write(drv_data
, SSCR0
,
1207 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
1212 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1213 struct pxa2xx_spi_chip
*chip_info
)
1215 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1216 struct gpio_desc
*gpiod
;
1222 if (drv_data
->cs_gpiods
) {
1223 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1225 chip
->gpiod_cs
= gpiod
;
1226 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1227 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1233 if (chip_info
== NULL
)
1236 /* NOTE: setup() can be called multiple times, possibly with
1237 * different chip_info, release previously requested GPIO
1239 if (chip
->gpiod_cs
) {
1240 gpiod_put(chip
->gpiod_cs
);
1241 chip
->gpiod_cs
= NULL
;
1244 /* If (*cs_control) is provided, ignore GPIO chip select */
1245 if (chip_info
->cs_control
) {
1246 chip
->cs_control
= chip_info
->cs_control
;
1250 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1251 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1253 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1254 chip_info
->gpio_cs
);
1258 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1259 chip
->gpiod_cs
= gpiod
;
1260 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1262 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1268 static int setup(struct spi_device
*spi
)
1270 struct pxa2xx_spi_chip
*chip_info
;
1271 struct chip_data
*chip
;
1272 const struct lpss_config
*config
;
1273 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1274 uint tx_thres
, tx_hi_thres
, rx_thres
;
1276 switch (drv_data
->ssp_type
) {
1277 case QUARK_X1000_SSP
:
1278 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1280 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1283 tx_thres
= TX_THRESH_CE4100_DFLT
;
1285 rx_thres
= RX_THRESH_CE4100_DFLT
;
1293 config
= lpss_get_config(drv_data
);
1294 tx_thres
= config
->tx_threshold_lo
;
1295 tx_hi_thres
= config
->tx_threshold_hi
;
1296 rx_thres
= config
->rx_threshold
;
1299 tx_thres
= TX_THRESH_DFLT
;
1301 rx_thres
= RX_THRESH_DFLT
;
1305 /* Only alloc on first setup */
1306 chip
= spi_get_ctldata(spi
);
1308 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1312 if (drv_data
->ssp_type
== CE4100_SSP
) {
1313 if (spi
->chip_select
> 4) {
1315 "failed setup: cs number must not be > 4.\n");
1320 chip
->frm
= spi
->chip_select
;
1322 chip
->enable_dma
= drv_data
->master_info
->enable_dma
;
1323 chip
->timeout
= TIMOUT_DFLT
;
1326 /* protocol drivers may change the chip settings, so...
1327 * if chip_info exists, use it */
1328 chip_info
= spi
->controller_data
;
1330 /* chip_info isn't always needed */
1333 if (chip_info
->timeout
)
1334 chip
->timeout
= chip_info
->timeout
;
1335 if (chip_info
->tx_threshold
)
1336 tx_thres
= chip_info
->tx_threshold
;
1337 if (chip_info
->tx_hi_threshold
)
1338 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1339 if (chip_info
->rx_threshold
)
1340 rx_thres
= chip_info
->rx_threshold
;
1341 chip
->dma_threshold
= 0;
1342 if (chip_info
->enable_loopback
)
1343 chip
->cr1
= SSCR1_LBM
;
1346 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1347 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1348 | SSITF_TxHiThresh(tx_hi_thres
);
1350 /* set dma burst and threshold outside of chip_info path so that if
1351 * chip_info goes away after setting chip->enable_dma, the
1352 * burst and threshold can still respond to changes in bits_per_word */
1353 if (chip
->enable_dma
) {
1354 /* set up legal burst and threshold for dma */
1355 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1357 &chip
->dma_burst_size
,
1358 &chip
->dma_threshold
)) {
1360 "in setup: DMA burst size reduced to match bits_per_word\n");
1364 switch (drv_data
->ssp_type
) {
1365 case QUARK_X1000_SSP
:
1366 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1367 & QUARK_X1000_SSCR1_RFT
)
1368 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1369 & QUARK_X1000_SSCR1_TFT
);
1372 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1373 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1376 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1377 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1381 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1382 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1383 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1385 if (spi
->mode
& SPI_LOOP
)
1386 chip
->cr1
|= SSCR1_LBM
;
1388 if (spi
->bits_per_word
<= 8) {
1390 chip
->read
= u8_reader
;
1391 chip
->write
= u8_writer
;
1392 } else if (spi
->bits_per_word
<= 16) {
1394 chip
->read
= u16_reader
;
1395 chip
->write
= u16_writer
;
1396 } else if (spi
->bits_per_word
<= 32) {
1398 chip
->read
= u32_reader
;
1399 chip
->write
= u32_writer
;
1402 spi_set_ctldata(spi
, chip
);
1404 if (drv_data
->ssp_type
== CE4100_SSP
)
1407 return setup_cs(spi
, chip
, chip_info
);
1410 static void cleanup(struct spi_device
*spi
)
1412 struct chip_data
*chip
= spi_get_ctldata(spi
);
1413 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1418 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1420 gpiod_put(chip
->gpiod_cs
);
1428 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1429 { "INT33C0", LPSS_LPT_SSP
},
1430 { "INT33C1", LPSS_LPT_SSP
},
1431 { "INT3430", LPSS_LPT_SSP
},
1432 { "INT3431", LPSS_LPT_SSP
},
1433 { "80860F0E", LPSS_BYT_SSP
},
1434 { "8086228E", LPSS_BSW_SSP
},
1437 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1439 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1444 if (adev
&& adev
->pnp
.unique_id
&&
1445 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1449 #else /* !CONFIG_ACPI */
1450 static int pxa2xx_spi_get_port_id(struct acpi_device
*adev
)
1457 * PCI IDs of compound devices that integrate both host controller and private
1458 * integrated DMA engine. Please note these are not used in module
1459 * autoloading and probing in this module but matching the LPSS SSP type.
1461 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1463 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1464 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1466 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1467 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1469 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1470 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1472 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1473 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1474 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1476 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1477 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1478 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1480 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1481 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1482 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1484 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1485 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1486 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1488 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1489 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1490 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1492 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1493 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1494 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1498 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1500 struct device
*dev
= param
;
1502 if (dev
!= chan
->device
->dev
->parent
)
1508 static struct pxa2xx_spi_master
*
1509 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1511 struct pxa2xx_spi_master
*pdata
;
1512 struct acpi_device
*adev
;
1513 struct ssp_device
*ssp
;
1514 struct resource
*res
;
1515 const struct acpi_device_id
*adev_id
= NULL
;
1516 const struct pci_device_id
*pcidev_id
= NULL
;
1519 adev
= ACPI_COMPANION(&pdev
->dev
);
1521 if (dev_is_pci(pdev
->dev
.parent
))
1522 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
,
1523 to_pci_dev(pdev
->dev
.parent
));
1525 adev_id
= acpi_match_device(pdev
->dev
.driver
->acpi_match_table
,
1531 type
= (int)adev_id
->driver_data
;
1533 type
= (int)pcidev_id
->driver_data
;
1537 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1541 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1547 ssp
->phys_base
= res
->start
;
1548 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1549 if (IS_ERR(ssp
->mmio_base
))
1553 pdata
->tx_param
= pdev
->dev
.parent
;
1554 pdata
->rx_param
= pdev
->dev
.parent
;
1555 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1558 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1559 ssp
->irq
= platform_get_irq(pdev
, 0);
1562 ssp
->port_id
= pxa2xx_spi_get_port_id(adev
);
1564 pdata
->num_chipselect
= 1;
1565 pdata
->enable_dma
= true;
1570 #else /* !CONFIG_PCI */
1571 static inline struct pxa2xx_spi_master
*
1572 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1578 static int pxa2xx_spi_fw_translate_cs(struct spi_master
*master
, unsigned cs
)
1580 struct driver_data
*drv_data
= spi_master_get_devdata(master
);
1582 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1583 switch (drv_data
->ssp_type
) {
1585 * For Atoms the ACPI DeviceSelection used by the Windows
1586 * driver starts from 1 instead of 0 so translate it here
1587 * to match what Linux expects.
1601 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1603 struct device
*dev
= &pdev
->dev
;
1604 struct pxa2xx_spi_master
*platform_info
;
1605 struct spi_master
*master
;
1606 struct driver_data
*drv_data
;
1607 struct ssp_device
*ssp
;
1608 const struct lpss_config
*config
;
1612 platform_info
= dev_get_platdata(dev
);
1613 if (!platform_info
) {
1614 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1615 if (!platform_info
) {
1616 dev_err(&pdev
->dev
, "missing platform data\n");
1621 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1623 ssp
= &platform_info
->ssp
;
1625 if (!ssp
->mmio_base
) {
1626 dev_err(&pdev
->dev
, "failed to get ssp\n");
1630 master
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1632 dev_err(&pdev
->dev
, "cannot alloc spi_master\n");
1636 drv_data
= spi_master_get_devdata(master
);
1637 drv_data
->master
= master
;
1638 drv_data
->master_info
= platform_info
;
1639 drv_data
->pdev
= pdev
;
1640 drv_data
->ssp
= ssp
;
1642 master
->dev
.of_node
= pdev
->dev
.of_node
;
1643 /* the spi->mode bits understood by this driver: */
1644 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1646 master
->bus_num
= ssp
->port_id
;
1647 master
->dma_alignment
= DMA_ALIGNMENT
;
1648 master
->cleanup
= cleanup
;
1649 master
->setup
= setup
;
1650 master
->transfer_one_message
= pxa2xx_spi_transfer_one_message
;
1651 master
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1652 master
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1653 master
->auto_runtime_pm
= true;
1654 master
->flags
= SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
;
1656 drv_data
->ssp_type
= ssp
->type
;
1658 drv_data
->ioaddr
= ssp
->mmio_base
;
1659 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1660 if (pxa25x_ssp_comp(drv_data
)) {
1661 switch (drv_data
->ssp_type
) {
1662 case QUARK_X1000_SSP
:
1663 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1666 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1670 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1671 drv_data
->dma_cr1
= 0;
1672 drv_data
->clear_sr
= SSSR_ROR
;
1673 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1675 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1676 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1677 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1678 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1679 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1682 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1685 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1686 goto out_error_master_alloc
;
1689 /* Setup DMA if requested */
1690 if (platform_info
->enable_dma
) {
1691 status
= pxa2xx_spi_dma_setup(drv_data
);
1693 dev_dbg(dev
, "no DMA channels available, using PIO\n");
1694 platform_info
->enable_dma
= false;
1696 master
->can_dma
= pxa2xx_spi_can_dma
;
1700 /* Enable SOC clock */
1701 clk_prepare_enable(ssp
->clk
);
1703 master
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1705 /* Load default SSP configuration */
1706 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1707 switch (drv_data
->ssp_type
) {
1708 case QUARK_X1000_SSP
:
1709 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1710 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1711 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1713 /* using the Motorola SPI protocol and use 8 bit frame */
1714 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1715 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1718 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1719 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1720 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1721 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1722 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1725 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1726 SSCR1_TxTresh(TX_THRESH_DFLT
);
1727 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1728 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1729 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1733 if (!pxa25x_ssp_comp(drv_data
))
1734 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1736 if (!is_quark_x1000_ssp(drv_data
))
1737 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1739 if (is_lpss_ssp(drv_data
)) {
1740 lpss_ssp_setup(drv_data
);
1741 config
= lpss_get_config(drv_data
);
1742 if (config
->reg_capabilities
>= 0) {
1743 tmp
= __lpss_ssp_read_priv(drv_data
,
1744 config
->reg_capabilities
);
1745 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1746 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1747 platform_info
->num_chipselect
= ffz(tmp
);
1748 } else if (config
->cs_num
) {
1749 platform_info
->num_chipselect
= config
->cs_num
;
1752 master
->num_chipselect
= platform_info
->num_chipselect
;
1754 count
= gpiod_count(&pdev
->dev
, "cs");
1758 master
->num_chipselect
= max_t(int, count
,
1759 master
->num_chipselect
);
1761 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1762 master
->num_chipselect
, sizeof(struct gpio_desc
*),
1764 if (!drv_data
->cs_gpiods
) {
1766 goto out_error_clock_enabled
;
1769 for (i
= 0; i
< master
->num_chipselect
; i
++) {
1770 struct gpio_desc
*gpiod
;
1772 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1773 if (IS_ERR(gpiod
)) {
1774 /* Means use native chip select */
1775 if (PTR_ERR(gpiod
) == -ENOENT
)
1778 status
= (int)PTR_ERR(gpiod
);
1779 goto out_error_clock_enabled
;
1781 drv_data
->cs_gpiods
[i
] = gpiod
;
1786 tasklet_init(&drv_data
->pump_transfers
, pump_transfers
,
1787 (unsigned long)drv_data
);
1789 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1790 pm_runtime_use_autosuspend(&pdev
->dev
);
1791 pm_runtime_set_active(&pdev
->dev
);
1792 pm_runtime_enable(&pdev
->dev
);
1794 /* Register with the SPI framework */
1795 platform_set_drvdata(pdev
, drv_data
);
1796 status
= devm_spi_register_master(&pdev
->dev
, master
);
1798 dev_err(&pdev
->dev
, "problem registering spi master\n");
1799 goto out_error_clock_enabled
;
1804 out_error_clock_enabled
:
1805 clk_disable_unprepare(ssp
->clk
);
1806 pxa2xx_spi_dma_release(drv_data
);
1807 free_irq(ssp
->irq
, drv_data
);
1809 out_error_master_alloc
:
1810 spi_master_put(master
);
1815 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1817 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1818 struct ssp_device
*ssp
;
1822 ssp
= drv_data
->ssp
;
1824 pm_runtime_get_sync(&pdev
->dev
);
1826 /* Disable the SSP at the peripheral and SOC level */
1827 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1828 clk_disable_unprepare(ssp
->clk
);
1831 if (drv_data
->master_info
->enable_dma
)
1832 pxa2xx_spi_dma_release(drv_data
);
1834 pm_runtime_put_noidle(&pdev
->dev
);
1835 pm_runtime_disable(&pdev
->dev
);
1838 free_irq(ssp
->irq
, drv_data
);
1846 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1850 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1851 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1854 #ifdef CONFIG_PM_SLEEP
1855 static int pxa2xx_spi_suspend(struct device
*dev
)
1857 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1858 struct ssp_device
*ssp
= drv_data
->ssp
;
1861 status
= spi_master_suspend(drv_data
->master
);
1864 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1866 if (!pm_runtime_suspended(dev
))
1867 clk_disable_unprepare(ssp
->clk
);
1872 static int pxa2xx_spi_resume(struct device
*dev
)
1874 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1875 struct ssp_device
*ssp
= drv_data
->ssp
;
1878 /* Enable the SSP clock */
1879 if (!pm_runtime_suspended(dev
))
1880 clk_prepare_enable(ssp
->clk
);
1882 /* Restore LPSS private register bits */
1883 if (is_lpss_ssp(drv_data
))
1884 lpss_ssp_setup(drv_data
);
1886 /* Start the queue running */
1887 status
= spi_master_resume(drv_data
->master
);
1889 dev_err(dev
, "problem starting queue (%d)\n", status
);
1898 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1900 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1902 clk_disable_unprepare(drv_data
->ssp
->clk
);
1906 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1908 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1910 clk_prepare_enable(drv_data
->ssp
->clk
);
1915 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1916 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1917 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1918 pxa2xx_spi_runtime_resume
, NULL
)
1921 static struct platform_driver driver
= {
1923 .name
= "pxa2xx-spi",
1924 .pm
= &pxa2xx_spi_pm_ops
,
1925 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
1927 .probe
= pxa2xx_spi_probe
,
1928 .remove
= pxa2xx_spi_remove
,
1929 .shutdown
= pxa2xx_spi_shutdown
,
1932 static int __init
pxa2xx_spi_init(void)
1934 return platform_driver_register(&driver
);
1936 subsys_initcall(pxa2xx_spi_init
);
1938 static void __exit
pxa2xx_spi_exit(void)
1940 platform_driver_unregister(&driver
);
1942 module_exit(pxa2xx_spi_exit
);