2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/reset.h>
25 #include <linux/spi/spi.h>
27 #define SUN6I_FIFO_DEPTH 128
28 #define SUN8I_FIFO_DEPTH 64
30 #define SUN6I_GBL_CTL_REG 0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
32 #define SUN6I_GBL_CTL_MASTER BIT(1)
33 #define SUN6I_GBL_CTL_TP BIT(7)
34 #define SUN6I_GBL_CTL_RST BIT(31)
36 #define SUN6I_TFR_CTL_REG 0x08
37 #define SUN6I_TFR_CTL_CPHA BIT(0)
38 #define SUN6I_TFR_CTL_CPOL BIT(1)
39 #define SUN6I_TFR_CTL_SPOL BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK 0x30
41 #define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
44 #define SUN6I_TFR_CTL_DHB BIT(8)
45 #define SUN6I_TFR_CTL_FBS BIT(12)
46 #define SUN6I_TFR_CTL_XCH BIT(31)
48 #define SUN6I_INT_CTL_REG 0x10
49 #define SUN6I_INT_CTL_RF_RDY BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF BIT(8)
52 #define SUN6I_INT_CTL_TC BIT(12)
54 #define SUN6I_INT_STA_REG 0x14
56 #define SUN6I_FIFO_CTL_REG 0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
58 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
59 #define SUN6I_FIFO_CTL_RF_RST BIT(15)
60 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
62 #define SUN6I_FIFO_CTL_TF_RST BIT(31)
64 #define SUN6I_FIFO_STA_REG 0x1c
65 #define SUN6I_FIFO_STA_RF_CNT_MASK 0x7f
66 #define SUN6I_FIFO_STA_RF_CNT_BITS 0
67 #define SUN6I_FIFO_STA_TF_CNT_MASK 0x7f
68 #define SUN6I_FIFO_STA_TF_CNT_BITS 16
70 #define SUN6I_CLK_CTL_REG 0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK 0xff
72 #define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK 0xf
74 #define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS BIT(12)
77 #define SUN6I_MAX_XFER_SIZE 0xffffff
79 #define SUN6I_BURST_CNT_REG 0x30
80 #define SUN6I_BURST_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
82 #define SUN6I_XMIT_CNT_REG 0x34
83 #define SUN6I_XMIT_CNT(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
85 #define SUN6I_BURST_CTL_CNT_REG 0x38
86 #define SUN6I_BURST_CTL_CNT_STC(cnt) ((cnt) & SUN6I_MAX_XFER_SIZE)
88 #define SUN6I_TXDATA_REG 0x200
89 #define SUN6I_RXDATA_REG 0x300
92 struct spi_master
*master
;
93 void __iomem
*base_addr
;
96 struct reset_control
*rstc
;
98 struct completion done
;
103 unsigned long fifo_depth
;
106 static inline u32
sun6i_spi_read(struct sun6i_spi
*sspi
, u32 reg
)
108 return readl(sspi
->base_addr
+ reg
);
111 static inline void sun6i_spi_write(struct sun6i_spi
*sspi
, u32 reg
, u32 value
)
113 writel(value
, sspi
->base_addr
+ reg
);
116 static inline u32
sun6i_spi_get_tx_fifo_count(struct sun6i_spi
*sspi
)
118 u32 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
120 reg
>>= SUN6I_FIFO_STA_TF_CNT_BITS
;
122 return reg
& SUN6I_FIFO_STA_TF_CNT_MASK
;
125 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi
*sspi
, u32 mask
)
127 u32 reg
= sun6i_spi_read(sspi
, SUN6I_INT_CTL_REG
);
130 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
133 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi
*sspi
, u32 mask
)
135 u32 reg
= sun6i_spi_read(sspi
, SUN6I_INT_CTL_REG
);
138 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, reg
);
141 static inline void sun6i_spi_drain_fifo(struct sun6i_spi
*sspi
, int len
)
146 /* See how much data is available */
147 reg
= sun6i_spi_read(sspi
, SUN6I_FIFO_STA_REG
);
148 reg
&= SUN6I_FIFO_STA_RF_CNT_MASK
;
149 cnt
= reg
>> SUN6I_FIFO_STA_RF_CNT_BITS
;
155 byte
= readb(sspi
->base_addr
+ SUN6I_RXDATA_REG
);
157 *sspi
->rx_buf
++ = byte
;
161 static inline void sun6i_spi_fill_fifo(struct sun6i_spi
*sspi
, int len
)
166 /* See how much data we can fit */
167 cnt
= sspi
->fifo_depth
- sun6i_spi_get_tx_fifo_count(sspi
);
169 len
= min3(len
, (int)cnt
, sspi
->len
);
172 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
173 writeb(byte
, sspi
->base_addr
+ SUN6I_TXDATA_REG
);
178 static void sun6i_spi_set_cs(struct spi_device
*spi
, bool enable
)
180 struct sun6i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
183 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
184 reg
&= ~SUN6I_TFR_CTL_CS_MASK
;
185 reg
|= SUN6I_TFR_CTL_CS(spi
->chip_select
);
188 reg
|= SUN6I_TFR_CTL_CS_LEVEL
;
190 reg
&= ~SUN6I_TFR_CTL_CS_LEVEL
;
192 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
195 static size_t sun6i_spi_max_transfer_size(struct spi_device
*spi
)
197 return SUN6I_MAX_XFER_SIZE
- 1;
200 static int sun6i_spi_transfer_one(struct spi_master
*master
,
201 struct spi_device
*spi
,
202 struct spi_transfer
*tfr
)
204 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
205 unsigned int mclk_rate
, div
, timeout
;
206 unsigned int start
, end
, tx_time
;
207 unsigned int trig_level
;
208 unsigned int tx_len
= 0;
212 if (tfr
->len
> SUN6I_MAX_XFER_SIZE
)
215 reinit_completion(&sspi
->done
);
216 sspi
->tx_buf
= tfr
->tx_buf
;
217 sspi
->rx_buf
= tfr
->rx_buf
;
218 sspi
->len
= tfr
->len
;
220 /* Clear pending interrupts */
221 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, ~0);
224 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
225 SUN6I_FIFO_CTL_RF_RST
| SUN6I_FIFO_CTL_TF_RST
);
228 * Setup FIFO interrupt trigger level
229 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
230 * value used in old generation of Allwinner SPI controller.
233 trig_level
= sspi
->fifo_depth
/ 4 * 3;
234 sun6i_spi_write(sspi
, SUN6I_FIFO_CTL_REG
,
235 (trig_level
<< SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS
) |
236 (trig_level
<< SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS
));
239 * Setup the transfer control register: Chip Select,
242 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
244 if (spi
->mode
& SPI_CPOL
)
245 reg
|= SUN6I_TFR_CTL_CPOL
;
247 reg
&= ~SUN6I_TFR_CTL_CPOL
;
249 if (spi
->mode
& SPI_CPHA
)
250 reg
|= SUN6I_TFR_CTL_CPHA
;
252 reg
&= ~SUN6I_TFR_CTL_CPHA
;
254 if (spi
->mode
& SPI_LSB_FIRST
)
255 reg
|= SUN6I_TFR_CTL_FBS
;
257 reg
&= ~SUN6I_TFR_CTL_FBS
;
260 * If it's a TX only transfer, we don't want to fill the RX
261 * FIFO with bogus data
264 reg
&= ~SUN6I_TFR_CTL_DHB
;
266 reg
|= SUN6I_TFR_CTL_DHB
;
268 /* We want to control the chip select manually */
269 reg
|= SUN6I_TFR_CTL_CS_MANUAL
;
271 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
);
273 /* Ensure that we have a parent clock fast enough */
274 mclk_rate
= clk_get_rate(sspi
->mclk
);
275 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
276 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
277 mclk_rate
= clk_get_rate(sspi
->mclk
);
281 * Setup clock divider.
283 * We have two choices there. Either we can use the clock
284 * divide rate 1, which is calculated thanks to this formula:
285 * SPI_CLK = MOD_CLK / (2 ^ cdr)
286 * Or we can use CDR2, which is calculated with the formula:
287 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
288 * Wether we use the former or the latter is set through the
291 * First try CDR2, and if we can't reach the expected
292 * frequency, fall back to CDR1.
294 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
295 if (div
<= (SUN6I_CLK_CTL_CDR2_MASK
+ 1)) {
299 reg
= SUN6I_CLK_CTL_CDR2(div
) | SUN6I_CLK_CTL_DRS
;
301 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
302 reg
= SUN6I_CLK_CTL_CDR1(div
);
305 sun6i_spi_write(sspi
, SUN6I_CLK_CTL_REG
, reg
);
307 /* Setup the transfer now... */
311 /* Setup the counters */
312 sun6i_spi_write(sspi
, SUN6I_BURST_CNT_REG
, SUN6I_BURST_CNT(tfr
->len
));
313 sun6i_spi_write(sspi
, SUN6I_XMIT_CNT_REG
, SUN6I_XMIT_CNT(tx_len
));
314 sun6i_spi_write(sspi
, SUN6I_BURST_CTL_CNT_REG
,
315 SUN6I_BURST_CTL_CNT_STC(tx_len
));
317 /* Fill the TX FIFO */
318 sun6i_spi_fill_fifo(sspi
, sspi
->fifo_depth
);
320 /* Enable the interrupts */
321 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, SUN6I_INT_CTL_TC
);
322 sun6i_spi_enable_interrupt(sspi
, SUN6I_INT_CTL_TC
|
323 SUN6I_INT_CTL_RF_RDY
);
324 if (tx_len
> sspi
->fifo_depth
)
325 sun6i_spi_enable_interrupt(sspi
, SUN6I_INT_CTL_TF_ERQ
);
327 /* Start the transfer */
328 reg
= sun6i_spi_read(sspi
, SUN6I_TFR_CTL_REG
);
329 sun6i_spi_write(sspi
, SUN6I_TFR_CTL_REG
, reg
| SUN6I_TFR_CTL_XCH
);
331 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
333 timeout
= wait_for_completion_timeout(&sspi
->done
,
334 msecs_to_jiffies(tx_time
));
337 dev_warn(&master
->dev
,
338 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
339 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
340 jiffies_to_msecs(end
- start
), tx_time
);
346 sun6i_spi_write(sspi
, SUN6I_INT_CTL_REG
, 0);
351 static irqreturn_t
sun6i_spi_handler(int irq
, void *dev_id
)
353 struct sun6i_spi
*sspi
= dev_id
;
354 u32 status
= sun6i_spi_read(sspi
, SUN6I_INT_STA_REG
);
356 /* Transfer complete */
357 if (status
& SUN6I_INT_CTL_TC
) {
358 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TC
);
359 sun6i_spi_drain_fifo(sspi
, sspi
->fifo_depth
);
360 complete(&sspi
->done
);
364 /* Receive FIFO 3/4 full */
365 if (status
& SUN6I_INT_CTL_RF_RDY
) {
366 sun6i_spi_drain_fifo(sspi
, SUN6I_FIFO_DEPTH
);
367 /* Only clear the interrupt _after_ draining the FIFO */
368 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_RF_RDY
);
372 /* Transmit FIFO 3/4 empty */
373 if (status
& SUN6I_INT_CTL_TF_ERQ
) {
374 sun6i_spi_fill_fifo(sspi
, SUN6I_FIFO_DEPTH
);
377 /* nothing left to transmit */
378 sun6i_spi_disable_interrupt(sspi
, SUN6I_INT_CTL_TF_ERQ
);
380 /* Only clear the interrupt _after_ re-seeding the FIFO */
381 sun6i_spi_write(sspi
, SUN6I_INT_STA_REG
, SUN6I_INT_CTL_TF_ERQ
);
389 static int sun6i_spi_runtime_resume(struct device
*dev
)
391 struct spi_master
*master
= dev_get_drvdata(dev
);
392 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
395 ret
= clk_prepare_enable(sspi
->hclk
);
397 dev_err(dev
, "Couldn't enable AHB clock\n");
401 ret
= clk_prepare_enable(sspi
->mclk
);
403 dev_err(dev
, "Couldn't enable module clock\n");
407 ret
= reset_control_deassert(sspi
->rstc
);
409 dev_err(dev
, "Couldn't deassert the device from reset\n");
413 sun6i_spi_write(sspi
, SUN6I_GBL_CTL_REG
,
414 SUN6I_GBL_CTL_BUS_ENABLE
| SUN6I_GBL_CTL_MASTER
| SUN6I_GBL_CTL_TP
);
419 clk_disable_unprepare(sspi
->mclk
);
421 clk_disable_unprepare(sspi
->hclk
);
426 static int sun6i_spi_runtime_suspend(struct device
*dev
)
428 struct spi_master
*master
= dev_get_drvdata(dev
);
429 struct sun6i_spi
*sspi
= spi_master_get_devdata(master
);
431 reset_control_assert(sspi
->rstc
);
432 clk_disable_unprepare(sspi
->mclk
);
433 clk_disable_unprepare(sspi
->hclk
);
438 static int sun6i_spi_probe(struct platform_device
*pdev
)
440 struct spi_master
*master
;
441 struct sun6i_spi
*sspi
;
442 struct resource
*res
;
445 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun6i_spi
));
447 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
451 platform_set_drvdata(pdev
, master
);
452 sspi
= spi_master_get_devdata(master
);
454 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
455 sspi
->base_addr
= devm_ioremap_resource(&pdev
->dev
, res
);
456 if (IS_ERR(sspi
->base_addr
)) {
457 ret
= PTR_ERR(sspi
->base_addr
);
458 goto err_free_master
;
461 irq
= platform_get_irq(pdev
, 0);
463 dev_err(&pdev
->dev
, "No spi IRQ specified\n");
465 goto err_free_master
;
468 ret
= devm_request_irq(&pdev
->dev
, irq
, sun6i_spi_handler
,
469 0, "sun6i-spi", sspi
);
471 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
472 goto err_free_master
;
475 sspi
->master
= master
;
476 sspi
->fifo_depth
= (unsigned long)of_device_get_match_data(&pdev
->dev
);
478 master
->max_speed_hz
= 100 * 1000 * 1000;
479 master
->min_speed_hz
= 3 * 1000;
480 master
->set_cs
= sun6i_spi_set_cs
;
481 master
->transfer_one
= sun6i_spi_transfer_one
;
482 master
->num_chipselect
= 4;
483 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
484 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
485 master
->dev
.of_node
= pdev
->dev
.of_node
;
486 master
->auto_runtime_pm
= true;
487 master
->max_transfer_size
= sun6i_spi_max_transfer_size
;
489 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
490 if (IS_ERR(sspi
->hclk
)) {
491 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
492 ret
= PTR_ERR(sspi
->hclk
);
493 goto err_free_master
;
496 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
497 if (IS_ERR(sspi
->mclk
)) {
498 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
499 ret
= PTR_ERR(sspi
->mclk
);
500 goto err_free_master
;
503 init_completion(&sspi
->done
);
505 sspi
->rstc
= devm_reset_control_get_exclusive(&pdev
->dev
, NULL
);
506 if (IS_ERR(sspi
->rstc
)) {
507 dev_err(&pdev
->dev
, "Couldn't get reset controller\n");
508 ret
= PTR_ERR(sspi
->rstc
);
509 goto err_free_master
;
513 * This wake-up/shutdown pattern is to be able to have the
514 * device woken up, even if runtime_pm is disabled
516 ret
= sun6i_spi_runtime_resume(&pdev
->dev
);
518 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
519 goto err_free_master
;
522 pm_runtime_set_active(&pdev
->dev
);
523 pm_runtime_enable(&pdev
->dev
);
524 pm_runtime_idle(&pdev
->dev
);
526 ret
= devm_spi_register_master(&pdev
->dev
, master
);
528 dev_err(&pdev
->dev
, "cannot register SPI master\n");
535 pm_runtime_disable(&pdev
->dev
);
536 sun6i_spi_runtime_suspend(&pdev
->dev
);
538 spi_master_put(master
);
542 static int sun6i_spi_remove(struct platform_device
*pdev
)
544 pm_runtime_force_suspend(&pdev
->dev
);
549 static const struct of_device_id sun6i_spi_match
[] = {
550 { .compatible
= "allwinner,sun6i-a31-spi", .data
= (void *)SUN6I_FIFO_DEPTH
},
551 { .compatible
= "allwinner,sun8i-h3-spi", .data
= (void *)SUN8I_FIFO_DEPTH
},
554 MODULE_DEVICE_TABLE(of
, sun6i_spi_match
);
556 static const struct dev_pm_ops sun6i_spi_pm_ops
= {
557 .runtime_resume
= sun6i_spi_runtime_resume
,
558 .runtime_suspend
= sun6i_spi_runtime_suspend
,
561 static struct platform_driver sun6i_spi_driver
= {
562 .probe
= sun6i_spi_probe
,
563 .remove
= sun6i_spi_remove
,
566 .of_match_table
= sun6i_spi_match
,
567 .pm
= &sun6i_spi_pm_ops
,
570 module_platform_driver(sun6i_spi_driver
);
572 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
573 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
574 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
575 MODULE_LICENSE("GPL");