2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2008 Cavium Networks
8 * Some parts of the code were originally released under BSD license:
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
25 * * Neither the name of Cavium Networks nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
47 #include <linux/usb.h>
48 #include <linux/slab.h>
49 #include <linux/module.h>
50 #include <linux/usb/hcd.h>
51 #include <linux/prefetch.h>
52 #include <linux/platform_device.h>
54 #include <asm/octeon/octeon.h>
56 #include "octeon-hcd.h"
59 * enum cvmx_usb_speed - the possible USB device speeds
61 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
62 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
63 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
66 CVMX_USB_SPEED_HIGH
= 0,
67 CVMX_USB_SPEED_FULL
= 1,
68 CVMX_USB_SPEED_LOW
= 2,
72 * enum cvmx_usb_transfer - the possible USB transfer types
74 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
76 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
77 * priority periodic transfers
78 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
80 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
83 enum cvmx_usb_transfer
{
84 CVMX_USB_TRANSFER_CONTROL
= 0,
85 CVMX_USB_TRANSFER_ISOCHRONOUS
= 1,
86 CVMX_USB_TRANSFER_BULK
= 2,
87 CVMX_USB_TRANSFER_INTERRUPT
= 3,
91 * enum cvmx_usb_direction - the transfer directions
93 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
94 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
96 enum cvmx_usb_direction
{
97 CVMX_USB_DIRECTION_OUT
,
98 CVMX_USB_DIRECTION_IN
,
102 * enum cvmx_usb_status - possible callback function status codes
104 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
106 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
107 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
108 * by a user call to cvmx_usb_cancel
109 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
111 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
113 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
114 * device even after a number of retries
115 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
116 * error even after a number of retries
117 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
118 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
119 * even after a number of retries
121 enum cvmx_usb_status
{
123 CVMX_USB_STATUS_SHORT
,
124 CVMX_USB_STATUS_CANCEL
,
125 CVMX_USB_STATUS_ERROR
,
126 CVMX_USB_STATUS_STALL
,
127 CVMX_USB_STATUS_XACTERR
,
128 CVMX_USB_STATUS_DATATGLERR
,
129 CVMX_USB_STATUS_BABBLEERR
,
130 CVMX_USB_STATUS_FRAMEERR
,
134 * struct cvmx_usb_port_status - the USB port status information
136 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
137 * @port_over_current: 1 = Over current detected, 0 = Over current not
138 * detected. Octeon doesn't support over current detection.
139 * @port_powered: 1 = Port power is being supplied to the device, 0 =
140 * power is off. Octeon doesn't support turning port power
142 * @port_speed: Current port speed.
143 * @connected: 1 = A device is connected to the port, 0 = No device is
145 * @connect_change: 1 = Device connected state changed since the last set
148 struct cvmx_usb_port_status
{
150 u32 port_enabled
: 1;
151 u32 port_over_current
: 1;
152 u32 port_powered
: 1;
153 enum cvmx_usb_speed port_speed
: 2;
155 u32 connect_change
: 1;
159 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
161 * @offset: This is the offset in bytes into the main buffer where this data
163 * @length: This is the length in bytes of the data.
164 * @status: This is the status of this individual packet transfer.
166 struct cvmx_usb_iso_packet
{
169 enum cvmx_usb_status status
;
173 * enum cvmx_usb_initialize_flags - flags used by the initialization function
175 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
176 * as clock source at USB_XO and
178 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
179 * board clock source at USB_XO.
180 * USB_XI should be tied to GND.
181 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
184 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
186 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
187 * data transfer use for the USB
189 enum cvmx_usb_initialize_flags
{
190 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
= 1 << 0,
191 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
= 1 << 1,
192 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
= 3 << 3,
193 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
= 1 << 3,
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
= 2 << 3,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
= 3 << 3,
196 /* Bits 3-4 used to encode the clock frequency */
197 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
= 1 << 5,
201 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
203 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
204 * actively using hardware.
205 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
206 * pipe is in the ping state.
208 enum cvmx_usb_pipe_flags
{
209 CVMX_USB_PIPE_FLAGS_SCHEDULED
= 1 << 17,
210 CVMX_USB_PIPE_FLAGS_NEED_PING
= 1 << 18,
213 /* Maximum number of times to retry failed transactions */
214 #define MAX_RETRIES 3
216 /* Maximum number of hardware channels supported by the USB block */
217 #define MAX_CHANNELS 8
220 * The low level hardware can transfer a maximum of this number of bytes in each
221 * transfer. The field is 19 bits wide
223 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
226 * The low level hardware can transfer a maximum of this number of packets in
227 * each transfer. The field is 10 bits wide
229 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
232 * Logical transactions may take numerous low level
233 * transactions, especially when splits are concerned. This
234 * enum represents all of the possible stages a transaction can
235 * be in. Note that split completes are always even. This is so
236 * the NAK handler can backup to the previous low level
237 * transaction with a simple clearing of bit 0.
239 enum cvmx_usb_stage
{
240 CVMX_USB_STAGE_NON_CONTROL
,
241 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
,
242 CVMX_USB_STAGE_SETUP
,
243 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
,
245 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
,
246 CVMX_USB_STAGE_STATUS
,
247 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
,
251 * struct cvmx_usb_transaction - describes each pending USB transaction
252 * regardless of type. These are linked together
253 * to form a list of pending requests for a pipe.
255 * @node: List node for transactions in the pipe.
256 * @type: Type of transaction, duplicated of the pipe.
257 * @flags: State flags for this transaction.
258 * @buffer: User's physical buffer address to read/write.
259 * @buffer_length: Size of the user's buffer in bytes.
260 * @control_header: For control transactions, physical address of the 8
261 * byte standard header.
262 * @iso_start_frame: For ISO transactions, the starting frame number.
263 * @iso_number_packets: For ISO transactions, the number of packets in the
265 * @iso_packets: For ISO transactions, the sub packets in the request.
266 * @actual_bytes: Actual bytes transfer for this transaction.
267 * @stage: For control transactions, the current stage.
270 struct cvmx_usb_transaction
{
271 struct list_head node
;
272 enum cvmx_usb_transfer type
;
277 int iso_number_packets
;
278 struct cvmx_usb_iso_packet
*iso_packets
;
283 enum cvmx_usb_stage stage
;
288 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
289 * and some USB device. It contains a list of pending
290 * request to the device.
292 * @node: List node for pipe list
293 * @next: Pipe after this one in the list
294 * @transactions: List of pending transactions
295 * @interval: For periodic pipes, the interval between packets in
297 * @next_tx_frame: The next frame this pipe is allowed to transmit on
298 * @flags: State flags for this pipe
299 * @device_speed: Speed of device connected to this pipe
300 * @transfer_type: Type of transaction supported by this pipe
301 * @transfer_dir: IN or OUT. Ignored for Control
302 * @multi_count: Max packet in a row for the device
303 * @max_packet: The device's maximum packet size in bytes
304 * @device_addr: USB device address at other end of pipe
305 * @endpoint_num: USB endpoint number at other end of pipe
306 * @hub_device_addr: Hub address this device is connected to
307 * @hub_port: Hub port this device is connected to
308 * @pid_toggle: This toggles between 0/1 on every packet send to track
309 * the data pid needed
310 * @channel: Hardware DMA channel for this pipe
311 * @split_sc_frame: The low order bits of the frame number the split
312 * complete should be sent on
314 struct cvmx_usb_pipe
{
315 struct list_head node
;
316 struct list_head transactions
;
319 enum cvmx_usb_pipe_flags flags
;
320 enum cvmx_usb_speed device_speed
;
321 enum cvmx_usb_transfer transfer_type
;
322 enum cvmx_usb_direction transfer_dir
;
334 struct cvmx_usb_tx_fifo
{
339 } entry
[MAX_CHANNELS
+ 1];
345 * struct octeon_hcd - the state of the USB block
347 * lock: Serialization lock.
348 * init_flags: Flags passed to initialize.
349 * index: Which USB block this is for.
350 * idle_hardware_channels: Bit set for every idle hardware channel.
351 * usbcx_hprt: Stored port status so we don't need to read a CSR to
353 * pipe_for_channel: Map channels to pipes.
354 * pipe: Storage for pipes.
355 * indent: Used by debug output to indent functions.
356 * port_status: Last port status used for change notification.
357 * idle_pipes: List of open pipes that have no transactions.
358 * active_pipes: Active pipes indexed by transfer type.
359 * frame_number: Increments every SOF interrupt for time keeping.
360 * active_split: Points to the current active split, or NULL.
363 spinlock_t lock
; /* serialization lock */
366 int idle_hardware_channels
;
367 union cvmx_usbcx_hprt usbcx_hprt
;
368 struct cvmx_usb_pipe
*pipe_for_channel
[MAX_CHANNELS
];
370 struct cvmx_usb_port_status port_status
;
371 struct list_head idle_pipes
;
372 struct list_head active_pipes
[4];
374 struct cvmx_usb_transaction
*active_split
;
375 struct cvmx_usb_tx_fifo periodic
;
376 struct cvmx_usb_tx_fifo nonperiodic
;
379 /* This macro spins on a register waiting for it to reach a condition. */
380 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec) \
383 u64 done = cvmx_get_cycle() + (u64)timeout_usec * \
384 octeon_get_clock_rate() / 1000000; \
388 c.u32 = cvmx_usb_read_csr32(usb, address); \
393 } else if (cvmx_get_cycle() > done) { \
403 * This macro logically sets a single field in a CSR. It does the sequence
404 * read, modify, and write
406 #define USB_SET_FIELD32(address, _union, field, value) \
410 c.u32 = cvmx_usb_read_csr32(usb, address); \
412 cvmx_usb_write_csr32(usb, address, c.u32); \
415 /* Returns the IO address to push/pop stuff data from the FIFOs */
416 #define USB_FIFO_ADDRESS(channel, usb_index) \
417 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
420 * struct octeon_temp_buffer - a bounce buffer for USB transfers
421 * @orig_buffer: the original buffer passed by the USB stack
422 * @data: the newly allocated temporary buffer (excluding meta-data)
424 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
425 * the buffer is too short, we need to allocate a temporary one, and this struct
428 struct octeon_temp_buffer
{
433 static inline struct usb_hcd
*octeon_to_hcd(struct octeon_hcd
*p
)
435 return container_of((void *)p
, struct usb_hcd
, hcd_priv
);
439 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
442 * @mem_flags: Memory allocation flags.
444 * This function allocates a temporary bounce buffer whenever it's needed
445 * due to HW limitations.
447 static int octeon_alloc_temp_buffer(struct urb
*urb
, gfp_t mem_flags
)
449 struct octeon_temp_buffer
*temp
;
451 if (urb
->num_sgs
|| urb
->sg
||
452 (urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
) ||
453 !(urb
->transfer_buffer_length
% sizeof(u32
)))
456 temp
= kmalloc(ALIGN(urb
->transfer_buffer_length
, sizeof(u32
)) +
457 sizeof(*temp
), mem_flags
);
461 temp
->orig_buffer
= urb
->transfer_buffer
;
462 if (usb_urb_dir_out(urb
))
463 memcpy(temp
->data
, urb
->transfer_buffer
,
464 urb
->transfer_buffer_length
);
465 urb
->transfer_buffer
= temp
->data
;
466 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
472 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
475 * Frees a buffer allocated by octeon_alloc_temp_buffer().
477 static void octeon_free_temp_buffer(struct urb
*urb
)
479 struct octeon_temp_buffer
*temp
;
482 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
485 temp
= container_of(urb
->transfer_buffer
, struct octeon_temp_buffer
,
487 if (usb_urb_dir_in(urb
)) {
488 if (usb_pipeisoc(urb
->pipe
))
489 length
= urb
->transfer_buffer_length
;
491 length
= urb
->actual_length
;
493 memcpy(temp
->orig_buffer
, urb
->transfer_buffer
, length
);
495 urb
->transfer_buffer
= temp
->orig_buffer
;
496 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
501 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
502 * @hcd: USB HCD structure.
504 * @mem_flags: Memory allocation flags.
506 static int octeon_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
511 ret
= octeon_alloc_temp_buffer(urb
, mem_flags
);
515 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
517 octeon_free_temp_buffer(urb
);
523 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
524 * @hcd: USB HCD structure.
527 static void octeon_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
529 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
530 octeon_free_temp_buffer(urb
);
534 * Read a USB 32bit CSR. It performs the necessary address swizzle
535 * for 32bit CSRs and logs the value in a readable format if
538 * @usb: USB block this access is for
539 * @address: 64bit address to read
541 * Returns: Result of the read
543 static inline u32
cvmx_usb_read_csr32(struct octeon_hcd
*usb
, u64 address
)
545 u32 result
= cvmx_read64_uint32(address
^ 4);
550 * Write a USB 32bit CSR. It performs the necessary address
551 * swizzle for 32bit CSRs and logs the value in a readable format
552 * if debugging is on.
554 * @usb: USB block this access is for
555 * @address: 64bit address to write
556 * @value: Value to write
558 static inline void cvmx_usb_write_csr32(struct octeon_hcd
*usb
,
559 u64 address
, u32 value
)
561 cvmx_write64_uint32(address
^ 4, value
);
562 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
566 * Return non zero if this pipe connects to a non HIGH speed
567 * device through a high speed hub.
569 * @usb: USB block this access is for
570 * @pipe: Pipe to check
572 * Returns: Non zero if we need to do split transactions
574 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd
*usb
,
575 struct cvmx_usb_pipe
*pipe
)
577 return pipe
->device_speed
!= CVMX_USB_SPEED_HIGH
&&
578 usb
->usbcx_hprt
.s
.prtspd
== CVMX_USB_SPEED_HIGH
;
582 * Trivial utility function to return the correct PID for a pipe
584 * @pipe: pipe to check
586 * Returns: PID for pipe
588 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe
*pipe
)
590 if (pipe
->pid_toggle
)
591 return 2; /* Data1 */
592 return 0; /* Data0 */
595 static void cvmx_fifo_setup(struct octeon_hcd
*usb
)
597 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3
;
598 union cvmx_usbcx_gnptxfsiz npsiz
;
599 union cvmx_usbcx_hptxfsiz psiz
;
601 usbcx_ghwcfg3
.u32
= cvmx_usb_read_csr32(usb
,
602 CVMX_USBCX_GHWCFG3(usb
->index
));
605 * Program the USBC_GRXFSIZ register to select the size of the receive
608 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb
->index
), cvmx_usbcx_grxfsiz
,
609 rxfdep
, usbcx_ghwcfg3
.s
.dfifodepth
/ 4);
612 * Program the USBC_GNPTXFSIZ register to select the size and the start
613 * address of the non-periodic transmit FIFO for nonperiodic
614 * transactions (50%).
616 npsiz
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_GNPTXFSIZ(usb
->index
));
617 npsiz
.s
.nptxfdep
= usbcx_ghwcfg3
.s
.dfifodepth
/ 2;
618 npsiz
.s
.nptxfstaddr
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
619 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GNPTXFSIZ(usb
->index
), npsiz
.u32
);
622 * Program the USBC_HPTXFSIZ register to select the size and start
623 * address of the periodic transmit FIFO for periodic transactions
626 psiz
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPTXFSIZ(usb
->index
));
627 psiz
.s
.ptxfsize
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
628 psiz
.s
.ptxfstaddr
= 3 * usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
629 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPTXFSIZ(usb
->index
), psiz
.u32
);
631 /* Flush all FIFOs */
632 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
633 cvmx_usbcx_grstctl
, txfnum
, 0x10);
634 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
635 cvmx_usbcx_grstctl
, txfflsh
, 1);
636 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
637 cvmx_usbcx_grstctl
, c
.s
.txfflsh
== 0, 100);
638 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
639 cvmx_usbcx_grstctl
, rxfflsh
, 1);
640 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
641 cvmx_usbcx_grstctl
, c
.s
.rxfflsh
== 0, 100);
645 * Shutdown a USB port after a call to cvmx_usb_initialize().
646 * The port should be disabled with all pipes closed when this
647 * function is called.
649 * @usb: USB device state populated by cvmx_usb_initialize().
651 * Returns: 0 or a negative error code.
653 static int cvmx_usb_shutdown(struct octeon_hcd
*usb
)
655 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
657 /* Make sure all pipes are closed */
658 if (!list_empty(&usb
->idle_pipes
) ||
659 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_ISOCHRONOUS
]) ||
660 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_INTERRUPT
]) ||
661 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_CONTROL
]) ||
662 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_BULK
]))
665 /* Disable the clocks and put them in power on reset */
666 usbn_clk_ctl
.u64
= cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
));
667 usbn_clk_ctl
.s
.enable
= 1;
668 usbn_clk_ctl
.s
.por
= 1;
669 usbn_clk_ctl
.s
.hclk_rst
= 1;
670 usbn_clk_ctl
.s
.prst
= 0;
671 usbn_clk_ctl
.s
.hrst
= 0;
672 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
677 * Initialize a USB port for use. This must be called before any
678 * other access to the Octeon USB port is made. The port starts
679 * off in the disabled state.
681 * @dev: Pointer to struct device for logging purposes.
682 * @usb: Pointer to struct octeon_hcd.
684 * Returns: 0 or a negative error code.
686 static int cvmx_usb_initialize(struct device
*dev
,
687 struct octeon_hcd
*usb
)
692 union cvmx_usbcx_hcfg usbcx_hcfg
;
693 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
694 union cvmx_usbcx_gintsts usbc_gintsts
;
695 union cvmx_usbcx_gahbcfg usbcx_gahbcfg
;
696 union cvmx_usbcx_gintmsk usbcx_gintmsk
;
697 union cvmx_usbcx_gusbcfg usbcx_gusbcfg
;
698 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status
;
702 * Power On Reset and PHY Initialization
704 * 1. Wait for DCOK to assert (nothing to do)
706 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
707 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
709 usbn_clk_ctl
.u64
= cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
));
710 usbn_clk_ctl
.s
.por
= 1;
711 usbn_clk_ctl
.s
.hrst
= 0;
712 usbn_clk_ctl
.s
.prst
= 0;
713 usbn_clk_ctl
.s
.hclk_rst
= 0;
714 usbn_clk_ctl
.s
.enable
= 0;
716 * 2b. Select the USB reference clock/crystal parameters by writing
717 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
719 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
) {
721 * The USB port uses 12/24/48MHz 2.5V board clock
722 * source at USB_XO. USB_XI should be tied to GND.
723 * Most Octeon evaluation boards require this setting
725 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
) ||
726 OCTEON_IS_MODEL(OCTEON_CN56XX
) ||
727 OCTEON_IS_MODEL(OCTEON_CN50XX
))
728 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
729 usbn_clk_ctl
.s
.p_rtype
= 2; /* p_rclk=1 & p_xenbn=0 */
731 /* From CN52XX manual */
732 usbn_clk_ctl
.s
.p_rtype
= 1;
734 switch (usb
->init_flags
&
735 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
) {
736 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
:
737 usbn_clk_ctl
.s
.p_c_sel
= 0;
739 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
:
740 usbn_clk_ctl
.s
.p_c_sel
= 1;
742 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
:
743 usbn_clk_ctl
.s
.p_c_sel
= 2;
748 * The USB port uses a 12MHz crystal as clock source
749 * at USB_XO and USB_XI
751 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
))
752 /* From CN31XX,CN30XX manual */
753 usbn_clk_ctl
.s
.p_rtype
= 3; /* p_rclk=1 & p_xenbn=1 */
755 /* From CN56XX,CN52XX,CN50XX manuals. */
756 usbn_clk_ctl
.s
.p_rtype
= 0;
758 usbn_clk_ctl
.s
.p_c_sel
= 0;
761 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
762 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
763 * such that USB is as close as possible to 125Mhz
765 divisor
= DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
766 /* Lower than 4 doesn't seem to work properly */
769 usbn_clk_ctl
.s
.divide
= divisor
;
770 usbn_clk_ctl
.s
.divide2
= 0;
771 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
773 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
774 usbn_clk_ctl
.s
.hclk_rst
= 1;
775 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
776 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
779 * 3. Program the power-on reset field in the USBN clock-control
781 * USBN_CLK_CTL[POR] = 0
783 usbn_clk_ctl
.s
.por
= 0;
784 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
785 /* 4. Wait 1 ms for PHY clock to start */
788 * 5. Program the Reset input from automatic test equipment field in the
789 * USBP control and status register:
790 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
792 usbn_usbp_ctl_status
.u64
=
793 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
));
794 usbn_usbp_ctl_status
.s
.ate_reset
= 1;
795 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
796 usbn_usbp_ctl_status
.u64
);
797 /* 6. Wait 10 cycles */
800 * 7. Clear ATE_RESET field in the USBN clock-control register:
801 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
803 usbn_usbp_ctl_status
.s
.ate_reset
= 0;
804 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
805 usbn_usbp_ctl_status
.u64
);
807 * 8. Program the PHY reset field in the USBN clock-control register:
808 * USBN_CLK_CTL[PRST] = 1
810 usbn_clk_ctl
.s
.prst
= 1;
811 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
813 * 9. Program the USBP control and status register to select host or
814 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
817 usbn_usbp_ctl_status
.s
.hst_mode
= 0;
818 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
819 usbn_usbp_ctl_status
.u64
);
823 * 11. Program the hreset_n field in the USBN clock-control register:
824 * USBN_CLK_CTL[HRST] = 1
826 usbn_clk_ctl
.s
.hrst
= 1;
827 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
828 /* 12. Proceed to USB core initialization */
829 usbn_clk_ctl
.s
.enable
= 1;
830 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb
->index
), usbn_clk_ctl
.u64
);
834 * USB Core Initialization
836 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
837 * determine USB core configuration parameters.
841 * 2. Program the following fields in the global AHB configuration
842 * register (USBC_GAHBCFG)
843 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
844 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
845 * Nonperiodic TxFIFO empty level (slave mode only),
846 * USBC_GAHBCFG[NPTXFEMPLVL]
847 * Periodic TxFIFO empty level (slave mode only),
848 * USBC_GAHBCFG[PTXFEMPLVL]
849 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
851 usbcx_gahbcfg
.u32
= 0;
852 usbcx_gahbcfg
.s
.dmaen
= !(usb
->init_flags
&
853 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
);
854 usbcx_gahbcfg
.s
.hbstlen
= 0;
855 usbcx_gahbcfg
.s
.nptxfemplvl
= 1;
856 usbcx_gahbcfg
.s
.ptxfemplvl
= 1;
857 usbcx_gahbcfg
.s
.glblintrmsk
= 1;
858 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GAHBCFG(usb
->index
),
862 * 3. Program the following fields in USBC_GUSBCFG register.
863 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
864 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
865 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
866 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
868 usbcx_gusbcfg
.u32
= cvmx_usb_read_csr32(usb
,
869 CVMX_USBCX_GUSBCFG(usb
->index
));
870 usbcx_gusbcfg
.s
.toutcal
= 0;
871 usbcx_gusbcfg
.s
.ddrsel
= 0;
872 usbcx_gusbcfg
.s
.usbtrdtim
= 0x5;
873 usbcx_gusbcfg
.s
.phylpwrclksel
= 0;
874 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GUSBCFG(usb
->index
),
878 * 4. The software must unmask the following bits in the USBC_GINTMSK
880 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
881 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
883 usbcx_gintmsk
.u32
= cvmx_usb_read_csr32(usb
,
884 CVMX_USBCX_GINTMSK(usb
->index
));
885 usbcx_gintmsk
.s
.otgintmsk
= 1;
886 usbcx_gintmsk
.s
.modemismsk
= 1;
887 usbcx_gintmsk
.s
.hchintmsk
= 1;
888 usbcx_gintmsk
.s
.sofmsk
= 0;
889 /* We need RX FIFO interrupts if we don't have DMA */
890 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
891 usbcx_gintmsk
.s
.rxflvlmsk
= 1;
892 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTMSK(usb
->index
),
896 * Disable all channel interrupts. We'll enable them per channel later.
898 for (channel
= 0; channel
< 8; channel
++)
899 cvmx_usb_write_csr32(usb
,
900 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
904 * Host Port Initialization
906 * 1. Program the host-port interrupt-mask field to unmask,
907 * USBC_GINTMSK[PRTINT] = 1
909 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
910 cvmx_usbcx_gintmsk
, prtintmsk
, 1);
911 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
912 cvmx_usbcx_gintmsk
, disconnintmsk
, 1);
915 * 2. Program the USBC_HCFG register to select full-speed host
916 * or high-speed host.
918 usbcx_hcfg
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HCFG(usb
->index
));
919 usbcx_hcfg
.s
.fslssupp
= 0;
920 usbcx_hcfg
.s
.fslspclksel
= 0;
921 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCFG(usb
->index
), usbcx_hcfg
.u32
);
923 cvmx_fifo_setup(usb
);
926 * If the controller is getting port events right after the reset, it
927 * means the initialization failed. Try resetting the controller again
928 * in such case. This is seen to happen after cold boot on DSR-1000N.
930 usbc_gintsts
.u32
= cvmx_usb_read_csr32(usb
,
931 CVMX_USBCX_GINTSTS(usb
->index
));
932 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
),
934 dev_dbg(dev
, "gintsts after reset: 0x%x\n", (int)usbc_gintsts
.u32
);
935 if (!usbc_gintsts
.s
.disconnint
&& !usbc_gintsts
.s
.prtint
)
939 dev_info(dev
, "controller reset failed (gintsts=0x%x) - retrying\n",
940 (int)usbc_gintsts
.u32
);
942 cvmx_usb_shutdown(usb
);
948 * Reset a USB port. After this call succeeds, the USB port is
949 * online and servicing requests.
951 * @usb: USB device state populated by cvmx_usb_initialize().
953 static void cvmx_usb_reset_port(struct octeon_hcd
*usb
)
955 usb
->usbcx_hprt
.u32
= cvmx_usb_read_csr32(usb
,
956 CVMX_USBCX_HPRT(usb
->index
));
958 /* Program the port reset bit to start the reset process */
959 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
963 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
964 * process to complete.
968 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
969 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
973 * Read the port speed field to get the enumerated speed,
976 usb
->usbcx_hprt
.u32
= cvmx_usb_read_csr32(usb
,
977 CVMX_USBCX_HPRT(usb
->index
));
981 * Disable a USB port. After this call the USB port will not
982 * generate data transfers and will not generate events.
983 * Transactions in process will fail and call their
984 * associated callbacks.
986 * @usb: USB device state populated by cvmx_usb_initialize().
988 * Returns: 0 or a negative error code.
990 static int cvmx_usb_disable(struct octeon_hcd
*usb
)
992 /* Disable the port */
993 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), cvmx_usbcx_hprt
,
999 * Get the current state of the USB port. Use this call to
1000 * determine if the usb port has anything connected, is enabled,
1001 * or has some sort of error condition. The return value of this
1002 * call has "changed" bits to signal of the value of some fields
1003 * have changed between calls.
1005 * @usb: USB device state populated by cvmx_usb_initialize().
1007 * Returns: Port status information
1009 static struct cvmx_usb_port_status
cvmx_usb_get_status(struct octeon_hcd
*usb
)
1011 union cvmx_usbcx_hprt usbc_hprt
;
1012 struct cvmx_usb_port_status result
;
1014 memset(&result
, 0, sizeof(result
));
1016 usbc_hprt
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
));
1017 result
.port_enabled
= usbc_hprt
.s
.prtena
;
1018 result
.port_over_current
= usbc_hprt
.s
.prtovrcurract
;
1019 result
.port_powered
= usbc_hprt
.s
.prtpwr
;
1020 result
.port_speed
= usbc_hprt
.s
.prtspd
;
1021 result
.connected
= usbc_hprt
.s
.prtconnsts
;
1022 result
.connect_change
=
1023 result
.connected
!= usb
->port_status
.connected
;
1029 * Open a virtual pipe between the host and a USB device. A pipe
1030 * must be opened before data can be transferred between a device
1033 * @usb: USB device state populated by cvmx_usb_initialize().
1035 * USB device address to open the pipe to
1038 * USB endpoint number to open the pipe to
1041 * The speed of the device the pipe is going
1042 * to. This must match the device's speed,
1043 * which may be different than the port speed.
1044 * @max_packet: The maximum packet length the device can
1045 * transmit/receive (low speed=0-8, full
1046 * speed=0-1023, high speed=0-1024). This value
1047 * comes from the standard endpoint descriptor
1048 * field wMaxPacketSize bits <10:0>.
1050 * The type of transfer this pipe is for.
1052 * The direction the pipe is in. This is not
1053 * used for control pipes.
1054 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1055 * this is how often the transfer is scheduled
1056 * for. All other transfers should specify
1057 * zero. The units are in frames (8000/sec at
1058 * high speed, 1000/sec for full speed).
1060 * For high speed devices, this is the maximum
1061 * allowed number of packet per microframe.
1062 * Specify zero for non high speed devices. This
1063 * value comes from the standard endpoint descriptor
1064 * field wMaxPacketSize bits <12:11>.
1066 * Hub device address this device is connected
1067 * to. Devices connected directly to Octeon
1068 * use zero. This is only used when the device
1069 * is full/low speed behind a high speed hub.
1070 * The address will be of the high speed hub,
1071 * not and full speed hubs after it.
1072 * @hub_port: Which port on the hub the device is
1073 * connected. Use zero for devices connected
1074 * directly to Octeon. Like hub_device_addr,
1075 * this is only used for full/low speed
1076 * devices behind a high speed hub.
1078 * Returns: A non-NULL value is a pipe. NULL means an error.
1080 static struct cvmx_usb_pipe
*cvmx_usb_open_pipe(struct octeon_hcd
*usb
,
1086 enum cvmx_usb_transfer
1088 enum cvmx_usb_direction
1090 int interval
, int multi_count
,
1091 int hub_device_addr
,
1094 struct cvmx_usb_pipe
*pipe
;
1096 pipe
= kzalloc(sizeof(*pipe
), GFP_ATOMIC
);
1099 if ((device_speed
== CVMX_USB_SPEED_HIGH
) &&
1100 (transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
1101 (transfer_type
== CVMX_USB_TRANSFER_BULK
))
1102 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
1103 pipe
->device_addr
= device_addr
;
1104 pipe
->endpoint_num
= endpoint_num
;
1105 pipe
->device_speed
= device_speed
;
1106 pipe
->max_packet
= max_packet
;
1107 pipe
->transfer_type
= transfer_type
;
1108 pipe
->transfer_dir
= transfer_dir
;
1109 INIT_LIST_HEAD(&pipe
->transactions
);
1112 * All pipes use interval to rate limit NAK processing. Force an
1113 * interval if one wasn't supplied
1117 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1118 pipe
->interval
= interval
* 8;
1119 /* Force start splits to be schedule on uFrame 0 */
1120 pipe
->next_tx_frame
= ((usb
->frame_number
+ 7) & ~7) +
1123 pipe
->interval
= interval
;
1124 pipe
->next_tx_frame
= usb
->frame_number
+ pipe
->interval
;
1126 pipe
->multi_count
= multi_count
;
1127 pipe
->hub_device_addr
= hub_device_addr
;
1128 pipe
->hub_port
= hub_port
;
1129 pipe
->pid_toggle
= 0;
1130 pipe
->split_sc_frame
= -1;
1131 list_add_tail(&pipe
->node
, &usb
->idle_pipes
);
1134 * We don't need to tell the hardware about this pipe yet since
1135 * it doesn't have any submitted requests
1142 * Poll the RX FIFOs and remove data as needed. This function is only used
1143 * in non DMA mode. It is very important that this function be called quickly
1144 * enough to prevent FIFO overflow.
1146 * @usb: USB device state populated by cvmx_usb_initialize().
1148 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd
*usb
)
1150 union cvmx_usbcx_grxstsph rx_status
;
1156 rx_status
.u32
= cvmx_usb_read_csr32(usb
,
1157 CVMX_USBCX_GRXSTSPH(usb
->index
));
1158 /* Only read data if IN data is there */
1159 if (rx_status
.s
.pktsts
!= 2)
1161 /* Check if no data is available */
1162 if (!rx_status
.s
.bcnt
)
1165 channel
= rx_status
.s
.chnum
;
1166 bytes
= rx_status
.s
.bcnt
;
1170 /* Get where the DMA engine would have written this data */
1171 address
= cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) +
1174 ptr
= cvmx_phys_to_ptr(address
);
1175 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) + channel
* 8,
1178 /* Loop writing the FIFO data for this packet into memory */
1180 *ptr
++ = cvmx_usb_read_csr32(usb
,
1181 USB_FIFO_ADDRESS(channel
, usb
->index
));
1188 * Fill the TX hardware fifo with data out of the software
1191 * @usb: USB device state populated by cvmx_usb_initialize().
1192 * @fifo: Software fifo to use
1193 * @available: Amount of space in the hardware fifo
1195 * Returns: Non zero if the hardware fifo was too small and needs
1196 * to be serviced again.
1198 static int cvmx_usb_fill_tx_hw(struct octeon_hcd
*usb
,
1199 struct cvmx_usb_tx_fifo
*fifo
, int available
)
1202 * We're done either when there isn't anymore space or the software FIFO
1205 while (available
&& (fifo
->head
!= fifo
->tail
)) {
1207 const u32
*ptr
= cvmx_phys_to_ptr(fifo
->entry
[i
].address
);
1208 u64 csr_address
= USB_FIFO_ADDRESS(fifo
->entry
[i
].channel
,
1210 int words
= available
;
1212 /* Limit the amount of data to what the SW fifo has */
1213 if (fifo
->entry
[i
].size
<= available
) {
1214 words
= fifo
->entry
[i
].size
;
1216 if (fifo
->tail
> MAX_CHANNELS
)
1220 /* Update the next locations and counts */
1222 fifo
->entry
[i
].address
+= words
* 4;
1223 fifo
->entry
[i
].size
-= words
;
1226 * Write the HW fifo data. The read every three writes is due
1227 * to an errata on CN3XXX chips
1230 cvmx_write64_uint32(csr_address
, *ptr
++);
1231 cvmx_write64_uint32(csr_address
, *ptr
++);
1232 cvmx_write64_uint32(csr_address
, *ptr
++);
1234 CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1237 cvmx_write64_uint32(csr_address
, *ptr
++);
1239 cvmx_write64_uint32(csr_address
, *ptr
++);
1241 cvmx_write64_uint32(csr_address
, *ptr
++);
1243 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1245 return fifo
->head
!= fifo
->tail
;
1249 * Check the hardware FIFOs and fill them as needed
1251 * @usb: USB device state populated by cvmx_usb_initialize().
1253 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd
*usb
)
1255 if (usb
->periodic
.head
!= usb
->periodic
.tail
) {
1256 union cvmx_usbcx_hptxsts tx_status
;
1258 tx_status
.u32
= cvmx_usb_read_csr32(usb
,
1259 CVMX_USBCX_HPTXSTS(usb
->index
));
1260 if (cvmx_usb_fill_tx_hw(usb
, &usb
->periodic
,
1261 tx_status
.s
.ptxfspcavail
))
1262 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1263 cvmx_usbcx_gintmsk
, ptxfempmsk
, 1);
1265 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1266 cvmx_usbcx_gintmsk
, ptxfempmsk
, 0);
1269 if (usb
->nonperiodic
.head
!= usb
->nonperiodic
.tail
) {
1270 union cvmx_usbcx_gnptxsts tx_status
;
1272 tx_status
.u32
= cvmx_usb_read_csr32(usb
,
1273 CVMX_USBCX_GNPTXSTS(usb
->index
));
1274 if (cvmx_usb_fill_tx_hw(usb
, &usb
->nonperiodic
,
1275 tx_status
.s
.nptxfspcavail
))
1276 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1277 cvmx_usbcx_gintmsk
, nptxfempmsk
, 1);
1279 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1280 cvmx_usbcx_gintmsk
, nptxfempmsk
, 0);
1285 * Fill the TX FIFO with an outgoing packet
1287 * @usb: USB device state populated by cvmx_usb_initialize().
1288 * @channel: Channel number to get packet from
1290 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd
*usb
, int channel
)
1292 union cvmx_usbcx_hccharx hcchar
;
1293 union cvmx_usbcx_hcspltx usbc_hcsplt
;
1294 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1295 struct cvmx_usb_tx_fifo
*fifo
;
1297 /* We only need to fill data on outbound channels */
1298 hcchar
.u32
= cvmx_usb_read_csr32(usb
,
1299 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
1300 if (hcchar
.s
.epdir
!= CVMX_USB_DIRECTION_OUT
)
1303 /* OUT Splits only have data on the start and not the complete */
1304 usbc_hcsplt
.u32
= cvmx_usb_read_csr32(usb
,
1305 CVMX_USBCX_HCSPLTX(channel
, usb
->index
));
1306 if (usbc_hcsplt
.s
.spltena
&& usbc_hcsplt
.s
.compsplt
)
1310 * Find out how many bytes we need to fill and convert it into 32bit
1313 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
1314 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1315 if (!usbc_hctsiz
.s
.xfersize
)
1318 if ((hcchar
.s
.eptype
== CVMX_USB_TRANSFER_INTERRUPT
) ||
1319 (hcchar
.s
.eptype
== CVMX_USB_TRANSFER_ISOCHRONOUS
))
1320 fifo
= &usb
->periodic
;
1322 fifo
= &usb
->nonperiodic
;
1324 fifo
->entry
[fifo
->head
].channel
= channel
;
1325 fifo
->entry
[fifo
->head
].address
=
1326 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) +
1328 fifo
->entry
[fifo
->head
].size
= (usbc_hctsiz
.s
.xfersize
+ 3) >> 2;
1330 if (fifo
->head
> MAX_CHANNELS
)
1333 cvmx_usb_poll_tx_fifo(usb
);
1337 * Perform channel specific setup for Control transactions. All
1338 * the generic stuff will already have been done in cvmx_usb_start_channel().
1340 * @usb: USB device state populated by cvmx_usb_initialize().
1341 * @channel: Channel to setup
1342 * @pipe: Pipe for control transaction
1344 static void cvmx_usb_start_channel_control(struct octeon_hcd
*usb
,
1346 struct cvmx_usb_pipe
*pipe
)
1348 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
1349 struct device
*dev
= hcd
->self
.controller
;
1350 struct cvmx_usb_transaction
*transaction
=
1351 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1353 struct usb_ctrlrequest
*header
=
1354 cvmx_phys_to_ptr(transaction
->control_header
);
1355 int bytes_to_transfer
= transaction
->buffer_length
-
1356 transaction
->actual_bytes
;
1357 int packets_to_transfer
;
1358 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1360 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
1361 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1363 switch (transaction
->stage
) {
1364 case CVMX_USB_STAGE_NON_CONTROL
:
1365 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
1366 dev_err(dev
, "%s: ERROR - Non control stage\n", __func__
);
1368 case CVMX_USB_STAGE_SETUP
:
1369 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1370 bytes_to_transfer
= sizeof(*header
);
1371 /* All Control operations start with a setup going OUT */
1372 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1373 cvmx_usbcx_hccharx
, epdir
,
1374 CVMX_USB_DIRECTION_OUT
);
1376 * Setup send the control header instead of the buffer data. The
1377 * buffer data will be used in the next stage
1379 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) +
1381 transaction
->control_header
);
1383 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
1384 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1385 bytes_to_transfer
= 0;
1386 /* All Control operations start with a setup going OUT */
1387 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1388 cvmx_usbcx_hccharx
, epdir
,
1389 CVMX_USB_DIRECTION_OUT
);
1391 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1392 cvmx_usbcx_hcspltx
, compsplt
, 1);
1394 case CVMX_USB_STAGE_DATA
:
1395 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1396 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1397 if (header
->bRequestType
& USB_DIR_IN
)
1398 bytes_to_transfer
= 0;
1399 else if (bytes_to_transfer
> pipe
->max_packet
)
1400 bytes_to_transfer
= pipe
->max_packet
;
1402 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1403 cvmx_usbcx_hccharx
, epdir
,
1404 ((header
->bRequestType
& USB_DIR_IN
) ?
1405 CVMX_USB_DIRECTION_IN
:
1406 CVMX_USB_DIRECTION_OUT
));
1408 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
1409 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1410 if (!(header
->bRequestType
& USB_DIR_IN
))
1411 bytes_to_transfer
= 0;
1412 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1413 cvmx_usbcx_hccharx
, epdir
,
1414 ((header
->bRequestType
& USB_DIR_IN
) ?
1415 CVMX_USB_DIRECTION_IN
:
1416 CVMX_USB_DIRECTION_OUT
));
1417 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1418 cvmx_usbcx_hcspltx
, compsplt
, 1);
1420 case CVMX_USB_STAGE_STATUS
:
1421 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1422 bytes_to_transfer
= 0;
1423 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1424 cvmx_usbcx_hccharx
, epdir
,
1425 ((header
->bRequestType
& USB_DIR_IN
) ?
1426 CVMX_USB_DIRECTION_OUT
:
1427 CVMX_USB_DIRECTION_IN
));
1429 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
1430 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1431 bytes_to_transfer
= 0;
1432 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1433 cvmx_usbcx_hccharx
, epdir
,
1434 ((header
->bRequestType
& USB_DIR_IN
) ?
1435 CVMX_USB_DIRECTION_OUT
:
1436 CVMX_USB_DIRECTION_IN
));
1437 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1438 cvmx_usbcx_hcspltx
, compsplt
, 1);
1443 * Make sure the transfer never exceeds the byte limit of the hardware.
1444 * Further bytes will be sent as continued transactions
1446 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1447 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1448 bytes_to_transfer
= MAX_TRANSFER_BYTES
/ pipe
->max_packet
;
1449 bytes_to_transfer
*= pipe
->max_packet
;
1453 * Calculate the number of packets to transfer. If the length is zero
1454 * we still need to transfer one packet
1456 packets_to_transfer
= DIV_ROUND_UP(bytes_to_transfer
,
1458 if (packets_to_transfer
== 0) {
1459 packets_to_transfer
= 1;
1460 } else if ((packets_to_transfer
> 1) &&
1461 (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1463 * Limit to one packet when not using DMA. Channels must be
1464 * restarted between every packet for IN transactions, so there
1465 * is no reason to do multiple packets in a row
1467 packets_to_transfer
= 1;
1468 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1469 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1471 * Limit the number of packet and data transferred to what the
1472 * hardware can handle
1474 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1475 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1478 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1479 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1481 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCTSIZX(channel
, usb
->index
),
1486 * Start a channel to perform the pipe's head transaction
1488 * @usb: USB device state populated by cvmx_usb_initialize().
1489 * @channel: Channel to setup
1490 * @pipe: Pipe to start
1492 static void cvmx_usb_start_channel(struct octeon_hcd
*usb
, int channel
,
1493 struct cvmx_usb_pipe
*pipe
)
1495 struct cvmx_usb_transaction
*transaction
=
1496 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1499 /* Make sure all writes to the DMA region get flushed */
1502 /* Attach the channel to the pipe */
1503 usb
->pipe_for_channel
[channel
] = pipe
;
1504 pipe
->channel
= channel
;
1505 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_SCHEDULED
;
1507 /* Mark this channel as in use */
1508 usb
->idle_hardware_channels
&= ~(1 << channel
);
1510 /* Enable the channel interrupt bits */
1512 union cvmx_usbcx_hcintx usbc_hcint
;
1513 union cvmx_usbcx_hcintmskx usbc_hcintmsk
;
1514 union cvmx_usbcx_haintmsk usbc_haintmsk
;
1516 /* Clear all channel status bits */
1517 usbc_hcint
.u32
= cvmx_usb_read_csr32(usb
,
1518 CVMX_USBCX_HCINTX(channel
, usb
->index
));
1520 cvmx_usb_write_csr32(usb
,
1521 CVMX_USBCX_HCINTX(channel
, usb
->index
),
1524 usbc_hcintmsk
.u32
= 0;
1525 usbc_hcintmsk
.s
.chhltdmsk
= 1;
1526 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
1528 * Channels need these extra interrupts when we aren't
1531 usbc_hcintmsk
.s
.datatglerrmsk
= 1;
1532 usbc_hcintmsk
.s
.frmovrunmsk
= 1;
1533 usbc_hcintmsk
.s
.bblerrmsk
= 1;
1534 usbc_hcintmsk
.s
.xacterrmsk
= 1;
1535 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1537 * Splits don't generate xfercompl, so we need
1540 usbc_hcintmsk
.s
.nyetmsk
= 1;
1541 usbc_hcintmsk
.s
.ackmsk
= 1;
1543 usbc_hcintmsk
.s
.nakmsk
= 1;
1544 usbc_hcintmsk
.s
.stallmsk
= 1;
1545 usbc_hcintmsk
.s
.xfercomplmsk
= 1;
1547 cvmx_usb_write_csr32(usb
,
1548 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
1551 /* Enable the channel interrupt to propagate */
1552 usbc_haintmsk
.u32
= cvmx_usb_read_csr32(usb
,
1553 CVMX_USBCX_HAINTMSK(usb
->index
));
1554 usbc_haintmsk
.s
.haintmsk
|= 1 << channel
;
1555 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HAINTMSK(usb
->index
),
1559 /* Setup the location the DMA engine uses. */
1562 u64 dma_address
= transaction
->buffer
+
1563 transaction
->actual_bytes
;
1565 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1566 dma_address
= transaction
->buffer
+
1567 transaction
->iso_packets
[0].offset
+
1568 transaction
->actual_bytes
;
1570 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
)
1571 reg
= CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
);
1573 reg
= CVMX_USBNX_DMA0_INB_CHN0(usb
->index
);
1574 cvmx_write64_uint64(reg
+ channel
* 8, dma_address
);
1577 /* Setup both the size of the transfer and the SPLIT characteristics */
1579 union cvmx_usbcx_hcspltx usbc_hcsplt
= {.u32
= 0};
1580 union cvmx_usbcx_hctsizx usbc_hctsiz
= {.u32
= 0};
1581 int packets_to_transfer
;
1582 int bytes_to_transfer
= transaction
->buffer_length
-
1583 transaction
->actual_bytes
;
1586 * ISOCHRONOUS transactions store each individual transfer size
1587 * in the packet structure, not the global buffer_length
1589 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1591 transaction
->iso_packets
[0].length
-
1592 transaction
->actual_bytes
;
1595 * We need to do split transactions when we are talking to non
1596 * high speed devices that are behind a high speed hub
1598 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1600 * On the start split phase (stage is even) record the
1601 * frame number we will need to send the split complete.
1602 * We only store the lower two bits since the time ahead
1603 * can only be two frames
1605 if ((transaction
->stage
& 1) == 0) {
1606 if (transaction
->type
== CVMX_USB_TRANSFER_BULK
)
1607 pipe
->split_sc_frame
=
1608 (usb
->frame_number
+ 1) & 0x7f;
1610 pipe
->split_sc_frame
=
1611 (usb
->frame_number
+ 2) & 0x7f;
1613 pipe
->split_sc_frame
= -1;
1616 usbc_hcsplt
.s
.spltena
= 1;
1617 usbc_hcsplt
.s
.hubaddr
= pipe
->hub_device_addr
;
1618 usbc_hcsplt
.s
.prtaddr
= pipe
->hub_port
;
1619 usbc_hcsplt
.s
.compsplt
= (transaction
->stage
==
1620 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
);
1623 * SPLIT transactions can only ever transmit one data
1624 * packet so limit the transfer size to the max packet
1627 if (bytes_to_transfer
> pipe
->max_packet
)
1628 bytes_to_transfer
= pipe
->max_packet
;
1631 * ISOCHRONOUS OUT splits are unique in that they limit
1632 * data transfers to 188 byte chunks representing the
1633 * begin/middle/end of the data or all
1635 if (!usbc_hcsplt
.s
.compsplt
&&
1636 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
1637 (pipe
->transfer_type
==
1638 CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
1640 * Clear the split complete frame number as
1641 * there isn't going to be a split complete
1643 pipe
->split_sc_frame
= -1;
1645 * See if we've started this transfer and sent
1648 if (transaction
->actual_bytes
== 0) {
1650 * Nothing sent yet, this is either a
1651 * begin or the entire payload
1653 if (bytes_to_transfer
<= 188)
1654 /* Entire payload in one go */
1655 usbc_hcsplt
.s
.xactpos
= 3;
1657 /* First part of payload */
1658 usbc_hcsplt
.s
.xactpos
= 2;
1661 * Continuing the previous data, we must
1662 * either be in the middle or at the end
1664 if (bytes_to_transfer
<= 188)
1665 /* End of payload */
1666 usbc_hcsplt
.s
.xactpos
= 1;
1668 /* Middle of payload */
1669 usbc_hcsplt
.s
.xactpos
= 0;
1672 * Again, the transfer size is limited to 188
1675 if (bytes_to_transfer
> 188)
1676 bytes_to_transfer
= 188;
1681 * Make sure the transfer never exceeds the byte limit of the
1682 * hardware. Further bytes will be sent as continued
1685 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1687 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1690 bytes_to_transfer
= MAX_TRANSFER_BYTES
/
1692 bytes_to_transfer
*= pipe
->max_packet
;
1696 * Calculate the number of packets to transfer. If the length is
1697 * zero we still need to transfer one packet
1699 packets_to_transfer
=
1700 DIV_ROUND_UP(bytes_to_transfer
, pipe
->max_packet
);
1701 if (packets_to_transfer
== 0) {
1702 packets_to_transfer
= 1;
1703 } else if ((packets_to_transfer
> 1) &&
1705 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1707 * Limit to one packet when not using DMA. Channels must
1708 * be restarted between every packet for IN
1709 * transactions, so there is no reason to do multiple
1712 packets_to_transfer
= 1;
1713 bytes_to_transfer
= packets_to_transfer
*
1715 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1717 * Limit the number of packet and data transferred to
1718 * what the hardware can handle
1720 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1721 bytes_to_transfer
= packets_to_transfer
*
1725 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1726 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1728 /* Update the DATA0/DATA1 toggle */
1729 usbc_hctsiz
.s
.pid
= cvmx_usb_get_data_pid(pipe
);
1731 * High speed pipes may need a hardware ping before they start
1733 if (pipe
->flags
& CVMX_USB_PIPE_FLAGS_NEED_PING
)
1734 usbc_hctsiz
.s
.dopng
= 1;
1736 cvmx_usb_write_csr32(usb
,
1737 CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1739 cvmx_usb_write_csr32(usb
,
1740 CVMX_USBCX_HCTSIZX(channel
, usb
->index
),
1744 /* Setup the Host Channel Characteristics Register */
1746 union cvmx_usbcx_hccharx usbc_hcchar
= {.u32
= 0};
1749 * Set the startframe odd/even properly. This is only used for
1752 usbc_hcchar
.s
.oddfrm
= usb
->frame_number
& 1;
1755 * Set the number of back to back packets allowed by this
1756 * endpoint. Split transactions interpret "ec" as the number of
1757 * immediate retries of failure. These retries happen too
1758 * quickly, so we disable these entirely for splits
1760 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
1761 usbc_hcchar
.s
.ec
= 1;
1762 else if (pipe
->multi_count
< 1)
1763 usbc_hcchar
.s
.ec
= 1;
1764 else if (pipe
->multi_count
> 3)
1765 usbc_hcchar
.s
.ec
= 3;
1767 usbc_hcchar
.s
.ec
= pipe
->multi_count
;
1769 /* Set the rest of the endpoint specific settings */
1770 usbc_hcchar
.s
.devaddr
= pipe
->device_addr
;
1771 usbc_hcchar
.s
.eptype
= transaction
->type
;
1772 usbc_hcchar
.s
.lspddev
=
1773 (pipe
->device_speed
== CVMX_USB_SPEED_LOW
);
1774 usbc_hcchar
.s
.epdir
= pipe
->transfer_dir
;
1775 usbc_hcchar
.s
.epnum
= pipe
->endpoint_num
;
1776 usbc_hcchar
.s
.mps
= pipe
->max_packet
;
1777 cvmx_usb_write_csr32(usb
,
1778 CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1782 /* Do transaction type specific fixups as needed */
1783 switch (transaction
->type
) {
1784 case CVMX_USB_TRANSFER_CONTROL
:
1785 cvmx_usb_start_channel_control(usb
, channel
, pipe
);
1787 case CVMX_USB_TRANSFER_BULK
:
1788 case CVMX_USB_TRANSFER_INTERRUPT
:
1790 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
1791 if (!cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1793 * ISO transactions require different PIDs depending on
1794 * direction and how many packets are needed
1796 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
1797 if (pipe
->multi_count
< 2) /* Need DATA0 */
1799 CVMX_USBCX_HCTSIZX(channel
,
1801 cvmx_usbcx_hctsizx
, pid
, 0);
1802 else /* Need MDATA */
1804 CVMX_USBCX_HCTSIZX(channel
,
1806 cvmx_usbcx_hctsizx
, pid
, 3);
1812 union cvmx_usbcx_hctsizx usbc_hctsiz
= { .u32
=
1813 cvmx_usb_read_csr32(usb
,
1814 CVMX_USBCX_HCTSIZX(channel
,
1817 transaction
->xfersize
= usbc_hctsiz
.s
.xfersize
;
1818 transaction
->pktcnt
= usbc_hctsiz
.s
.pktcnt
;
1820 /* Remember when we start a split transaction */
1821 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
1822 usb
->active_split
= transaction
;
1823 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1824 cvmx_usbcx_hccharx
, chena
, 1);
1825 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
1826 cvmx_usb_fill_tx_fifo(usb
, channel
);
1830 * Find a pipe that is ready to be scheduled to hardware.
1831 * @usb: USB device state populated by cvmx_usb_initialize().
1832 * @xfer_type: Transfer type
1834 * Returns: Pipe or NULL if none are ready
1836 static struct cvmx_usb_pipe
*cvmx_usb_find_ready_pipe(
1837 struct octeon_hcd
*usb
,
1838 enum cvmx_usb_transfer xfer_type
)
1840 struct list_head
*list
= usb
->active_pipes
+ xfer_type
;
1841 u64 current_frame
= usb
->frame_number
;
1842 struct cvmx_usb_pipe
*pipe
;
1844 list_for_each_entry(pipe
, list
, node
) {
1845 struct cvmx_usb_transaction
*t
=
1846 list_first_entry(&pipe
->transactions
, typeof(*t
),
1848 if (!(pipe
->flags
& CVMX_USB_PIPE_FLAGS_SCHEDULED
) && t
&&
1849 (pipe
->next_tx_frame
<= current_frame
) &&
1850 ((pipe
->split_sc_frame
== -1) ||
1851 ((((int)current_frame
- pipe
->split_sc_frame
) & 0x7f) <
1853 (!usb
->active_split
|| (usb
->active_split
== t
))) {
1861 static struct cvmx_usb_pipe
*cvmx_usb_next_pipe(struct octeon_hcd
*usb
,
1864 struct cvmx_usb_pipe
*pipe
;
1866 /* Find a pipe needing service. */
1869 * Only process periodic pipes on SOF interrupts. This way we
1870 * are sure that the periodic data is sent in the beginning of
1873 pipe
= cvmx_usb_find_ready_pipe(usb
,
1874 CVMX_USB_TRANSFER_ISOCHRONOUS
);
1877 pipe
= cvmx_usb_find_ready_pipe(usb
,
1878 CVMX_USB_TRANSFER_INTERRUPT
);
1882 pipe
= cvmx_usb_find_ready_pipe(usb
, CVMX_USB_TRANSFER_CONTROL
);
1885 return cvmx_usb_find_ready_pipe(usb
, CVMX_USB_TRANSFER_BULK
);
1889 * Called whenever a pipe might need to be scheduled to the
1892 * @usb: USB device state populated by cvmx_usb_initialize().
1893 * @is_sof: True if this schedule was called on a SOF interrupt.
1895 static void cvmx_usb_schedule(struct octeon_hcd
*usb
, int is_sof
)
1898 struct cvmx_usb_pipe
*pipe
;
1900 enum cvmx_usb_transfer ttype
;
1902 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
1904 * Without DMA we need to be careful to not schedule something
1905 * at the end of a frame and cause an overrun.
1907 union cvmx_usbcx_hfnum hfnum
= {
1908 .u32
= cvmx_usb_read_csr32(usb
,
1909 CVMX_USBCX_HFNUM(usb
->index
))
1912 union cvmx_usbcx_hfir hfir
= {
1913 .u32
= cvmx_usb_read_csr32(usb
,
1914 CVMX_USBCX_HFIR(usb
->index
))
1917 if (hfnum
.s
.frrem
< hfir
.s
.frint
/ 4)
1921 while (usb
->idle_hardware_channels
) {
1922 /* Find an idle channel */
1923 channel
= __fls(usb
->idle_hardware_channels
);
1924 if (unlikely(channel
> 7))
1927 pipe
= cvmx_usb_next_pipe(usb
, is_sof
);
1931 cvmx_usb_start_channel(usb
, channel
, pipe
);
1936 * Only enable SOF interrupts when we have transactions pending in the
1937 * future that might need to be scheduled
1940 for (ttype
= CVMX_USB_TRANSFER_CONTROL
;
1941 ttype
<= CVMX_USB_TRANSFER_INTERRUPT
; ttype
++) {
1942 list_for_each_entry(pipe
, &usb
->active_pipes
[ttype
], node
) {
1943 if (pipe
->next_tx_frame
> usb
->frame_number
) {
1949 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1950 cvmx_usbcx_gintmsk
, sofmsk
, need_sof
);
1953 static void octeon_usb_urb_complete_callback(struct octeon_hcd
*usb
,
1954 enum cvmx_usb_status status
,
1955 struct cvmx_usb_pipe
*pipe
,
1956 struct cvmx_usb_transaction
1958 int bytes_transferred
,
1961 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
1962 struct device
*dev
= hcd
->self
.controller
;
1964 if (likely(status
== CVMX_USB_STATUS_OK
))
1965 urb
->actual_length
= bytes_transferred
;
1967 urb
->actual_length
= 0;
1971 /* For Isochronous transactions we need to update the URB packet status
1972 * list from data in our private copy
1974 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
1977 * The pointer to the private list is stored in the setup_packet
1980 struct cvmx_usb_iso_packet
*iso_packet
=
1981 (struct cvmx_usb_iso_packet
*)urb
->setup_packet
;
1982 /* Recalculate the transfer size by adding up each packet */
1983 urb
->actual_length
= 0;
1984 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
1985 if (iso_packet
[i
].status
== CVMX_USB_STATUS_OK
) {
1986 urb
->iso_frame_desc
[i
].status
= 0;
1987 urb
->iso_frame_desc
[i
].actual_length
=
1988 iso_packet
[i
].length
;
1989 urb
->actual_length
+=
1990 urb
->iso_frame_desc
[i
].actual_length
;
1992 dev_dbg(dev
, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1993 i
, urb
->number_of_packets
,
1994 iso_packet
[i
].status
, pipe
,
1995 transaction
, iso_packet
[i
].length
);
1996 urb
->iso_frame_desc
[i
].status
= -EREMOTEIO
;
1999 /* Free the private list now that we don't need it anymore */
2001 urb
->setup_packet
= NULL
;
2005 case CVMX_USB_STATUS_OK
:
2008 case CVMX_USB_STATUS_CANCEL
:
2009 if (urb
->status
== 0)
2010 urb
->status
= -ENOENT
;
2012 case CVMX_USB_STATUS_STALL
:
2013 dev_dbg(dev
, "status=stall pipe=%p transaction=%p size=%d\n",
2014 pipe
, transaction
, bytes_transferred
);
2015 urb
->status
= -EPIPE
;
2017 case CVMX_USB_STATUS_BABBLEERR
:
2018 dev_dbg(dev
, "status=babble pipe=%p transaction=%p size=%d\n",
2019 pipe
, transaction
, bytes_transferred
);
2020 urb
->status
= -EPIPE
;
2022 case CVMX_USB_STATUS_SHORT
:
2023 dev_dbg(dev
, "status=short pipe=%p transaction=%p size=%d\n",
2024 pipe
, transaction
, bytes_transferred
);
2025 urb
->status
= -EREMOTEIO
;
2027 case CVMX_USB_STATUS_ERROR
:
2028 case CVMX_USB_STATUS_XACTERR
:
2029 case CVMX_USB_STATUS_DATATGLERR
:
2030 case CVMX_USB_STATUS_FRAMEERR
:
2031 dev_dbg(dev
, "status=%d pipe=%p transaction=%p size=%d\n",
2032 status
, pipe
, transaction
, bytes_transferred
);
2033 urb
->status
= -EPROTO
;
2036 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb
), urb
);
2037 spin_unlock(&usb
->lock
);
2038 usb_hcd_giveback_urb(octeon_to_hcd(usb
), urb
, urb
->status
);
2039 spin_lock(&usb
->lock
);
2043 * Signal the completion of a transaction and free it. The
2044 * transaction will be removed from the pipe transaction list.
2046 * @usb: USB device state populated by cvmx_usb_initialize().
2047 * @pipe: Pipe the transaction is on
2049 * Transaction that completed
2053 static void cvmx_usb_complete(struct octeon_hcd
*usb
,
2054 struct cvmx_usb_pipe
*pipe
,
2055 struct cvmx_usb_transaction
*transaction
,
2056 enum cvmx_usb_status complete_code
)
2058 /* If this was a split then clear our split in progress marker */
2059 if (usb
->active_split
== transaction
)
2060 usb
->active_split
= NULL
;
2063 * Isochronous transactions need extra processing as they might not be
2064 * done after a single data transfer
2066 if (unlikely(transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
2067 /* Update the number of bytes transferred in this ISO packet */
2068 transaction
->iso_packets
[0].length
= transaction
->actual_bytes
;
2069 transaction
->iso_packets
[0].status
= complete_code
;
2072 * If there are more ISOs pending and we succeeded, schedule the
2075 if ((transaction
->iso_number_packets
> 1) &&
2076 (complete_code
== CVMX_USB_STATUS_OK
)) {
2077 /* No bytes transferred for this packet as of yet */
2078 transaction
->actual_bytes
= 0;
2079 /* One less ISO waiting to transfer */
2080 transaction
->iso_number_packets
--;
2081 /* Increment to the next location in our packet array */
2082 transaction
->iso_packets
++;
2083 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2088 /* Remove the transaction from the pipe list */
2089 list_del(&transaction
->node
);
2090 if (list_empty(&pipe
->transactions
))
2091 list_move_tail(&pipe
->node
, &usb
->idle_pipes
);
2092 octeon_usb_urb_complete_callback(usb
, complete_code
, pipe
,
2094 transaction
->actual_bytes
,
2100 * Submit a usb transaction to a pipe. Called for all types
2104 * @pipe: Which pipe to submit to.
2105 * @type: Transaction type
2106 * @buffer: User buffer for the transaction
2108 * User buffer's length in bytes
2110 * For control transactions, the 8 byte standard header
2112 * For ISO transactions, the start frame
2113 * @iso_number_packets:
2114 * For ISO, the number of packet in the transaction.
2116 * A description of each ISO packet
2117 * @urb: URB for the callback
2119 * Returns: Transaction or NULL on failure.
2121 static struct cvmx_usb_transaction
*cvmx_usb_submit_transaction(
2122 struct octeon_hcd
*usb
,
2123 struct cvmx_usb_pipe
*pipe
,
2124 enum cvmx_usb_transfer type
,
2128 int iso_start_frame
,
2129 int iso_number_packets
,
2130 struct cvmx_usb_iso_packet
*iso_packets
,
2133 struct cvmx_usb_transaction
*transaction
;
2135 if (unlikely(pipe
->transfer_type
!= type
))
2138 transaction
= kzalloc(sizeof(*transaction
), GFP_ATOMIC
);
2139 if (unlikely(!transaction
))
2142 transaction
->type
= type
;
2143 transaction
->buffer
= buffer
;
2144 transaction
->buffer_length
= buffer_length
;
2145 transaction
->control_header
= control_header
;
2146 /* FIXME: This is not used, implement it. */
2147 transaction
->iso_start_frame
= iso_start_frame
;
2148 transaction
->iso_number_packets
= iso_number_packets
;
2149 transaction
->iso_packets
= iso_packets
;
2150 transaction
->urb
= urb
;
2151 if (transaction
->type
== CVMX_USB_TRANSFER_CONTROL
)
2152 transaction
->stage
= CVMX_USB_STAGE_SETUP
;
2154 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2156 if (!list_empty(&pipe
->transactions
)) {
2157 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2159 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2160 list_move_tail(&pipe
->node
,
2161 &usb
->active_pipes
[pipe
->transfer_type
]);
2164 * We may need to schedule the pipe if this was the head of the
2167 cvmx_usb_schedule(usb
, 0);
2174 * Call to submit a USB Bulk transfer to a pipe.
2176 * @usb: USB device state populated by cvmx_usb_initialize().
2177 * @pipe: Handle to the pipe for the transfer.
2180 * Returns: A submitted transaction or NULL on failure.
2182 static struct cvmx_usb_transaction
*cvmx_usb_submit_bulk(
2183 struct octeon_hcd
*usb
,
2184 struct cvmx_usb_pipe
*pipe
,
2187 return cvmx_usb_submit_transaction(usb
, pipe
, CVMX_USB_TRANSFER_BULK
,
2189 urb
->transfer_buffer_length
,
2190 0, /* control_header */
2191 0, /* iso_start_frame */
2192 0, /* iso_number_packets */
2193 NULL
, /* iso_packets */
2198 * Call to submit a USB Interrupt transfer to a pipe.
2200 * @usb: USB device state populated by cvmx_usb_initialize().
2201 * @pipe: Handle to the pipe for the transfer.
2202 * @urb: URB returned when the callback is called.
2204 * Returns: A submitted transaction or NULL on failure.
2206 static struct cvmx_usb_transaction
*cvmx_usb_submit_interrupt(
2207 struct octeon_hcd
*usb
,
2208 struct cvmx_usb_pipe
*pipe
,
2211 return cvmx_usb_submit_transaction(usb
, pipe
,
2212 CVMX_USB_TRANSFER_INTERRUPT
,
2214 urb
->transfer_buffer_length
,
2215 0, /* control_header */
2216 0, /* iso_start_frame */
2217 0, /* iso_number_packets */
2218 NULL
, /* iso_packets */
2223 * Call to submit a USB Control transfer to a pipe.
2225 * @usb: USB device state populated by cvmx_usb_initialize().
2226 * @pipe: Handle to the pipe for the transfer.
2229 * Returns: A submitted transaction or NULL on failure.
2231 static struct cvmx_usb_transaction
*cvmx_usb_submit_control(
2232 struct octeon_hcd
*usb
,
2233 struct cvmx_usb_pipe
*pipe
,
2236 int buffer_length
= urb
->transfer_buffer_length
;
2237 u64 control_header
= urb
->setup_dma
;
2238 struct usb_ctrlrequest
*header
= cvmx_phys_to_ptr(control_header
);
2240 if ((header
->bRequestType
& USB_DIR_IN
) == 0)
2241 buffer_length
= le16_to_cpu(header
->wLength
);
2243 return cvmx_usb_submit_transaction(usb
, pipe
,
2244 CVMX_USB_TRANSFER_CONTROL
,
2245 urb
->transfer_dma
, buffer_length
,
2247 0, /* iso_start_frame */
2248 0, /* iso_number_packets */
2249 NULL
, /* iso_packets */
2254 * Call to submit a USB Isochronous transfer to a pipe.
2256 * @usb: USB device state populated by cvmx_usb_initialize().
2257 * @pipe: Handle to the pipe for the transfer.
2258 * @urb: URB returned when the callback is called.
2260 * Returns: A submitted transaction or NULL on failure.
2262 static struct cvmx_usb_transaction
*cvmx_usb_submit_isochronous(
2263 struct octeon_hcd
*usb
,
2264 struct cvmx_usb_pipe
*pipe
,
2267 struct cvmx_usb_iso_packet
*packets
;
2269 packets
= (struct cvmx_usb_iso_packet
*)urb
->setup_packet
;
2270 return cvmx_usb_submit_transaction(usb
, pipe
,
2271 CVMX_USB_TRANSFER_ISOCHRONOUS
,
2273 urb
->transfer_buffer_length
,
2274 0, /* control_header */
2276 urb
->number_of_packets
,
2281 * Cancel one outstanding request in a pipe. Canceling a request
2282 * can fail if the transaction has already completed before cancel
2283 * is called. Even after a successful cancel call, it may take
2284 * a frame or two for the cvmx_usb_poll() function to call the
2285 * associated callback.
2287 * @usb: USB device state populated by cvmx_usb_initialize().
2288 * @pipe: Pipe to cancel requests in.
2289 * @transaction: Transaction to cancel, returned by the submit function.
2291 * Returns: 0 or a negative error code.
2293 static int cvmx_usb_cancel(struct octeon_hcd
*usb
,
2294 struct cvmx_usb_pipe
*pipe
,
2295 struct cvmx_usb_transaction
*transaction
)
2298 * If the transaction is the HEAD of the queue and scheduled. We need to
2301 if (list_first_entry(&pipe
->transactions
, typeof(*transaction
), node
) ==
2302 transaction
&& (pipe
->flags
& CVMX_USB_PIPE_FLAGS_SCHEDULED
)) {
2303 union cvmx_usbcx_hccharx usbc_hcchar
;
2305 usb
->pipe_for_channel
[pipe
->channel
] = NULL
;
2306 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2310 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2311 CVMX_USBCX_HCCHARX(pipe
->channel
, usb
->index
));
2313 * If the channel isn't enabled then the transaction already
2316 if (usbc_hcchar
.s
.chena
) {
2317 usbc_hcchar
.s
.chdis
= 1;
2318 cvmx_usb_write_csr32(usb
,
2319 CVMX_USBCX_HCCHARX(pipe
->channel
,
2324 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_CANCEL
);
2329 * Cancel all outstanding requests in a pipe. Logically all this
2330 * does is call cvmx_usb_cancel() in a loop.
2332 * @usb: USB device state populated by cvmx_usb_initialize().
2333 * @pipe: Pipe to cancel requests in.
2335 * Returns: 0 or a negative error code.
2337 static int cvmx_usb_cancel_all(struct octeon_hcd
*usb
,
2338 struct cvmx_usb_pipe
*pipe
)
2340 struct cvmx_usb_transaction
*transaction
, *next
;
2342 /* Simply loop through and attempt to cancel each transaction */
2343 list_for_each_entry_safe(transaction
, next
, &pipe
->transactions
, node
) {
2344 int result
= cvmx_usb_cancel(usb
, pipe
, transaction
);
2346 if (unlikely(result
!= 0))
2353 * Close a pipe created with cvmx_usb_open_pipe().
2355 * @usb: USB device state populated by cvmx_usb_initialize().
2356 * @pipe: Pipe to close.
2358 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2359 * outstanding transfers.
2361 static int cvmx_usb_close_pipe(struct octeon_hcd
*usb
,
2362 struct cvmx_usb_pipe
*pipe
)
2364 /* Fail if the pipe has pending transactions */
2365 if (!list_empty(&pipe
->transactions
))
2368 list_del(&pipe
->node
);
2375 * Get the current USB protocol level frame number. The frame
2376 * number is always in the range of 0-0x7ff.
2378 * @usb: USB device state populated by cvmx_usb_initialize().
2380 * Returns: USB frame number
2382 static int cvmx_usb_get_frame_number(struct octeon_hcd
*usb
)
2385 union cvmx_usbcx_hfnum usbc_hfnum
;
2387 usbc_hfnum
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
));
2388 frame_number
= usbc_hfnum
.s
.frnum
;
2390 return frame_number
;
2393 static void cvmx_usb_transfer_control(struct octeon_hcd
*usb
,
2394 struct cvmx_usb_pipe
*pipe
,
2395 struct cvmx_usb_transaction
*transaction
,
2396 union cvmx_usbcx_hccharx usbc_hcchar
,
2397 int buffer_space_left
,
2398 int bytes_in_last_packet
)
2400 switch (transaction
->stage
) {
2401 case CVMX_USB_STAGE_NON_CONTROL
:
2402 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
2403 /* This should be impossible */
2404 cvmx_usb_complete(usb
, pipe
, transaction
,
2405 CVMX_USB_STATUS_ERROR
);
2407 case CVMX_USB_STAGE_SETUP
:
2408 pipe
->pid_toggle
= 1;
2409 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2410 transaction
->stage
=
2411 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
;
2413 struct usb_ctrlrequest
*header
=
2414 cvmx_phys_to_ptr(transaction
->control_header
);
2415 if (header
->wLength
)
2416 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2418 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2421 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
2423 struct usb_ctrlrequest
*header
=
2424 cvmx_phys_to_ptr(transaction
->control_header
);
2425 if (header
->wLength
)
2426 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2428 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2431 case CVMX_USB_STAGE_DATA
:
2432 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2433 transaction
->stage
= CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
;
2435 * For setup OUT data that are splits,
2436 * the hardware doesn't appear to count
2437 * transferred data. Here we manually
2438 * update the data transferred
2440 if (!usbc_hcchar
.s
.epdir
) {
2441 if (buffer_space_left
< pipe
->max_packet
)
2442 transaction
->actual_bytes
+=
2445 transaction
->actual_bytes
+=
2448 } else if ((buffer_space_left
== 0) ||
2449 (bytes_in_last_packet
< pipe
->max_packet
)) {
2450 pipe
->pid_toggle
= 1;
2451 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2454 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
2455 if ((buffer_space_left
== 0) ||
2456 (bytes_in_last_packet
< pipe
->max_packet
)) {
2457 pipe
->pid_toggle
= 1;
2458 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2460 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2463 case CVMX_USB_STAGE_STATUS
:
2464 if (cvmx_usb_pipe_needs_split(usb
, pipe
))
2465 transaction
->stage
=
2466 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
;
2468 cvmx_usb_complete(usb
, pipe
, transaction
,
2469 CVMX_USB_STATUS_OK
);
2471 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
2472 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2477 static void cvmx_usb_transfer_bulk(struct octeon_hcd
*usb
,
2478 struct cvmx_usb_pipe
*pipe
,
2479 struct cvmx_usb_transaction
*transaction
,
2480 union cvmx_usbcx_hcintx usbc_hcint
,
2481 int buffer_space_left
,
2482 int bytes_in_last_packet
)
2485 * The only time a bulk transfer isn't complete when it finishes with
2486 * an ACK is during a split transaction. For splits we need to continue
2487 * the transfer if more data is needed.
2489 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2490 if (transaction
->stage
== CVMX_USB_STAGE_NON_CONTROL
)
2491 transaction
->stage
=
2492 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2493 else if (buffer_space_left
&&
2494 (bytes_in_last_packet
== pipe
->max_packet
))
2495 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2497 cvmx_usb_complete(usb
, pipe
, transaction
,
2498 CVMX_USB_STATUS_OK
);
2500 if ((pipe
->device_speed
== CVMX_USB_SPEED_HIGH
) &&
2501 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
2503 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
2504 if (!buffer_space_left
||
2505 (bytes_in_last_packet
< pipe
->max_packet
))
2506 cvmx_usb_complete(usb
, pipe
, transaction
,
2507 CVMX_USB_STATUS_OK
);
2511 static void cvmx_usb_transfer_intr(struct octeon_hcd
*usb
,
2512 struct cvmx_usb_pipe
*pipe
,
2513 struct cvmx_usb_transaction
*transaction
,
2514 int buffer_space_left
,
2515 int bytes_in_last_packet
)
2517 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2518 if (transaction
->stage
== CVMX_USB_STAGE_NON_CONTROL
) {
2519 transaction
->stage
=
2520 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2521 } else if (buffer_space_left
&&
2522 (bytes_in_last_packet
== pipe
->max_packet
)) {
2523 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2525 pipe
->next_tx_frame
+= pipe
->interval
;
2526 cvmx_usb_complete(usb
, pipe
, transaction
,
2527 CVMX_USB_STATUS_OK
);
2529 } else if (!buffer_space_left
||
2530 (bytes_in_last_packet
< pipe
->max_packet
)) {
2531 pipe
->next_tx_frame
+= pipe
->interval
;
2532 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2536 static void cvmx_usb_transfer_isoc(struct octeon_hcd
*usb
,
2537 struct cvmx_usb_pipe
*pipe
,
2538 struct cvmx_usb_transaction
*transaction
,
2539 int buffer_space_left
,
2540 int bytes_in_last_packet
,
2541 int bytes_this_transfer
)
2543 if (cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2545 * ISOCHRONOUS OUT splits don't require a complete split stage.
2546 * Instead they use a sequence of begin OUT splits to transfer
2547 * the data 188 bytes at a time. Once the transfer is complete,
2548 * the pipe sleeps until the next schedule interval.
2550 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
2552 * If no space left or this wasn't a max size packet
2553 * then this transfer is complete. Otherwise start it
2554 * again to send the next 188 bytes
2556 if (!buffer_space_left
|| (bytes_this_transfer
< 188)) {
2557 pipe
->next_tx_frame
+= pipe
->interval
;
2558 cvmx_usb_complete(usb
, pipe
, transaction
,
2559 CVMX_USB_STATUS_OK
);
2563 if (transaction
->stage
==
2564 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
) {
2566 * We are in the incoming data phase. Keep getting data
2567 * until we run out of space or get a small packet
2569 if ((buffer_space_left
== 0) ||
2570 (bytes_in_last_packet
< pipe
->max_packet
)) {
2571 pipe
->next_tx_frame
+= pipe
->interval
;
2572 cvmx_usb_complete(usb
, pipe
, transaction
,
2573 CVMX_USB_STATUS_OK
);
2576 transaction
->stage
=
2577 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2580 pipe
->next_tx_frame
+= pipe
->interval
;
2581 cvmx_usb_complete(usb
, pipe
, transaction
, CVMX_USB_STATUS_OK
);
2586 * Poll a channel for status
2589 * @channel: Channel to poll
2591 * Returns: Zero on success
2593 static int cvmx_usb_poll_channel(struct octeon_hcd
*usb
, int channel
)
2595 struct usb_hcd
*hcd
= octeon_to_hcd(usb
);
2596 struct device
*dev
= hcd
->self
.controller
;
2597 union cvmx_usbcx_hcintx usbc_hcint
;
2598 union cvmx_usbcx_hctsizx usbc_hctsiz
;
2599 union cvmx_usbcx_hccharx usbc_hcchar
;
2600 struct cvmx_usb_pipe
*pipe
;
2601 struct cvmx_usb_transaction
*transaction
;
2602 int bytes_this_transfer
;
2603 int bytes_in_last_packet
;
2604 int packets_processed
;
2605 int buffer_space_left
;
2607 /* Read the interrupt status bits for the channel */
2608 usbc_hcint
.u32
= cvmx_usb_read_csr32(usb
,
2609 CVMX_USBCX_HCINTX(channel
, usb
->index
));
2611 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
2612 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2613 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2615 if (usbc_hcchar
.s
.chena
&& usbc_hcchar
.s
.chdis
) {
2617 * There seems to be a bug in CN31XX which can cause
2618 * interrupt IN transfers to get stuck until we do a
2619 * write of HCCHARX without changing things
2621 cvmx_usb_write_csr32(usb
,
2622 CVMX_USBCX_HCCHARX(channel
,
2629 * In non DMA mode the channels don't halt themselves. We need
2630 * to manually disable channels that are left running
2632 if (!usbc_hcint
.s
.chhltd
) {
2633 if (usbc_hcchar
.s
.chena
) {
2634 union cvmx_usbcx_hcintmskx hcintmsk
;
2635 /* Disable all interrupts except CHHLTD */
2637 hcintmsk
.s
.chhltdmsk
= 1;
2638 cvmx_usb_write_csr32(usb
,
2639 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
),
2641 usbc_hcchar
.s
.chdis
= 1;
2642 cvmx_usb_write_csr32(usb
,
2643 CVMX_USBCX_HCCHARX(channel
, usb
->index
),
2646 } else if (usbc_hcint
.s
.xfercompl
) {
2648 * Successful IN/OUT with transfer complete.
2649 * Channel halt isn't needed.
2652 dev_err(dev
, "USB%d: Channel %d interrupt without halt\n",
2653 usb
->index
, channel
);
2659 * There is are no interrupts that we need to process when the
2660 * channel is still running
2662 if (!usbc_hcint
.s
.chhltd
)
2666 /* Disable the channel interrupts now that it is done */
2667 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCINTMSKX(channel
, usb
->index
), 0);
2668 usb
->idle_hardware_channels
|= (1 << channel
);
2670 /* Make sure this channel is tied to a valid pipe */
2671 pipe
= usb
->pipe_for_channel
[channel
];
2675 transaction
= list_first_entry(&pipe
->transactions
,
2676 typeof(*transaction
),
2678 prefetch(transaction
);
2681 * Disconnect this pipe from the HW channel. Later the schedule
2682 * function will figure out which pipe needs to go
2684 usb
->pipe_for_channel
[channel
] = NULL
;
2685 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2688 * Read the channel config info so we can figure out how much data
2691 usbc_hcchar
.u32
= cvmx_usb_read_csr32(usb
,
2692 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2693 usbc_hctsiz
.u32
= cvmx_usb_read_csr32(usb
,
2694 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
2697 * Calculating the number of bytes successfully transferred is dependent
2698 * on the transfer direction
2700 packets_processed
= transaction
->pktcnt
- usbc_hctsiz
.s
.pktcnt
;
2701 if (usbc_hcchar
.s
.epdir
) {
2703 * IN transactions are easy. For every byte received the
2704 * hardware decrements xfersize. All we need to do is subtract
2705 * the current value of xfersize from its starting value and we
2706 * know how many bytes were written to the buffer
2708 bytes_this_transfer
= transaction
->xfersize
-
2709 usbc_hctsiz
.s
.xfersize
;
2712 * OUT transaction don't decrement xfersize. Instead pktcnt is
2713 * decremented on every successful packet send. The hardware
2714 * does this when it receives an ACK, or NYET. If it doesn't
2715 * receive one of these responses pktcnt doesn't change
2717 bytes_this_transfer
= packets_processed
* usbc_hcchar
.s
.mps
;
2719 * The last packet may not be a full transfer if we didn't have
2722 if (bytes_this_transfer
> transaction
->xfersize
)
2723 bytes_this_transfer
= transaction
->xfersize
;
2725 /* Figure out how many bytes were in the last packet of the transfer */
2726 if (packets_processed
)
2727 bytes_in_last_packet
= bytes_this_transfer
-
2728 (packets_processed
- 1) * usbc_hcchar
.s
.mps
;
2730 bytes_in_last_packet
= bytes_this_transfer
;
2733 * As a special case, setup transactions output the setup header, not
2734 * the user's data. For this reason we don't count setup data as bytes
2737 if ((transaction
->stage
== CVMX_USB_STAGE_SETUP
) ||
2738 (transaction
->stage
== CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
))
2739 bytes_this_transfer
= 0;
2742 * Add the bytes transferred to the running total. It is important that
2743 * bytes_this_transfer doesn't count any data that needs to be
2746 transaction
->actual_bytes
+= bytes_this_transfer
;
2747 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
2748 buffer_space_left
= transaction
->iso_packets
[0].length
-
2749 transaction
->actual_bytes
;
2751 buffer_space_left
= transaction
->buffer_length
-
2752 transaction
->actual_bytes
;
2755 * We need to remember the PID toggle state for the next transaction.
2756 * The hardware already updated it for the next transaction
2758 pipe
->pid_toggle
= !(usbc_hctsiz
.s
.pid
== 0);
2761 * For high speed bulk out, assume the next transaction will need to do
2762 * a ping before proceeding. If this isn't true the ACK processing below
2763 * will clear this flag
2765 if ((pipe
->device_speed
== CVMX_USB_SPEED_HIGH
) &&
2766 (pipe
->transfer_type
== CVMX_USB_TRANSFER_BULK
) &&
2767 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
))
2768 pipe
->flags
|= CVMX_USB_PIPE_FLAGS_NEED_PING
;
2770 if (unlikely(WARN_ON_ONCE(bytes_this_transfer
< 0))) {
2772 * In some rare cases the DMA engine seems to get stuck and
2773 * keeps substracting same byte count over and over again. In
2774 * such case we just need to fail every transaction.
2776 cvmx_usb_complete(usb
, pipe
, transaction
,
2777 CVMX_USB_STATUS_ERROR
);
2781 if (usbc_hcint
.s
.stall
) {
2783 * STALL as a response means this transaction cannot be
2784 * completed because the device can't process transactions. Tell
2785 * the user. Any data that was transferred will be counted on
2786 * the actual bytes transferred
2788 pipe
->pid_toggle
= 0;
2789 cvmx_usb_complete(usb
, pipe
, transaction
,
2790 CVMX_USB_STATUS_STALL
);
2791 } else if (usbc_hcint
.s
.xacterr
) {
2793 * XactErr as a response means the device signaled
2794 * something wrong with the transfer. For example, PID
2795 * toggle errors cause these.
2797 cvmx_usb_complete(usb
, pipe
, transaction
,
2798 CVMX_USB_STATUS_XACTERR
);
2799 } else if (usbc_hcint
.s
.bblerr
) {
2800 /* Babble Error (BblErr) */
2801 cvmx_usb_complete(usb
, pipe
, transaction
,
2802 CVMX_USB_STATUS_BABBLEERR
);
2803 } else if (usbc_hcint
.s
.datatglerr
) {
2804 /* Data toggle error */
2805 cvmx_usb_complete(usb
, pipe
, transaction
,
2806 CVMX_USB_STATUS_DATATGLERR
);
2807 } else if (usbc_hcint
.s
.nyet
) {
2809 * NYET as a response is only allowed in three cases: as a
2810 * response to a ping, as a response to a split transaction, and
2811 * as a response to a bulk out. The ping case is handled by
2812 * hardware, so we only have splits and bulk out
2814 if (!cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2815 transaction
->retries
= 0;
2817 * If there is more data to go then we need to try
2818 * again. Otherwise this transaction is complete
2820 if ((buffer_space_left
== 0) ||
2821 (bytes_in_last_packet
< pipe
->max_packet
))
2822 cvmx_usb_complete(usb
, pipe
,
2824 CVMX_USB_STATUS_OK
);
2827 * Split transactions retry the split complete 4 times
2828 * then rewind to the start split and do the entire
2829 * transactions again
2831 transaction
->retries
++;
2832 if ((transaction
->retries
& 0x3) == 0) {
2834 * Rewind to the beginning of the transaction by
2835 * anding off the split complete bit
2837 transaction
->stage
&= ~1;
2838 pipe
->split_sc_frame
= -1;
2841 } else if (usbc_hcint
.s
.ack
) {
2842 transaction
->retries
= 0;
2844 * The ACK bit can only be checked after the other error bits.
2845 * This is because a multi packet transfer may succeed in a
2846 * number of packets and then get a different response on the
2847 * last packet. In this case both ACK and the last response bit
2848 * will be set. If none of the other response bits is set, then
2849 * the last packet must have been an ACK
2851 * Since we got an ACK, we know we don't need to do a ping on
2854 pipe
->flags
&= ~CVMX_USB_PIPE_FLAGS_NEED_PING
;
2856 switch (transaction
->type
) {
2857 case CVMX_USB_TRANSFER_CONTROL
:
2858 cvmx_usb_transfer_control(usb
, pipe
, transaction
,
2861 bytes_in_last_packet
);
2863 case CVMX_USB_TRANSFER_BULK
:
2864 cvmx_usb_transfer_bulk(usb
, pipe
, transaction
,
2865 usbc_hcint
, buffer_space_left
,
2866 bytes_in_last_packet
);
2868 case CVMX_USB_TRANSFER_INTERRUPT
:
2869 cvmx_usb_transfer_intr(usb
, pipe
, transaction
,
2871 bytes_in_last_packet
);
2873 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
2874 cvmx_usb_transfer_isoc(usb
, pipe
, transaction
,
2876 bytes_in_last_packet
,
2877 bytes_this_transfer
);
2880 } else if (usbc_hcint
.s
.nak
) {
2882 * If this was a split then clear our split in progress marker.
2884 if (usb
->active_split
== transaction
)
2885 usb
->active_split
= NULL
;
2887 * NAK as a response means the device couldn't accept the
2888 * transaction, but it should be retried in the future. Rewind
2889 * to the beginning of the transaction by anding off the split
2890 * complete bit. Retry in the next interval
2892 transaction
->retries
= 0;
2893 transaction
->stage
&= ~1;
2894 pipe
->next_tx_frame
+= pipe
->interval
;
2895 if (pipe
->next_tx_frame
< usb
->frame_number
)
2896 pipe
->next_tx_frame
= usb
->frame_number
+
2898 (usb
->frame_number
- pipe
->next_tx_frame
) %
2901 struct cvmx_usb_port_status port
;
2903 port
= cvmx_usb_get_status(usb
);
2904 if (port
.port_enabled
) {
2905 /* We'll retry the exact same transaction again */
2906 transaction
->retries
++;
2909 * We get channel halted interrupts with no result bits
2910 * sets when the cable is unplugged
2912 cvmx_usb_complete(usb
, pipe
, transaction
,
2913 CVMX_USB_STATUS_ERROR
);
2919 static void octeon_usb_port_callback(struct octeon_hcd
*usb
)
2921 spin_unlock(&usb
->lock
);
2922 usb_hcd_poll_rh_status(octeon_to_hcd(usb
));
2923 spin_lock(&usb
->lock
);
2927 * Poll the USB block for status and call all needed callback
2928 * handlers. This function is meant to be called in the interrupt
2929 * handler for the USB controller. It can also be called
2930 * periodically in a loop for non-interrupt based operation.
2932 * @usb: USB device state populated by cvmx_usb_initialize().
2934 * Returns: 0 or a negative error code.
2936 static int cvmx_usb_poll(struct octeon_hcd
*usb
)
2938 union cvmx_usbcx_hfnum usbc_hfnum
;
2939 union cvmx_usbcx_gintsts usbc_gintsts
;
2941 prefetch_range(usb
, sizeof(*usb
));
2943 /* Update the frame counter */
2944 usbc_hfnum
.u32
= cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
));
2945 if ((usb
->frame_number
& 0x3fff) > usbc_hfnum
.s
.frnum
)
2946 usb
->frame_number
+= 0x4000;
2947 usb
->frame_number
&= ~0x3fffull
;
2948 usb
->frame_number
|= usbc_hfnum
.s
.frnum
;
2950 /* Read the pending interrupts */
2951 usbc_gintsts
.u32
= cvmx_usb_read_csr32(usb
,
2952 CVMX_USBCX_GINTSTS(usb
->index
));
2954 /* Clear the interrupts now that we know about them */
2955 cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
),
2958 if (usbc_gintsts
.s
.rxflvl
) {
2960 * RxFIFO Non-Empty (RxFLvl)
2961 * Indicates that there is at least one packet pending to be
2962 * read from the RxFIFO.
2964 * In DMA mode this is handled by hardware
2966 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
2967 cvmx_usb_poll_rx_fifo(usb
);
2969 if (usbc_gintsts
.s
.ptxfemp
|| usbc_gintsts
.s
.nptxfemp
) {
2970 /* Fill the Tx FIFOs when not in DMA mode */
2971 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
2972 cvmx_usb_poll_tx_fifo(usb
);
2974 if (usbc_gintsts
.s
.disconnint
|| usbc_gintsts
.s
.prtint
) {
2975 union cvmx_usbcx_hprt usbc_hprt
;
2977 * Disconnect Detected Interrupt (DisconnInt)
2978 * Asserted when a device disconnect is detected.
2980 * Host Port Interrupt (PrtInt)
2981 * The core sets this bit to indicate a change in port status of
2982 * one of the O2P USB core ports in Host mode. The application
2983 * must read the Host Port Control and Status (HPRT) register to
2984 * determine the exact event that caused this interrupt. The
2985 * application must clear the appropriate status bit in the Host
2986 * Port Control and Status register to clear this bit.
2988 * Call the user's port callback
2990 octeon_usb_port_callback(usb
);
2991 /* Clear the port change bits */
2993 cvmx_usb_read_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
));
2994 usbc_hprt
.s
.prtena
= 0;
2995 cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
),
2998 if (usbc_gintsts
.s
.hchint
) {
3000 * Host Channels Interrupt (HChInt)
3001 * The core sets this bit to indicate that an interrupt is
3002 * pending on one of the channels of the core (in Host mode).
3003 * The application must read the Host All Channels Interrupt
3004 * (HAINT) register to determine the exact number of the channel
3005 * on which the interrupt occurred, and then read the
3006 * corresponding Host Channel-n Interrupt (HCINTn) register to
3007 * determine the exact cause of the interrupt. The application
3008 * must clear the appropriate status bit in the HCINTn register
3009 * to clear this bit.
3011 union cvmx_usbcx_haint usbc_haint
;
3013 usbc_haint
.u32
= cvmx_usb_read_csr32(usb
,
3014 CVMX_USBCX_HAINT(usb
->index
));
3015 while (usbc_haint
.u32
) {
3018 channel
= __fls(usbc_haint
.u32
);
3019 cvmx_usb_poll_channel(usb
, channel
);
3020 usbc_haint
.u32
^= 1 << channel
;
3024 cvmx_usb_schedule(usb
, usbc_gintsts
.s
.sof
);
3029 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3030 static inline struct octeon_hcd
*hcd_to_octeon(struct usb_hcd
*hcd
)
3032 return (struct octeon_hcd
*)(hcd
->hcd_priv
);
3035 static irqreturn_t
octeon_usb_irq(struct usb_hcd
*hcd
)
3037 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3038 unsigned long flags
;
3040 spin_lock_irqsave(&usb
->lock
, flags
);
3042 spin_unlock_irqrestore(&usb
->lock
, flags
);
3046 static int octeon_usb_start(struct usb_hcd
*hcd
)
3048 hcd
->state
= HC_STATE_RUNNING
;
3052 static void octeon_usb_stop(struct usb_hcd
*hcd
)
3054 hcd
->state
= HC_STATE_HALT
;
3057 static int octeon_usb_get_frame_number(struct usb_hcd
*hcd
)
3059 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3061 return cvmx_usb_get_frame_number(usb
);
3064 static int octeon_usb_urb_enqueue(struct usb_hcd
*hcd
,
3068 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3069 struct device
*dev
= hcd
->self
.controller
;
3070 struct cvmx_usb_transaction
*transaction
= NULL
;
3071 struct cvmx_usb_pipe
*pipe
;
3072 unsigned long flags
;
3073 struct cvmx_usb_iso_packet
*iso_packet
;
3074 struct usb_host_endpoint
*ep
= urb
->ep
;
3078 spin_lock_irqsave(&usb
->lock
, flags
);
3080 rc
= usb_hcd_link_urb_to_ep(hcd
, urb
);
3082 spin_unlock_irqrestore(&usb
->lock
, flags
);
3087 enum cvmx_usb_transfer transfer_type
;
3088 enum cvmx_usb_speed speed
;
3089 int split_device
= 0;
3092 switch (usb_pipetype(urb
->pipe
)) {
3093 case PIPE_ISOCHRONOUS
:
3094 transfer_type
= CVMX_USB_TRANSFER_ISOCHRONOUS
;
3096 case PIPE_INTERRUPT
:
3097 transfer_type
= CVMX_USB_TRANSFER_INTERRUPT
;
3100 transfer_type
= CVMX_USB_TRANSFER_CONTROL
;
3103 transfer_type
= CVMX_USB_TRANSFER_BULK
;
3106 switch (urb
->dev
->speed
) {
3108 speed
= CVMX_USB_SPEED_LOW
;
3110 case USB_SPEED_FULL
:
3111 speed
= CVMX_USB_SPEED_FULL
;
3114 speed
= CVMX_USB_SPEED_HIGH
;
3118 * For slow devices on high speed ports we need to find the hub
3119 * that does the speed translation so we know where to send the
3120 * split transactions.
3122 if (speed
!= CVMX_USB_SPEED_HIGH
) {
3124 * Start at this device and work our way up the usb
3127 struct usb_device
*dev
= urb
->dev
;
3129 while (dev
->parent
) {
3131 * If our parent is high speed then he'll
3132 * receive the splits.
3134 if (dev
->parent
->speed
== USB_SPEED_HIGH
) {
3135 split_device
= dev
->parent
->devnum
;
3136 split_port
= dev
->portnum
;
3140 * Move up the tree one level. If we make it all
3141 * the way up the tree, then the port must not
3142 * be in high speed mode and we don't need a
3148 pipe
= cvmx_usb_open_pipe(usb
, usb_pipedevice(urb
->pipe
),
3149 usb_pipeendpoint(urb
->pipe
), speed
,
3150 le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3153 usb_pipein(urb
->pipe
) ?
3154 CVMX_USB_DIRECTION_IN
:
3155 CVMX_USB_DIRECTION_OUT
,
3157 (le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3159 split_device
, split_port
);
3161 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
3162 spin_unlock_irqrestore(&usb
->lock
, flags
);
3163 dev_dbg(dev
, "Failed to create pipe\n");
3171 switch (usb_pipetype(urb
->pipe
)) {
3172 case PIPE_ISOCHRONOUS
:
3173 dev_dbg(dev
, "Submit isochronous to %d.%d\n",
3174 usb_pipedevice(urb
->pipe
),
3175 usb_pipeendpoint(urb
->pipe
));
3177 * Allocate a structure to use for our private list of
3178 * isochronous packets.
3180 iso_packet
= kmalloc_array(urb
->number_of_packets
,
3181 sizeof(struct cvmx_usb_iso_packet
),
3185 /* Fill the list with the data from the URB */
3186 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
3187 iso_packet
[i
].offset
=
3188 urb
->iso_frame_desc
[i
].offset
;
3189 iso_packet
[i
].length
=
3190 urb
->iso_frame_desc
[i
].length
;
3191 iso_packet
[i
].status
= CVMX_USB_STATUS_ERROR
;
3194 * Store a pointer to the list in the URB setup_packet
3195 * field. We know this currently isn't being used and
3196 * this saves us a bunch of logic.
3198 urb
->setup_packet
= (char *)iso_packet
;
3199 transaction
= cvmx_usb_submit_isochronous(usb
,
3202 * If submit failed we need to free our private packet
3206 urb
->setup_packet
= NULL
;
3211 case PIPE_INTERRUPT
:
3212 dev_dbg(dev
, "Submit interrupt to %d.%d\n",
3213 usb_pipedevice(urb
->pipe
),
3214 usb_pipeendpoint(urb
->pipe
));
3215 transaction
= cvmx_usb_submit_interrupt(usb
, pipe
, urb
);
3218 dev_dbg(dev
, "Submit control to %d.%d\n",
3219 usb_pipedevice(urb
->pipe
),
3220 usb_pipeendpoint(urb
->pipe
));
3221 transaction
= cvmx_usb_submit_control(usb
, pipe
, urb
);
3224 dev_dbg(dev
, "Submit bulk to %d.%d\n",
3225 usb_pipedevice(urb
->pipe
),
3226 usb_pipeendpoint(urb
->pipe
));
3227 transaction
= cvmx_usb_submit_bulk(usb
, pipe
, urb
);
3231 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
3232 spin_unlock_irqrestore(&usb
->lock
, flags
);
3233 dev_dbg(dev
, "Failed to submit\n");
3236 urb
->hcpriv
= transaction
;
3237 spin_unlock_irqrestore(&usb
->lock
, flags
);
3241 static int octeon_usb_urb_dequeue(struct usb_hcd
*hcd
,
3245 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3246 unsigned long flags
;
3252 spin_lock_irqsave(&usb
->lock
, flags
);
3254 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
3258 urb
->status
= status
;
3259 cvmx_usb_cancel(usb
, urb
->ep
->hcpriv
, urb
->hcpriv
);
3262 spin_unlock_irqrestore(&usb
->lock
, flags
);
3267 static void octeon_usb_endpoint_disable(struct usb_hcd
*hcd
,
3268 struct usb_host_endpoint
*ep
)
3270 struct device
*dev
= hcd
->self
.controller
;
3273 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3274 struct cvmx_usb_pipe
*pipe
= ep
->hcpriv
;
3275 unsigned long flags
;
3277 spin_lock_irqsave(&usb
->lock
, flags
);
3278 cvmx_usb_cancel_all(usb
, pipe
);
3279 if (cvmx_usb_close_pipe(usb
, pipe
))
3280 dev_dbg(dev
, "Closing pipe %p failed\n", pipe
);
3281 spin_unlock_irqrestore(&usb
->lock
, flags
);
3286 static int octeon_usb_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3288 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3289 struct cvmx_usb_port_status port_status
;
3290 unsigned long flags
;
3292 spin_lock_irqsave(&usb
->lock
, flags
);
3293 port_status
= cvmx_usb_get_status(usb
);
3294 spin_unlock_irqrestore(&usb
->lock
, flags
);
3295 buf
[0] = port_status
.connect_change
<< 1;
3300 static int octeon_usb_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
3301 u16 wIndex
, char *buf
, u16 wLength
)
3303 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3304 struct device
*dev
= hcd
->self
.controller
;
3305 struct cvmx_usb_port_status usb_port_status
;
3307 struct usb_hub_descriptor
*desc
;
3308 unsigned long flags
;
3311 case ClearHubFeature
:
3312 dev_dbg(dev
, "ClearHubFeature\n");
3314 case C_HUB_LOCAL_POWER
:
3315 case C_HUB_OVER_CURRENT
:
3316 /* Nothing required here */
3322 case ClearPortFeature
:
3323 dev_dbg(dev
, "ClearPortFeature\n");
3325 dev_dbg(dev
, " INVALID\n");
3330 case USB_PORT_FEAT_ENABLE
:
3331 dev_dbg(dev
, " ENABLE\n");
3332 spin_lock_irqsave(&usb
->lock
, flags
);
3333 cvmx_usb_disable(usb
);
3334 spin_unlock_irqrestore(&usb
->lock
, flags
);
3336 case USB_PORT_FEAT_SUSPEND
:
3337 dev_dbg(dev
, " SUSPEND\n");
3338 /* Not supported on Octeon */
3340 case USB_PORT_FEAT_POWER
:
3341 dev_dbg(dev
, " POWER\n");
3342 /* Not supported on Octeon */
3344 case USB_PORT_FEAT_INDICATOR
:
3345 dev_dbg(dev
, " INDICATOR\n");
3346 /* Port inidicator not supported */
3348 case USB_PORT_FEAT_C_CONNECTION
:
3349 dev_dbg(dev
, " C_CONNECTION\n");
3350 /* Clears drivers internal connect status change flag */
3351 spin_lock_irqsave(&usb
->lock
, flags
);
3352 usb
->port_status
= cvmx_usb_get_status(usb
);
3353 spin_unlock_irqrestore(&usb
->lock
, flags
);
3355 case USB_PORT_FEAT_C_RESET
:
3356 dev_dbg(dev
, " C_RESET\n");
3358 * Clears the driver's internal Port Reset Change flag.
3360 spin_lock_irqsave(&usb
->lock
, flags
);
3361 usb
->port_status
= cvmx_usb_get_status(usb
);
3362 spin_unlock_irqrestore(&usb
->lock
, flags
);
3364 case USB_PORT_FEAT_C_ENABLE
:
3365 dev_dbg(dev
, " C_ENABLE\n");
3367 * Clears the driver's internal Port Enable/Disable
3370 spin_lock_irqsave(&usb
->lock
, flags
);
3371 usb
->port_status
= cvmx_usb_get_status(usb
);
3372 spin_unlock_irqrestore(&usb
->lock
, flags
);
3374 case USB_PORT_FEAT_C_SUSPEND
:
3375 dev_dbg(dev
, " C_SUSPEND\n");
3377 * Clears the driver's internal Port Suspend Change
3378 * flag, which is set when resume signaling on the host
3382 case USB_PORT_FEAT_C_OVER_CURRENT
:
3383 dev_dbg(dev
, " C_OVER_CURRENT\n");
3384 /* Clears the driver's overcurrent Change flag */
3385 spin_lock_irqsave(&usb
->lock
, flags
);
3386 usb
->port_status
= cvmx_usb_get_status(usb
);
3387 spin_unlock_irqrestore(&usb
->lock
, flags
);
3390 dev_dbg(dev
, " UNKNOWN\n");
3394 case GetHubDescriptor
:
3395 dev_dbg(dev
, "GetHubDescriptor\n");
3396 desc
= (struct usb_hub_descriptor
*)buf
;
3397 desc
->bDescLength
= 9;
3398 desc
->bDescriptorType
= 0x29;
3399 desc
->bNbrPorts
= 1;
3400 desc
->wHubCharacteristics
= cpu_to_le16(0x08);
3401 desc
->bPwrOn2PwrGood
= 1;
3402 desc
->bHubContrCurrent
= 0;
3403 desc
->u
.hs
.DeviceRemovable
[0] = 0;
3404 desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3407 dev_dbg(dev
, "GetHubStatus\n");
3411 dev_dbg(dev
, "GetPortStatus\n");
3413 dev_dbg(dev
, " INVALID\n");
3417 spin_lock_irqsave(&usb
->lock
, flags
);
3418 usb_port_status
= cvmx_usb_get_status(usb
);
3419 spin_unlock_irqrestore(&usb
->lock
, flags
);
3422 if (usb_port_status
.connect_change
) {
3423 port_status
|= (1 << USB_PORT_FEAT_C_CONNECTION
);
3424 dev_dbg(dev
, " C_CONNECTION\n");
3427 if (usb_port_status
.port_enabled
) {
3428 port_status
|= (1 << USB_PORT_FEAT_C_ENABLE
);
3429 dev_dbg(dev
, " C_ENABLE\n");
3432 if (usb_port_status
.connected
) {
3433 port_status
|= (1 << USB_PORT_FEAT_CONNECTION
);
3434 dev_dbg(dev
, " CONNECTION\n");
3437 if (usb_port_status
.port_enabled
) {
3438 port_status
|= (1 << USB_PORT_FEAT_ENABLE
);
3439 dev_dbg(dev
, " ENABLE\n");
3442 if (usb_port_status
.port_over_current
) {
3443 port_status
|= (1 << USB_PORT_FEAT_OVER_CURRENT
);
3444 dev_dbg(dev
, " OVER_CURRENT\n");
3447 if (usb_port_status
.port_powered
) {
3448 port_status
|= (1 << USB_PORT_FEAT_POWER
);
3449 dev_dbg(dev
, " POWER\n");
3452 if (usb_port_status
.port_speed
== CVMX_USB_SPEED_HIGH
) {
3453 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3454 dev_dbg(dev
, " HIGHSPEED\n");
3455 } else if (usb_port_status
.port_speed
== CVMX_USB_SPEED_LOW
) {
3456 port_status
|= (1 << USB_PORT_FEAT_LOWSPEED
);
3457 dev_dbg(dev
, " LOWSPEED\n");
3460 *((__le32
*)buf
) = cpu_to_le32(port_status
);
3463 dev_dbg(dev
, "SetHubFeature\n");
3464 /* No HUB features supported */
3466 case SetPortFeature
:
3467 dev_dbg(dev
, "SetPortFeature\n");
3469 dev_dbg(dev
, " INVALID\n");
3474 case USB_PORT_FEAT_SUSPEND
:
3475 dev_dbg(dev
, " SUSPEND\n");
3477 case USB_PORT_FEAT_POWER
:
3478 dev_dbg(dev
, " POWER\n");
3480 * Program the port power bit to drive VBUS on the USB.
3482 spin_lock_irqsave(&usb
->lock
, flags
);
3483 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
),
3484 cvmx_usbcx_hprt
, prtpwr
, 1);
3485 spin_unlock_irqrestore(&usb
->lock
, flags
);
3487 case USB_PORT_FEAT_RESET
:
3488 dev_dbg(dev
, " RESET\n");
3489 spin_lock_irqsave(&usb
->lock
, flags
);
3490 cvmx_usb_reset_port(usb
);
3491 spin_unlock_irqrestore(&usb
->lock
, flags
);
3493 case USB_PORT_FEAT_INDICATOR
:
3494 dev_dbg(dev
, " INDICATOR\n");
3498 dev_dbg(dev
, " UNKNOWN\n");
3503 dev_dbg(dev
, "Unknown root hub request\n");
3509 static const struct hc_driver octeon_hc_driver
= {
3510 .description
= "Octeon USB",
3511 .product_desc
= "Octeon Host Controller",
3512 .hcd_priv_size
= sizeof(struct octeon_hcd
),
3513 .irq
= octeon_usb_irq
,
3514 .flags
= HCD_MEMORY
| HCD_USB2
,
3515 .start
= octeon_usb_start
,
3516 .stop
= octeon_usb_stop
,
3517 .urb_enqueue
= octeon_usb_urb_enqueue
,
3518 .urb_dequeue
= octeon_usb_urb_dequeue
,
3519 .endpoint_disable
= octeon_usb_endpoint_disable
,
3520 .get_frame_number
= octeon_usb_get_frame_number
,
3521 .hub_status_data
= octeon_usb_hub_status_data
,
3522 .hub_control
= octeon_usb_hub_control
,
3523 .map_urb_for_dma
= octeon_map_urb_for_dma
,
3524 .unmap_urb_for_dma
= octeon_unmap_urb_for_dma
,
3527 static int octeon_usb_probe(struct platform_device
*pdev
)
3530 int initialize_flags
;
3532 struct resource
*res_mem
;
3533 struct device_node
*usbn_node
;
3534 int irq
= platform_get_irq(pdev
, 0);
3535 struct device
*dev
= &pdev
->dev
;
3536 struct octeon_hcd
*usb
;
3537 struct usb_hcd
*hcd
;
3538 u32 clock_rate
= 48000000;
3539 bool is_crystal_clock
= false;
3540 const char *clock_type
;
3543 if (!dev
->of_node
) {
3544 dev_err(dev
, "Error: empty of_node\n");
3547 usbn_node
= dev
->of_node
->parent
;
3549 i
= of_property_read_u32(usbn_node
,
3550 "clock-frequency", &clock_rate
);
3552 i
= of_property_read_u32(usbn_node
,
3553 "refclk-frequency", &clock_rate
);
3555 dev_err(dev
, "No USBN \"clock-frequency\"\n");
3558 switch (clock_rate
) {
3560 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
;
3563 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
;
3566 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
;
3569 dev_err(dev
, "Illegal USBN \"clock-frequency\" %u\n",
3574 i
= of_property_read_string(usbn_node
,
3575 "cavium,refclk-type", &clock_type
);
3577 i
= of_property_read_string(usbn_node
,
3578 "refclk-type", &clock_type
);
3580 if (!i
&& strcmp("crystal", clock_type
) == 0)
3581 is_crystal_clock
= true;
3583 if (is_crystal_clock
)
3584 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
;
3586 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
;
3588 res_mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3590 dev_err(dev
, "found no memory resource\n");
3593 usb_num
= (res_mem
->start
>> 44) & 1;
3596 /* Defective device tree, but we know how to fix it. */
3597 irq_hw_number_t hwirq
= usb_num
? (1 << 6) + 17 : 56;
3599 irq
= irq_create_mapping(NULL
, hwirq
);
3603 * Set the DMA mask to 64bits so we get buffers already translated for
3606 dev
->coherent_dma_mask
= ~0;
3607 dev
->dma_mask
= &dev
->coherent_dma_mask
;
3610 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3611 * IOB priority registers. Under heavy network load USB
3612 * hardware can be starved by the IOB causing a crash. Give
3613 * it a priority boost if it has been waiting more than 400
3614 * cycles to avoid this situation.
3616 * Testing indicates that a cnt_val of 8192 is not sufficient,
3617 * but no failures are seen with 4096. We choose a value of
3618 * 400 to give a safety factor of 10.
3620 if (OCTEON_IS_MODEL(OCTEON_CN52XX
) || OCTEON_IS_MODEL(OCTEON_CN56XX
)) {
3621 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt
;
3624 pri_cnt
.s
.cnt_enb
= 1;
3625 pri_cnt
.s
.cnt_val
= 400;
3626 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT
, pri_cnt
.u64
);
3629 hcd
= usb_create_hcd(&octeon_hc_driver
, dev
, dev_name(dev
));
3631 dev_dbg(dev
, "Failed to allocate memory for HCD\n");
3634 hcd
->uses_new_polling
= 1;
3635 usb
= (struct octeon_hcd
*)hcd
->hcd_priv
;
3637 spin_lock_init(&usb
->lock
);
3639 usb
->init_flags
= initialize_flags
;
3641 /* Initialize the USB state structure */
3642 usb
->index
= usb_num
;
3643 INIT_LIST_HEAD(&usb
->idle_pipes
);
3644 for (i
= 0; i
< ARRAY_SIZE(usb
->active_pipes
); i
++)
3645 INIT_LIST_HEAD(&usb
->active_pipes
[i
]);
3647 /* Due to an errata, CN31XX doesn't support DMA */
3648 if (OCTEON_IS_MODEL(OCTEON_CN31XX
)) {
3649 usb
->init_flags
|= CVMX_USB_INITIALIZE_FLAGS_NO_DMA
;
3650 /* Only use one channel with non DMA */
3651 usb
->idle_hardware_channels
= 0x1;
3652 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX
)) {
3653 /* CN5XXX have an errata with channel 3 */
3654 usb
->idle_hardware_channels
= 0xf7;
3656 usb
->idle_hardware_channels
= 0xff;
3659 status
= cvmx_usb_initialize(dev
, usb
);
3661 dev_dbg(dev
, "USB initialization failed with %d\n", status
);
3666 status
= usb_add_hcd(hcd
, irq
, 0);
3668 dev_dbg(dev
, "USB add HCD failed with %d\n", status
);
3672 device_wakeup_enable(hcd
->self
.controller
);
3674 dev_info(dev
, "Registered HCD for port %d on irq %d\n", usb_num
, irq
);
3679 static int octeon_usb_remove(struct platform_device
*pdev
)
3682 struct device
*dev
= &pdev
->dev
;
3683 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3684 struct octeon_hcd
*usb
= hcd_to_octeon(hcd
);
3685 unsigned long flags
;
3687 usb_remove_hcd(hcd
);
3688 spin_lock_irqsave(&usb
->lock
, flags
);
3689 status
= cvmx_usb_shutdown(usb
);
3690 spin_unlock_irqrestore(&usb
->lock
, flags
);
3692 dev_dbg(dev
, "USB shutdown failed with %d\n", status
);
3699 static const struct of_device_id octeon_usb_match
[] = {
3701 .compatible
= "cavium,octeon-5750-usbc",
3705 MODULE_DEVICE_TABLE(of
, octeon_usb_match
);
3707 static struct platform_driver octeon_usb_driver
= {
3709 .name
= "octeon-hcd",
3710 .of_match_table
= octeon_usb_match
,
3712 .probe
= octeon_usb_probe
,
3713 .remove
= octeon_usb_remove
,
3716 static int __init
octeon_usb_driver_init(void)
3721 return platform_driver_register(&octeon_usb_driver
);
3723 module_init(octeon_usb_driver_init
);
3725 static void __exit
octeon_usb_driver_exit(void)
3730 platform_driver_unregister(&octeon_usb_driver
);
3732 module_exit(octeon_usb_driver_exit
);
3734 MODULE_LICENSE("GPL");
3735 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3736 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");