1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
, int err
, bool write_pending
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 se_sess
->sup_prot_ops
= sup_prot_ops
;
246 EXPORT_SYMBOL(transport_init_session
);
248 int transport_alloc_session_tags(struct se_session
*se_sess
,
249 unsigned int tag_num
, unsigned int tag_size
)
253 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
254 GFP_KERNEL
| __GFP_NOWARN
| __GFP_RETRY_MAYFAIL
);
255 if (!se_sess
->sess_cmd_map
) {
256 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
257 if (!se_sess
->sess_cmd_map
) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
263 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num
);
267 kvfree(se_sess
->sess_cmd_map
);
268 se_sess
->sess_cmd_map
= NULL
;
274 EXPORT_SYMBOL(transport_alloc_session_tags
);
276 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
277 unsigned int tag_size
,
278 enum target_prot_op sup_prot_ops
)
280 struct se_session
*se_sess
;
283 if (tag_num
!= 0 && !tag_size
) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num
);
286 return ERR_PTR(-EINVAL
);
288 if (!tag_num
&& tag_size
) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size
);
291 return ERR_PTR(-EINVAL
);
294 se_sess
= transport_init_session(sup_prot_ops
);
298 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
300 transport_free_session(se_sess
);
301 return ERR_PTR(-ENOMEM
);
306 EXPORT_SYMBOL(transport_init_session_tags
);
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 void __transport_register_session(
312 struct se_portal_group
*se_tpg
,
313 struct se_node_acl
*se_nacl
,
314 struct se_session
*se_sess
,
315 void *fabric_sess_ptr
)
317 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
318 unsigned char buf
[PR_REG_ISID_LEN
];
320 se_sess
->se_tpg
= se_tpg
;
321 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
339 if (se_nacl
->saved_prot_type
)
340 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
341 else if (tfo
->tpg_check_prot_fabric_only
)
342 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
343 tfo
->tpg_check_prot_fabric_only(se_tpg
);
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
348 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
349 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
350 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
351 &buf
[0], PR_REG_ISID_LEN
);
352 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
355 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
360 se_nacl
->nacl_sess
= se_sess
;
362 list_add_tail(&se_sess
->sess_acl_list
,
363 &se_nacl
->acl_sess_list
);
364 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
366 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
371 EXPORT_SYMBOL(__transport_register_session
);
373 void transport_register_session(
374 struct se_portal_group
*se_tpg
,
375 struct se_node_acl
*se_nacl
,
376 struct se_session
*se_sess
,
377 void *fabric_sess_ptr
)
381 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
382 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
383 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
385 EXPORT_SYMBOL(transport_register_session
);
388 target_alloc_session(struct se_portal_group
*tpg
,
389 unsigned int tag_num
, unsigned int tag_size
,
390 enum target_prot_op prot_op
,
391 const char *initiatorname
, void *private,
392 int (*callback
)(struct se_portal_group
*,
393 struct se_session
*, void *))
395 struct se_session
*sess
;
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
402 sess
= transport_init_session_tags(tag_num
, tag_size
, prot_op
);
404 sess
= transport_init_session(prot_op
);
409 sess
->se_node_acl
= core_tpg_check_initiator_node_acl(tpg
,
410 (unsigned char *)initiatorname
);
411 if (!sess
->se_node_acl
) {
412 transport_free_session(sess
);
413 return ERR_PTR(-EACCES
);
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
419 if (callback
!= NULL
) {
420 int rc
= callback(tpg
, sess
, private);
422 transport_free_session(sess
);
427 transport_register_session(tpg
, sess
->se_node_acl
, sess
, private);
430 EXPORT_SYMBOL(target_alloc_session
);
432 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
434 struct se_session
*se_sess
;
437 spin_lock_bh(&se_tpg
->session_lock
);
438 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
439 if (!se_sess
->se_node_acl
)
441 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
443 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
446 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
447 se_sess
->se_node_acl
->initiatorname
);
448 len
+= 1; /* Include NULL terminator */
450 spin_unlock_bh(&se_tpg
->session_lock
);
454 EXPORT_SYMBOL(target_show_dynamic_sessions
);
456 static void target_complete_nacl(struct kref
*kref
)
458 struct se_node_acl
*nacl
= container_of(kref
,
459 struct se_node_acl
, acl_kref
);
460 struct se_portal_group
*se_tpg
= nacl
->se_tpg
;
462 if (!nacl
->dynamic_stop
) {
463 complete(&nacl
->acl_free_comp
);
467 mutex_lock(&se_tpg
->acl_node_mutex
);
468 list_del_init(&nacl
->acl_list
);
469 mutex_unlock(&se_tpg
->acl_node_mutex
);
471 core_tpg_wait_for_nacl_pr_ref(nacl
);
472 core_free_device_list_for_node(nacl
, se_tpg
);
476 void target_put_nacl(struct se_node_acl
*nacl
)
478 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
480 EXPORT_SYMBOL(target_put_nacl
);
482 void transport_deregister_session_configfs(struct se_session
*se_sess
)
484 struct se_node_acl
*se_nacl
;
487 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
489 se_nacl
= se_sess
->se_node_acl
;
491 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
492 if (!list_empty(&se_sess
->sess_acl_list
))
493 list_del_init(&se_sess
->sess_acl_list
);
495 * If the session list is empty, then clear the pointer.
496 * Otherwise, set the struct se_session pointer from the tail
497 * element of the per struct se_node_acl active session list.
499 if (list_empty(&se_nacl
->acl_sess_list
))
500 se_nacl
->nacl_sess
= NULL
;
502 se_nacl
->nacl_sess
= container_of(
503 se_nacl
->acl_sess_list
.prev
,
504 struct se_session
, sess_acl_list
);
506 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
509 EXPORT_SYMBOL(transport_deregister_session_configfs
);
511 void transport_free_session(struct se_session
*se_sess
)
513 struct se_node_acl
*se_nacl
= se_sess
->se_node_acl
;
516 * Drop the se_node_acl->nacl_kref obtained from within
517 * core_tpg_get_initiator_node_acl().
520 struct se_portal_group
*se_tpg
= se_nacl
->se_tpg
;
521 const struct target_core_fabric_ops
*se_tfo
= se_tpg
->se_tpg_tfo
;
524 se_sess
->se_node_acl
= NULL
;
527 * Also determine if we need to drop the extra ->cmd_kref if
528 * it had been previously dynamically generated, and
529 * the endpoint is not caching dynamic ACLs.
531 mutex_lock(&se_tpg
->acl_node_mutex
);
532 if (se_nacl
->dynamic_node_acl
&&
533 !se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
534 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
535 if (list_empty(&se_nacl
->acl_sess_list
))
536 se_nacl
->dynamic_stop
= true;
537 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
539 if (se_nacl
->dynamic_stop
)
540 list_del_init(&se_nacl
->acl_list
);
542 mutex_unlock(&se_tpg
->acl_node_mutex
);
544 if (se_nacl
->dynamic_stop
)
545 target_put_nacl(se_nacl
);
547 target_put_nacl(se_nacl
);
549 if (se_sess
->sess_cmd_map
) {
550 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
551 kvfree(se_sess
->sess_cmd_map
);
553 kmem_cache_free(se_sess_cache
, se_sess
);
555 EXPORT_SYMBOL(transport_free_session
);
557 void transport_deregister_session(struct se_session
*se_sess
)
559 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
563 transport_free_session(se_sess
);
567 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
568 list_del(&se_sess
->sess_list
);
569 se_sess
->se_tpg
= NULL
;
570 se_sess
->fabric_sess_ptr
= NULL
;
571 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
573 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 se_tpg
->se_tpg_tfo
->get_fabric_name());
576 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 * removal context from within transport_free_session() code.
580 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 * to release all remaining generate_node_acl=1 created ACL resources.
584 transport_free_session(se_sess
);
586 EXPORT_SYMBOL(transport_deregister_session
);
588 static void target_remove_from_state_list(struct se_cmd
*cmd
)
590 struct se_device
*dev
= cmd
->se_dev
;
596 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
597 if (cmd
->state_active
) {
598 list_del(&cmd
->state_list
);
599 cmd
->state_active
= false;
601 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
604 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
608 target_remove_from_state_list(cmd
);
611 * Clear struct se_cmd->se_lun before the handoff to FE.
615 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
617 * Determine if frontend context caller is requesting the stopping of
618 * this command for frontend exceptions.
620 if (cmd
->transport_state
& CMD_T_STOP
) {
621 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
622 __func__
, __LINE__
, cmd
->tag
);
624 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
626 complete_all(&cmd
->t_transport_stop_comp
);
629 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
630 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
633 * Some fabric modules like tcm_loop can release their internally
634 * allocated I/O reference and struct se_cmd now.
636 * Fabric modules are expected to return '1' here if the se_cmd being
637 * passed is released at this point, or zero if not being released.
639 return cmd
->se_tfo
->check_stop_free(cmd
);
642 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
644 struct se_lun
*lun
= cmd
->se_lun
;
649 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
650 percpu_ref_put(&lun
->lun_ref
);
653 int transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
655 bool ack_kref
= (cmd
->se_cmd_flags
& SCF_ACK_KREF
);
658 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
659 transport_lun_remove_cmd(cmd
);
661 * Allow the fabric driver to unmap any resources before
662 * releasing the descriptor via TFO->release_cmd()
665 cmd
->se_tfo
->aborted_task(cmd
);
667 if (transport_cmd_check_stop_to_fabric(cmd
))
669 if (remove
&& ack_kref
)
670 ret
= target_put_sess_cmd(cmd
);
675 static void target_complete_failure_work(struct work_struct
*work
)
677 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
679 transport_generic_request_failure(cmd
,
680 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
684 * Used when asking transport to copy Sense Data from the underlying
685 * Linux/SCSI struct scsi_cmnd
687 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
689 struct se_device
*dev
= cmd
->se_dev
;
691 WARN_ON(!cmd
->se_lun
);
696 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
699 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
701 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
702 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
703 return cmd
->sense_buffer
;
706 void transport_copy_sense_to_cmd(struct se_cmd
*cmd
, unsigned char *sense
)
708 unsigned char *cmd_sense_buf
;
711 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
712 cmd_sense_buf
= transport_get_sense_buffer(cmd
);
713 if (!cmd_sense_buf
) {
714 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
718 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
719 memcpy(cmd_sense_buf
, sense
, cmd
->scsi_sense_length
);
720 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
722 EXPORT_SYMBOL(transport_copy_sense_to_cmd
);
724 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
726 struct se_device
*dev
= cmd
->se_dev
;
730 cmd
->scsi_status
= scsi_status
;
732 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
733 switch (cmd
->scsi_status
) {
734 case SAM_STAT_CHECK_CONDITION
:
735 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
746 * Check for case where an explicit ABORT_TASK has been received
747 * and transport_wait_for_tasks() will be waiting for completion..
749 if (cmd
->transport_state
& CMD_T_ABORTED
||
750 cmd
->transport_state
& CMD_T_STOP
) {
751 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
753 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
754 * release se_device->caw_sem obtained by sbc_compare_and_write()
755 * since target_complete_ok_work() or target_complete_failure_work()
756 * won't be called to invoke the normal CAW completion callbacks.
758 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
761 complete_all(&cmd
->t_transport_stop_comp
);
763 } else if (!success
) {
764 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
766 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
769 cmd
->t_state
= TRANSPORT_COMPLETE
;
770 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
771 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
773 if (cmd
->se_cmd_flags
& SCF_USE_CPUID
)
774 queue_work_on(cmd
->cpuid
, target_completion_wq
, &cmd
->work
);
776 queue_work(target_completion_wq
, &cmd
->work
);
778 EXPORT_SYMBOL(target_complete_cmd
);
780 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
782 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
783 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
784 cmd
->residual_count
+= cmd
->data_length
- length
;
786 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
787 cmd
->residual_count
= cmd
->data_length
- length
;
790 cmd
->data_length
= length
;
793 target_complete_cmd(cmd
, scsi_status
);
795 EXPORT_SYMBOL(target_complete_cmd_with_length
);
797 static void target_add_to_state_list(struct se_cmd
*cmd
)
799 struct se_device
*dev
= cmd
->se_dev
;
802 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
803 if (!cmd
->state_active
) {
804 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
805 cmd
->state_active
= true;
807 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
811 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
813 static void transport_write_pending_qf(struct se_cmd
*cmd
);
814 static void transport_complete_qf(struct se_cmd
*cmd
);
816 void target_qf_do_work(struct work_struct
*work
)
818 struct se_device
*dev
= container_of(work
, struct se_device
,
820 LIST_HEAD(qf_cmd_list
);
821 struct se_cmd
*cmd
, *cmd_tmp
;
823 spin_lock_irq(&dev
->qf_cmd_lock
);
824 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
825 spin_unlock_irq(&dev
->qf_cmd_lock
);
827 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
828 list_del(&cmd
->se_qf_node
);
829 atomic_dec_mb(&dev
->dev_qf_count
);
831 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
832 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
833 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
834 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
837 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
838 transport_write_pending_qf(cmd
);
839 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
||
840 cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
)
841 transport_complete_qf(cmd
);
845 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
847 switch (cmd
->data_direction
) {
850 case DMA_FROM_DEVICE
:
854 case DMA_BIDIRECTIONAL
:
863 void transport_dump_dev_state(
864 struct se_device
*dev
,
868 *bl
+= sprintf(b
+ *bl
, "Status: ");
869 if (dev
->export_count
)
870 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
872 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
874 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
875 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
876 dev
->dev_attrib
.block_size
,
877 dev
->dev_attrib
.hw_max_sectors
);
878 *bl
+= sprintf(b
+ *bl
, " ");
881 void transport_dump_vpd_proto_id(
883 unsigned char *p_buf
,
886 unsigned char buf
[VPD_TMP_BUF_SIZE
];
889 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
890 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
892 switch (vpd
->protocol_identifier
) {
894 sprintf(buf
+len
, "Fibre Channel\n");
897 sprintf(buf
+len
, "Parallel SCSI\n");
900 sprintf(buf
+len
, "SSA\n");
903 sprintf(buf
+len
, "IEEE 1394\n");
906 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
910 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
913 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
916 sprintf(buf
+len
, "Automation/Drive Interface Transport"
920 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
923 sprintf(buf
+len
, "Unknown 0x%02x\n",
924 vpd
->protocol_identifier
);
929 strncpy(p_buf
, buf
, p_buf_len
);
935 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
938 * Check if the Protocol Identifier Valid (PIV) bit is set..
940 * from spc3r23.pdf section 7.5.1
942 if (page_83
[1] & 0x80) {
943 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
944 vpd
->protocol_identifier_set
= 1;
945 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
948 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
950 int transport_dump_vpd_assoc(
952 unsigned char *p_buf
,
955 unsigned char buf
[VPD_TMP_BUF_SIZE
];
959 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
960 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
962 switch (vpd
->association
) {
964 sprintf(buf
+len
, "addressed logical unit\n");
967 sprintf(buf
+len
, "target port\n");
970 sprintf(buf
+len
, "SCSI target device\n");
973 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
979 strncpy(p_buf
, buf
, p_buf_len
);
986 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
989 * The VPD identification association..
991 * from spc3r23.pdf Section 7.6.3.1 Table 297
993 vpd
->association
= (page_83
[1] & 0x30);
994 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
996 EXPORT_SYMBOL(transport_set_vpd_assoc
);
998 int transport_dump_vpd_ident_type(
1000 unsigned char *p_buf
,
1003 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1007 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1008 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1010 switch (vpd
->device_identifier_type
) {
1012 sprintf(buf
+len
, "Vendor specific\n");
1015 sprintf(buf
+len
, "T10 Vendor ID based\n");
1018 sprintf(buf
+len
, "EUI-64 based\n");
1021 sprintf(buf
+len
, "NAA\n");
1024 sprintf(buf
+len
, "Relative target port identifier\n");
1027 sprintf(buf
+len
, "SCSI name string\n");
1030 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1031 vpd
->device_identifier_type
);
1037 if (p_buf_len
< strlen(buf
)+1)
1039 strncpy(p_buf
, buf
, p_buf_len
);
1041 pr_debug("%s", buf
);
1047 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1050 * The VPD identifier type..
1052 * from spc3r23.pdf Section 7.6.3.1 Table 298
1054 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1055 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1057 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1059 int transport_dump_vpd_ident(
1060 struct t10_vpd
*vpd
,
1061 unsigned char *p_buf
,
1064 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1067 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1069 switch (vpd
->device_identifier_code_set
) {
1070 case 0x01: /* Binary */
1071 snprintf(buf
, sizeof(buf
),
1072 "T10 VPD Binary Device Identifier: %s\n",
1073 &vpd
->device_identifier
[0]);
1075 case 0x02: /* ASCII */
1076 snprintf(buf
, sizeof(buf
),
1077 "T10 VPD ASCII Device Identifier: %s\n",
1078 &vpd
->device_identifier
[0]);
1080 case 0x03: /* UTF-8 */
1081 snprintf(buf
, sizeof(buf
),
1082 "T10 VPD UTF-8 Device Identifier: %s\n",
1083 &vpd
->device_identifier
[0]);
1086 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1087 " 0x%02x", vpd
->device_identifier_code_set
);
1093 strncpy(p_buf
, buf
, p_buf_len
);
1095 pr_debug("%s", buf
);
1101 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1103 static const char hex_str
[] = "0123456789abcdef";
1104 int j
= 0, i
= 4; /* offset to start of the identifier */
1107 * The VPD Code Set (encoding)
1109 * from spc3r23.pdf Section 7.6.3.1 Table 296
1111 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1112 switch (vpd
->device_identifier_code_set
) {
1113 case 0x01: /* Binary */
1114 vpd
->device_identifier
[j
++] =
1115 hex_str
[vpd
->device_identifier_type
];
1116 while (i
< (4 + page_83
[3])) {
1117 vpd
->device_identifier
[j
++] =
1118 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1119 vpd
->device_identifier
[j
++] =
1120 hex_str
[page_83
[i
] & 0x0f];
1124 case 0x02: /* ASCII */
1125 case 0x03: /* UTF-8 */
1126 while (i
< (4 + page_83
[3]))
1127 vpd
->device_identifier
[j
++] = page_83
[i
++];
1133 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1135 EXPORT_SYMBOL(transport_set_vpd_ident
);
1137 static sense_reason_t
1138 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1143 if (!cmd
->se_tfo
->max_data_sg_nents
)
1144 return TCM_NO_SENSE
;
1146 * Check if fabric enforced maximum SGL entries per I/O descriptor
1147 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1148 * residual_count and reduce original cmd->data_length to maximum
1149 * length based on single PAGE_SIZE entry scatter-lists.
1151 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1152 if (cmd
->data_length
> mtl
) {
1154 * If an existing CDB overflow is present, calculate new residual
1155 * based on CDB size minus fabric maximum transfer length.
1157 * If an existing CDB underflow is present, calculate new residual
1158 * based on original cmd->data_length minus fabric maximum transfer
1161 * Otherwise, set the underflow residual based on cmd->data_length
1162 * minus fabric maximum transfer length.
1164 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1165 cmd
->residual_count
= (size
- mtl
);
1166 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1167 u32 orig_dl
= size
+ cmd
->residual_count
;
1168 cmd
->residual_count
= (orig_dl
- mtl
);
1170 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1171 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1173 cmd
->data_length
= mtl
;
1175 * Reset sbc_check_prot() calculated protection payload
1176 * length based upon the new smaller MTL.
1178 if (cmd
->prot_length
) {
1179 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1180 cmd
->prot_length
= dev
->prot_length
* sectors
;
1183 return TCM_NO_SENSE
;
1187 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1189 struct se_device
*dev
= cmd
->se_dev
;
1191 if (cmd
->unknown_data_length
) {
1192 cmd
->data_length
= size
;
1193 } else if (size
!= cmd
->data_length
) {
1194 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1195 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1196 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1197 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1199 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1200 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1201 pr_err_ratelimited("Rejecting underflow/overflow"
1202 " for WRITE data CDB\n");
1203 return TCM_INVALID_CDB_FIELD
;
1206 * Some fabric drivers like iscsi-target still expect to
1207 * always reject overflow writes. Reject this case until
1208 * full fabric driver level support for overflow writes
1209 * is introduced tree-wide.
1211 if (size
> cmd
->data_length
) {
1212 pr_err_ratelimited("Rejecting overflow for"
1213 " WRITE control CDB\n");
1214 return TCM_INVALID_CDB_FIELD
;
1218 * Reject READ_* or WRITE_* with overflow/underflow for
1219 * type SCF_SCSI_DATA_CDB.
1221 if (dev
->dev_attrib
.block_size
!= 512) {
1222 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1223 " CDB on non 512-byte sector setup subsystem"
1224 " plugin: %s\n", dev
->transport
->name
);
1225 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1226 return TCM_INVALID_CDB_FIELD
;
1229 * For the overflow case keep the existing fabric provided
1230 * ->data_length. Otherwise for the underflow case, reset
1231 * ->data_length to the smaller SCSI expected data transfer
1234 if (size
> cmd
->data_length
) {
1235 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1236 cmd
->residual_count
= (size
- cmd
->data_length
);
1238 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1239 cmd
->residual_count
= (cmd
->data_length
- size
);
1240 cmd
->data_length
= size
;
1244 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1249 * Used by fabric modules containing a local struct se_cmd within their
1250 * fabric dependent per I/O descriptor.
1252 * Preserves the value of @cmd->tag.
1254 void transport_init_se_cmd(
1256 const struct target_core_fabric_ops
*tfo
,
1257 struct se_session
*se_sess
,
1261 unsigned char *sense_buffer
)
1263 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1264 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1265 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1266 INIT_LIST_HEAD(&cmd
->state_list
);
1267 init_completion(&cmd
->t_transport_stop_comp
);
1268 init_completion(&cmd
->cmd_wait_comp
);
1269 spin_lock_init(&cmd
->t_state_lock
);
1270 INIT_WORK(&cmd
->work
, NULL
);
1271 kref_init(&cmd
->cmd_kref
);
1274 cmd
->se_sess
= se_sess
;
1275 cmd
->data_length
= data_length
;
1276 cmd
->data_direction
= data_direction
;
1277 cmd
->sam_task_attr
= task_attr
;
1278 cmd
->sense_buffer
= sense_buffer
;
1280 cmd
->state_active
= false;
1282 EXPORT_SYMBOL(transport_init_se_cmd
);
1284 static sense_reason_t
1285 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1287 struct se_device
*dev
= cmd
->se_dev
;
1290 * Check if SAM Task Attribute emulation is enabled for this
1291 * struct se_device storage object
1293 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1296 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1297 pr_debug("SAM Task Attribute ACA"
1298 " emulation is not supported\n");
1299 return TCM_INVALID_CDB_FIELD
;
1306 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1308 struct se_device
*dev
= cmd
->se_dev
;
1312 * Ensure that the received CDB is less than the max (252 + 8) bytes
1313 * for VARIABLE_LENGTH_CMD
1315 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1316 pr_err("Received SCSI CDB with command_size: %d that"
1317 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1318 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1319 return TCM_INVALID_CDB_FIELD
;
1322 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1323 * allocate the additional extended CDB buffer now.. Otherwise
1324 * setup the pointer from __t_task_cdb to t_task_cdb.
1326 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1327 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1329 if (!cmd
->t_task_cdb
) {
1330 pr_err("Unable to allocate cmd->t_task_cdb"
1331 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1332 scsi_command_size(cdb
),
1333 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1334 return TCM_OUT_OF_RESOURCES
;
1337 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1339 * Copy the original CDB into cmd->
1341 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1343 trace_target_sequencer_start(cmd
);
1345 ret
= dev
->transport
->parse_cdb(cmd
);
1346 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1347 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1348 cmd
->se_tfo
->get_fabric_name(),
1349 cmd
->se_sess
->se_node_acl
->initiatorname
,
1350 cmd
->t_task_cdb
[0]);
1354 ret
= transport_check_alloc_task_attr(cmd
);
1358 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1359 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1362 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1365 * Used by fabric module frontends to queue tasks directly.
1366 * May only be used from process context.
1368 int transport_handle_cdb_direct(
1375 pr_err("cmd->se_lun is NULL\n");
1378 if (in_interrupt()) {
1380 pr_err("transport_generic_handle_cdb cannot be called"
1381 " from interrupt context\n");
1385 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1386 * outstanding descriptors are handled correctly during shutdown via
1387 * transport_wait_for_tasks()
1389 * Also, we don't take cmd->t_state_lock here as we only expect
1390 * this to be called for initial descriptor submission.
1392 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1393 cmd
->transport_state
|= CMD_T_ACTIVE
;
1396 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1397 * so follow TRANSPORT_NEW_CMD processing thread context usage
1398 * and call transport_generic_request_failure() if necessary..
1400 ret
= transport_generic_new_cmd(cmd
);
1402 transport_generic_request_failure(cmd
, ret
);
1405 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1408 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1409 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1411 if (!sgl
|| !sgl_count
)
1415 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1416 * scatterlists already have been set to follow what the fabric
1417 * passes for the original expected data transfer length.
1419 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1420 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1421 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1422 return TCM_INVALID_CDB_FIELD
;
1425 cmd
->t_data_sg
= sgl
;
1426 cmd
->t_data_nents
= sgl_count
;
1427 cmd
->t_bidi_data_sg
= sgl_bidi
;
1428 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1430 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1435 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1436 * se_cmd + use pre-allocated SGL memory.
1438 * @se_cmd: command descriptor to submit
1439 * @se_sess: associated se_sess for endpoint
1440 * @cdb: pointer to SCSI CDB
1441 * @sense: pointer to SCSI sense buffer
1442 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1443 * @data_length: fabric expected data transfer length
1444 * @task_addr: SAM task attribute
1445 * @data_dir: DMA data direction
1446 * @flags: flags for command submission from target_sc_flags_tables
1447 * @sgl: struct scatterlist memory for unidirectional mapping
1448 * @sgl_count: scatterlist count for unidirectional mapping
1449 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1450 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1451 * @sgl_prot: struct scatterlist memory protection information
1452 * @sgl_prot_count: scatterlist count for protection information
1454 * Task tags are supported if the caller has set @se_cmd->tag.
1456 * Returns non zero to signal active I/O shutdown failure. All other
1457 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1458 * but still return zero here.
1460 * This may only be called from process context, and also currently
1461 * assumes internal allocation of fabric payload buffer by target-core.
1463 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1464 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1465 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1466 struct scatterlist
*sgl
, u32 sgl_count
,
1467 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1468 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1470 struct se_portal_group
*se_tpg
;
1474 se_tpg
= se_sess
->se_tpg
;
1476 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1477 BUG_ON(in_interrupt());
1479 * Initialize se_cmd for target operation. From this point
1480 * exceptions are handled by sending exception status via
1481 * target_core_fabric_ops->queue_status() callback
1483 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1484 data_length
, data_dir
, task_attr
, sense
);
1486 if (flags
& TARGET_SCF_USE_CPUID
)
1487 se_cmd
->se_cmd_flags
|= SCF_USE_CPUID
;
1489 se_cmd
->cpuid
= WORK_CPU_UNBOUND
;
1491 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1492 se_cmd
->unknown_data_length
= 1;
1494 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1495 * se_sess->sess_cmd_list. A second kref_get here is necessary
1496 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1497 * kref_put() to happen during fabric packet acknowledgement.
1499 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1503 * Signal bidirectional data payloads to target-core
1505 if (flags
& TARGET_SCF_BIDI_OP
)
1506 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1508 * Locate se_lun pointer and attach it to struct se_cmd
1510 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1512 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1513 target_put_sess_cmd(se_cmd
);
1517 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1519 transport_generic_request_failure(se_cmd
, rc
);
1524 * Save pointers for SGLs containing protection information,
1527 if (sgl_prot_count
) {
1528 se_cmd
->t_prot_sg
= sgl_prot
;
1529 se_cmd
->t_prot_nents
= sgl_prot_count
;
1530 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1534 * When a non zero sgl_count has been passed perform SGL passthrough
1535 * mapping for pre-allocated fabric memory instead of having target
1536 * core perform an internal SGL allocation..
1538 if (sgl_count
!= 0) {
1542 * A work-around for tcm_loop as some userspace code via
1543 * scsi-generic do not memset their associated read buffers,
1544 * so go ahead and do that here for type non-data CDBs. Also
1545 * note that this is currently guaranteed to be a single SGL
1546 * for this case by target core in target_setup_cmd_from_cdb()
1547 * -> transport_generic_cmd_sequencer().
1549 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1550 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1551 unsigned char *buf
= NULL
;
1554 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1557 memset(buf
, 0, sgl
->length
);
1558 kunmap(sg_page(sgl
));
1562 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1563 sgl_bidi
, sgl_bidi_count
);
1565 transport_generic_request_failure(se_cmd
, rc
);
1571 * Check if we need to delay processing because of ALUA
1572 * Active/NonOptimized primary access state..
1574 core_alua_check_nonop_delay(se_cmd
);
1576 transport_handle_cdb_direct(se_cmd
);
1579 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1582 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1584 * @se_cmd: command descriptor to submit
1585 * @se_sess: associated se_sess for endpoint
1586 * @cdb: pointer to SCSI CDB
1587 * @sense: pointer to SCSI sense buffer
1588 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1589 * @data_length: fabric expected data transfer length
1590 * @task_addr: SAM task attribute
1591 * @data_dir: DMA data direction
1592 * @flags: flags for command submission from target_sc_flags_tables
1594 * Task tags are supported if the caller has set @se_cmd->tag.
1596 * Returns non zero to signal active I/O shutdown failure. All other
1597 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1598 * but still return zero here.
1600 * This may only be called from process context, and also currently
1601 * assumes internal allocation of fabric payload buffer by target-core.
1603 * It also assumes interal target core SGL memory allocation.
1605 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1606 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1607 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1609 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1610 unpacked_lun
, data_length
, task_attr
, data_dir
,
1611 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1613 EXPORT_SYMBOL(target_submit_cmd
);
1615 static void target_complete_tmr_failure(struct work_struct
*work
)
1617 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1619 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1620 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1622 transport_lun_remove_cmd(se_cmd
);
1623 transport_cmd_check_stop_to_fabric(se_cmd
);
1626 static bool target_lookup_lun_from_tag(struct se_session
*se_sess
, u64 tag
,
1629 struct se_cmd
*se_cmd
;
1630 unsigned long flags
;
1633 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
1634 list_for_each_entry(se_cmd
, &se_sess
->sess_cmd_list
, se_cmd_list
) {
1635 if (se_cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
1638 if (se_cmd
->tag
== tag
) {
1639 *unpacked_lun
= se_cmd
->orig_fe_lun
;
1644 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
1650 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1653 * @se_cmd: command descriptor to submit
1654 * @se_sess: associated se_sess for endpoint
1655 * @sense: pointer to SCSI sense buffer
1656 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1657 * @fabric_context: fabric context for TMR req
1658 * @tm_type: Type of TM request
1659 * @gfp: gfp type for caller
1660 * @tag: referenced task tag for TMR_ABORT_TASK
1661 * @flags: submit cmd flags
1663 * Callable from all contexts.
1666 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1667 unsigned char *sense
, u64 unpacked_lun
,
1668 void *fabric_tmr_ptr
, unsigned char tm_type
,
1669 gfp_t gfp
, u64 tag
, int flags
)
1671 struct se_portal_group
*se_tpg
;
1674 se_tpg
= se_sess
->se_tpg
;
1677 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1678 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1680 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1681 * allocation failure.
1683 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1687 if (tm_type
== TMR_ABORT_TASK
)
1688 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1690 /* See target_submit_cmd for commentary */
1691 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1693 core_tmr_release_req(se_cmd
->se_tmr_req
);
1697 * If this is ABORT_TASK with no explicit fabric provided LUN,
1698 * go ahead and search active session tags for a match to figure
1699 * out unpacked_lun for the original se_cmd.
1701 if (tm_type
== TMR_ABORT_TASK
&& (flags
& TARGET_SCF_LOOKUP_LUN_FROM_TAG
)) {
1702 if (!target_lookup_lun_from_tag(se_sess
, tag
, &unpacked_lun
))
1706 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1710 transport_generic_handle_tmr(se_cmd
);
1714 * For callback during failure handling, push this work off
1715 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1718 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1719 schedule_work(&se_cmd
->work
);
1722 EXPORT_SYMBOL(target_submit_tmr
);
1725 * Handle SAM-esque emulation for generic transport request failures.
1727 void transport_generic_request_failure(struct se_cmd
*cmd
,
1728 sense_reason_t sense_reason
)
1730 int ret
= 0, post_ret
= 0;
1732 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1734 target_show_cmd("-----[ ", cmd
);
1737 * For SAM Task Attribute emulation for failed struct se_cmd
1739 transport_complete_task_attr(cmd
);
1742 * Handle special case for COMPARE_AND_WRITE failure, where the
1743 * callback is expected to drop the per device ->caw_sem.
1745 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1746 cmd
->transport_complete_callback
)
1747 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1749 if (transport_check_aborted_status(cmd
, 1))
1752 switch (sense_reason
) {
1753 case TCM_NON_EXISTENT_LUN
:
1754 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1755 case TCM_INVALID_CDB_FIELD
:
1756 case TCM_INVALID_PARAMETER_LIST
:
1757 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1758 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1759 case TCM_UNKNOWN_MODE_PAGE
:
1760 case TCM_WRITE_PROTECTED
:
1761 case TCM_ADDRESS_OUT_OF_RANGE
:
1762 case TCM_CHECK_CONDITION_ABORT_CMD
:
1763 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1764 case TCM_CHECK_CONDITION_NOT_READY
:
1765 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1766 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1767 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1768 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
:
1769 case TCM_TOO_MANY_TARGET_DESCS
:
1770 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
:
1771 case TCM_TOO_MANY_SEGMENT_DESCS
:
1772 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
:
1774 case TCM_OUT_OF_RESOURCES
:
1775 cmd
->scsi_status
= SAM_STAT_TASK_SET_FULL
;
1778 cmd
->scsi_status
= SAM_STAT_BUSY
;
1780 case TCM_RESERVATION_CONFLICT
:
1782 * No SENSE Data payload for this case, set SCSI Status
1783 * and queue the response to $FABRIC_MOD.
1785 * Uses linux/include/scsi/scsi.h SAM status codes defs
1787 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1789 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1790 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1793 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1796 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1797 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1798 cmd
->orig_fe_lun
, 0x2C,
1799 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1804 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1805 cmd
->t_task_cdb
[0], sense_reason
);
1806 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1810 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1815 transport_lun_remove_cmd(cmd
);
1816 transport_cmd_check_stop_to_fabric(cmd
);
1820 trace_target_cmd_complete(cmd
);
1821 ret
= cmd
->se_tfo
->queue_status(cmd
);
1825 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
1827 EXPORT_SYMBOL(transport_generic_request_failure
);
1829 void __target_execute_cmd(struct se_cmd
*cmd
, bool do_checks
)
1833 if (!cmd
->execute_cmd
) {
1834 ret
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1839 * Check for an existing UNIT ATTENTION condition after
1840 * target_handle_task_attr() has done SAM task attr
1841 * checking, and possibly have already defered execution
1842 * out to target_restart_delayed_cmds() context.
1844 ret
= target_scsi3_ua_check(cmd
);
1848 ret
= target_alua_state_check(cmd
);
1852 ret
= target_check_reservation(cmd
);
1854 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1859 ret
= cmd
->execute_cmd(cmd
);
1863 spin_lock_irq(&cmd
->t_state_lock
);
1864 cmd
->transport_state
&= ~CMD_T_SENT
;
1865 spin_unlock_irq(&cmd
->t_state_lock
);
1867 transport_generic_request_failure(cmd
, ret
);
1870 static int target_write_prot_action(struct se_cmd
*cmd
)
1874 * Perform WRITE_INSERT of PI using software emulation when backend
1875 * device has PI enabled, if the transport has not already generated
1876 * PI using hardware WRITE_INSERT offload.
1878 switch (cmd
->prot_op
) {
1879 case TARGET_PROT_DOUT_INSERT
:
1880 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1881 sbc_dif_generate(cmd
);
1883 case TARGET_PROT_DOUT_STRIP
:
1884 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1887 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1888 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1889 sectors
, 0, cmd
->t_prot_sg
, 0);
1890 if (unlikely(cmd
->pi_err
)) {
1891 spin_lock_irq(&cmd
->t_state_lock
);
1892 cmd
->transport_state
&= ~CMD_T_SENT
;
1893 spin_unlock_irq(&cmd
->t_state_lock
);
1894 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1905 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1907 struct se_device
*dev
= cmd
->se_dev
;
1909 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1912 cmd
->se_cmd_flags
|= SCF_TASK_ATTR_SET
;
1915 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1916 * to allow the passed struct se_cmd list of tasks to the front of the list.
1918 switch (cmd
->sam_task_attr
) {
1920 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1921 cmd
->t_task_cdb
[0]);
1923 case TCM_ORDERED_TAG
:
1924 atomic_inc_mb(&dev
->dev_ordered_sync
);
1926 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1927 cmd
->t_task_cdb
[0]);
1930 * Execute an ORDERED command if no other older commands
1931 * exist that need to be completed first.
1933 if (!atomic_read(&dev
->simple_cmds
))
1938 * For SIMPLE and UNTAGGED Task Attribute commands
1940 atomic_inc_mb(&dev
->simple_cmds
);
1944 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1947 spin_lock(&dev
->delayed_cmd_lock
);
1948 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1949 spin_unlock(&dev
->delayed_cmd_lock
);
1951 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1952 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1956 static int __transport_check_aborted_status(struct se_cmd
*, int);
1958 void target_execute_cmd(struct se_cmd
*cmd
)
1961 * Determine if frontend context caller is requesting the stopping of
1962 * this command for frontend exceptions.
1964 * If the received CDB has aleady been aborted stop processing it here.
1966 spin_lock_irq(&cmd
->t_state_lock
);
1967 if (__transport_check_aborted_status(cmd
, 1)) {
1968 spin_unlock_irq(&cmd
->t_state_lock
);
1971 if (cmd
->transport_state
& CMD_T_STOP
) {
1972 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1973 __func__
, __LINE__
, cmd
->tag
);
1975 spin_unlock_irq(&cmd
->t_state_lock
);
1976 complete_all(&cmd
->t_transport_stop_comp
);
1980 cmd
->t_state
= TRANSPORT_PROCESSING
;
1981 cmd
->transport_state
&= ~CMD_T_PRE_EXECUTE
;
1982 cmd
->transport_state
|= CMD_T_ACTIVE
| CMD_T_SENT
;
1983 spin_unlock_irq(&cmd
->t_state_lock
);
1985 if (target_write_prot_action(cmd
))
1988 if (target_handle_task_attr(cmd
)) {
1989 spin_lock_irq(&cmd
->t_state_lock
);
1990 cmd
->transport_state
&= ~CMD_T_SENT
;
1991 spin_unlock_irq(&cmd
->t_state_lock
);
1995 __target_execute_cmd(cmd
, true);
1997 EXPORT_SYMBOL(target_execute_cmd
);
2000 * Process all commands up to the last received ORDERED task attribute which
2001 * requires another blocking boundary
2003 static void target_restart_delayed_cmds(struct se_device
*dev
)
2008 spin_lock(&dev
->delayed_cmd_lock
);
2009 if (list_empty(&dev
->delayed_cmd_list
)) {
2010 spin_unlock(&dev
->delayed_cmd_lock
);
2014 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
2015 struct se_cmd
, se_delayed_node
);
2016 list_del(&cmd
->se_delayed_node
);
2017 spin_unlock(&dev
->delayed_cmd_lock
);
2019 cmd
->transport_state
|= CMD_T_SENT
;
2021 __target_execute_cmd(cmd
, true);
2023 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
2029 * Called from I/O completion to determine which dormant/delayed
2030 * and ordered cmds need to have their tasks added to the execution queue.
2032 static void transport_complete_task_attr(struct se_cmd
*cmd
)
2034 struct se_device
*dev
= cmd
->se_dev
;
2036 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
2039 if (!(cmd
->se_cmd_flags
& SCF_TASK_ATTR_SET
))
2042 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
2043 atomic_dec_mb(&dev
->simple_cmds
);
2044 dev
->dev_cur_ordered_id
++;
2045 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
2046 dev
->dev_cur_ordered_id
++;
2047 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2048 dev
->dev_cur_ordered_id
);
2049 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
2050 atomic_dec_mb(&dev
->dev_ordered_sync
);
2052 dev
->dev_cur_ordered_id
++;
2053 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2054 dev
->dev_cur_ordered_id
);
2056 cmd
->se_cmd_flags
&= ~SCF_TASK_ATTR_SET
;
2059 target_restart_delayed_cmds(dev
);
2062 static void transport_complete_qf(struct se_cmd
*cmd
)
2066 transport_complete_task_attr(cmd
);
2068 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2069 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2070 * the same callbacks should not be retried. Return CHECK_CONDITION
2071 * if a scsi_status is not already set.
2073 * If a fabric driver ->queue_status() has returned non zero, always
2074 * keep retrying no matter what..
2076 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_ERR
) {
2077 if (cmd
->scsi_status
)
2080 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2081 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2082 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2083 translate_sense_reason(cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
2087 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
2090 switch (cmd
->data_direction
) {
2091 case DMA_FROM_DEVICE
:
2092 if (cmd
->scsi_status
)
2095 trace_target_cmd_complete(cmd
);
2096 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2099 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2100 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2106 trace_target_cmd_complete(cmd
);
2107 ret
= cmd
->se_tfo
->queue_status(cmd
);
2114 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2117 transport_lun_remove_cmd(cmd
);
2118 transport_cmd_check_stop_to_fabric(cmd
);
2121 static void transport_handle_queue_full(struct se_cmd
*cmd
, struct se_device
*dev
,
2122 int err
, bool write_pending
)
2125 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2126 * ->queue_data_in() callbacks from new process context.
2128 * Otherwise for other errors, transport_complete_qf() will send
2129 * CHECK_CONDITION via ->queue_status() instead of attempting to
2130 * retry associated fabric driver data-transfer callbacks.
2132 if (err
== -EAGAIN
|| err
== -ENOMEM
) {
2133 cmd
->t_state
= (write_pending
) ? TRANSPORT_COMPLETE_QF_WP
:
2134 TRANSPORT_COMPLETE_QF_OK
;
2136 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err
);
2137 cmd
->t_state
= TRANSPORT_COMPLETE_QF_ERR
;
2140 spin_lock_irq(&dev
->qf_cmd_lock
);
2141 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
2142 atomic_inc_mb(&dev
->dev_qf_count
);
2143 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2145 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2148 static bool target_read_prot_action(struct se_cmd
*cmd
)
2150 switch (cmd
->prot_op
) {
2151 case TARGET_PROT_DIN_STRIP
:
2152 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2153 u32 sectors
= cmd
->data_length
>>
2154 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2156 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2157 sectors
, 0, cmd
->t_prot_sg
,
2163 case TARGET_PROT_DIN_INSERT
:
2164 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2167 sbc_dif_generate(cmd
);
2176 static void target_complete_ok_work(struct work_struct
*work
)
2178 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2182 * Check if we need to move delayed/dormant tasks from cmds on the
2183 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2186 transport_complete_task_attr(cmd
);
2189 * Check to schedule QUEUE_FULL work, or execute an existing
2190 * cmd->transport_qf_callback()
2192 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2193 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2196 * Check if we need to send a sense buffer from
2197 * the struct se_cmd in question.
2199 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2200 WARN_ON(!cmd
->scsi_status
);
2201 ret
= transport_send_check_condition_and_sense(
2206 transport_lun_remove_cmd(cmd
);
2207 transport_cmd_check_stop_to_fabric(cmd
);
2211 * Check for a callback, used by amongst other things
2212 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2214 if (cmd
->transport_complete_callback
) {
2216 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2217 bool zero_dl
= !(cmd
->data_length
);
2220 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2221 if (!rc
&& !post_ret
) {
2227 ret
= transport_send_check_condition_and_sense(cmd
,
2232 transport_lun_remove_cmd(cmd
);
2233 transport_cmd_check_stop_to_fabric(cmd
);
2239 switch (cmd
->data_direction
) {
2240 case DMA_FROM_DEVICE
:
2241 if (cmd
->scsi_status
)
2244 atomic_long_add(cmd
->data_length
,
2245 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2247 * Perform READ_STRIP of PI using software emulation when
2248 * backend had PI enabled, if the transport will not be
2249 * performing hardware READ_STRIP offload.
2251 if (target_read_prot_action(cmd
)) {
2252 ret
= transport_send_check_condition_and_sense(cmd
,
2257 transport_lun_remove_cmd(cmd
);
2258 transport_cmd_check_stop_to_fabric(cmd
);
2262 trace_target_cmd_complete(cmd
);
2263 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2268 atomic_long_add(cmd
->data_length
,
2269 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2271 * Check if we need to send READ payload for BIDI-COMMAND
2273 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2274 atomic_long_add(cmd
->data_length
,
2275 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2276 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2284 trace_target_cmd_complete(cmd
);
2285 ret
= cmd
->se_tfo
->queue_status(cmd
);
2293 transport_lun_remove_cmd(cmd
);
2294 transport_cmd_check_stop_to_fabric(cmd
);
2298 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2299 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2301 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
2304 void target_free_sgl(struct scatterlist
*sgl
, int nents
)
2306 sgl_free_n_order(sgl
, nents
, 0);
2308 EXPORT_SYMBOL(target_free_sgl
);
2310 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2313 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2314 * emulation, and free + reset pointers if necessary..
2316 if (!cmd
->t_data_sg_orig
)
2319 kfree(cmd
->t_data_sg
);
2320 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2321 cmd
->t_data_sg_orig
= NULL
;
2322 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2323 cmd
->t_data_nents_orig
= 0;
2326 static inline void transport_free_pages(struct se_cmd
*cmd
)
2328 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2329 target_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2330 cmd
->t_prot_sg
= NULL
;
2331 cmd
->t_prot_nents
= 0;
2334 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2336 * Release special case READ buffer payload required for
2337 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2339 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2340 target_free_sgl(cmd
->t_bidi_data_sg
,
2341 cmd
->t_bidi_data_nents
);
2342 cmd
->t_bidi_data_sg
= NULL
;
2343 cmd
->t_bidi_data_nents
= 0;
2345 transport_reset_sgl_orig(cmd
);
2348 transport_reset_sgl_orig(cmd
);
2350 target_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2351 cmd
->t_data_sg
= NULL
;
2352 cmd
->t_data_nents
= 0;
2354 target_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2355 cmd
->t_bidi_data_sg
= NULL
;
2356 cmd
->t_bidi_data_nents
= 0;
2359 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2361 struct scatterlist
*sg
= cmd
->t_data_sg
;
2362 struct page
**pages
;
2366 * We need to take into account a possible offset here for fabrics like
2367 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2368 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2370 if (!cmd
->t_data_nents
)
2374 if (cmd
->t_data_nents
== 1)
2375 return kmap(sg_page(sg
)) + sg
->offset
;
2377 /* >1 page. use vmap */
2378 pages
= kmalloc_array(cmd
->t_data_nents
, sizeof(*pages
), GFP_KERNEL
);
2382 /* convert sg[] to pages[] */
2383 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2384 pages
[i
] = sg_page(sg
);
2387 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2389 if (!cmd
->t_data_vmap
)
2392 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2394 EXPORT_SYMBOL(transport_kmap_data_sg
);
2396 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2398 if (!cmd
->t_data_nents
) {
2400 } else if (cmd
->t_data_nents
== 1) {
2401 kunmap(sg_page(cmd
->t_data_sg
));
2405 vunmap(cmd
->t_data_vmap
);
2406 cmd
->t_data_vmap
= NULL
;
2408 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2411 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2412 bool zero_page
, bool chainable
)
2414 gfp_t gfp
= GFP_KERNEL
| (zero_page
? __GFP_ZERO
: 0);
2416 *sgl
= sgl_alloc_order(length
, 0, chainable
, gfp
, nents
);
2417 return *sgl
? 0 : -ENOMEM
;
2419 EXPORT_SYMBOL(target_alloc_sgl
);
2422 * Allocate any required resources to execute the command. For writes we
2423 * might not have the payload yet, so notify the fabric via a call to
2424 * ->write_pending instead. Otherwise place it on the execution queue.
2427 transport_generic_new_cmd(struct se_cmd
*cmd
)
2429 unsigned long flags
;
2431 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2433 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2434 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2435 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2436 cmd
->prot_length
, true, false);
2438 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2442 * Determine is the TCM fabric module has already allocated physical
2443 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2446 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2449 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2450 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2453 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2454 bidi_length
= cmd
->t_task_nolb
*
2455 cmd
->se_dev
->dev_attrib
.block_size
;
2457 bidi_length
= cmd
->data_length
;
2459 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2460 &cmd
->t_bidi_data_nents
,
2461 bidi_length
, zero_flag
, false);
2463 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2466 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2467 cmd
->data_length
, zero_flag
, false);
2469 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2470 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2473 * Special case for COMPARE_AND_WRITE with fabrics
2474 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2476 u32 caw_length
= cmd
->t_task_nolb
*
2477 cmd
->se_dev
->dev_attrib
.block_size
;
2479 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2480 &cmd
->t_bidi_data_nents
,
2481 caw_length
, zero_flag
, false);
2483 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2486 * If this command is not a write we can execute it right here,
2487 * for write buffers we need to notify the fabric driver first
2488 * and let it call back once the write buffers are ready.
2490 target_add_to_state_list(cmd
);
2491 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2492 target_execute_cmd(cmd
);
2496 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2497 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
2499 * Determine if frontend context caller is requesting the stopping of
2500 * this command for frontend exceptions.
2502 if (cmd
->transport_state
& CMD_T_STOP
) {
2503 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2504 __func__
, __LINE__
, cmd
->tag
);
2506 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2508 complete_all(&cmd
->t_transport_stop_comp
);
2511 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
2512 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2514 ret
= cmd
->se_tfo
->write_pending(cmd
);
2521 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2522 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2525 EXPORT_SYMBOL(transport_generic_new_cmd
);
2527 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2529 unsigned long flags
;
2533 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2534 stop
= (cmd
->transport_state
& (CMD_T_STOP
| CMD_T_ABORTED
));
2535 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2538 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2539 __func__
, __LINE__
, cmd
->tag
);
2540 complete_all(&cmd
->t_transport_stop_comp
);
2544 ret
= cmd
->se_tfo
->write_pending(cmd
);
2546 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2548 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, true);
2553 __transport_wait_for_tasks(struct se_cmd
*, bool, bool *, bool *,
2554 unsigned long *flags
);
2556 static void target_wait_free_cmd(struct se_cmd
*cmd
, bool *aborted
, bool *tas
)
2558 unsigned long flags
;
2560 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2561 __transport_wait_for_tasks(cmd
, true, aborted
, tas
, &flags
);
2562 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2565 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2568 bool aborted
= false, tas
= false;
2570 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2571 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2572 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2574 if (!aborted
|| tas
)
2575 ret
= target_put_sess_cmd(cmd
);
2578 target_wait_free_cmd(cmd
, &aborted
, &tas
);
2580 * Handle WRITE failure case where transport_generic_new_cmd()
2581 * has already added se_cmd to state_list, but fabric has
2582 * failed command before I/O submission.
2584 if (cmd
->state_active
)
2585 target_remove_from_state_list(cmd
);
2588 transport_lun_remove_cmd(cmd
);
2590 if (!aborted
|| tas
)
2591 ret
= target_put_sess_cmd(cmd
);
2594 * If the task has been internally aborted due to TMR ABORT_TASK
2595 * or LUN_RESET, target_core_tmr.c is responsible for performing
2596 * the remaining calls to target_put_sess_cmd(), and not the
2597 * callers of this function.
2600 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd
->tag
);
2601 wait_for_completion(&cmd
->cmd_wait_comp
);
2602 cmd
->se_tfo
->release_cmd(cmd
);
2607 EXPORT_SYMBOL(transport_generic_free_cmd
);
2609 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2610 * @se_cmd: command descriptor to add
2611 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2613 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2615 struct se_session
*se_sess
= se_cmd
->se_sess
;
2616 unsigned long flags
;
2620 * Add a second kref if the fabric caller is expecting to handle
2621 * fabric acknowledgement that requires two target_put_sess_cmd()
2622 * invocations before se_cmd descriptor release.
2625 if (!kref_get_unless_zero(&se_cmd
->cmd_kref
))
2628 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2631 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2632 if (se_sess
->sess_tearing_down
) {
2636 se_cmd
->transport_state
|= CMD_T_PRE_EXECUTE
;
2637 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2639 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2641 if (ret
&& ack_kref
)
2642 target_put_sess_cmd(se_cmd
);
2646 EXPORT_SYMBOL(target_get_sess_cmd
);
2648 static void target_free_cmd_mem(struct se_cmd
*cmd
)
2650 transport_free_pages(cmd
);
2652 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2653 core_tmr_release_req(cmd
->se_tmr_req
);
2654 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2655 kfree(cmd
->t_task_cdb
);
2658 static void target_release_cmd_kref(struct kref
*kref
)
2660 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2661 struct se_session
*se_sess
= se_cmd
->se_sess
;
2662 unsigned long flags
;
2666 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2668 spin_lock(&se_cmd
->t_state_lock
);
2669 fabric_stop
= (se_cmd
->transport_state
& CMD_T_FABRIC_STOP
) &&
2670 (se_cmd
->transport_state
& CMD_T_ABORTED
);
2671 spin_unlock(&se_cmd
->t_state_lock
);
2673 if (se_cmd
->cmd_wait_set
|| fabric_stop
) {
2674 list_del_init(&se_cmd
->se_cmd_list
);
2675 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2676 target_free_cmd_mem(se_cmd
);
2677 complete(&se_cmd
->cmd_wait_comp
);
2680 list_del_init(&se_cmd
->se_cmd_list
);
2681 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2684 target_free_cmd_mem(se_cmd
);
2685 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2689 * target_put_sess_cmd - decrease the command reference count
2690 * @se_cmd: command to drop a reference from
2692 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2693 * refcount to drop to zero. Returns zero otherwise.
2695 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2697 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2699 EXPORT_SYMBOL(target_put_sess_cmd
);
2701 static const char *data_dir_name(enum dma_data_direction d
)
2704 case DMA_BIDIRECTIONAL
: return "BIDI";
2705 case DMA_TO_DEVICE
: return "WRITE";
2706 case DMA_FROM_DEVICE
: return "READ";
2707 case DMA_NONE
: return "NONE";
2713 static const char *cmd_state_name(enum transport_state_table t
)
2716 case TRANSPORT_NO_STATE
: return "NO_STATE";
2717 case TRANSPORT_NEW_CMD
: return "NEW_CMD";
2718 case TRANSPORT_WRITE_PENDING
: return "WRITE_PENDING";
2719 case TRANSPORT_PROCESSING
: return "PROCESSING";
2720 case TRANSPORT_COMPLETE
: return "COMPLETE";
2721 case TRANSPORT_ISTATE_PROCESSING
:
2722 return "ISTATE_PROCESSING";
2723 case TRANSPORT_COMPLETE_QF_WP
: return "COMPLETE_QF_WP";
2724 case TRANSPORT_COMPLETE_QF_OK
: return "COMPLETE_QF_OK";
2725 case TRANSPORT_COMPLETE_QF_ERR
: return "COMPLETE_QF_ERR";
2731 static void target_append_str(char **str
, const char *txt
)
2735 *str
= *str
? kasprintf(GFP_ATOMIC
, "%s,%s", *str
, txt
) :
2736 kstrdup(txt
, GFP_ATOMIC
);
2741 * Convert a transport state bitmask into a string. The caller is
2742 * responsible for freeing the returned pointer.
2744 static char *target_ts_to_str(u32 ts
)
2748 if (ts
& CMD_T_ABORTED
)
2749 target_append_str(&str
, "aborted");
2750 if (ts
& CMD_T_ACTIVE
)
2751 target_append_str(&str
, "active");
2752 if (ts
& CMD_T_COMPLETE
)
2753 target_append_str(&str
, "complete");
2754 if (ts
& CMD_T_SENT
)
2755 target_append_str(&str
, "sent");
2756 if (ts
& CMD_T_STOP
)
2757 target_append_str(&str
, "stop");
2758 if (ts
& CMD_T_FABRIC_STOP
)
2759 target_append_str(&str
, "fabric_stop");
2764 static const char *target_tmf_name(enum tcm_tmreq_table tmf
)
2767 case TMR_ABORT_TASK
: return "ABORT_TASK";
2768 case TMR_ABORT_TASK_SET
: return "ABORT_TASK_SET";
2769 case TMR_CLEAR_ACA
: return "CLEAR_ACA";
2770 case TMR_CLEAR_TASK_SET
: return "CLEAR_TASK_SET";
2771 case TMR_LUN_RESET
: return "LUN_RESET";
2772 case TMR_TARGET_WARM_RESET
: return "TARGET_WARM_RESET";
2773 case TMR_TARGET_COLD_RESET
: return "TARGET_COLD_RESET";
2774 case TMR_UNKNOWN
: break;
2779 void target_show_cmd(const char *pfx
, struct se_cmd
*cmd
)
2781 char *ts_str
= target_ts_to_str(cmd
->transport_state
);
2782 const u8
*cdb
= cmd
->t_task_cdb
;
2783 struct se_tmr_req
*tmf
= cmd
->se_tmr_req
;
2785 if (!(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2786 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2787 pfx
, cdb
[0], cdb
[1], cmd
->tag
,
2788 data_dir_name(cmd
->data_direction
),
2789 cmd
->se_tfo
->get_cmd_state(cmd
),
2790 cmd_state_name(cmd
->t_state
), cmd
->data_length
,
2791 kref_read(&cmd
->cmd_kref
), ts_str
);
2793 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2794 pfx
, target_tmf_name(tmf
->function
), cmd
->tag
,
2795 tmf
->ref_task_tag
, cmd
->se_tfo
->get_cmd_state(cmd
),
2796 cmd_state_name(cmd
->t_state
),
2797 kref_read(&cmd
->cmd_kref
), ts_str
);
2801 EXPORT_SYMBOL(target_show_cmd
);
2803 /* target_sess_cmd_list_set_waiting - Flag all commands in
2804 * sess_cmd_list to complete cmd_wait_comp. Set
2805 * sess_tearing_down so no more commands are queued.
2806 * @se_sess: session to flag
2808 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2810 struct se_cmd
*se_cmd
, *tmp_cmd
;
2811 unsigned long flags
;
2814 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2815 if (se_sess
->sess_tearing_down
) {
2816 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2819 se_sess
->sess_tearing_down
= 1;
2820 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2822 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2823 &se_sess
->sess_wait_list
, se_cmd_list
) {
2824 rc
= kref_get_unless_zero(&se_cmd
->cmd_kref
);
2826 se_cmd
->cmd_wait_set
= 1;
2827 spin_lock(&se_cmd
->t_state_lock
);
2828 se_cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2829 spin_unlock(&se_cmd
->t_state_lock
);
2831 list_del_init(&se_cmd
->se_cmd_list
);
2834 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2836 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2838 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2839 * @se_sess: session to wait for active I/O
2841 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2843 struct se_cmd
*se_cmd
, *tmp_cmd
;
2844 unsigned long flags
;
2847 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2848 &se_sess
->sess_wait_list
, se_cmd_list
) {
2849 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2850 " %d\n", se_cmd
, se_cmd
->t_state
,
2851 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2853 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2854 tas
= (se_cmd
->transport_state
& CMD_T_TAS
);
2855 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2857 if (!target_put_sess_cmd(se_cmd
)) {
2859 target_put_sess_cmd(se_cmd
);
2862 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2863 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2864 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2865 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2867 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2870 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2871 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2872 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2875 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2877 static void target_lun_confirm(struct percpu_ref
*ref
)
2879 struct se_lun
*lun
= container_of(ref
, struct se_lun
, lun_ref
);
2881 complete(&lun
->lun_ref_comp
);
2884 void transport_clear_lun_ref(struct se_lun
*lun
)
2887 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2888 * the initial reference and schedule confirm kill to be
2889 * executed after one full RCU grace period has completed.
2891 percpu_ref_kill_and_confirm(&lun
->lun_ref
, target_lun_confirm
);
2893 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2894 * to call target_lun_confirm after lun->lun_ref has been marked
2895 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2896 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2897 * fails for all new incoming I/O.
2899 wait_for_completion(&lun
->lun_ref_comp
);
2901 * The second completion waits for percpu_ref_put_many() to
2902 * invoke ->release() after lun->lun_ref has switched to
2903 * atomic_t mode, and lun->lun_ref.count has reached zero.
2905 * At this point all target-core lun->lun_ref references have
2906 * been dropped via transport_lun_remove_cmd(), and it's safe
2907 * to proceed with the remaining LUN shutdown.
2909 wait_for_completion(&lun
->lun_shutdown_comp
);
2913 __transport_wait_for_tasks(struct se_cmd
*cmd
, bool fabric_stop
,
2914 bool *aborted
, bool *tas
, unsigned long *flags
)
2915 __releases(&cmd
->t_state_lock
)
2916 __acquires(&cmd
->t_state_lock
)
2919 assert_spin_locked(&cmd
->t_state_lock
);
2920 WARN_ON_ONCE(!irqs_disabled());
2923 cmd
->transport_state
|= CMD_T_FABRIC_STOP
;
2925 if (cmd
->transport_state
& CMD_T_ABORTED
)
2928 if (cmd
->transport_state
& CMD_T_TAS
)
2931 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2932 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2935 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2936 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2939 if (!(cmd
->transport_state
& CMD_T_ACTIVE
))
2942 if (fabric_stop
&& *aborted
)
2945 cmd
->transport_state
|= CMD_T_STOP
;
2947 target_show_cmd("wait_for_tasks: Stopping ", cmd
);
2949 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
2951 while (!wait_for_completion_timeout(&cmd
->t_transport_stop_comp
,
2953 target_show_cmd("wait for tasks: ", cmd
);
2955 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
2956 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2958 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2959 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd
->tag
);
2965 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
2966 * @cmd: command to wait on
2968 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2970 unsigned long flags
;
2971 bool ret
, aborted
= false, tas
= false;
2973 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2974 ret
= __transport_wait_for_tasks(cmd
, false, &aborted
, &tas
, &flags
);
2975 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2979 EXPORT_SYMBOL(transport_wait_for_tasks
);
2985 bool add_sector_info
;
2988 static const struct sense_info sense_info_table
[] = {
2992 [TCM_NON_EXISTENT_LUN
] = {
2993 .key
= ILLEGAL_REQUEST
,
2994 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2996 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2997 .key
= ILLEGAL_REQUEST
,
2998 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3000 [TCM_SECTOR_COUNT_TOO_MANY
] = {
3001 .key
= ILLEGAL_REQUEST
,
3002 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
3004 [TCM_UNKNOWN_MODE_PAGE
] = {
3005 .key
= ILLEGAL_REQUEST
,
3006 .asc
= 0x24, /* INVALID FIELD IN CDB */
3008 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
3009 .key
= ABORTED_COMMAND
,
3010 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3013 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
3014 .key
= ABORTED_COMMAND
,
3015 .asc
= 0x0c, /* WRITE ERROR */
3016 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3018 [TCM_INVALID_CDB_FIELD
] = {
3019 .key
= ILLEGAL_REQUEST
,
3020 .asc
= 0x24, /* INVALID FIELD IN CDB */
3022 [TCM_INVALID_PARAMETER_LIST
] = {
3023 .key
= ILLEGAL_REQUEST
,
3024 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
3026 [TCM_TOO_MANY_TARGET_DESCS
] = {
3027 .key
= ILLEGAL_REQUEST
,
3029 .ascq
= 0x06, /* TOO MANY TARGET DESCRIPTORS */
3031 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE
] = {
3032 .key
= ILLEGAL_REQUEST
,
3034 .ascq
= 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3036 [TCM_TOO_MANY_SEGMENT_DESCS
] = {
3037 .key
= ILLEGAL_REQUEST
,
3039 .ascq
= 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3041 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE
] = {
3042 .key
= ILLEGAL_REQUEST
,
3044 .ascq
= 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3046 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
3047 .key
= ILLEGAL_REQUEST
,
3048 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
3050 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
3051 .key
= ILLEGAL_REQUEST
,
3052 .asc
= 0x0c, /* WRITE ERROR */
3053 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3055 [TCM_SERVICE_CRC_ERROR
] = {
3056 .key
= ABORTED_COMMAND
,
3057 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
3058 .ascq
= 0x05, /* N/A */
3060 [TCM_SNACK_REJECTED
] = {
3061 .key
= ABORTED_COMMAND
,
3062 .asc
= 0x11, /* READ ERROR */
3063 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
3065 [TCM_WRITE_PROTECTED
] = {
3066 .key
= DATA_PROTECT
,
3067 .asc
= 0x27, /* WRITE PROTECTED */
3069 [TCM_ADDRESS_OUT_OF_RANGE
] = {
3070 .key
= ILLEGAL_REQUEST
,
3071 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3073 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
3074 .key
= UNIT_ATTENTION
,
3076 [TCM_CHECK_CONDITION_NOT_READY
] = {
3079 [TCM_MISCOMPARE_VERIFY
] = {
3081 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3084 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
3085 .key
= ABORTED_COMMAND
,
3087 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3088 .add_sector_info
= true,
3090 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
3091 .key
= ABORTED_COMMAND
,
3093 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3094 .add_sector_info
= true,
3096 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
3097 .key
= ABORTED_COMMAND
,
3099 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3100 .add_sector_info
= true,
3102 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE
] = {
3103 .key
= COPY_ABORTED
,
3105 .ascq
= 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3108 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
3110 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3111 * Solaris initiators. Returning NOT READY instead means the
3112 * operations will be retried a finite number of times and we
3113 * can survive intermittent errors.
3116 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3118 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES
] = {
3120 * From spc4r22 section5.7.7,5.7.8
3121 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3122 * or a REGISTER AND IGNORE EXISTING KEY service action or
3123 * REGISTER AND MOVE service actionis attempted,
3124 * but there are insufficient device server resources to complete the
3125 * operation, then the command shall be terminated with CHECK CONDITION
3126 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3127 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3129 .key
= ILLEGAL_REQUEST
,
3131 .ascq
= 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3135 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
3137 const struct sense_info
*si
;
3138 u8
*buffer
= cmd
->sense_buffer
;
3139 int r
= (__force
int)reason
;
3141 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
3143 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
3144 si
= &sense_info_table
[r
];
3146 si
= &sense_info_table
[(__force
int)
3147 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
3149 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
3150 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
3151 WARN_ON_ONCE(asc
== 0);
3152 } else if (si
->asc
== 0) {
3153 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
3154 asc
= cmd
->scsi_asc
;
3155 ascq
= cmd
->scsi_ascq
;
3161 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
3162 if (si
->add_sector_info
)
3163 return scsi_set_sense_information(buffer
,
3164 cmd
->scsi_sense_length
,
3171 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
3172 sense_reason_t reason
, int from_transport
)
3174 unsigned long flags
;
3176 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3177 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3178 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3181 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
3182 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3184 if (!from_transport
) {
3187 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
3188 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
3189 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
3190 rc
= translate_sense_reason(cmd
, reason
);
3195 trace_target_cmd_complete(cmd
);
3196 return cmd
->se_tfo
->queue_status(cmd
);
3198 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
3200 static int __transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3201 __releases(&cmd
->t_state_lock
)
3202 __acquires(&cmd
->t_state_lock
)
3206 assert_spin_locked(&cmd
->t_state_lock
);
3207 WARN_ON_ONCE(!irqs_disabled());
3209 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
3212 * If cmd has been aborted but either no status is to be sent or it has
3213 * already been sent, just return
3215 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
)) {
3217 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3221 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3222 " 0x%02x ITT: 0x%08llx\n", cmd
->t_task_cdb
[0], cmd
->tag
);
3224 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
3225 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3226 trace_target_cmd_complete(cmd
);
3228 spin_unlock_irq(&cmd
->t_state_lock
);
3229 ret
= cmd
->se_tfo
->queue_status(cmd
);
3231 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3232 spin_lock_irq(&cmd
->t_state_lock
);
3237 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
3241 spin_lock_irq(&cmd
->t_state_lock
);
3242 ret
= __transport_check_aborted_status(cmd
, send_status
);
3243 spin_unlock_irq(&cmd
->t_state_lock
);
3247 EXPORT_SYMBOL(transport_check_aborted_status
);
3249 void transport_send_task_abort(struct se_cmd
*cmd
)
3251 unsigned long flags
;
3254 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3255 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
3256 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3259 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3262 * If there are still expected incoming fabric WRITEs, we wait
3263 * until until they have completed before sending a TASK_ABORTED
3264 * response. This response with TASK_ABORTED status will be
3265 * queued back to fabric module by transport_check_aborted_status().
3267 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3268 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3269 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3270 if (cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
) {
3271 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3274 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3275 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3280 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3282 transport_lun_remove_cmd(cmd
);
3284 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3285 cmd
->t_task_cdb
[0], cmd
->tag
);
3287 trace_target_cmd_complete(cmd
);
3288 ret
= cmd
->se_tfo
->queue_status(cmd
);
3290 transport_handle_queue_full(cmd
, cmd
->se_dev
, ret
, false);
3293 static void target_tmr_work(struct work_struct
*work
)
3295 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3296 struct se_device
*dev
= cmd
->se_dev
;
3297 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3298 unsigned long flags
;
3301 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3302 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3303 tmr
->response
= TMR_FUNCTION_REJECTED
;
3304 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3307 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3309 switch (tmr
->function
) {
3310 case TMR_ABORT_TASK
:
3311 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3313 case TMR_ABORT_TASK_SET
:
3315 case TMR_CLEAR_TASK_SET
:
3316 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3319 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3320 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3321 TMR_FUNCTION_REJECTED
;
3322 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
3323 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
3324 cmd
->orig_fe_lun
, 0x29,
3325 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
3328 case TMR_TARGET_WARM_RESET
:
3329 tmr
->response
= TMR_FUNCTION_REJECTED
;
3331 case TMR_TARGET_COLD_RESET
:
3332 tmr
->response
= TMR_FUNCTION_REJECTED
;
3335 pr_err("Uknown TMR function: 0x%02x.\n",
3337 tmr
->response
= TMR_FUNCTION_REJECTED
;
3341 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3342 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3343 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3346 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3348 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3351 transport_lun_remove_cmd(cmd
);
3352 transport_cmd_check_stop_to_fabric(cmd
);
3355 int transport_generic_handle_tmr(
3358 unsigned long flags
;
3359 bool aborted
= false;
3361 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3362 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3365 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3366 cmd
->transport_state
|= CMD_T_ACTIVE
;
3368 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3371 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3372 "ref_tag: %llu tag: %llu\n", cmd
->se_tmr_req
->function
,
3373 cmd
->se_tmr_req
->ref_task_tag
, cmd
->tag
);
3374 transport_lun_remove_cmd(cmd
);
3375 transport_cmd_check_stop_to_fabric(cmd
);
3379 INIT_WORK(&cmd
->work
, target_tmr_work
);
3380 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3383 EXPORT_SYMBOL(transport_generic_handle_tmr
);
3386 target_check_wce(struct se_device
*dev
)
3390 if (dev
->transport
->get_write_cache
)
3391 wce
= dev
->transport
->get_write_cache(dev
);
3392 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
3399 target_check_fua(struct se_device
*dev
)
3401 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;