1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
4 * Copyright (c) 2013 Faraday Technology Corporation
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
10 * Most of code borrowed from the Linux-3.7 EHCI driver
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
35 #include <asm/byteorder.h>
37 #include <asm/unaligned.h>
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name
[] = "fotg210_hcd";
43 #undef FOTG210_URB_TRACE
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT 0
50 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT 1
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54 * ms into the future (partly as a result of an old bug in the scheduling
55 * code). In an attempt to avoid trouble, we will use a minimum scheduling
56 * length of 512 frames instead of 256.
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60 /* Initial IRQ latency: faster than hw default */
61 static int log2_irq_thresh
; /* 0 to 6 */
62 module_param(log2_irq_thresh
, int, S_IRUGO
);
63 MODULE_PARM_DESC(log2_irq_thresh
, "log2 IRQ latency, 1-64 microframes");
65 /* initial park setting: slower than hw default */
67 module_param(park
, uint
, S_IRUGO
);
68 MODULE_PARM_DESC(park
, "park setting; 1-3 back-to-back async packets");
70 /* for link power management(LPM) feature */
71 static unsigned int hird
;
72 module_param(hird
, int, S_IRUGO
);
73 MODULE_PARM_DESC(hird
, "host initiated resume duration, +1 for each 75us");
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89 * parameters) see EHCI spec, Table 2-4 for each value
91 static void dbg_hcs_params(struct fotg210_hcd
*fotg210
, char *label
)
93 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
95 fotg210_dbg(fotg210
, "%s hcs_params 0x%x ports=%d\n", label
, params
,
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100 * parameters) see EHCI Spec, Table 2-5 for each value
102 static void dbg_hcc_params(struct fotg210_hcd
*fotg210
, char *label
)
104 u32 params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
106 fotg210_dbg(fotg210
, "%s hcc_params %04x uframes %s%s\n", label
,
108 HCC_PGM_FRAMELISTLEN(params
) ? "256/512/1024" : "1024",
109 HCC_CANPARK(params
) ? " park" : "");
112 static void __maybe_unused
113 dbg_qtd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
)
115 fotg210_dbg(fotg210
, "%s td %p n%08x %08x t%08x p0=%08x\n", label
, qtd
,
116 hc32_to_cpup(fotg210
, &qtd
->hw_next
),
117 hc32_to_cpup(fotg210
, &qtd
->hw_alt_next
),
118 hc32_to_cpup(fotg210
, &qtd
->hw_token
),
119 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[0]));
121 fotg210_dbg(fotg210
, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[1]),
123 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[2]),
124 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[3]),
125 hc32_to_cpup(fotg210
, &qtd
->hw_buf
[4]));
128 static void __maybe_unused
129 dbg_qh(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
131 struct fotg210_qh_hw
*hw
= qh
->hw
;
133 fotg210_dbg(fotg210
, "%s qh %p n%08x info %x %x qtd %x\n", label
, qh
,
134 hw
->hw_next
, hw
->hw_info1
, hw
->hw_info2
,
137 dbg_qtd("overlay", fotg210
, (struct fotg210_qtd
*) &hw
->hw_qtd_next
);
140 static void __maybe_unused
141 dbg_itd(const char *label
, struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
143 fotg210_dbg(fotg210
, "%s[%d] itd %p, next %08x, urb %p\n", label
,
144 itd
->frame
, itd
, hc32_to_cpu(fotg210
, itd
->hw_next
),
148 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 hc32_to_cpu(fotg210
, itd
->hw_transaction
[0]),
150 hc32_to_cpu(fotg210
, itd
->hw_transaction
[1]),
151 hc32_to_cpu(fotg210
, itd
->hw_transaction
[2]),
152 hc32_to_cpu(fotg210
, itd
->hw_transaction
[3]),
153 hc32_to_cpu(fotg210
, itd
->hw_transaction
[4]),
154 hc32_to_cpu(fotg210
, itd
->hw_transaction
[5]),
155 hc32_to_cpu(fotg210
, itd
->hw_transaction
[6]),
156 hc32_to_cpu(fotg210
, itd
->hw_transaction
[7]));
159 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
160 hc32_to_cpu(fotg210
, itd
->hw_bufp
[0]),
161 hc32_to_cpu(fotg210
, itd
->hw_bufp
[1]),
162 hc32_to_cpu(fotg210
, itd
->hw_bufp
[2]),
163 hc32_to_cpu(fotg210
, itd
->hw_bufp
[3]),
164 hc32_to_cpu(fotg210
, itd
->hw_bufp
[4]),
165 hc32_to_cpu(fotg210
, itd
->hw_bufp
[5]),
166 hc32_to_cpu(fotg210
, itd
->hw_bufp
[6]));
168 fotg210_dbg(fotg210
, " index: %d %d %d %d %d %d %d %d\n",
169 itd
->index
[0], itd
->index
[1], itd
->index
[2],
170 itd
->index
[3], itd
->index
[4], itd
->index
[5],
171 itd
->index
[6], itd
->index
[7]);
174 static int __maybe_unused
175 dbg_status_buf(char *buf
, unsigned len
, const char *label
, u32 status
)
177 return scnprintf(buf
, len
, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 label
, label
[0] ? " " : "", status
,
179 (status
& STS_ASS
) ? " Async" : "",
180 (status
& STS_PSS
) ? " Periodic" : "",
181 (status
& STS_RECL
) ? " Recl" : "",
182 (status
& STS_HALT
) ? " Halt" : "",
183 (status
& STS_IAA
) ? " IAA" : "",
184 (status
& STS_FATAL
) ? " FATAL" : "",
185 (status
& STS_FLR
) ? " FLR" : "",
186 (status
& STS_PCD
) ? " PCD" : "",
187 (status
& STS_ERR
) ? " ERR" : "",
188 (status
& STS_INT
) ? " INT" : "");
191 static int __maybe_unused
192 dbg_intr_buf(char *buf
, unsigned len
, const char *label
, u32 enable
)
194 return scnprintf(buf
, len
, "%s%sintrenable %02x%s%s%s%s%s%s",
195 label
, label
[0] ? " " : "", enable
,
196 (enable
& STS_IAA
) ? " IAA" : "",
197 (enable
& STS_FATAL
) ? " FATAL" : "",
198 (enable
& STS_FLR
) ? " FLR" : "",
199 (enable
& STS_PCD
) ? " PCD" : "",
200 (enable
& STS_ERR
) ? " ERR" : "",
201 (enable
& STS_INT
) ? " INT" : "");
204 static const char *const fls_strings
[] = { "1024", "512", "256", "??" };
206 static int dbg_command_buf(char *buf
, unsigned len
, const char *label
,
209 return scnprintf(buf
, len
,
210 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 label
, label
[0] ? " " : "", command
,
212 (command
& CMD_PARK
) ? " park" : "(park)",
213 CMD_PARK_CNT(command
),
214 (command
>> 16) & 0x3f,
215 (command
& CMD_IAAD
) ? " IAAD" : "",
216 (command
& CMD_ASE
) ? " Async" : "",
217 (command
& CMD_PSE
) ? " Periodic" : "",
218 fls_strings
[(command
>> 2) & 0x3],
219 (command
& CMD_RESET
) ? " Reset" : "",
220 (command
& CMD_RUN
) ? "RUN" : "HALT");
223 static char *dbg_port_buf(char *buf
, unsigned len
, const char *label
, int port
,
228 /* signaling state */
229 switch (status
& (3 << 10)) {
235 break; /* low speed */
244 scnprintf(buf
, len
, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 label
, label
[0] ? " " : "", port
, status
,
246 status
>> 25, /*device address */
248 (status
& PORT_RESET
) ? " RESET" : "",
249 (status
& PORT_SUSPEND
) ? " SUSPEND" : "",
250 (status
& PORT_RESUME
) ? " RESUME" : "",
251 (status
& PORT_PEC
) ? " PEC" : "",
252 (status
& PORT_PE
) ? " PE" : "",
253 (status
& PORT_CSC
) ? " CSC" : "",
254 (status
& PORT_CONNECT
) ? " CONNECT" : "");
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) { \
262 dbg_status_buf(_buf, sizeof(_buf), label, status); \
263 fotg210_dbg(fotg210, "%s\n", _buf); \
266 #define dbg_cmd(fotg210, label, command) { \
268 dbg_command_buf(_buf, sizeof(_buf), label, command); \
269 fotg210_dbg(fotg210, "%s\n", _buf); \
272 #define dbg_port(fotg210, label, port, status) { \
274 fotg210_dbg(fotg210, "%s\n", \
275 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode
*, struct file
*);
280 static int debug_periodic_open(struct inode
*, struct file
*);
281 static int debug_registers_open(struct inode
*, struct file
*);
282 static int debug_async_open(struct inode
*, struct file
*);
284 static ssize_t
debug_output(struct file
*, char __user
*, size_t, loff_t
*);
285 static int debug_close(struct inode
*, struct file
*);
287 static const struct file_operations debug_async_fops
= {
288 .owner
= THIS_MODULE
,
289 .open
= debug_async_open
,
290 .read
= debug_output
,
291 .release
= debug_close
,
292 .llseek
= default_llseek
,
294 static const struct file_operations debug_periodic_fops
= {
295 .owner
= THIS_MODULE
,
296 .open
= debug_periodic_open
,
297 .read
= debug_output
,
298 .release
= debug_close
,
299 .llseek
= default_llseek
,
301 static const struct file_operations debug_registers_fops
= {
302 .owner
= THIS_MODULE
,
303 .open
= debug_registers_open
,
304 .read
= debug_output
,
305 .release
= debug_close
,
306 .llseek
= default_llseek
,
309 static struct dentry
*fotg210_debug_root
;
311 struct debug_buffer
{
312 ssize_t (*fill_func
)(struct debug_buffer
*); /* fill method */
314 struct mutex mutex
; /* protect filling of buffer */
315 size_t count
; /* number of characters filled into buffer */
320 static inline char speed_char(u32 scratch
)
322 switch (scratch
& (3 << 12)) {
337 static inline char token_mark(struct fotg210_hcd
*fotg210
, __hc32 token
)
339 __u32 v
= hc32_to_cpu(fotg210
, token
);
341 if (v
& QTD_STS_ACTIVE
)
343 if (v
& QTD_STS_HALT
)
345 if (!IS_SHORT_READ(v
))
347 /* tries to advance through hw_alt_next */
351 static void qh_lines(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
,
352 char **nextp
, unsigned *sizep
)
356 struct fotg210_qtd
*td
;
358 unsigned size
= *sizep
;
361 __le32 list_end
= FOTG210_LIST_END(fotg210
);
362 struct fotg210_qh_hw
*hw
= qh
->hw
;
364 if (hw
->hw_qtd_next
== list_end
) /* NEC does this */
367 mark
= token_mark(fotg210
, hw
->hw_token
);
368 if (mark
== '/') { /* qh_alt_next controls qh advance? */
369 if ((hw
->hw_alt_next
& QTD_MASK(fotg210
)) ==
370 fotg210
->async
->hw
->hw_alt_next
)
371 mark
= '#'; /* blocked */
372 else if (hw
->hw_alt_next
== list_end
)
373 mark
= '.'; /* use hw_qtd_next */
374 /* else alt_next points to some other qtd */
376 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
377 hw_curr
= (mark
== '*') ? hc32_to_cpup(fotg210
, &hw
->hw_current
) : 0;
378 temp
= scnprintf(next
, size
,
379 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 qh
, scratch
& 0x007f,
382 (scratch
>> 8) & 0x000f,
383 scratch
, hc32_to_cpup(fotg210
, &hw
->hw_info2
),
384 hc32_to_cpup(fotg210
, &hw
->hw_token
), mark
,
385 (cpu_to_hc32(fotg210
, QTD_TOGGLE
) & hw
->hw_token
)
387 (hc32_to_cpup(fotg210
, &hw
->hw_alt_next
) >> 1) & 0x0f);
391 /* hc may be modifying the list as we read it ... */
392 list_for_each_entry(td
, &qh
->qtd_list
, qtd_list
) {
393 scratch
= hc32_to_cpup(fotg210
, &td
->hw_token
);
395 if (hw_curr
== td
->qtd_dma
)
397 else if (hw
->hw_qtd_next
== cpu_to_hc32(fotg210
, td
->qtd_dma
))
399 else if (QTD_LENGTH(scratch
)) {
400 if (td
->hw_alt_next
== fotg210
->async
->hw
->hw_alt_next
)
402 else if (td
->hw_alt_next
!= list_end
)
405 temp
= snprintf(next
, size
,
406 "\n\t%p%c%s len=%d %08x urb %p",
407 td
, mark
, ({ char *tmp
;
408 switch ((scratch
>>8)&0x03) {
422 (scratch
>> 16) & 0x7fff,
433 temp
= snprintf(next
, size
, "\n");
445 static ssize_t
fill_async_buffer(struct debug_buffer
*buf
)
448 struct fotg210_hcd
*fotg210
;
452 struct fotg210_qh
*qh
;
454 hcd
= bus_to_hcd(buf
->bus
);
455 fotg210
= hcd_to_fotg210(hcd
);
456 next
= buf
->output_buf
;
457 size
= buf
->alloc_size
;
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
465 spin_lock_irqsave(&fotg210
->lock
, flags
);
466 for (qh
= fotg210
->async
->qh_next
.qh
; size
> 0 && qh
;
468 qh_lines(fotg210
, qh
, &next
, &size
);
469 if (fotg210
->async_unlink
&& size
> 0) {
470 temp
= scnprintf(next
, size
, "\nunlink =\n");
474 for (qh
= fotg210
->async_unlink
; size
> 0 && qh
;
475 qh
= qh
->unlink_next
)
476 qh_lines(fotg210
, qh
, &next
, &size
);
478 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
480 return strlen(buf
->output_buf
);
483 /* count tds, get ep direction */
484 static unsigned output_buf_tds_dir(char *buf
, struct fotg210_hcd
*fotg210
,
485 struct fotg210_qh_hw
*hw
, struct fotg210_qh
*qh
, unsigned size
)
487 u32 scratch
= hc32_to_cpup(fotg210
, &hw
->hw_info1
);
488 struct fotg210_qtd
*qtd
;
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd
, &qh
->qtd_list
, qtd_list
) {
495 switch ((hc32_to_cpu(fotg210
, qtd
->hw_token
) >> 8) & 0x03) {
505 return scnprintf(buf
, size
, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch
), scratch
& 0x007f,
507 (scratch
>> 8) & 0x000f, type
, qh
->usecs
,
508 qh
->c_usecs
, temp
, (scratch
>> 16) & 0x7ff);
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t
fill_periodic_buffer(struct debug_buffer
*buf
)
515 struct fotg210_hcd
*fotg210
;
517 union fotg210_shadow p
, *seen
;
518 unsigned temp
, size
, seen_count
;
523 seen
= kmalloc_array(DBG_SCHED_LIMIT
, sizeof(*seen
), GFP_ATOMIC
);
529 hcd
= bus_to_hcd(buf
->bus
);
530 fotg210
= hcd_to_fotg210(hcd
);
531 next
= buf
->output_buf
;
532 size
= buf
->alloc_size
;
534 temp
= scnprintf(next
, size
, "size = %d\n", fotg210
->periodic_size
);
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
541 spin_lock_irqsave(&fotg210
->lock
, flags
);
542 for (i
= 0; i
< fotg210
->periodic_size
; i
++) {
543 p
= fotg210
->pshadow
[i
];
547 tag
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[i
]);
549 temp
= scnprintf(next
, size
, "%4d: ", i
);
554 struct fotg210_qh_hw
*hw
;
556 switch (hc32_to_cpu(fotg210
, tag
)) {
559 temp
= scnprintf(next
, size
, " qh%d-%04x/%p",
561 hc32_to_cpup(fotg210
,
564 & (QH_CMASK
| QH_SMASK
),
568 /* don't repeat what follows this qh */
569 for (temp
= 0; temp
< seen_count
; temp
++) {
570 if (seen
[temp
].ptr
!= p
.ptr
)
572 if (p
.qh
->qh_next
.ptr
) {
573 temp
= scnprintf(next
, size
,
580 /* show more info the first time around */
581 if (temp
== seen_count
) {
582 temp
= output_buf_tds_dir(next
,
586 if (seen_count
< DBG_SCHED_LIMIT
)
587 seen
[seen_count
++].qh
= p
.qh
;
590 tag
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
594 temp
= scnprintf(next
, size
,
596 p
.fstn
->hw_prev
, p
.fstn
);
597 tag
= Q_NEXT_TYPE(fotg210
, p
.fstn
->hw_next
);
598 p
= p
.fstn
->fstn_next
;
601 temp
= scnprintf(next
, size
,
603 tag
= Q_NEXT_TYPE(fotg210
, p
.itd
->hw_next
);
611 temp
= scnprintf(next
, size
, "\n");
615 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
618 return buf
->alloc_size
- size
;
620 #undef DBG_SCHED_LIMIT
622 static const char *rh_state_string(struct fotg210_hcd
*fotg210
)
624 switch (fotg210
->rh_state
) {
625 case FOTG210_RH_HALTED
:
627 case FOTG210_RH_SUSPENDED
:
629 case FOTG210_RH_RUNNING
:
631 case FOTG210_RH_STOPPING
:
637 static ssize_t
fill_registers_buffer(struct debug_buffer
*buf
)
640 struct fotg210_hcd
*fotg210
;
642 unsigned temp
, size
, i
;
643 char *next
, scratch
[80];
644 static const char fmt
[] = "%*s\n";
645 static const char label
[] = "";
647 hcd
= bus_to_hcd(buf
->bus
);
648 fotg210
= hcd_to_fotg210(hcd
);
649 next
= buf
->output_buf
;
650 size
= buf
->alloc_size
;
652 spin_lock_irqsave(&fotg210
->lock
, flags
);
654 if (!HCD_HW_ACCESSIBLE(hcd
)) {
655 size
= scnprintf(next
, size
,
656 "bus %s, device %s\n"
658 "SUSPENDED(no register access)\n",
659 hcd
->self
.controller
->bus
->name
,
660 dev_name(hcd
->self
.controller
),
665 /* Capability Registers */
666 i
= HC_VERSION(fotg210
, fotg210_readl(fotg210
,
667 &fotg210
->caps
->hc_capbase
));
668 temp
= scnprintf(next
, size
,
669 "bus %s, device %s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd
->self
.controller
->bus
->name
,
673 dev_name(hcd
->self
.controller
),
675 i
>> 8, i
& 0x0ff, rh_state_string(fotg210
));
679 /* FIXME interpret both types of params */
680 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcs_params
);
681 temp
= scnprintf(next
, size
, "structural params 0x%08x\n", i
);
685 i
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
686 temp
= scnprintf(next
, size
, "capability params 0x%08x\n", i
);
690 /* Operational Registers */
691 temp
= dbg_status_buf(scratch
, sizeof(scratch
), label
,
692 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
693 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
697 temp
= dbg_command_buf(scratch
, sizeof(scratch
), label
,
698 fotg210_readl(fotg210
, &fotg210
->regs
->command
));
699 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
703 temp
= dbg_intr_buf(scratch
, sizeof(scratch
), label
,
704 fotg210_readl(fotg210
, &fotg210
->regs
->intr_enable
));
705 temp
= scnprintf(next
, size
, fmt
, temp
, scratch
);
709 temp
= scnprintf(next
, size
, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210
));
714 if (fotg210
->async_unlink
) {
715 temp
= scnprintf(next
, size
, "async unlink qh %p\n",
716 fotg210
->async_unlink
);
722 temp
= scnprintf(next
, size
,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210
->stats
.normal
, fotg210
->stats
.error
,
725 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
729 temp
= scnprintf(next
, size
, "complete %ld unlink %ld\n",
730 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
736 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
738 return buf
->alloc_size
- size
;
741 static struct debug_buffer
742 *alloc_buffer(struct usb_bus
*bus
, ssize_t (*fill_func
)(struct debug_buffer
*))
744 struct debug_buffer
*buf
;
746 buf
= kzalloc(sizeof(struct debug_buffer
), GFP_KERNEL
);
750 buf
->fill_func
= fill_func
;
751 mutex_init(&buf
->mutex
);
752 buf
->alloc_size
= PAGE_SIZE
;
758 static int fill_buffer(struct debug_buffer
*buf
)
762 if (!buf
->output_buf
)
763 buf
->output_buf
= vmalloc(buf
->alloc_size
);
765 if (!buf
->output_buf
) {
770 ret
= buf
->fill_func(buf
);
781 static ssize_t
debug_output(struct file
*file
, char __user
*user_buf
,
782 size_t len
, loff_t
*offset
)
784 struct debug_buffer
*buf
= file
->private_data
;
787 mutex_lock(&buf
->mutex
);
788 if (buf
->count
== 0) {
789 ret
= fill_buffer(buf
);
791 mutex_unlock(&buf
->mutex
);
795 mutex_unlock(&buf
->mutex
);
797 ret
= simple_read_from_buffer(user_buf
, len
, offset
,
798 buf
->output_buf
, buf
->count
);
805 static int debug_close(struct inode
*inode
, struct file
*file
)
807 struct debug_buffer
*buf
= file
->private_data
;
810 vfree(buf
->output_buf
);
816 static int debug_async_open(struct inode
*inode
, struct file
*file
)
818 file
->private_data
= alloc_buffer(inode
->i_private
, fill_async_buffer
);
820 return file
->private_data
? 0 : -ENOMEM
;
823 static int debug_periodic_open(struct inode
*inode
, struct file
*file
)
825 struct debug_buffer
*buf
;
827 buf
= alloc_buffer(inode
->i_private
, fill_periodic_buffer
);
831 buf
->alloc_size
= (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE
;
832 file
->private_data
= buf
;
836 static int debug_registers_open(struct inode
*inode
, struct file
*file
)
838 file
->private_data
= alloc_buffer(inode
->i_private
,
839 fill_registers_buffer
);
841 return file
->private_data
? 0 : -ENOMEM
;
844 static inline void create_debug_files(struct fotg210_hcd
*fotg210
)
846 struct usb_bus
*bus
= &fotg210_to_hcd(fotg210
)->self
;
848 fotg210
->debug_dir
= debugfs_create_dir(bus
->bus_name
,
850 if (!fotg210
->debug_dir
)
853 if (!debugfs_create_file("async", S_IRUGO
, fotg210
->debug_dir
, bus
,
857 if (!debugfs_create_file("periodic", S_IRUGO
, fotg210
->debug_dir
, bus
,
858 &debug_periodic_fops
))
861 if (!debugfs_create_file("registers", S_IRUGO
, fotg210
->debug_dir
, bus
,
862 &debug_registers_fops
))
868 debugfs_remove_recursive(fotg210
->debug_dir
);
871 static inline void remove_debug_files(struct fotg210_hcd
*fotg210
)
873 debugfs_remove_recursive(fotg210
->debug_dir
);
876 /* handshake - spin reading hc until handshake completes or fails
877 * @ptr: address of hc register to be read
878 * @mask: bits to look at in result of read
879 * @done: value of those bits when handshake succeeds
880 * @usec: timeout in microseconds
882 * Returns negative errno, or zero on success
884 * Success happens when the "mask" bits have the specified value (hardware
885 * handshake done). There are two failure modes: "usec" have passed (major
886 * hardware flakeout), or the register reads as all-ones (hardware removed).
888 * That last failure should_only happen in cases like physical cardbus eject
889 * before driver shutdown. But it also seems to be caused by bugs in cardbus
890 * bridge shutdown: shutting down the bridge before the devices using it.
892 static int handshake(struct fotg210_hcd
*fotg210
, void __iomem
*ptr
,
893 u32 mask
, u32 done
, int usec
)
898 result
= fotg210_readl(fotg210
, ptr
);
899 if (result
== ~(u32
)0) /* card removed */
910 /* Force HC to halt state from unknown (EHCI spec section 2.3).
911 * Must be called with interrupts enabled and the lock not held.
913 static int fotg210_halt(struct fotg210_hcd
*fotg210
)
917 spin_lock_irq(&fotg210
->lock
);
919 /* disable any irqs left enabled by previous code */
920 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
923 * This routine gets called during probe before fotg210->command
924 * has been initialized, so we can't rely on its value.
926 fotg210
->command
&= ~CMD_RUN
;
927 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
928 temp
&= ~(CMD_RUN
| CMD_IAAD
);
929 fotg210_writel(fotg210
, temp
, &fotg210
->regs
->command
);
931 spin_unlock_irq(&fotg210
->lock
);
932 synchronize_irq(fotg210_to_hcd(fotg210
)->irq
);
934 return handshake(fotg210
, &fotg210
->regs
->status
,
935 STS_HALT
, STS_HALT
, 16 * 125);
938 /* Reset a non-running (STS_HALT == 1) controller.
939 * Must be called with interrupts enabled and the lock not held.
941 static int fotg210_reset(struct fotg210_hcd
*fotg210
)
944 u32 command
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
946 /* If the EHCI debug controller is active, special care must be
947 * taken before and after a host controller reset
949 if (fotg210
->debug
&& !dbgp_reset_prep(fotg210_to_hcd(fotg210
)))
950 fotg210
->debug
= NULL
;
952 command
|= CMD_RESET
;
953 dbg_cmd(fotg210
, "reset", command
);
954 fotg210_writel(fotg210
, command
, &fotg210
->regs
->command
);
955 fotg210
->rh_state
= FOTG210_RH_HALTED
;
956 fotg210
->next_statechange
= jiffies
;
957 retval
= handshake(fotg210
, &fotg210
->regs
->command
,
958 CMD_RESET
, 0, 250 * 1000);
964 dbgp_external_startup(fotg210_to_hcd(fotg210
));
966 fotg210
->port_c_suspend
= fotg210
->suspended_ports
=
967 fotg210
->resuming_ports
= 0;
971 /* Idle the controller (turn off the schedules).
972 * Must be called with interrupts enabled and the lock not held.
974 static void fotg210_quiesce(struct fotg210_hcd
*fotg210
)
978 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
981 /* wait for any schedule enables/disables to take effect */
982 temp
= (fotg210
->command
<< 10) & (STS_ASS
| STS_PSS
);
983 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, temp
,
986 /* then disable anything that's still active */
987 spin_lock_irq(&fotg210
->lock
);
988 fotg210
->command
&= ~(CMD_ASE
| CMD_PSE
);
989 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
990 spin_unlock_irq(&fotg210
->lock
);
992 /* hardware can take 16 microframes to turn off ... */
993 handshake(fotg210
, &fotg210
->regs
->status
, STS_ASS
| STS_PSS
, 0,
997 static void end_unlink_async(struct fotg210_hcd
*fotg210
);
998 static void unlink_empty_async(struct fotg210_hcd
*fotg210
);
999 static void fotg210_work(struct fotg210_hcd
*fotg210
);
1000 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
1001 struct fotg210_qh
*qh
);
1002 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
1004 /* Set a bit in the USBCMD register */
1005 static void fotg210_set_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1007 fotg210
->command
|= bit
;
1008 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1010 /* unblock posted write */
1011 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1014 /* Clear a bit in the USBCMD register */
1015 static void fotg210_clear_command_bit(struct fotg210_hcd
*fotg210
, u32 bit
)
1017 fotg210
->command
&= ~bit
;
1018 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
1020 /* unblock posted write */
1021 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1024 /* EHCI timer support... Now using hrtimers.
1026 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1027 * the timer routine runs, it checks each possible event; events that are
1028 * currently enabled and whose expiration time has passed get handled.
1029 * The set of enabled events is stored as a collection of bitflags in
1030 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1031 * increasing delay values (ranging between 1 ms and 100 ms).
1033 * Rather than implementing a sorted list or tree of all pending events,
1034 * we keep track only of the lowest-numbered pending event, in
1035 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1036 * expiration time is set to the timeout value for this event.
1038 * As a result, events might not get handled right away; the actual delay
1039 * could be anywhere up to twice the requested delay. This doesn't
1040 * matter, because none of the events are especially time-critical. The
1041 * ones that matter most all have a delay of 1 ms, so they will be
1042 * handled after 2 ms at most, which is okay. In addition to this, we
1043 * allow for an expiration range of 1 ms.
1046 /* Delay lengths for the hrtimer event types.
1047 * Keep this list sorted by delay length, in the same order as
1048 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1050 static unsigned event_delays_ns
[] = {
1051 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_ASS */
1052 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_PSS */
1053 1 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_POLL_DEAD */
1054 1125 * NSEC_PER_USEC
, /* FOTG210_HRTIMER_UNLINK_INTR */
1055 2 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_FREE_ITDS */
1056 6 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1057 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1058 10 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1059 15 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1060 100 * NSEC_PER_MSEC
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1063 /* Enable a pending hrtimer event */
1064 static void fotg210_enable_event(struct fotg210_hcd
*fotg210
, unsigned event
,
1067 ktime_t
*timeout
= &fotg210
->hr_timeouts
[event
];
1070 *timeout
= ktime_add(ktime_get(), event_delays_ns
[event
]);
1071 fotg210
->enabled_hrtimer_events
|= (1 << event
);
1073 /* Track only the lowest-numbered pending event */
1074 if (event
< fotg210
->next_hrtimer_event
) {
1075 fotg210
->next_hrtimer_event
= event
;
1076 hrtimer_start_range_ns(&fotg210
->hrtimer
, *timeout
,
1077 NSEC_PER_MSEC
, HRTIMER_MODE_ABS
);
1082 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1083 static void fotg210_poll_ASS(struct fotg210_hcd
*fotg210
)
1085 unsigned actual
, want
;
1087 /* Don't enable anything if the controller isn't running (e.g., died) */
1088 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1091 want
= (fotg210
->command
& CMD_ASE
) ? STS_ASS
: 0;
1092 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_ASS
;
1094 if (want
!= actual
) {
1096 /* Poll again later, but give up after about 20 ms */
1097 if (fotg210
->ASS_poll_count
++ < 20) {
1098 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_ASS
,
1102 fotg210_dbg(fotg210
, "Waited too long for the async schedule status (%x/%x), giving up\n",
1105 fotg210
->ASS_poll_count
= 0;
1107 /* The status is up-to-date; restart or stop the schedule as needed */
1108 if (want
== 0) { /* Stopped */
1109 if (fotg210
->async_count
> 0)
1110 fotg210_set_command_bit(fotg210
, CMD_ASE
);
1112 } else { /* Running */
1113 if (fotg210
->async_count
== 0) {
1115 /* Turn off the schedule after a while */
1116 fotg210_enable_event(fotg210
,
1117 FOTG210_HRTIMER_DISABLE_ASYNC
,
1123 /* Turn off the async schedule after a brief delay */
1124 static void fotg210_disable_ASE(struct fotg210_hcd
*fotg210
)
1126 fotg210_clear_command_bit(fotg210
, CMD_ASE
);
1130 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1131 static void fotg210_poll_PSS(struct fotg210_hcd
*fotg210
)
1133 unsigned actual
, want
;
1135 /* Don't do anything if the controller isn't running (e.g., died) */
1136 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1139 want
= (fotg210
->command
& CMD_PSE
) ? STS_PSS
: 0;
1140 actual
= fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_PSS
;
1142 if (want
!= actual
) {
1144 /* Poll again later, but give up after about 20 ms */
1145 if (fotg210
->PSS_poll_count
++ < 20) {
1146 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_POLL_PSS
,
1150 fotg210_dbg(fotg210
, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1153 fotg210
->PSS_poll_count
= 0;
1155 /* The status is up-to-date; restart or stop the schedule as needed */
1156 if (want
== 0) { /* Stopped */
1157 if (fotg210
->periodic_count
> 0)
1158 fotg210_set_command_bit(fotg210
, CMD_PSE
);
1160 } else { /* Running */
1161 if (fotg210
->periodic_count
== 0) {
1163 /* Turn off the schedule after a while */
1164 fotg210_enable_event(fotg210
,
1165 FOTG210_HRTIMER_DISABLE_PERIODIC
,
1171 /* Turn off the periodic schedule after a brief delay */
1172 static void fotg210_disable_PSE(struct fotg210_hcd
*fotg210
)
1174 fotg210_clear_command_bit(fotg210
, CMD_PSE
);
1178 /* Poll the STS_HALT status bit; see when a dead controller stops */
1179 static void fotg210_handle_controller_death(struct fotg210_hcd
*fotg210
)
1181 if (!(fotg210_readl(fotg210
, &fotg210
->regs
->status
) & STS_HALT
)) {
1183 /* Give up after a few milliseconds */
1184 if (fotg210
->died_poll_count
++ < 5) {
1185 /* Try again later */
1186 fotg210_enable_event(fotg210
,
1187 FOTG210_HRTIMER_POLL_DEAD
, true);
1190 fotg210_warn(fotg210
, "Waited too long for the controller to stop, giving up\n");
1193 /* Clean up the mess */
1194 fotg210
->rh_state
= FOTG210_RH_HALTED
;
1195 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
1196 fotg210_work(fotg210
);
1197 end_unlink_async(fotg210
);
1199 /* Not in process context, so don't try to reset the controller */
1203 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1204 static void fotg210_handle_intr_unlinks(struct fotg210_hcd
*fotg210
)
1206 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
1209 * Process all the QHs on the intr_unlink list that were added
1210 * before the current unlink cycle began. The list is in
1211 * temporal order, so stop when we reach the first entry in the
1212 * current cycle. But if the root hub isn't running then
1213 * process all the QHs on the list.
1215 fotg210
->intr_unlinking
= true;
1216 while (fotg210
->intr_unlink
) {
1217 struct fotg210_qh
*qh
= fotg210
->intr_unlink
;
1219 if (!stopped
&& qh
->unlink_cycle
== fotg210
->intr_unlink_cycle
)
1221 fotg210
->intr_unlink
= qh
->unlink_next
;
1222 qh
->unlink_next
= NULL
;
1223 end_unlink_intr(fotg210
, qh
);
1226 /* Handle remaining entries later */
1227 if (fotg210
->intr_unlink
) {
1228 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
1230 ++fotg210
->intr_unlink_cycle
;
1232 fotg210
->intr_unlinking
= false;
1236 /* Start another free-iTDs/siTDs cycle */
1237 static void start_free_itds(struct fotg210_hcd
*fotg210
)
1239 if (!(fotg210
->enabled_hrtimer_events
&
1240 BIT(FOTG210_HRTIMER_FREE_ITDS
))) {
1241 fotg210
->last_itd_to_free
= list_entry(
1242 fotg210
->cached_itd_list
.prev
,
1243 struct fotg210_itd
, itd_list
);
1244 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_FREE_ITDS
, true);
1248 /* Wait for controller to stop using old iTDs and siTDs */
1249 static void end_free_itds(struct fotg210_hcd
*fotg210
)
1251 struct fotg210_itd
*itd
, *n
;
1253 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
1254 fotg210
->last_itd_to_free
= NULL
;
1256 list_for_each_entry_safe(itd
, n
, &fotg210
->cached_itd_list
, itd_list
) {
1257 list_del(&itd
->itd_list
);
1258 dma_pool_free(fotg210
->itd_pool
, itd
, itd
->itd_dma
);
1259 if (itd
== fotg210
->last_itd_to_free
)
1263 if (!list_empty(&fotg210
->cached_itd_list
))
1264 start_free_itds(fotg210
);
1268 /* Handle lost (or very late) IAA interrupts */
1269 static void fotg210_iaa_watchdog(struct fotg210_hcd
*fotg210
)
1271 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
)
1275 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1276 * So we need this watchdog, but must protect it against both
1277 * (a) SMP races against real IAA firing and retriggering, and
1278 * (b) clean HC shutdown, when IAA watchdog was pending.
1280 if (fotg210
->async_iaa
) {
1283 /* If we get here, IAA is *REALLY* late. It's barely
1284 * conceivable that the system is so busy that CMD_IAAD
1285 * is still legitimately set, so let's be sure it's
1286 * clear before we read STS_IAA. (The HC should clear
1287 * CMD_IAAD when it sets STS_IAA.)
1289 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1292 * If IAA is set here it either legitimately triggered
1293 * after the watchdog timer expired (_way_ late, so we'll
1294 * still count it as lost) ... or a silicon erratum:
1295 * - VIA seems to set IAA without triggering the IRQ;
1296 * - IAAD potentially cleared without setting IAA.
1298 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
1299 if ((status
& STS_IAA
) || !(cmd
& CMD_IAAD
)) {
1300 COUNT(fotg210
->stats
.lost_iaa
);
1301 fotg210_writel(fotg210
, STS_IAA
,
1302 &fotg210
->regs
->status
);
1305 fotg210_dbg(fotg210
, "IAA watchdog: status %x cmd %x\n",
1307 end_unlink_async(fotg210
);
1312 /* Enable the I/O watchdog, if appropriate */
1313 static void turn_on_io_watchdog(struct fotg210_hcd
*fotg210
)
1315 /* Not needed if the controller isn't running or it's already enabled */
1316 if (fotg210
->rh_state
!= FOTG210_RH_RUNNING
||
1317 (fotg210
->enabled_hrtimer_events
&
1318 BIT(FOTG210_HRTIMER_IO_WATCHDOG
)))
1322 * Isochronous transfers always need the watchdog.
1323 * For other sorts we use it only if the flag is set.
1325 if (fotg210
->isoc_count
> 0 || (fotg210
->need_io_watchdog
&&
1326 fotg210
->async_count
+ fotg210
->intr_count
> 0))
1327 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IO_WATCHDOG
,
1332 /* Handler functions for the hrtimer event types.
1333 * Keep this array in the same order as the event types indexed by
1334 * enum fotg210_hrtimer_event in fotg210.h.
1336 static void (*event_handlers
[])(struct fotg210_hcd
*) = {
1337 fotg210_poll_ASS
, /* FOTG210_HRTIMER_POLL_ASS */
1338 fotg210_poll_PSS
, /* FOTG210_HRTIMER_POLL_PSS */
1339 fotg210_handle_controller_death
, /* FOTG210_HRTIMER_POLL_DEAD */
1340 fotg210_handle_intr_unlinks
, /* FOTG210_HRTIMER_UNLINK_INTR */
1341 end_free_itds
, /* FOTG210_HRTIMER_FREE_ITDS */
1342 unlink_empty_async
, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1343 fotg210_iaa_watchdog
, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1344 fotg210_disable_PSE
, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1345 fotg210_disable_ASE
, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1346 fotg210_work
, /* FOTG210_HRTIMER_IO_WATCHDOG */
1349 static enum hrtimer_restart
fotg210_hrtimer_func(struct hrtimer
*t
)
1351 struct fotg210_hcd
*fotg210
=
1352 container_of(t
, struct fotg210_hcd
, hrtimer
);
1354 unsigned long events
;
1355 unsigned long flags
;
1358 spin_lock_irqsave(&fotg210
->lock
, flags
);
1360 events
= fotg210
->enabled_hrtimer_events
;
1361 fotg210
->enabled_hrtimer_events
= 0;
1362 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
1365 * Check each pending event. If its time has expired, handle
1366 * the event; otherwise re-enable it.
1369 for_each_set_bit(e
, &events
, FOTG210_HRTIMER_NUM_EVENTS
) {
1370 if (ktime_compare(now
, fotg210
->hr_timeouts
[e
]) >= 0)
1371 event_handlers
[e
](fotg210
);
1373 fotg210_enable_event(fotg210
, e
, false);
1376 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1377 return HRTIMER_NORESTART
;
1380 #define fotg210_bus_suspend NULL
1381 #define fotg210_bus_resume NULL
1383 static int check_reset_complete(struct fotg210_hcd
*fotg210
, int index
,
1384 u32 __iomem
*status_reg
, int port_status
)
1386 if (!(port_status
& PORT_CONNECT
))
1389 /* if reset finished and it's still not enabled -- handoff */
1390 if (!(port_status
& PORT_PE
))
1391 /* with integrated TT, there's nobody to hand it to! */
1392 fotg210_dbg(fotg210
, "Failed to enable port %d on root hub TT\n",
1395 fotg210_dbg(fotg210
, "port %d reset complete, port enabled\n",
1402 /* build "status change" packet (one or two bytes) from HC registers */
1404 static int fotg210_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
1406 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1410 unsigned long flags
;
1412 /* init status to no-changes */
1415 /* Inform the core about resumes-in-progress by returning
1416 * a non-zero value even if there are no status changes.
1418 status
= fotg210
->resuming_ports
;
1420 mask
= PORT_CSC
| PORT_PEC
;
1421 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1423 /* no hub change reports (bit 0) for now (power, ...) */
1425 /* port N changes (bit N)? */
1426 spin_lock_irqsave(&fotg210
->lock
, flags
);
1428 temp
= fotg210_readl(fotg210
, &fotg210
->regs
->port_status
);
1431 * Return status information even for ports with OWNER set.
1432 * Otherwise hub_wq wouldn't see the disconnect event when a
1433 * high-speed device is switched over to the companion
1434 * controller by the user.
1437 if ((temp
& mask
) != 0 || test_bit(0, &fotg210
->port_c_suspend
) ||
1438 (fotg210
->reset_done
[0] &&
1439 time_after_eq(jiffies
, fotg210
->reset_done
[0]))) {
1443 /* FIXME autosuspend idle root hubs */
1444 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1445 return status
? retval
: 0;
1448 static void fotg210_hub_descriptor(struct fotg210_hcd
*fotg210
,
1449 struct usb_hub_descriptor
*desc
)
1451 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1454 desc
->bDescriptorType
= USB_DT_HUB
;
1455 desc
->bPwrOn2PwrGood
= 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1456 desc
->bHubContrCurrent
= 0;
1458 desc
->bNbrPorts
= ports
;
1459 temp
= 1 + (ports
/ 8);
1460 desc
->bDescLength
= 7 + 2 * temp
;
1462 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1463 memset(&desc
->u
.hs
.DeviceRemovable
[0], 0, temp
);
1464 memset(&desc
->u
.hs
.DeviceRemovable
[temp
], 0xff, temp
);
1466 temp
= HUB_CHAR_INDV_PORT_OCPM
; /* per-port overcurrent reporting */
1467 temp
|= HUB_CHAR_NO_LPSM
; /* no power switching */
1468 desc
->wHubCharacteristics
= cpu_to_le16(temp
);
1471 static int fotg210_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
,
1472 u16 wIndex
, char *buf
, u16 wLength
)
1474 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
1475 int ports
= HCS_N_PORTS(fotg210
->hcs_params
);
1476 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
1477 u32 temp
, temp1
, status
;
1478 unsigned long flags
;
1483 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1484 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1485 * (track current state ourselves) ... blink for diagnostics,
1486 * power, "this is the one", etc. EHCI spec supports this.
1489 spin_lock_irqsave(&fotg210
->lock
, flags
);
1491 case ClearHubFeature
:
1493 case C_HUB_LOCAL_POWER
:
1494 case C_HUB_OVER_CURRENT
:
1495 /* no hub-wide feature/status flags */
1501 case ClearPortFeature
:
1502 if (!wIndex
|| wIndex
> ports
)
1505 temp
= fotg210_readl(fotg210
, status_reg
);
1506 temp
&= ~PORT_RWC_BITS
;
1509 * Even if OWNER is set, so the port is owned by the
1510 * companion controller, hub_wq needs to be able to clear
1511 * the port-change status bits (especially
1512 * USB_PORT_STAT_C_CONNECTION).
1516 case USB_PORT_FEAT_ENABLE
:
1517 fotg210_writel(fotg210
, temp
& ~PORT_PE
, status_reg
);
1519 case USB_PORT_FEAT_C_ENABLE
:
1520 fotg210_writel(fotg210
, temp
| PORT_PEC
, status_reg
);
1522 case USB_PORT_FEAT_SUSPEND
:
1523 if (temp
& PORT_RESET
)
1525 if (!(temp
& PORT_SUSPEND
))
1527 if ((temp
& PORT_PE
) == 0)
1530 /* resume signaling for 20 msec */
1531 fotg210_writel(fotg210
, temp
| PORT_RESUME
, status_reg
);
1532 fotg210
->reset_done
[wIndex
] = jiffies
1533 + msecs_to_jiffies(USB_RESUME_TIMEOUT
);
1535 case USB_PORT_FEAT_C_SUSPEND
:
1536 clear_bit(wIndex
, &fotg210
->port_c_suspend
);
1538 case USB_PORT_FEAT_C_CONNECTION
:
1539 fotg210_writel(fotg210
, temp
| PORT_CSC
, status_reg
);
1541 case USB_PORT_FEAT_C_OVER_CURRENT
:
1542 fotg210_writel(fotg210
, temp
| OTGISR_OVC
,
1543 &fotg210
->regs
->otgisr
);
1545 case USB_PORT_FEAT_C_RESET
:
1546 /* GetPortStatus clears reset */
1551 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1553 case GetHubDescriptor
:
1554 fotg210_hub_descriptor(fotg210
, (struct usb_hub_descriptor
*)
1558 /* no hub-wide feature/status flags */
1560 /*cpu_to_le32s ((u32 *) buf); */
1563 if (!wIndex
|| wIndex
> ports
)
1567 temp
= fotg210_readl(fotg210
, status_reg
);
1569 /* wPortChange bits */
1570 if (temp
& PORT_CSC
)
1571 status
|= USB_PORT_STAT_C_CONNECTION
<< 16;
1572 if (temp
& PORT_PEC
)
1573 status
|= USB_PORT_STAT_C_ENABLE
<< 16;
1575 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1576 if (temp1
& OTGISR_OVC
)
1577 status
|= USB_PORT_STAT_C_OVERCURRENT
<< 16;
1579 /* whoever resumes must GetPortStatus to complete it!! */
1580 if (temp
& PORT_RESUME
) {
1582 /* Remote Wakeup received? */
1583 if (!fotg210
->reset_done
[wIndex
]) {
1584 /* resume signaling for 20 msec */
1585 fotg210
->reset_done
[wIndex
] = jiffies
1586 + msecs_to_jiffies(20);
1587 /* check the port again */
1588 mod_timer(&fotg210_to_hcd(fotg210
)->rh_timer
,
1589 fotg210
->reset_done
[wIndex
]);
1592 /* resume completed? */
1593 else if (time_after_eq(jiffies
,
1594 fotg210
->reset_done
[wIndex
])) {
1595 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1596 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1597 fotg210
->reset_done
[wIndex
] = 0;
1599 /* stop resume signaling */
1600 temp
= fotg210_readl(fotg210
, status_reg
);
1601 fotg210_writel(fotg210
, temp
&
1602 ~(PORT_RWC_BITS
| PORT_RESUME
),
1604 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1605 retval
= handshake(fotg210
, status_reg
,
1606 PORT_RESUME
, 0, 2000);/* 2ms */
1608 fotg210_err(fotg210
,
1609 "port %d resume error %d\n",
1610 wIndex
+ 1, retval
);
1613 temp
&= ~(PORT_SUSPEND
|PORT_RESUME
|(3<<10));
1617 /* whoever resets must GetPortStatus to complete it!! */
1618 if ((temp
& PORT_RESET
) && time_after_eq(jiffies
,
1619 fotg210
->reset_done
[wIndex
])) {
1620 status
|= USB_PORT_STAT_C_RESET
<< 16;
1621 fotg210
->reset_done
[wIndex
] = 0;
1622 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1624 /* force reset to complete */
1625 fotg210_writel(fotg210
,
1626 temp
& ~(PORT_RWC_BITS
| PORT_RESET
),
1628 /* REVISIT: some hardware needs 550+ usec to clear
1629 * this bit; seems too long to spin routinely...
1631 retval
= handshake(fotg210
, status_reg
,
1632 PORT_RESET
, 0, 1000);
1634 fotg210_err(fotg210
, "port %d reset error %d\n",
1635 wIndex
+ 1, retval
);
1639 /* see what we found out */
1640 temp
= check_reset_complete(fotg210
, wIndex
, status_reg
,
1641 fotg210_readl(fotg210
, status_reg
));
1644 if (!(temp
& (PORT_RESUME
|PORT_RESET
))) {
1645 fotg210
->reset_done
[wIndex
] = 0;
1646 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1649 /* transfer dedicated ports to the companion hc */
1650 if ((temp
& PORT_CONNECT
) &&
1651 test_bit(wIndex
, &fotg210
->companion_ports
)) {
1652 temp
&= ~PORT_RWC_BITS
;
1653 fotg210_writel(fotg210
, temp
, status_reg
);
1654 fotg210_dbg(fotg210
, "port %d --> companion\n",
1656 temp
= fotg210_readl(fotg210
, status_reg
);
1660 * Even if OWNER is set, there's no harm letting hub_wq
1661 * see the wPortStatus values (they should all be 0 except
1662 * for PORT_POWER anyway).
1665 if (temp
& PORT_CONNECT
) {
1666 status
|= USB_PORT_STAT_CONNECTION
;
1667 status
|= fotg210_port_speed(fotg210
, temp
);
1670 status
|= USB_PORT_STAT_ENABLE
;
1672 /* maybe the port was unsuspended without our knowledge */
1673 if (temp
& (PORT_SUSPEND
|PORT_RESUME
)) {
1674 status
|= USB_PORT_STAT_SUSPEND
;
1675 } else if (test_bit(wIndex
, &fotg210
->suspended_ports
)) {
1676 clear_bit(wIndex
, &fotg210
->suspended_ports
);
1677 clear_bit(wIndex
, &fotg210
->resuming_ports
);
1678 fotg210
->reset_done
[wIndex
] = 0;
1680 set_bit(wIndex
, &fotg210
->port_c_suspend
);
1683 temp1
= fotg210_readl(fotg210
, &fotg210
->regs
->otgisr
);
1684 if (temp1
& OTGISR_OVC
)
1685 status
|= USB_PORT_STAT_OVERCURRENT
;
1686 if (temp
& PORT_RESET
)
1687 status
|= USB_PORT_STAT_RESET
;
1688 if (test_bit(wIndex
, &fotg210
->port_c_suspend
))
1689 status
|= USB_PORT_STAT_C_SUSPEND
<< 16;
1691 if (status
& ~0xffff) /* only if wPortChange is interesting */
1692 dbg_port(fotg210
, "GetStatus", wIndex
+ 1, temp
);
1693 put_unaligned_le32(status
, buf
);
1697 case C_HUB_LOCAL_POWER
:
1698 case C_HUB_OVER_CURRENT
:
1699 /* no hub-wide feature/status flags */
1705 case SetPortFeature
:
1706 selector
= wIndex
>> 8;
1709 if (!wIndex
|| wIndex
> ports
)
1712 temp
= fotg210_readl(fotg210
, status_reg
);
1713 temp
&= ~PORT_RWC_BITS
;
1715 case USB_PORT_FEAT_SUSPEND
:
1716 if ((temp
& PORT_PE
) == 0
1717 || (temp
& PORT_RESET
) != 0)
1720 /* After above check the port must be connected.
1721 * Set appropriate bit thus could put phy into low power
1722 * mode if we have hostpc feature
1724 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1726 set_bit(wIndex
, &fotg210
->suspended_ports
);
1728 case USB_PORT_FEAT_RESET
:
1729 if (temp
& PORT_RESUME
)
1731 /* line status bits may report this as low speed,
1732 * which can be fine if this root hub has a
1733 * transaction translator built in.
1735 fotg210_dbg(fotg210
, "port %d reset\n", wIndex
+ 1);
1740 * caller must wait, then call GetPortStatus
1741 * usb 2.0 spec says 50 ms resets on root
1743 fotg210
->reset_done
[wIndex
] = jiffies
1744 + msecs_to_jiffies(50);
1745 fotg210_writel(fotg210
, temp
, status_reg
);
1748 /* For downstream facing ports (these): one hub port is put
1749 * into test mode according to USB2 11.24.2.13, then the hub
1750 * must be reset (which for root hub now means rmmod+modprobe,
1751 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1752 * about the EHCI-specific stuff.
1754 case USB_PORT_FEAT_TEST
:
1755 if (!selector
|| selector
> 5)
1757 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1758 fotg210_quiesce(fotg210
);
1759 spin_lock_irqsave(&fotg210
->lock
, flags
);
1761 /* Put all enabled ports into suspend */
1762 temp
= fotg210_readl(fotg210
, status_reg
) &
1765 fotg210_writel(fotg210
, temp
| PORT_SUSPEND
,
1768 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1769 fotg210_halt(fotg210
);
1770 spin_lock_irqsave(&fotg210
->lock
, flags
);
1772 temp
= fotg210_readl(fotg210
, status_reg
);
1773 temp
|= selector
<< 16;
1774 fotg210_writel(fotg210
, temp
, status_reg
);
1780 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
1785 /* "stall" on error */
1788 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
1792 static void __maybe_unused
fotg210_relinquish_port(struct usb_hcd
*hcd
,
1798 static int __maybe_unused
fotg210_port_handed_over(struct usb_hcd
*hcd
,
1804 /* There's basically three types of memory:
1805 * - data used only by the HCD ... kmalloc is fine
1806 * - async and periodic schedules, shared by HC and HCD ... these
1807 * need to use dma_pool or dma_alloc_coherent
1808 * - driver buffers, read/written by HC ... single shot DMA mapped
1810 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1811 * No memory seen by this driver is pageable.
1814 /* Allocate the key transfer structures from the previously allocated pool */
1815 static inline void fotg210_qtd_init(struct fotg210_hcd
*fotg210
,
1816 struct fotg210_qtd
*qtd
, dma_addr_t dma
)
1818 memset(qtd
, 0, sizeof(*qtd
));
1820 qtd
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
1821 qtd
->hw_next
= FOTG210_LIST_END(fotg210
);
1822 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
1823 INIT_LIST_HEAD(&qtd
->qtd_list
);
1826 static struct fotg210_qtd
*fotg210_qtd_alloc(struct fotg210_hcd
*fotg210
,
1829 struct fotg210_qtd
*qtd
;
1832 qtd
= dma_pool_alloc(fotg210
->qtd_pool
, flags
, &dma
);
1834 fotg210_qtd_init(fotg210
, qtd
, dma
);
1839 static inline void fotg210_qtd_free(struct fotg210_hcd
*fotg210
,
1840 struct fotg210_qtd
*qtd
)
1842 dma_pool_free(fotg210
->qtd_pool
, qtd
, qtd
->qtd_dma
);
1846 static void qh_destroy(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
1848 /* clean qtds first, and know this is not linked */
1849 if (!list_empty(&qh
->qtd_list
) || qh
->qh_next
.ptr
) {
1850 fotg210_dbg(fotg210
, "unused qh not empty!\n");
1854 fotg210_qtd_free(fotg210
, qh
->dummy
);
1855 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1859 static struct fotg210_qh
*fotg210_qh_alloc(struct fotg210_hcd
*fotg210
,
1862 struct fotg210_qh
*qh
;
1865 qh
= kzalloc(sizeof(*qh
), GFP_ATOMIC
);
1868 qh
->hw
= dma_pool_zalloc(fotg210
->qh_pool
, flags
, &dma
);
1872 INIT_LIST_HEAD(&qh
->qtd_list
);
1874 /* dummy td enables safe urb queuing */
1875 qh
->dummy
= fotg210_qtd_alloc(fotg210
, flags
);
1876 if (qh
->dummy
== NULL
) {
1877 fotg210_dbg(fotg210
, "no dummy td\n");
1883 dma_pool_free(fotg210
->qh_pool
, qh
->hw
, qh
->qh_dma
);
1889 /* The queue heads and transfer descriptors are managed from pools tied
1890 * to each of the "per device" structures.
1891 * This is the initialisation and cleanup code.
1894 static void fotg210_mem_cleanup(struct fotg210_hcd
*fotg210
)
1897 qh_destroy(fotg210
, fotg210
->async
);
1898 fotg210
->async
= NULL
;
1901 qh_destroy(fotg210
, fotg210
->dummy
);
1902 fotg210
->dummy
= NULL
;
1904 /* DMA consistent memory and pools */
1905 dma_pool_destroy(fotg210
->qtd_pool
);
1906 fotg210
->qtd_pool
= NULL
;
1908 dma_pool_destroy(fotg210
->qh_pool
);
1909 fotg210
->qh_pool
= NULL
;
1911 dma_pool_destroy(fotg210
->itd_pool
);
1912 fotg210
->itd_pool
= NULL
;
1914 if (fotg210
->periodic
)
1915 dma_free_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1916 fotg210
->periodic_size
* sizeof(u32
),
1917 fotg210
->periodic
, fotg210
->periodic_dma
);
1918 fotg210
->periodic
= NULL
;
1920 /* shadow periodic table */
1921 kfree(fotg210
->pshadow
);
1922 fotg210
->pshadow
= NULL
;
1925 /* remember to add cleanup code (above) if you add anything here */
1926 static int fotg210_mem_init(struct fotg210_hcd
*fotg210
, gfp_t flags
)
1930 /* QTDs for control/bulk/intr transfers */
1931 fotg210
->qtd_pool
= dma_pool_create("fotg210_qtd",
1932 fotg210_to_hcd(fotg210
)->self
.controller
,
1933 sizeof(struct fotg210_qtd
),
1934 32 /* byte alignment (for hw parts) */,
1935 4096 /* can't cross 4K */);
1936 if (!fotg210
->qtd_pool
)
1939 /* QHs for control/bulk/intr transfers */
1940 fotg210
->qh_pool
= dma_pool_create("fotg210_qh",
1941 fotg210_to_hcd(fotg210
)->self
.controller
,
1942 sizeof(struct fotg210_qh_hw
),
1943 32 /* byte alignment (for hw parts) */,
1944 4096 /* can't cross 4K */);
1945 if (!fotg210
->qh_pool
)
1948 fotg210
->async
= fotg210_qh_alloc(fotg210
, flags
);
1949 if (!fotg210
->async
)
1952 /* ITD for high speed ISO transfers */
1953 fotg210
->itd_pool
= dma_pool_create("fotg210_itd",
1954 fotg210_to_hcd(fotg210
)->self
.controller
,
1955 sizeof(struct fotg210_itd
),
1956 64 /* byte alignment (for hw parts) */,
1957 4096 /* can't cross 4K */);
1958 if (!fotg210
->itd_pool
)
1961 /* Hardware periodic table */
1962 fotg210
->periodic
= (__le32
*)
1963 dma_alloc_coherent(fotg210_to_hcd(fotg210
)->self
.controller
,
1964 fotg210
->periodic_size
* sizeof(__le32
),
1965 &fotg210
->periodic_dma
, 0);
1966 if (fotg210
->periodic
== NULL
)
1969 for (i
= 0; i
< fotg210
->periodic_size
; i
++)
1970 fotg210
->periodic
[i
] = FOTG210_LIST_END(fotg210
);
1972 /* software shadow of hardware table */
1973 fotg210
->pshadow
= kcalloc(fotg210
->periodic_size
, sizeof(void *),
1975 if (fotg210
->pshadow
!= NULL
)
1979 fotg210_dbg(fotg210
, "couldn't init memory\n");
1980 fotg210_mem_cleanup(fotg210
);
1983 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1985 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1986 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1987 * buffers needed for the larger number). We use one QH per endpoint, queue
1988 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1990 * ISO traffic uses "ISO TD" (itd) records, and (along with
1991 * interrupts) needs careful scheduling. Performance improvements can be
1992 * an ongoing challenge. That's in "ehci-sched.c".
1994 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1995 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1996 * (b) special fields in qh entries or (c) split iso entries. TTs will
1997 * buffer low/full speed data so the host collects it at high speed.
2000 /* fill a qtd, returning how much of the buffer we were able to queue up */
2001 static int qtd_fill(struct fotg210_hcd
*fotg210
, struct fotg210_qtd
*qtd
,
2002 dma_addr_t buf
, size_t len
, int token
, int maxpacket
)
2007 /* one buffer entry per 4K ... first might be short or unaligned */
2008 qtd
->hw_buf
[0] = cpu_to_hc32(fotg210
, (u32
)addr
);
2009 qtd
->hw_buf_hi
[0] = cpu_to_hc32(fotg210
, (u32
)(addr
>> 32));
2010 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
2011 if (likely(len
< count
)) /* ... iff needed */
2017 /* per-qtd limit: from 16K to 20K (best alignment) */
2018 for (i
= 1; count
< len
&& i
< 5; i
++) {
2020 qtd
->hw_buf
[i
] = cpu_to_hc32(fotg210
, (u32
)addr
);
2021 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(fotg210
,
2024 if ((count
+ 0x1000) < len
)
2030 /* short packets may only terminate transfers */
2032 count
-= (count
% maxpacket
);
2034 qtd
->hw_token
= cpu_to_hc32(fotg210
, (count
<< 16) | token
);
2035 qtd
->length
= count
;
2040 static inline void qh_update(struct fotg210_hcd
*fotg210
,
2041 struct fotg210_qh
*qh
, struct fotg210_qtd
*qtd
)
2043 struct fotg210_qh_hw
*hw
= qh
->hw
;
2045 /* writes to an active overlay are unsafe */
2046 BUG_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2048 hw
->hw_qtd_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2049 hw
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2051 /* Except for control endpoints, we make hardware maintain data
2052 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2053 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2056 if (!(hw
->hw_info1
& cpu_to_hc32(fotg210
, QH_TOGGLE_CTL
))) {
2057 unsigned is_out
, epnum
;
2059 is_out
= qh
->is_out
;
2060 epnum
= (hc32_to_cpup(fotg210
, &hw
->hw_info1
) >> 8) & 0x0f;
2061 if (unlikely(!usb_gettoggle(qh
->dev
, epnum
, is_out
))) {
2062 hw
->hw_token
&= ~cpu_to_hc32(fotg210
, QTD_TOGGLE
);
2063 usb_settoggle(qh
->dev
, epnum
, is_out
, 1);
2067 hw
->hw_token
&= cpu_to_hc32(fotg210
, QTD_TOGGLE
| QTD_STS_PING
);
2070 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2071 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2072 * recovery (including urb dequeue) would need software changes to a QH...
2074 static void qh_refresh(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2076 struct fotg210_qtd
*qtd
;
2078 if (list_empty(&qh
->qtd_list
))
2081 qtd
= list_entry(qh
->qtd_list
.next
,
2082 struct fotg210_qtd
, qtd_list
);
2084 * first qtd may already be partially processed.
2085 * If we come here during unlink, the QH overlay region
2086 * might have reference to the just unlinked qtd. The
2087 * qtd is updated in qh_completions(). Update the QH
2090 if (cpu_to_hc32(fotg210
, qtd
->qtd_dma
) == qh
->hw
->hw_current
) {
2091 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
2097 qh_update(fotg210
, qh
, qtd
);
2100 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2102 static void fotg210_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
2103 struct usb_host_endpoint
*ep
)
2105 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
2106 struct fotg210_qh
*qh
= ep
->hcpriv
;
2107 unsigned long flags
;
2109 spin_lock_irqsave(&fotg210
->lock
, flags
);
2110 qh
->clearing_tt
= 0;
2111 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
2112 && fotg210
->rh_state
== FOTG210_RH_RUNNING
)
2113 qh_link_async(fotg210
, qh
);
2114 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
2117 static void fotg210_clear_tt_buffer(struct fotg210_hcd
*fotg210
,
2118 struct fotg210_qh
*qh
, struct urb
*urb
, u32 token
)
2121 /* If an async split transaction gets an error or is unlinked,
2122 * the TT buffer may be left in an indeterminate state. We
2123 * have to clear the TT buffer.
2125 * Note: this routine is never called for Isochronous transfers.
2127 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
2128 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
2131 "clear tt buffer port %d, a%d ep%d t%08x\n",
2132 urb
->dev
->ttport
, urb
->dev
->devnum
,
2133 usb_pipeendpoint(urb
->pipe
), token
);
2135 if (urb
->dev
->tt
->hub
!=
2136 fotg210_to_hcd(fotg210
)->self
.root_hub
) {
2137 if (usb_hub_clear_tt_buffer(urb
) == 0)
2138 qh
->clearing_tt
= 1;
2143 static int qtd_copy_status(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2144 size_t length
, u32 token
)
2146 int status
= -EINPROGRESS
;
2148 /* count IN/OUT bytes, not SETUP (even short packets) */
2149 if (likely(QTD_PID(token
) != 2))
2150 urb
->actual_length
+= length
- QTD_LENGTH(token
);
2152 /* don't modify error codes */
2153 if (unlikely(urb
->unlinked
))
2156 /* force cleanup after short read; not always an error */
2157 if (unlikely(IS_SHORT_READ(token
)))
2158 status
= -EREMOTEIO
;
2160 /* serious "can't proceed" faults reported by the hardware */
2161 if (token
& QTD_STS_HALT
) {
2162 if (token
& QTD_STS_BABBLE
) {
2163 /* FIXME "must" disable babbling device's port too */
2164 status
= -EOVERFLOW
;
2165 /* CERR nonzero + halt --> stall */
2166 } else if (QTD_CERR(token
)) {
2169 /* In theory, more than one of the following bits can be set
2170 * since they are sticky and the transaction is retried.
2171 * Which to test first is rather arbitrary.
2173 } else if (token
& QTD_STS_MMF
) {
2174 /* fs/ls interrupt xfer missed the complete-split */
2176 } else if (token
& QTD_STS_DBE
) {
2177 status
= (QTD_PID(token
) == 1) /* IN ? */
2178 ? -ENOSR
/* hc couldn't read data */
2179 : -ECOMM
; /* hc couldn't write data */
2180 } else if (token
& QTD_STS_XACT
) {
2181 /* timeout, bad CRC, wrong PID, etc */
2182 fotg210_dbg(fotg210
, "devpath %s ep%d%s 3strikes\n",
2184 usb_pipeendpoint(urb
->pipe
),
2185 usb_pipein(urb
->pipe
) ? "in" : "out");
2187 } else { /* unknown */
2191 fotg210_dbg(fotg210
,
2192 "dev%d ep%d%s qtd token %08x --> status %d\n",
2193 usb_pipedevice(urb
->pipe
),
2194 usb_pipeendpoint(urb
->pipe
),
2195 usb_pipein(urb
->pipe
) ? "in" : "out",
2202 static void fotg210_urb_done(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2204 __releases(fotg210
->lock
)
2205 __acquires(fotg210
->lock
)
2207 if (likely(urb
->hcpriv
!= NULL
)) {
2208 struct fotg210_qh
*qh
= (struct fotg210_qh
*) urb
->hcpriv
;
2210 /* S-mask in a QH means it's an interrupt urb */
2211 if ((qh
->hw
->hw_info2
& cpu_to_hc32(fotg210
, QH_SMASK
)) != 0) {
2213 /* ... update hc-wide periodic stats (for usbfs) */
2214 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
--;
2218 if (unlikely(urb
->unlinked
)) {
2219 COUNT(fotg210
->stats
.unlink
);
2221 /* report non-error and short read status as zero */
2222 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
2224 COUNT(fotg210
->stats
.complete
);
2227 #ifdef FOTG210_URB_TRACE
2228 fotg210_dbg(fotg210
,
2229 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2230 __func__
, urb
->dev
->devpath
, urb
,
2231 usb_pipeendpoint(urb
->pipe
),
2232 usb_pipein(urb
->pipe
) ? "in" : "out",
2234 urb
->actual_length
, urb
->transfer_buffer_length
);
2237 /* complete() can reenter this HCD */
2238 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
2239 spin_unlock(&fotg210
->lock
);
2240 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210
), urb
, status
);
2241 spin_lock(&fotg210
->lock
);
2244 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
);
2246 /* Process and free completed qtds for a qh, returning URBs to drivers.
2247 * Chases up to qh->hw_current. Returns number of completions called,
2248 * indicating how much "real" work we did.
2250 static unsigned qh_completions(struct fotg210_hcd
*fotg210
,
2251 struct fotg210_qh
*qh
)
2253 struct fotg210_qtd
*last
, *end
= qh
->dummy
;
2254 struct fotg210_qtd
*qtd
, *tmp
;
2259 struct fotg210_qh_hw
*hw
= qh
->hw
;
2261 if (unlikely(list_empty(&qh
->qtd_list
)))
2264 /* completions (or tasks on other cpus) must never clobber HALT
2265 * till we've gone through and cleaned everything up, even when
2266 * they add urbs to this qh's queue or mark them for unlinking.
2268 * NOTE: unlinking expects to be done in queue order.
2270 * It's a bug for qh->qh_state to be anything other than
2271 * QH_STATE_IDLE, unless our caller is scan_async() or
2274 state
= qh
->qh_state
;
2275 qh
->qh_state
= QH_STATE_COMPLETING
;
2276 stopped
= (state
== QH_STATE_IDLE
);
2280 last_status
= -EINPROGRESS
;
2281 qh
->needs_rescan
= 0;
2283 /* remove de-activated QTDs from front of queue.
2284 * after faults (including short reads), cleanup this urb
2285 * then let the queue advance.
2286 * if queue is stopped, handles unlinks.
2288 list_for_each_entry_safe(qtd
, tmp
, &qh
->qtd_list
, qtd_list
) {
2294 /* clean up any state from previous QTD ...*/
2296 if (likely(last
->urb
!= urb
)) {
2297 fotg210_urb_done(fotg210
, last
->urb
,
2300 last_status
= -EINPROGRESS
;
2302 fotg210_qtd_free(fotg210
, last
);
2306 /* ignore urbs submitted during completions we reported */
2310 /* hardware copies qtd out of qh overlay */
2312 token
= hc32_to_cpu(fotg210
, qtd
->hw_token
);
2314 /* always clean up qtds the hc de-activated */
2316 if ((token
& QTD_STS_ACTIVE
) == 0) {
2318 /* Report Data Buffer Error: non-fatal but useful */
2319 if (token
& QTD_STS_DBE
)
2320 fotg210_dbg(fotg210
,
2321 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2322 urb
, usb_endpoint_num(&urb
->ep
->desc
),
2323 usb_endpoint_dir_in(&urb
->ep
->desc
)
2325 urb
->transfer_buffer_length
, qtd
, qh
);
2327 /* on STALL, error, and short reads this urb must
2328 * complete and all its qtds must be recycled.
2330 if ((token
& QTD_STS_HALT
) != 0) {
2332 /* retry transaction errors until we
2333 * reach the software xacterr limit
2335 if ((token
& QTD_STS_XACT
) &&
2336 QTD_CERR(token
) == 0 &&
2337 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
2339 fotg210_dbg(fotg210
,
2340 "detected XactErr len %zu/%zu retry %d\n",
2341 qtd
->length
- QTD_LENGTH(token
),
2345 /* reset the token in the qtd and the
2346 * qh overlay (which still contains
2347 * the qtd) so that we pick up from
2350 token
&= ~QTD_STS_HALT
;
2351 token
|= QTD_STS_ACTIVE
|
2352 (FOTG210_TUNE_CERR
<< 10);
2353 qtd
->hw_token
= cpu_to_hc32(fotg210
,
2356 hw
->hw_token
= cpu_to_hc32(fotg210
,
2362 /* magic dummy for some short reads; qh won't advance.
2363 * that silicon quirk can kick in with this dummy too.
2365 * other short reads won't stop the queue, including
2366 * control transfers (status stage handles that) or
2367 * most other single-qtd reads ... the queue stops if
2368 * URB_SHORT_NOT_OK was set so the driver submitting
2369 * the urbs could clean it up.
2371 } else if (IS_SHORT_READ(token
) &&
2372 !(qtd
->hw_alt_next
&
2373 FOTG210_LIST_END(fotg210
))) {
2377 /* stop scanning when we reach qtds the hc is using */
2378 } else if (likely(!stopped
2379 && fotg210
->rh_state
>= FOTG210_RH_RUNNING
)) {
2382 /* scan the whole queue for unlinks whenever it stops */
2386 /* cancel everything if we halt, suspend, etc */
2387 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
2388 last_status
= -ESHUTDOWN
;
2390 /* this qtd is active; skip it unless a previous qtd
2391 * for its urb faulted, or its urb was canceled.
2393 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
2396 /* qh unlinked; token in overlay may be most current */
2397 if (state
== QH_STATE_IDLE
&&
2398 cpu_to_hc32(fotg210
, qtd
->qtd_dma
)
2399 == hw
->hw_current
) {
2400 token
= hc32_to_cpu(fotg210
, hw
->hw_token
);
2402 /* An unlink may leave an incomplete
2403 * async transaction in the TT buffer.
2404 * We have to clear it.
2406 fotg210_clear_tt_buffer(fotg210
, qh
, urb
,
2411 /* unless we already know the urb's status, collect qtd status
2412 * and update count of bytes transferred. in common short read
2413 * cases with only one data qtd (including control transfers),
2414 * queue processing won't halt. but with two or more qtds (for
2415 * example, with a 32 KB transfer), when the first qtd gets a
2416 * short read the second must be removed by hand.
2418 if (last_status
== -EINPROGRESS
) {
2419 last_status
= qtd_copy_status(fotg210
, urb
,
2420 qtd
->length
, token
);
2421 if (last_status
== -EREMOTEIO
&&
2423 FOTG210_LIST_END(fotg210
)))
2424 last_status
= -EINPROGRESS
;
2426 /* As part of low/full-speed endpoint-halt processing
2427 * we must clear the TT buffer (11.17.5).
2429 if (unlikely(last_status
!= -EINPROGRESS
&&
2430 last_status
!= -EREMOTEIO
)) {
2431 /* The TT's in some hubs malfunction when they
2432 * receive this request following a STALL (they
2433 * stop sending isochronous packets). Since a
2434 * STALL can't leave the TT buffer in a busy
2435 * state (if you believe Figures 11-48 - 11-51
2436 * in the USB 2.0 spec), we won't clear the TT
2437 * buffer in this case. Strictly speaking this
2438 * is a violation of the spec.
2440 if (last_status
!= -EPIPE
)
2441 fotg210_clear_tt_buffer(fotg210
, qh
,
2446 /* if we're removing something not at the queue head,
2447 * patch the hardware queue pointer.
2449 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
2450 last
= list_entry(qtd
->qtd_list
.prev
,
2451 struct fotg210_qtd
, qtd_list
);
2452 last
->hw_next
= qtd
->hw_next
;
2455 /* remove qtd; it's recycled after possible urb completion */
2456 list_del(&qtd
->qtd_list
);
2459 /* reinit the xacterr counter for the next qtd */
2463 /* last urb's completion might still need calling */
2464 if (likely(last
!= NULL
)) {
2465 fotg210_urb_done(fotg210
, last
->urb
, last_status
);
2467 fotg210_qtd_free(fotg210
, last
);
2470 /* Do we need to rescan for URBs dequeued during a giveback? */
2471 if (unlikely(qh
->needs_rescan
)) {
2472 /* If the QH is already unlinked, do the rescan now. */
2473 if (state
== QH_STATE_IDLE
)
2476 /* Otherwise we have to wait until the QH is fully unlinked.
2477 * Our caller will start an unlink if qh->needs_rescan is
2478 * set. But if an unlink has already started, nothing needs
2481 if (state
!= QH_STATE_LINKED
)
2482 qh
->needs_rescan
= 0;
2485 /* restore original state; caller must unlink or relink */
2486 qh
->qh_state
= state
;
2488 /* be sure the hardware's done with the qh before refreshing
2489 * it after fault cleanup, or recovering from silicon wrongly
2490 * overlaying the dummy qtd (which reduces DMA chatter).
2492 if (stopped
!= 0 || hw
->hw_qtd_next
== FOTG210_LIST_END(fotg210
)) {
2495 qh_refresh(fotg210
, qh
);
2497 case QH_STATE_LINKED
:
2498 /* We won't refresh a QH that's linked (after the HC
2499 * stopped the queue). That avoids a race:
2500 * - HC reads first part of QH;
2501 * - CPU updates that first part and the token;
2502 * - HC reads rest of that QH, including token
2503 * Result: HC gets an inconsistent image, and then
2504 * DMAs to/from the wrong memory (corrupting it).
2506 * That should be rare for interrupt transfers,
2507 * except maybe high bandwidth ...
2510 /* Tell the caller to start an unlink */
2511 qh
->needs_rescan
= 1;
2513 /* otherwise, unlink already started */
2520 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2521 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2522 /* ... and packet size, for any kind of endpoint descriptor */
2523 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2525 /* reverse of qh_urb_transaction: free a list of TDs.
2526 * used for cleanup after errors, before HC sees an URB's TDs.
2528 static void qtd_list_free(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2529 struct list_head
*head
)
2531 struct fotg210_qtd
*qtd
, *temp
;
2533 list_for_each_entry_safe(qtd
, temp
, head
, qtd_list
) {
2534 list_del(&qtd
->qtd_list
);
2535 fotg210_qtd_free(fotg210
, qtd
);
2539 /* create a list of filled qtds for this URB; won't link into qh.
2541 static struct list_head
*qh_urb_transaction(struct fotg210_hcd
*fotg210
,
2542 struct urb
*urb
, struct list_head
*head
, gfp_t flags
)
2544 struct fotg210_qtd
*qtd
, *qtd_prev
;
2546 int len
, this_sg_len
, maxpacket
;
2550 struct scatterlist
*sg
;
2553 * URBs map to sequences of QTDs: one logical transaction
2555 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2558 list_add_tail(&qtd
->qtd_list
, head
);
2561 token
= QTD_STS_ACTIVE
;
2562 token
|= (FOTG210_TUNE_CERR
<< 10);
2563 /* for split transactions, SplitXState initialized to zero */
2565 len
= urb
->transfer_buffer_length
;
2566 is_input
= usb_pipein(urb
->pipe
);
2567 if (usb_pipecontrol(urb
->pipe
)) {
2569 qtd_fill(fotg210
, qtd
, urb
->setup_dma
,
2570 sizeof(struct usb_ctrlrequest
),
2571 token
| (2 /* "setup" */ << 8), 8);
2573 /* ... and always at least one more pid */
2574 token
^= QTD_TOGGLE
;
2576 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2580 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2581 list_add_tail(&qtd
->qtd_list
, head
);
2583 /* for zero length DATA stages, STATUS is always IN */
2585 token
|= (1 /* "in" */ << 8);
2589 * data transfer stage: buffer setup
2591 i
= urb
->num_mapped_sgs
;
2592 if (len
> 0 && i
> 0) {
2594 buf
= sg_dma_address(sg
);
2596 /* urb->transfer_buffer_length may be smaller than the
2597 * size of the scatterlist (or vice versa)
2599 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2602 buf
= urb
->transfer_dma
;
2607 token
|= (1 /* "in" */ << 8);
2608 /* else it's already initted to "out" pid (0 << 8) */
2610 maxpacket
= max_packet(usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
));
2613 * buffer gets wrapped in one or more qtds;
2614 * last one may be "short" (including zero len)
2615 * and may serve as a control status ack
2620 this_qtd_len
= qtd_fill(fotg210
, qtd
, buf
, this_sg_len
, token
,
2622 this_sg_len
-= this_qtd_len
;
2623 len
-= this_qtd_len
;
2624 buf
+= this_qtd_len
;
2627 * short reads advance to a "magic" dummy instead of the next
2628 * qtd ... that forces the queue to stop, for manual cleanup.
2629 * (this will usually be overridden later.)
2632 qtd
->hw_alt_next
= fotg210
->async
->hw
->hw_alt_next
;
2634 /* qh makes control packets use qtd toggle; maybe switch it */
2635 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
2636 token
^= QTD_TOGGLE
;
2638 if (likely(this_sg_len
<= 0)) {
2639 if (--i
<= 0 || len
<= 0)
2642 buf
= sg_dma_address(sg
);
2643 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
2647 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2651 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2652 list_add_tail(&qtd
->qtd_list
, head
);
2656 * unless the caller requires manual cleanup after short reads,
2657 * have the alt_next mechanism keep the queue running after the
2658 * last data qtd (the only one, for control and most other cases).
2660 if (likely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0 ||
2661 usb_pipecontrol(urb
->pipe
)))
2662 qtd
->hw_alt_next
= FOTG210_LIST_END(fotg210
);
2665 * control requests may need a terminating data "status" ack;
2666 * other OUT ones may need a terminating short packet
2669 if (likely(urb
->transfer_buffer_length
!= 0)) {
2672 if (usb_pipecontrol(urb
->pipe
)) {
2674 token
^= 0x0100; /* "in" <--> "out" */
2675 token
|= QTD_TOGGLE
; /* force DATA1 */
2676 } else if (usb_pipeout(urb
->pipe
)
2677 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
2678 && !(urb
->transfer_buffer_length
% maxpacket
)) {
2683 qtd
= fotg210_qtd_alloc(fotg210
, flags
);
2687 qtd_prev
->hw_next
= QTD_NEXT(fotg210
, qtd
->qtd_dma
);
2688 list_add_tail(&qtd
->qtd_list
, head
);
2690 /* never any data in such packets */
2691 qtd_fill(fotg210
, qtd
, 0, 0, token
, 0);
2695 /* by default, enable interrupt on urb completion */
2696 if (likely(!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
2697 qtd
->hw_token
|= cpu_to_hc32(fotg210
, QTD_IOC
);
2701 qtd_list_free(fotg210
, urb
, head
);
2705 /* Would be best to create all qh's from config descriptors,
2706 * when each interface/altsetting is established. Unlink
2707 * any previous qh and cancel its urbs first; endpoints are
2708 * implicitly reset then (data toggle too).
2709 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2713 /* Each QH holds a qtd list; a QH is used for everything except iso.
2715 * For interrupt urbs, the scheduler must set the microframe scheduling
2716 * mask(s) each time the QH gets scheduled. For highspeed, that's
2717 * just one microframe in the s-mask. For split interrupt transactions
2718 * there are additional complications: c-mask, maybe FSTNs.
2720 static struct fotg210_qh
*qh_make(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
2723 struct fotg210_qh
*qh
= fotg210_qh_alloc(fotg210
, flags
);
2724 u32 info1
= 0, info2
= 0;
2727 struct usb_tt
*tt
= urb
->dev
->tt
;
2728 struct fotg210_qh_hw
*hw
;
2734 * init endpoint/device data for this QH
2736 info1
|= usb_pipeendpoint(urb
->pipe
) << 8;
2737 info1
|= usb_pipedevice(urb
->pipe
) << 0;
2739 is_input
= usb_pipein(urb
->pipe
);
2740 type
= usb_pipetype(urb
->pipe
);
2741 maxp
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
2743 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2744 * acts like up to 3KB, but is built from smaller packets.
2746 if (max_packet(maxp
) > 1024) {
2747 fotg210_dbg(fotg210
, "bogus qh maxpacket %d\n",
2752 /* Compute interrupt scheduling parameters just once, and save.
2753 * - allowing for high bandwidth, how many nsec/uframe are used?
2754 * - split transactions need a second CSPLIT uframe; same question
2755 * - splits also need a schedule gap (for full/low speed I/O)
2756 * - qh has a polling interval
2758 * For control/bulk requests, the HC or TT handles these.
2760 if (type
== PIPE_INTERRUPT
) {
2761 qh
->usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
2763 hb_mult(maxp
) * max_packet(maxp
)));
2764 qh
->start
= NO_FRAME
;
2766 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
2770 qh
->period
= urb
->interval
>> 3;
2771 if (qh
->period
== 0 && urb
->interval
!= 1) {
2772 /* NOTE interval 2 or 4 uframes could work.
2773 * But interval 1 scheduling is simpler, and
2774 * includes high bandwidth.
2777 } else if (qh
->period
> fotg210
->periodic_size
) {
2778 qh
->period
= fotg210
->periodic_size
;
2779 urb
->interval
= qh
->period
<< 3;
2784 /* gap is f(FS/LS transfer times) */
2785 qh
->gap_uf
= 1 + usb_calc_bus_time(urb
->dev
->speed
,
2786 is_input
, 0, maxp
) / (125 * 1000);
2788 /* FIXME this just approximates SPLIT/CSPLIT times */
2789 if (is_input
) { /* SPLIT, gap, CSPLIT+DATA */
2790 qh
->c_usecs
= qh
->usecs
+ HS_USECS(0);
2791 qh
->usecs
= HS_USECS(1);
2792 } else { /* SPLIT+DATA, gap, CSPLIT */
2793 qh
->usecs
+= HS_USECS(1);
2794 qh
->c_usecs
= HS_USECS(0);
2797 think_time
= tt
? tt
->think_time
: 0;
2798 qh
->tt_usecs
= NS_TO_US(think_time
+
2799 usb_calc_bus_time(urb
->dev
->speed
,
2800 is_input
, 0, max_packet(maxp
)));
2801 qh
->period
= urb
->interval
;
2802 if (qh
->period
> fotg210
->periodic_size
) {
2803 qh
->period
= fotg210
->periodic_size
;
2804 urb
->interval
= qh
->period
;
2809 /* support for tt scheduling, and access to toggles */
2813 switch (urb
->dev
->speed
) {
2815 info1
|= QH_LOW_SPEED
;
2818 case USB_SPEED_FULL
:
2819 /* EPS 0 means "full" */
2820 if (type
!= PIPE_INTERRUPT
)
2821 info1
|= (FOTG210_TUNE_RL_TT
<< 28);
2822 if (type
== PIPE_CONTROL
) {
2823 info1
|= QH_CONTROL_EP
; /* for TT */
2824 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2826 info1
|= maxp
<< 16;
2828 info2
|= (FOTG210_TUNE_MULT_TT
<< 30);
2830 /* Some Freescale processors have an erratum in which the
2831 * port number in the queue head was 0..N-1 instead of 1..N.
2833 if (fotg210_has_fsl_portno_bug(fotg210
))
2834 info2
|= (urb
->dev
->ttport
-1) << 23;
2836 info2
|= urb
->dev
->ttport
<< 23;
2838 /* set the address of the TT; for TDI's integrated
2839 * root hub tt, leave it zeroed.
2841 if (tt
&& tt
->hub
!= fotg210_to_hcd(fotg210
)->self
.root_hub
)
2842 info2
|= tt
->hub
->devnum
<< 16;
2844 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2848 case USB_SPEED_HIGH
: /* no TT involved */
2849 info1
|= QH_HIGH_SPEED
;
2850 if (type
== PIPE_CONTROL
) {
2851 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2852 info1
|= 64 << 16; /* usb2 fixed maxpacket */
2853 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
2854 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2855 } else if (type
== PIPE_BULK
) {
2856 info1
|= (FOTG210_TUNE_RL_HS
<< 28);
2857 /* The USB spec says that high speed bulk endpoints
2858 * always use 512 byte maxpacket. But some device
2859 * vendors decided to ignore that, and MSFT is happy
2860 * to help them do so. So now people expect to use
2861 * such nonconformant devices with Linux too; sigh.
2863 info1
|= max_packet(maxp
) << 16;
2864 info2
|= (FOTG210_TUNE_MULT_HS
<< 30);
2865 } else { /* PIPE_INTERRUPT */
2866 info1
|= max_packet(maxp
) << 16;
2867 info2
|= hb_mult(maxp
) << 30;
2871 fotg210_dbg(fotg210
, "bogus dev %p speed %d\n", urb
->dev
,
2874 qh_destroy(fotg210
, qh
);
2878 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2880 /* init as live, toggle clear, advance to dummy */
2881 qh
->qh_state
= QH_STATE_IDLE
;
2883 hw
->hw_info1
= cpu_to_hc32(fotg210
, info1
);
2884 hw
->hw_info2
= cpu_to_hc32(fotg210
, info2
);
2885 qh
->is_out
= !is_input
;
2886 usb_settoggle(urb
->dev
, usb_pipeendpoint(urb
->pipe
), !is_input
, 1);
2887 qh_refresh(fotg210
, qh
);
2891 static void enable_async(struct fotg210_hcd
*fotg210
)
2893 if (fotg210
->async_count
++)
2896 /* Stop waiting to turn off the async schedule */
2897 fotg210
->enabled_hrtimer_events
&= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC
);
2899 /* Don't start the schedule until ASS is 0 */
2900 fotg210_poll_ASS(fotg210
);
2901 turn_on_io_watchdog(fotg210
);
2904 static void disable_async(struct fotg210_hcd
*fotg210
)
2906 if (--fotg210
->async_count
)
2909 /* The async schedule and async_unlink list are supposed to be empty */
2910 WARN_ON(fotg210
->async
->qh_next
.qh
|| fotg210
->async_unlink
);
2912 /* Don't turn off the schedule until ASS is 1 */
2913 fotg210_poll_ASS(fotg210
);
2916 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2918 static void qh_link_async(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
2920 __hc32 dma
= QH_NEXT(fotg210
, qh
->qh_dma
);
2921 struct fotg210_qh
*head
;
2923 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2924 if (unlikely(qh
->clearing_tt
))
2927 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
2929 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2930 qh_refresh(fotg210
, qh
);
2932 /* splice right after start */
2933 head
= fotg210
->async
;
2934 qh
->qh_next
= head
->qh_next
;
2935 qh
->hw
->hw_next
= head
->hw
->hw_next
;
2938 head
->qh_next
.qh
= qh
;
2939 head
->hw
->hw_next
= dma
;
2942 qh
->qh_state
= QH_STATE_LINKED
;
2943 /* qtd completions reported later by interrupt */
2945 enable_async(fotg210
);
2948 /* For control/bulk/interrupt, return QH with these TDs appended.
2949 * Allocates and initializes the QH if necessary.
2950 * Returns null if it can't allocate a QH it needs to.
2951 * If the QH has TDs (urbs) already, that's great.
2953 static struct fotg210_qh
*qh_append_tds(struct fotg210_hcd
*fotg210
,
2954 struct urb
*urb
, struct list_head
*qtd_list
,
2955 int epnum
, void **ptr
)
2957 struct fotg210_qh
*qh
= NULL
;
2958 __hc32 qh_addr_mask
= cpu_to_hc32(fotg210
, 0x7f);
2960 qh
= (struct fotg210_qh
*) *ptr
;
2961 if (unlikely(qh
== NULL
)) {
2962 /* can't sleep here, we have fotg210->lock... */
2963 qh
= qh_make(fotg210
, urb
, GFP_ATOMIC
);
2966 if (likely(qh
!= NULL
)) {
2967 struct fotg210_qtd
*qtd
;
2969 if (unlikely(list_empty(qtd_list
)))
2972 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
,
2975 /* control qh may need patching ... */
2976 if (unlikely(epnum
== 0)) {
2977 /* usb_reset_device() briefly reverts to address 0 */
2978 if (usb_pipedevice(urb
->pipe
) == 0)
2979 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
2982 /* just one way to queue requests: swap with the dummy qtd.
2983 * only hc or qh_refresh() ever modify the overlay.
2985 if (likely(qtd
!= NULL
)) {
2986 struct fotg210_qtd
*dummy
;
2990 /* to avoid racing the HC, use the dummy td instead of
2991 * the first td of our list (becomes new dummy). both
2992 * tds stay deactivated until we're done, when the
2993 * HC is allowed to fetch the old dummy (4.10.2).
2995 token
= qtd
->hw_token
;
2996 qtd
->hw_token
= HALT_BIT(fotg210
);
3000 dma
= dummy
->qtd_dma
;
3002 dummy
->qtd_dma
= dma
;
3004 list_del(&qtd
->qtd_list
);
3005 list_add(&dummy
->qtd_list
, qtd_list
);
3006 list_splice_tail(qtd_list
, &qh
->qtd_list
);
3008 fotg210_qtd_init(fotg210
, qtd
, qtd
->qtd_dma
);
3011 /* hc must see the new dummy at list end */
3013 qtd
= list_entry(qh
->qtd_list
.prev
,
3014 struct fotg210_qtd
, qtd_list
);
3015 qtd
->hw_next
= QTD_NEXT(fotg210
, dma
);
3017 /* let the hc process these next qtds */
3019 dummy
->hw_token
= token
;
3027 static int submit_async(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3028 struct list_head
*qtd_list
, gfp_t mem_flags
)
3031 unsigned long flags
;
3032 struct fotg210_qh
*qh
= NULL
;
3035 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3037 #ifdef FOTG210_URB_TRACE
3039 struct fotg210_qtd
*qtd
;
3041 qtd
= list_entry(qtd_list
->next
, struct fotg210_qtd
, qtd_list
);
3042 fotg210_dbg(fotg210
,
3043 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3044 __func__
, urb
->dev
->devpath
, urb
,
3045 epnum
& 0x0f, (epnum
& USB_DIR_IN
)
3047 urb
->transfer_buffer_length
,
3048 qtd
, urb
->ep
->hcpriv
);
3052 spin_lock_irqsave(&fotg210
->lock
, flags
);
3053 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3057 rc
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3061 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3062 if (unlikely(qh
== NULL
)) {
3063 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3068 /* Control/bulk operations through TTs don't need scheduling,
3069 * the HC and TT handle it when the TT has a buffer ready.
3071 if (likely(qh
->qh_state
== QH_STATE_IDLE
))
3072 qh_link_async(fotg210
, qh
);
3074 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3075 if (unlikely(qh
== NULL
))
3076 qtd_list_free(fotg210
, urb
, qtd_list
);
3080 static void single_unlink_async(struct fotg210_hcd
*fotg210
,
3081 struct fotg210_qh
*qh
)
3083 struct fotg210_qh
*prev
;
3085 /* Add to the end of the list of QHs waiting for the next IAAD */
3086 qh
->qh_state
= QH_STATE_UNLINK
;
3087 if (fotg210
->async_unlink
)
3088 fotg210
->async_unlink_last
->unlink_next
= qh
;
3090 fotg210
->async_unlink
= qh
;
3091 fotg210
->async_unlink_last
= qh
;
3093 /* Unlink it from the schedule */
3094 prev
= fotg210
->async
;
3095 while (prev
->qh_next
.qh
!= qh
)
3096 prev
= prev
->qh_next
.qh
;
3098 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
3099 prev
->qh_next
= qh
->qh_next
;
3100 if (fotg210
->qh_scan_next
== qh
)
3101 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3104 static void start_iaa_cycle(struct fotg210_hcd
*fotg210
, bool nested
)
3107 * Do nothing if an IAA cycle is already running or
3108 * if one will be started shortly.
3110 if (fotg210
->async_iaa
|| fotg210
->async_unlinking
)
3113 /* Do all the waiting QHs at once */
3114 fotg210
->async_iaa
= fotg210
->async_unlink
;
3115 fotg210
->async_unlink
= NULL
;
3117 /* If the controller isn't running, we don't have to wait for it */
3118 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
)) {
3119 if (!nested
) /* Avoid recursion */
3120 end_unlink_async(fotg210
);
3122 /* Otherwise start a new IAA cycle */
3123 } else if (likely(fotg210
->rh_state
== FOTG210_RH_RUNNING
)) {
3124 /* Make sure the unlinks are all visible to the hardware */
3127 fotg210_writel(fotg210
, fotg210
->command
| CMD_IAAD
,
3128 &fotg210
->regs
->command
);
3129 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
3130 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_IAA_WATCHDOG
,
3135 /* the async qh for the qtds being unlinked are now gone from the HC */
3137 static void end_unlink_async(struct fotg210_hcd
*fotg210
)
3139 struct fotg210_qh
*qh
;
3141 /* Process the idle QHs */
3143 fotg210
->async_unlinking
= true;
3144 while (fotg210
->async_iaa
) {
3145 qh
= fotg210
->async_iaa
;
3146 fotg210
->async_iaa
= qh
->unlink_next
;
3147 qh
->unlink_next
= NULL
;
3149 qh
->qh_state
= QH_STATE_IDLE
;
3150 qh
->qh_next
.qh
= NULL
;
3152 qh_completions(fotg210
, qh
);
3153 if (!list_empty(&qh
->qtd_list
) &&
3154 fotg210
->rh_state
== FOTG210_RH_RUNNING
)
3155 qh_link_async(fotg210
, qh
);
3156 disable_async(fotg210
);
3158 fotg210
->async_unlinking
= false;
3160 /* Start a new IAA cycle if any QHs are waiting for it */
3161 if (fotg210
->async_unlink
) {
3162 start_iaa_cycle(fotg210
, true);
3163 if (unlikely(fotg210
->rh_state
< FOTG210_RH_RUNNING
))
3168 static void unlink_empty_async(struct fotg210_hcd
*fotg210
)
3170 struct fotg210_qh
*qh
, *next
;
3171 bool stopped
= (fotg210
->rh_state
< FOTG210_RH_RUNNING
);
3172 bool check_unlinks_later
= false;
3174 /* Unlink all the async QHs that have been empty for a timer cycle */
3175 next
= fotg210
->async
->qh_next
.qh
;
3178 next
= qh
->qh_next
.qh
;
3180 if (list_empty(&qh
->qtd_list
) &&
3181 qh
->qh_state
== QH_STATE_LINKED
) {
3182 if (!stopped
&& qh
->unlink_cycle
==
3183 fotg210
->async_unlink_cycle
)
3184 check_unlinks_later
= true;
3186 single_unlink_async(fotg210
, qh
);
3190 /* Start a new IAA cycle if any QHs are waiting for it */
3191 if (fotg210
->async_unlink
)
3192 start_iaa_cycle(fotg210
, false);
3194 /* QHs that haven't been empty for long enough will be handled later */
3195 if (check_unlinks_later
) {
3196 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_ASYNC_UNLINKS
,
3198 ++fotg210
->async_unlink_cycle
;
3202 /* makes sure the async qh will become idle */
3203 /* caller must own fotg210->lock */
3205 static void start_unlink_async(struct fotg210_hcd
*fotg210
,
3206 struct fotg210_qh
*qh
)
3209 * If the QH isn't linked then there's nothing we can do
3210 * unless we were called during a giveback, in which case
3211 * qh_completions() has to deal with it.
3213 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3214 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3215 qh
->needs_rescan
= 1;
3219 single_unlink_async(fotg210
, qh
);
3220 start_iaa_cycle(fotg210
, false);
3223 static void scan_async(struct fotg210_hcd
*fotg210
)
3225 struct fotg210_qh
*qh
;
3226 bool check_unlinks_later
= false;
3228 fotg210
->qh_scan_next
= fotg210
->async
->qh_next
.qh
;
3229 while (fotg210
->qh_scan_next
) {
3230 qh
= fotg210
->qh_scan_next
;
3231 fotg210
->qh_scan_next
= qh
->qh_next
.qh
;
3233 /* clean any finished work for this qh */
3234 if (!list_empty(&qh
->qtd_list
)) {
3238 * Unlinks could happen here; completion reporting
3239 * drops the lock. That's why fotg210->qh_scan_next
3240 * always holds the next qh to scan; if the next qh
3241 * gets unlinked then fotg210->qh_scan_next is adjusted
3242 * in single_unlink_async().
3244 temp
= qh_completions(fotg210
, qh
);
3245 if (qh
->needs_rescan
) {
3246 start_unlink_async(fotg210
, qh
);
3247 } else if (list_empty(&qh
->qtd_list
)
3248 && qh
->qh_state
== QH_STATE_LINKED
) {
3249 qh
->unlink_cycle
= fotg210
->async_unlink_cycle
;
3250 check_unlinks_later
= true;
3251 } else if (temp
!= 0)
3257 * Unlink empty entries, reducing DMA usage as well
3258 * as HCD schedule-scanning costs. Delay for any qh
3259 * we just scanned, there's a not-unusual case that it
3260 * doesn't stay idle for long.
3262 if (check_unlinks_later
&& fotg210
->rh_state
== FOTG210_RH_RUNNING
&&
3263 !(fotg210
->enabled_hrtimer_events
&
3264 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS
))) {
3265 fotg210_enable_event(fotg210
,
3266 FOTG210_HRTIMER_ASYNC_UNLINKS
, true);
3267 ++fotg210
->async_unlink_cycle
;
3270 /* EHCI scheduled transaction support: interrupt, iso, split iso
3271 * These are called "periodic" transactions in the EHCI spec.
3273 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3274 * with the "asynchronous" transaction support (control/bulk transfers).
3275 * The only real difference is in how interrupt transfers are scheduled.
3277 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3278 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3279 * pre-calculated schedule data to make appending to the queue be quick.
3281 static int fotg210_get_frame(struct usb_hcd
*hcd
);
3283 /* periodic_next_shadow - return "next" pointer on shadow list
3284 * @periodic: host pointer to qh/itd
3285 * @tag: hardware tag for type of this record
3287 static union fotg210_shadow
*periodic_next_shadow(struct fotg210_hcd
*fotg210
,
3288 union fotg210_shadow
*periodic
, __hc32 tag
)
3290 switch (hc32_to_cpu(fotg210
, tag
)) {
3292 return &periodic
->qh
->qh_next
;
3294 return &periodic
->fstn
->fstn_next
;
3296 return &periodic
->itd
->itd_next
;
3300 static __hc32
*shadow_next_periodic(struct fotg210_hcd
*fotg210
,
3301 union fotg210_shadow
*periodic
, __hc32 tag
)
3303 switch (hc32_to_cpu(fotg210
, tag
)) {
3304 /* our fotg210_shadow.qh is actually software part */
3306 return &periodic
->qh
->hw
->hw_next
;
3307 /* others are hw parts */
3309 return periodic
->hw_next
;
3313 /* caller must hold fotg210->lock */
3314 static void periodic_unlink(struct fotg210_hcd
*fotg210
, unsigned frame
,
3317 union fotg210_shadow
*prev_p
= &fotg210
->pshadow
[frame
];
3318 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3319 union fotg210_shadow here
= *prev_p
;
3321 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3322 while (here
.ptr
&& here
.ptr
!= ptr
) {
3323 prev_p
= periodic_next_shadow(fotg210
, prev_p
,
3324 Q_NEXT_TYPE(fotg210
, *hw_p
));
3325 hw_p
= shadow_next_periodic(fotg210
, &here
,
3326 Q_NEXT_TYPE(fotg210
, *hw_p
));
3329 /* an interrupt entry (at list end) could have been shared */
3333 /* update shadow and hardware lists ... the old "next" pointers
3334 * from ptr may still be in use, the caller updates them.
3336 *prev_p
= *periodic_next_shadow(fotg210
, &here
,
3337 Q_NEXT_TYPE(fotg210
, *hw_p
));
3339 *hw_p
= *shadow_next_periodic(fotg210
, &here
,
3340 Q_NEXT_TYPE(fotg210
, *hw_p
));
3343 /* how many of the uframe's 125 usecs are allocated? */
3344 static unsigned short periodic_usecs(struct fotg210_hcd
*fotg210
,
3345 unsigned frame
, unsigned uframe
)
3347 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
3348 union fotg210_shadow
*q
= &fotg210
->pshadow
[frame
];
3350 struct fotg210_qh_hw
*hw
;
3353 switch (hc32_to_cpu(fotg210
, Q_NEXT_TYPE(fotg210
, *hw_p
))) {
3356 /* is it in the S-mask? */
3357 if (hw
->hw_info2
& cpu_to_hc32(fotg210
, 1 << uframe
))
3358 usecs
+= q
->qh
->usecs
;
3359 /* ... or C-mask? */
3360 if (hw
->hw_info2
& cpu_to_hc32(fotg210
,
3362 usecs
+= q
->qh
->c_usecs
;
3363 hw_p
= &hw
->hw_next
;
3364 q
= &q
->qh
->qh_next
;
3366 /* case Q_TYPE_FSTN: */
3368 /* for "save place" FSTNs, count the relevant INTR
3369 * bandwidth from the previous frame
3371 if (q
->fstn
->hw_prev
!= FOTG210_LIST_END(fotg210
))
3372 fotg210_dbg(fotg210
, "ignoring FSTN cost ...\n");
3374 hw_p
= &q
->fstn
->hw_next
;
3375 q
= &q
->fstn
->fstn_next
;
3378 if (q
->itd
->hw_transaction
[uframe
])
3379 usecs
+= q
->itd
->stream
->usecs
;
3380 hw_p
= &q
->itd
->hw_next
;
3381 q
= &q
->itd
->itd_next
;
3385 if (usecs
> fotg210
->uframe_periodic_max
)
3386 fotg210_err(fotg210
, "uframe %d sched overrun: %d usecs\n",
3387 frame
* 8 + uframe
, usecs
);
3391 static int same_tt(struct usb_device
*dev1
, struct usb_device
*dev2
)
3393 if (!dev1
->tt
|| !dev2
->tt
)
3395 if (dev1
->tt
!= dev2
->tt
)
3397 if (dev1
->tt
->multi
)
3398 return dev1
->ttport
== dev2
->ttport
;
3403 /* return true iff the device's transaction translator is available
3404 * for a periodic transfer starting at the specified frame, using
3405 * all the uframes in the mask.
3407 static int tt_no_collision(struct fotg210_hcd
*fotg210
, unsigned period
,
3408 struct usb_device
*dev
, unsigned frame
, u32 uf_mask
)
3410 if (period
== 0) /* error */
3413 /* note bandwidth wastage: split never follows csplit
3414 * (different dev or endpoint) until the next uframe.
3415 * calling convention doesn't make that distinction.
3417 for (; frame
< fotg210
->periodic_size
; frame
+= period
) {
3418 union fotg210_shadow here
;
3420 struct fotg210_qh_hw
*hw
;
3422 here
= fotg210
->pshadow
[frame
];
3423 type
= Q_NEXT_TYPE(fotg210
, fotg210
->periodic
[frame
]);
3425 switch (hc32_to_cpu(fotg210
, type
)) {
3427 type
= Q_NEXT_TYPE(fotg210
, here
.itd
->hw_next
);
3428 here
= here
.itd
->itd_next
;
3432 if (same_tt(dev
, here
.qh
->dev
)) {
3435 mask
= hc32_to_cpu(fotg210
,
3437 /* "knows" no gap is needed */
3442 type
= Q_NEXT_TYPE(fotg210
, hw
->hw_next
);
3443 here
= here
.qh
->qh_next
;
3445 /* case Q_TYPE_FSTN: */
3447 fotg210_dbg(fotg210
,
3448 "periodic frame %d bogus type %d\n",
3452 /* collision or error */
3461 static void enable_periodic(struct fotg210_hcd
*fotg210
)
3463 if (fotg210
->periodic_count
++)
3466 /* Stop waiting to turn off the periodic schedule */
3467 fotg210
->enabled_hrtimer_events
&=
3468 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC
);
3470 /* Don't start the schedule until PSS is 0 */
3471 fotg210_poll_PSS(fotg210
);
3472 turn_on_io_watchdog(fotg210
);
3475 static void disable_periodic(struct fotg210_hcd
*fotg210
)
3477 if (--fotg210
->periodic_count
)
3480 /* Don't turn off the schedule until PSS is 1 */
3481 fotg210_poll_PSS(fotg210
);
3484 /* periodic schedule slots have iso tds (normal or split) first, then a
3485 * sparse tree for active interrupt transfers.
3487 * this just links in a qh; caller guarantees uframe masks are set right.
3488 * no FSTN support (yet; fotg210 0.96+)
3490 static void qh_link_periodic(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3493 unsigned period
= qh
->period
;
3495 dev_dbg(&qh
->dev
->dev
,
3496 "link qh%d-%04x/%p start %d [%d/%d us]\n", period
,
3497 hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3498 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3501 /* high bandwidth, or otherwise every microframe */
3505 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
) {
3506 union fotg210_shadow
*prev
= &fotg210
->pshadow
[i
];
3507 __hc32
*hw_p
= &fotg210
->periodic
[i
];
3508 union fotg210_shadow here
= *prev
;
3511 /* skip the iso nodes at list head */
3513 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
3514 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
3516 prev
= periodic_next_shadow(fotg210
, prev
, type
);
3517 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
3521 /* sorting each branch by period (slow-->fast)
3522 * enables sharing interior tree nodes
3524 while (here
.ptr
&& qh
!= here
.qh
) {
3525 if (qh
->period
> here
.qh
->period
)
3527 prev
= &here
.qh
->qh_next
;
3528 hw_p
= &here
.qh
->hw
->hw_next
;
3531 /* link in this qh, unless some earlier pass did that */
3532 if (qh
!= here
.qh
) {
3535 qh
->hw
->hw_next
= *hw_p
;
3538 *hw_p
= QH_NEXT(fotg210
, qh
->qh_dma
);
3541 qh
->qh_state
= QH_STATE_LINKED
;
3544 /* update per-qh bandwidth for usbfs */
3545 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
+= qh
->period
3546 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3549 list_add(&qh
->intr_node
, &fotg210
->intr_qh_list
);
3551 /* maybe enable periodic schedule processing */
3552 ++fotg210
->intr_count
;
3553 enable_periodic(fotg210
);
3556 static void qh_unlink_periodic(struct fotg210_hcd
*fotg210
,
3557 struct fotg210_qh
*qh
)
3563 * If qh is for a low/full-speed device, simply unlinking it
3564 * could interfere with an ongoing split transaction. To unlink
3565 * it safely would require setting the QH_INACTIVATE bit and
3566 * waiting at least one frame, as described in EHCI 4.12.2.5.
3568 * We won't bother with any of this. Instead, we assume that the
3569 * only reason for unlinking an interrupt QH while the current URB
3570 * is still active is to dequeue all the URBs (flush the whole
3573 * If rebalancing the periodic schedule is ever implemented, this
3574 * approach will no longer be valid.
3577 /* high bandwidth, or otherwise part of every microframe */
3578 period
= qh
->period
;
3582 for (i
= qh
->start
; i
< fotg210
->periodic_size
; i
+= period
)
3583 periodic_unlink(fotg210
, i
, qh
);
3585 /* update per-qh bandwidth for usbfs */
3586 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
-= qh
->period
3587 ? ((qh
->usecs
+ qh
->c_usecs
) / qh
->period
)
3590 dev_dbg(&qh
->dev
->dev
,
3591 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3592 qh
->period
, hc32_to_cpup(fotg210
, &qh
->hw
->hw_info2
) &
3593 (QH_CMASK
| QH_SMASK
), qh
, qh
->start
, qh
->usecs
,
3596 /* qh->qh_next still "live" to HC */
3597 qh
->qh_state
= QH_STATE_UNLINK
;
3598 qh
->qh_next
.ptr
= NULL
;
3600 if (fotg210
->qh_scan_next
== qh
)
3601 fotg210
->qh_scan_next
= list_entry(qh
->intr_node
.next
,
3602 struct fotg210_qh
, intr_node
);
3603 list_del(&qh
->intr_node
);
3606 static void start_unlink_intr(struct fotg210_hcd
*fotg210
,
3607 struct fotg210_qh
*qh
)
3609 /* If the QH isn't linked then there's nothing we can do
3610 * unless we were called during a giveback, in which case
3611 * qh_completions() has to deal with it.
3613 if (qh
->qh_state
!= QH_STATE_LINKED
) {
3614 if (qh
->qh_state
== QH_STATE_COMPLETING
)
3615 qh
->needs_rescan
= 1;
3619 qh_unlink_periodic(fotg210
, qh
);
3621 /* Make sure the unlinks are visible before starting the timer */
3625 * The EHCI spec doesn't say how long it takes the controller to
3626 * stop accessing an unlinked interrupt QH. The timer delay is
3627 * 9 uframes; presumably that will be long enough.
3629 qh
->unlink_cycle
= fotg210
->intr_unlink_cycle
;
3631 /* New entries go at the end of the intr_unlink list */
3632 if (fotg210
->intr_unlink
)
3633 fotg210
->intr_unlink_last
->unlink_next
= qh
;
3635 fotg210
->intr_unlink
= qh
;
3636 fotg210
->intr_unlink_last
= qh
;
3638 if (fotg210
->intr_unlinking
)
3639 ; /* Avoid recursive calls */
3640 else if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
3641 fotg210_handle_intr_unlinks(fotg210
);
3642 else if (fotg210
->intr_unlink
== qh
) {
3643 fotg210_enable_event(fotg210
, FOTG210_HRTIMER_UNLINK_INTR
,
3645 ++fotg210
->intr_unlink_cycle
;
3649 static void end_unlink_intr(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3651 struct fotg210_qh_hw
*hw
= qh
->hw
;
3654 qh
->qh_state
= QH_STATE_IDLE
;
3655 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3657 qh_completions(fotg210
, qh
);
3659 /* reschedule QH iff another request is queued */
3660 if (!list_empty(&qh
->qtd_list
) &&
3661 fotg210
->rh_state
== FOTG210_RH_RUNNING
) {
3662 rc
= qh_schedule(fotg210
, qh
);
3664 /* An error here likely indicates handshake failure
3665 * or no space left in the schedule. Neither fault
3666 * should happen often ...
3668 * FIXME kill the now-dysfunctional queued urbs
3671 fotg210_err(fotg210
, "can't reschedule qh %p, err %d\n",
3675 /* maybe turn off periodic schedule */
3676 --fotg210
->intr_count
;
3677 disable_periodic(fotg210
);
3680 static int check_period(struct fotg210_hcd
*fotg210
, unsigned frame
,
3681 unsigned uframe
, unsigned period
, unsigned usecs
)
3685 /* complete split running into next frame?
3686 * given FSTN support, we could sometimes check...
3691 /* convert "usecs we need" to "max already claimed" */
3692 usecs
= fotg210
->uframe_periodic_max
- usecs
;
3694 /* we "know" 2 and 4 uframe intervals were rejected; so
3695 * for period 0, check _every_ microframe in the schedule.
3697 if (unlikely(period
== 0)) {
3699 for (uframe
= 0; uframe
< 7; uframe
++) {
3700 claimed
= periodic_usecs(fotg210
, frame
,
3702 if (claimed
> usecs
)
3705 } while ((frame
+= 1) < fotg210
->periodic_size
);
3707 /* just check the specified uframe, at that period */
3710 claimed
= periodic_usecs(fotg210
, frame
, uframe
);
3711 if (claimed
> usecs
)
3713 } while ((frame
+= period
) < fotg210
->periodic_size
);
3720 static int check_intr_schedule(struct fotg210_hcd
*fotg210
, unsigned frame
,
3721 unsigned uframe
, const struct fotg210_qh
*qh
, __hc32
*c_maskp
)
3723 int retval
= -ENOSPC
;
3726 if (qh
->c_usecs
&& uframe
>= 6) /* FSTN territory? */
3729 if (!check_period(fotg210
, frame
, uframe
, qh
->period
, qh
->usecs
))
3737 /* Make sure this tt's buffer is also available for CSPLITs.
3738 * We pessimize a bit; probably the typical full speed case
3739 * doesn't need the second CSPLIT.
3741 * NOTE: both SPLIT and CSPLIT could be checked in just
3744 mask
= 0x03 << (uframe
+ qh
->gap_uf
);
3745 *c_maskp
= cpu_to_hc32(fotg210
, mask
<< 8);
3747 mask
|= 1 << uframe
;
3748 if (tt_no_collision(fotg210
, qh
->period
, qh
->dev
, frame
, mask
)) {
3749 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
+ 1,
3750 qh
->period
, qh
->c_usecs
))
3752 if (!check_period(fotg210
, frame
, uframe
+ qh
->gap_uf
,
3753 qh
->period
, qh
->c_usecs
))
3761 /* "first fit" scheduling policy used the first time through,
3762 * or when the previous schedule slot can't be re-used.
3764 static int qh_schedule(struct fotg210_hcd
*fotg210
, struct fotg210_qh
*qh
)
3769 unsigned frame
; /* 0..(qh->period - 1), or NO_FRAME */
3770 struct fotg210_qh_hw
*hw
= qh
->hw
;
3772 qh_refresh(fotg210
, qh
);
3773 hw
->hw_next
= FOTG210_LIST_END(fotg210
);
3776 /* reuse the previous schedule slots, if we can */
3777 if (frame
< qh
->period
) {
3778 uframe
= ffs(hc32_to_cpup(fotg210
, &hw
->hw_info2
) & QH_SMASK
);
3779 status
= check_intr_schedule(fotg210
, frame
, --uframe
,
3787 /* else scan the schedule to find a group of slots such that all
3788 * uframes have enough periodic bandwidth available.
3791 /* "normal" case, uframing flexible except with splits */
3795 for (i
= qh
->period
; status
&& i
> 0; --i
) {
3796 frame
= ++fotg210
->random_frame
% qh
->period
;
3797 for (uframe
= 0; uframe
< 8; uframe
++) {
3798 status
= check_intr_schedule(fotg210
,
3806 /* qh->period == 0 means every uframe */
3809 status
= check_intr_schedule(fotg210
, 0, 0, qh
,
3816 /* reset S-frame and (maybe) C-frame masks */
3817 hw
->hw_info2
&= cpu_to_hc32(fotg210
, ~(QH_CMASK
| QH_SMASK
));
3818 hw
->hw_info2
|= qh
->period
3819 ? cpu_to_hc32(fotg210
, 1 << uframe
)
3820 : cpu_to_hc32(fotg210
, QH_SMASK
);
3821 hw
->hw_info2
|= c_mask
;
3823 fotg210_dbg(fotg210
, "reused qh %p schedule\n", qh
);
3825 /* stuff into the periodic schedule */
3826 qh_link_periodic(fotg210
, qh
);
3831 static int intr_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
3832 struct list_head
*qtd_list
, gfp_t mem_flags
)
3835 unsigned long flags
;
3836 struct fotg210_qh
*qh
;
3838 struct list_head empty
;
3840 /* get endpoint and transfer/schedule data */
3841 epnum
= urb
->ep
->desc
.bEndpointAddress
;
3843 spin_lock_irqsave(&fotg210
->lock
, flags
);
3845 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
3846 status
= -ESHUTDOWN
;
3847 goto done_not_linked
;
3849 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
3850 if (unlikely(status
))
3851 goto done_not_linked
;
3853 /* get qh and force any scheduling errors */
3854 INIT_LIST_HEAD(&empty
);
3855 qh
= qh_append_tds(fotg210
, urb
, &empty
, epnum
, &urb
->ep
->hcpriv
);
3860 if (qh
->qh_state
== QH_STATE_IDLE
) {
3861 status
= qh_schedule(fotg210
, qh
);
3866 /* then queue the urb's tds to the qh */
3867 qh
= qh_append_tds(fotg210
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
3870 /* ... update usbfs periodic stats */
3871 fotg210_to_hcd(fotg210
)->self
.bandwidth_int_reqs
++;
3874 if (unlikely(status
))
3875 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
3877 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
3879 qtd_list_free(fotg210
, urb
, qtd_list
);
3884 static void scan_intr(struct fotg210_hcd
*fotg210
)
3886 struct fotg210_qh
*qh
;
3888 list_for_each_entry_safe(qh
, fotg210
->qh_scan_next
,
3889 &fotg210
->intr_qh_list
, intr_node
) {
3891 /* clean any finished work for this qh */
3892 if (!list_empty(&qh
->qtd_list
)) {
3896 * Unlinks could happen here; completion reporting
3897 * drops the lock. That's why fotg210->qh_scan_next
3898 * always holds the next qh to scan; if the next qh
3899 * gets unlinked then fotg210->qh_scan_next is adjusted
3900 * in qh_unlink_periodic().
3902 temp
= qh_completions(fotg210
, qh
);
3903 if (unlikely(qh
->needs_rescan
||
3904 (list_empty(&qh
->qtd_list
) &&
3905 qh
->qh_state
== QH_STATE_LINKED
)))
3906 start_unlink_intr(fotg210
, qh
);
3913 /* fotg210_iso_stream ops work with both ITD and SITD */
3915 static struct fotg210_iso_stream
*iso_stream_alloc(gfp_t mem_flags
)
3917 struct fotg210_iso_stream
*stream
;
3919 stream
= kzalloc(sizeof(*stream
), mem_flags
);
3920 if (likely(stream
!= NULL
)) {
3921 INIT_LIST_HEAD(&stream
->td_list
);
3922 INIT_LIST_HEAD(&stream
->free_list
);
3923 stream
->next_uframe
= -1;
3928 static void iso_stream_init(struct fotg210_hcd
*fotg210
,
3929 struct fotg210_iso_stream
*stream
, struct usb_device
*dev
,
3930 int pipe
, unsigned interval
)
3933 unsigned epnum
, maxp
;
3939 * this might be a "high bandwidth" highspeed endpoint,
3940 * as encoded in the ep descriptor's wMaxPacket field
3942 epnum
= usb_pipeendpoint(pipe
);
3943 is_input
= usb_pipein(pipe
) ? USB_DIR_IN
: 0;
3944 maxp
= usb_maxpacket(dev
, pipe
, !is_input
);
3950 maxp
= max_packet(maxp
);
3951 multi
= hb_mult(maxp
);
3955 stream
->buf0
= cpu_to_hc32(fotg210
, (epnum
<< 8) | dev
->devnum
);
3956 stream
->buf1
= cpu_to_hc32(fotg210
, buf1
);
3957 stream
->buf2
= cpu_to_hc32(fotg210
, multi
);
3959 /* usbfs wants to report the average usecs per frame tied up
3960 * when transfers on this endpoint are scheduled ...
3962 if (dev
->speed
== USB_SPEED_FULL
) {
3964 stream
->usecs
= NS_TO_US(usb_calc_bus_time(dev
->speed
,
3965 is_input
, 1, maxp
));
3968 stream
->highspeed
= 1;
3969 stream
->usecs
= HS_USECS_ISO(maxp
);
3971 bandwidth
= stream
->usecs
* 8;
3972 bandwidth
/= interval
;
3974 stream
->bandwidth
= bandwidth
;
3976 stream
->bEndpointAddress
= is_input
| epnum
;
3977 stream
->interval
= interval
;
3978 stream
->maxp
= maxp
;
3981 static struct fotg210_iso_stream
*iso_stream_find(struct fotg210_hcd
*fotg210
,
3985 struct fotg210_iso_stream
*stream
;
3986 struct usb_host_endpoint
*ep
;
3987 unsigned long flags
;
3989 epnum
= usb_pipeendpoint(urb
->pipe
);
3990 if (usb_pipein(urb
->pipe
))
3991 ep
= urb
->dev
->ep_in
[epnum
];
3993 ep
= urb
->dev
->ep_out
[epnum
];
3995 spin_lock_irqsave(&fotg210
->lock
, flags
);
3996 stream
= ep
->hcpriv
;
3998 if (unlikely(stream
== NULL
)) {
3999 stream
= iso_stream_alloc(GFP_ATOMIC
);
4000 if (likely(stream
!= NULL
)) {
4001 ep
->hcpriv
= stream
;
4003 iso_stream_init(fotg210
, stream
, urb
->dev
, urb
->pipe
,
4007 /* if dev->ep[epnum] is a QH, hw is set */
4008 } else if (unlikely(stream
->hw
!= NULL
)) {
4009 fotg210_dbg(fotg210
, "dev %s ep%d%s, not iso??\n",
4010 urb
->dev
->devpath
, epnum
,
4011 usb_pipein(urb
->pipe
) ? "in" : "out");
4015 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4019 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4021 static struct fotg210_iso_sched
*iso_sched_alloc(unsigned packets
,
4024 struct fotg210_iso_sched
*iso_sched
;
4025 int size
= sizeof(*iso_sched
);
4027 size
+= packets
* sizeof(struct fotg210_iso_packet
);
4028 iso_sched
= kzalloc(size
, mem_flags
);
4029 if (likely(iso_sched
!= NULL
))
4030 INIT_LIST_HEAD(&iso_sched
->td_list
);
4035 static inline void itd_sched_init(struct fotg210_hcd
*fotg210
,
4036 struct fotg210_iso_sched
*iso_sched
,
4037 struct fotg210_iso_stream
*stream
, struct urb
*urb
)
4040 dma_addr_t dma
= urb
->transfer_dma
;
4042 /* how many uframes are needed for these transfers */
4043 iso_sched
->span
= urb
->number_of_packets
* stream
->interval
;
4045 /* figure out per-uframe itd fields that we'll need later
4046 * when we fit new itds into the schedule.
4048 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
4049 struct fotg210_iso_packet
*uframe
= &iso_sched
->packet
[i
];
4054 length
= urb
->iso_frame_desc
[i
].length
;
4055 buf
= dma
+ urb
->iso_frame_desc
[i
].offset
;
4057 trans
= FOTG210_ISOC_ACTIVE
;
4058 trans
|= buf
& 0x0fff;
4059 if (unlikely(((i
+ 1) == urb
->number_of_packets
))
4060 && !(urb
->transfer_flags
& URB_NO_INTERRUPT
))
4061 trans
|= FOTG210_ITD_IOC
;
4062 trans
|= length
<< 16;
4063 uframe
->transaction
= cpu_to_hc32(fotg210
, trans
);
4065 /* might need to cross a buffer page within a uframe */
4066 uframe
->bufp
= (buf
& ~(u64
)0x0fff);
4068 if (unlikely((uframe
->bufp
!= (buf
& ~(u64
)0x0fff))))
4073 static void iso_sched_free(struct fotg210_iso_stream
*stream
,
4074 struct fotg210_iso_sched
*iso_sched
)
4078 /* caller must hold fotg210->lock!*/
4079 list_splice(&iso_sched
->td_list
, &stream
->free_list
);
4083 static int itd_urb_transaction(struct fotg210_iso_stream
*stream
,
4084 struct fotg210_hcd
*fotg210
, struct urb
*urb
, gfp_t mem_flags
)
4086 struct fotg210_itd
*itd
;
4090 struct fotg210_iso_sched
*sched
;
4091 unsigned long flags
;
4093 sched
= iso_sched_alloc(urb
->number_of_packets
, mem_flags
);
4094 if (unlikely(sched
== NULL
))
4097 itd_sched_init(fotg210
, sched
, stream
, urb
);
4099 if (urb
->interval
< 8)
4100 num_itds
= 1 + (sched
->span
+ 7) / 8;
4102 num_itds
= urb
->number_of_packets
;
4104 /* allocate/init ITDs */
4105 spin_lock_irqsave(&fotg210
->lock
, flags
);
4106 for (i
= 0; i
< num_itds
; i
++) {
4109 * Use iTDs from the free list, but not iTDs that may
4110 * still be in use by the hardware.
4112 if (likely(!list_empty(&stream
->free_list
))) {
4113 itd
= list_first_entry(&stream
->free_list
,
4114 struct fotg210_itd
, itd_list
);
4115 if (itd
->frame
== fotg210
->now_frame
)
4117 list_del(&itd
->itd_list
);
4118 itd_dma
= itd
->itd_dma
;
4121 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4122 itd
= dma_pool_zalloc(fotg210
->itd_pool
, mem_flags
,
4124 spin_lock_irqsave(&fotg210
->lock
, flags
);
4126 iso_sched_free(stream
, sched
);
4127 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4132 itd
->itd_dma
= itd_dma
;
4133 list_add(&itd
->itd_list
, &sched
->td_list
);
4135 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4137 /* temporarily store schedule info in hcpriv */
4138 urb
->hcpriv
= sched
;
4139 urb
->error_count
= 0;
4143 static inline int itd_slot_ok(struct fotg210_hcd
*fotg210
, u32 mod
, u32 uframe
,
4144 u8 usecs
, u32 period
)
4148 /* can't commit more than uframe_periodic_max usec */
4149 if (periodic_usecs(fotg210
, uframe
>> 3, uframe
& 0x7)
4150 > (fotg210
->uframe_periodic_max
- usecs
))
4153 /* we know urb->interval is 2^N uframes */
4155 } while (uframe
< mod
);
4159 /* This scheduler plans almost as far into the future as it has actual
4160 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4161 * "as small as possible" to be cache-friendlier.) That limits the size
4162 * transfers you can stream reliably; avoid more than 64 msec per urb.
4163 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4164 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4165 * and other factors); or more than about 230 msec total (for portability,
4166 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4169 #define SCHEDULE_SLOP 80 /* microframes */
4171 static int iso_stream_schedule(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4172 struct fotg210_iso_stream
*stream
)
4174 u32 now
, next
, start
, period
, span
;
4176 unsigned mod
= fotg210
->periodic_size
<< 3;
4177 struct fotg210_iso_sched
*sched
= urb
->hcpriv
;
4179 period
= urb
->interval
;
4182 if (span
> mod
- SCHEDULE_SLOP
) {
4183 fotg210_dbg(fotg210
, "iso request %p too long\n", urb
);
4188 now
= fotg210_read_frame_index(fotg210
) & (mod
- 1);
4190 /* Typical case: reuse current schedule, stream is still active.
4191 * Hopefully there are no gaps from the host falling behind
4192 * (irq delays etc), but if there are we'll take the next
4193 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4195 if (likely(!list_empty(&stream
->td_list
))) {
4198 /* For high speed devices, allow scheduling within the
4199 * isochronous scheduling threshold. For full speed devices
4200 * and Intel PCI-based controllers, don't (work around for
4203 if (!stream
->highspeed
&& fotg210
->fs_i_thresh
)
4204 next
= now
+ fotg210
->i_thresh
;
4208 /* Fell behind (by up to twice the slop amount)?
4209 * We decide based on the time of the last currently-scheduled
4210 * slot, not the time of the next available slot.
4212 excess
= (stream
->next_uframe
- period
- next
) & (mod
- 1);
4213 if (excess
>= mod
- 2 * SCHEDULE_SLOP
)
4214 start
= next
+ excess
- mod
+ period
*
4215 DIV_ROUND_UP(mod
- excess
, period
);
4217 start
= next
+ excess
+ period
;
4218 if (start
- now
>= mod
) {
4219 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4220 urb
, start
- now
- period
, period
,
4227 /* need to schedule; when's the next (u)frame we could start?
4228 * this is bigger than fotg210->i_thresh allows; scheduling itself
4229 * isn't free, the slop should handle reasonably slow cpus. it
4230 * can also help high bandwidth if the dma and irq loads don't
4231 * jump until after the queue is primed.
4236 start
= SCHEDULE_SLOP
+ (now
& ~0x07);
4238 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4240 /* find a uframe slot with enough bandwidth.
4241 * Early uframes are more precious because full-speed
4242 * iso IN transfers can't use late uframes,
4243 * and therefore they should be allocated last.
4249 /* check schedule: enough space? */
4250 if (itd_slot_ok(fotg210
, mod
, start
,
4251 stream
->usecs
, period
))
4253 } while (start
> next
&& !done
);
4255 /* no room in the schedule */
4257 fotg210_dbg(fotg210
, "iso resched full %p (now %d max %d)\n",
4258 urb
, now
, now
+ mod
);
4264 /* Tried to schedule too far into the future? */
4265 if (unlikely(start
- now
+ span
- period
>=
4266 mod
- 2 * SCHEDULE_SLOP
)) {
4267 fotg210_dbg(fotg210
, "request %p would overflow (%d+%d >= %d)\n",
4268 urb
, start
- now
, span
- period
,
4269 mod
- 2 * SCHEDULE_SLOP
);
4274 stream
->next_uframe
= start
& (mod
- 1);
4276 /* report high speed start in uframes; full speed, in frames */
4277 urb
->start_frame
= stream
->next_uframe
;
4278 if (!stream
->highspeed
)
4279 urb
->start_frame
>>= 3;
4281 /* Make sure scan_isoc() sees these */
4282 if (fotg210
->isoc_count
== 0)
4283 fotg210
->next_frame
= now
>> 3;
4287 iso_sched_free(stream
, sched
);
4292 static inline void itd_init(struct fotg210_hcd
*fotg210
,
4293 struct fotg210_iso_stream
*stream
, struct fotg210_itd
*itd
)
4297 /* it's been recently zeroed */
4298 itd
->hw_next
= FOTG210_LIST_END(fotg210
);
4299 itd
->hw_bufp
[0] = stream
->buf0
;
4300 itd
->hw_bufp
[1] = stream
->buf1
;
4301 itd
->hw_bufp
[2] = stream
->buf2
;
4303 for (i
= 0; i
< 8; i
++)
4306 /* All other fields are filled when scheduling */
4309 static inline void itd_patch(struct fotg210_hcd
*fotg210
,
4310 struct fotg210_itd
*itd
, struct fotg210_iso_sched
*iso_sched
,
4311 unsigned index
, u16 uframe
)
4313 struct fotg210_iso_packet
*uf
= &iso_sched
->packet
[index
];
4314 unsigned pg
= itd
->pg
;
4317 itd
->index
[uframe
] = index
;
4319 itd
->hw_transaction
[uframe
] = uf
->transaction
;
4320 itd
->hw_transaction
[uframe
] |= cpu_to_hc32(fotg210
, pg
<< 12);
4321 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, uf
->bufp
& ~(u32
)0);
4322 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(uf
->bufp
>> 32));
4324 /* iso_frame_desc[].offset must be strictly increasing */
4325 if (unlikely(uf
->cross
)) {
4326 u64 bufp
= uf
->bufp
+ 4096;
4329 itd
->hw_bufp
[pg
] |= cpu_to_hc32(fotg210
, bufp
& ~(u32
)0);
4330 itd
->hw_bufp_hi
[pg
] |= cpu_to_hc32(fotg210
, (u32
)(bufp
>> 32));
4334 static inline void itd_link(struct fotg210_hcd
*fotg210
, unsigned frame
,
4335 struct fotg210_itd
*itd
)
4337 union fotg210_shadow
*prev
= &fotg210
->pshadow
[frame
];
4338 __hc32
*hw_p
= &fotg210
->periodic
[frame
];
4339 union fotg210_shadow here
= *prev
;
4342 /* skip any iso nodes which might belong to previous microframes */
4344 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4345 if (type
== cpu_to_hc32(fotg210
, Q_TYPE_QH
))
4347 prev
= periodic_next_shadow(fotg210
, prev
, type
);
4348 hw_p
= shadow_next_periodic(fotg210
, &here
, type
);
4352 itd
->itd_next
= here
;
4353 itd
->hw_next
= *hw_p
;
4357 *hw_p
= cpu_to_hc32(fotg210
, itd
->itd_dma
| Q_TYPE_ITD
);
4360 /* fit urb's itds into the selected schedule slot; activate as needed */
4361 static void itd_link_urb(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4362 unsigned mod
, struct fotg210_iso_stream
*stream
)
4365 unsigned next_uframe
, uframe
, frame
;
4366 struct fotg210_iso_sched
*iso_sched
= urb
->hcpriv
;
4367 struct fotg210_itd
*itd
;
4369 next_uframe
= stream
->next_uframe
& (mod
- 1);
4371 if (unlikely(list_empty(&stream
->td_list
))) {
4372 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4373 += stream
->bandwidth
;
4374 fotg210_dbg(fotg210
,
4375 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4376 urb
->dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4377 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out",
4379 next_uframe
>> 3, next_uframe
& 0x7);
4382 /* fill iTDs uframe by uframe */
4383 for (packet
= 0, itd
= NULL
; packet
< urb
->number_of_packets
;) {
4385 /* ASSERT: we have all necessary itds */
4387 /* ASSERT: no itds for this endpoint in this uframe */
4389 itd
= list_entry(iso_sched
->td_list
.next
,
4390 struct fotg210_itd
, itd_list
);
4391 list_move_tail(&itd
->itd_list
, &stream
->td_list
);
4392 itd
->stream
= stream
;
4394 itd_init(fotg210
, stream
, itd
);
4397 uframe
= next_uframe
& 0x07;
4398 frame
= next_uframe
>> 3;
4400 itd_patch(fotg210
, itd
, iso_sched
, packet
, uframe
);
4402 next_uframe
+= stream
->interval
;
4403 next_uframe
&= mod
- 1;
4406 /* link completed itds into the schedule */
4407 if (((next_uframe
>> 3) != frame
)
4408 || packet
== urb
->number_of_packets
) {
4409 itd_link(fotg210
, frame
& (fotg210
->periodic_size
- 1),
4414 stream
->next_uframe
= next_uframe
;
4416 /* don't need that schedule data any more */
4417 iso_sched_free(stream
, iso_sched
);
4420 ++fotg210
->isoc_count
;
4421 enable_periodic(fotg210
);
4424 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4425 FOTG210_ISOC_XACTERR)
4427 /* Process and recycle a completed ITD. Return true iff its urb completed,
4428 * and hence its completion callback probably added things to the hardware
4431 * Note that we carefully avoid recycling this descriptor until after any
4432 * completion callback runs, so that it won't be reused quickly. That is,
4433 * assuming (a) no more than two urbs per frame on this endpoint, and also
4434 * (b) only this endpoint's completions submit URBs. It seems some silicon
4435 * corrupts things if you reuse completed descriptors very quickly...
4437 static bool itd_complete(struct fotg210_hcd
*fotg210
, struct fotg210_itd
*itd
)
4439 struct urb
*urb
= itd
->urb
;
4440 struct usb_iso_packet_descriptor
*desc
;
4444 struct fotg210_iso_stream
*stream
= itd
->stream
;
4445 struct usb_device
*dev
;
4446 bool retval
= false;
4448 /* for each uframe with a packet */
4449 for (uframe
= 0; uframe
< 8; uframe
++) {
4450 if (likely(itd
->index
[uframe
] == -1))
4452 urb_index
= itd
->index
[uframe
];
4453 desc
= &urb
->iso_frame_desc
[urb_index
];
4455 t
= hc32_to_cpup(fotg210
, &itd
->hw_transaction
[uframe
]);
4456 itd
->hw_transaction
[uframe
] = 0;
4458 /* report transfer status */
4459 if (unlikely(t
& ISO_ERRS
)) {
4461 if (t
& FOTG210_ISOC_BUF_ERR
)
4462 desc
->status
= usb_pipein(urb
->pipe
)
4463 ? -ENOSR
/* hc couldn't read */
4464 : -ECOMM
; /* hc couldn't write */
4465 else if (t
& FOTG210_ISOC_BABBLE
)
4466 desc
->status
= -EOVERFLOW
;
4467 else /* (t & FOTG210_ISOC_XACTERR) */
4468 desc
->status
= -EPROTO
;
4470 /* HC need not update length with this error */
4471 if (!(t
& FOTG210_ISOC_BABBLE
)) {
4472 desc
->actual_length
=
4473 fotg210_itdlen(urb
, desc
, t
);
4474 urb
->actual_length
+= desc
->actual_length
;
4476 } else if (likely((t
& FOTG210_ISOC_ACTIVE
) == 0)) {
4478 desc
->actual_length
= fotg210_itdlen(urb
, desc
, t
);
4479 urb
->actual_length
+= desc
->actual_length
;
4481 /* URB was too late */
4482 desc
->status
= -EXDEV
;
4486 /* handle completion now? */
4487 if (likely((urb_index
+ 1) != urb
->number_of_packets
))
4490 /* ASSERT: it's really the last itd for this urb
4491 * list_for_each_entry (itd, &stream->td_list, itd_list)
4492 * BUG_ON (itd->urb == urb);
4495 /* give urb back to the driver; completion often (re)submits */
4497 fotg210_urb_done(fotg210
, urb
, 0);
4501 --fotg210
->isoc_count
;
4502 disable_periodic(fotg210
);
4504 if (unlikely(list_is_singular(&stream
->td_list
))) {
4505 fotg210_to_hcd(fotg210
)->self
.bandwidth_allocated
4506 -= stream
->bandwidth
;
4507 fotg210_dbg(fotg210
,
4508 "deschedule devp %s ep%d%s-iso\n",
4509 dev
->devpath
, stream
->bEndpointAddress
& 0x0f,
4510 (stream
->bEndpointAddress
& USB_DIR_IN
) ? "in" : "out");
4516 /* Add to the end of the free list for later reuse */
4517 list_move_tail(&itd
->itd_list
, &stream
->free_list
);
4519 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4520 if (list_empty(&stream
->td_list
)) {
4521 list_splice_tail_init(&stream
->free_list
,
4522 &fotg210
->cached_itd_list
);
4523 start_free_itds(fotg210
);
4529 static int itd_submit(struct fotg210_hcd
*fotg210
, struct urb
*urb
,
4532 int status
= -EINVAL
;
4533 unsigned long flags
;
4534 struct fotg210_iso_stream
*stream
;
4536 /* Get iso_stream head */
4537 stream
= iso_stream_find(fotg210
, urb
);
4538 if (unlikely(stream
== NULL
)) {
4539 fotg210_dbg(fotg210
, "can't get iso stream\n");
4542 if (unlikely(urb
->interval
!= stream
->interval
&&
4543 fotg210_port_speed(fotg210
, 0) ==
4544 USB_PORT_STAT_HIGH_SPEED
)) {
4545 fotg210_dbg(fotg210
, "can't change iso interval %d --> %d\n",
4546 stream
->interval
, urb
->interval
);
4550 #ifdef FOTG210_URB_TRACE
4551 fotg210_dbg(fotg210
,
4552 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4553 __func__
, urb
->dev
->devpath
, urb
,
4554 usb_pipeendpoint(urb
->pipe
),
4555 usb_pipein(urb
->pipe
) ? "in" : "out",
4556 urb
->transfer_buffer_length
,
4557 urb
->number_of_packets
, urb
->interval
,
4561 /* allocate ITDs w/o locking anything */
4562 status
= itd_urb_transaction(stream
, fotg210
, urb
, mem_flags
);
4563 if (unlikely(status
< 0)) {
4564 fotg210_dbg(fotg210
, "can't init itds\n");
4568 /* schedule ... need to lock */
4569 spin_lock_irqsave(&fotg210
->lock
, flags
);
4570 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210
)))) {
4571 status
= -ESHUTDOWN
;
4572 goto done_not_linked
;
4574 status
= usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210
), urb
);
4575 if (unlikely(status
))
4576 goto done_not_linked
;
4577 status
= iso_stream_schedule(fotg210
, urb
, stream
);
4578 if (likely(status
== 0))
4579 itd_link_urb(fotg210
, urb
, fotg210
->periodic_size
<< 3, stream
);
4581 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210
), urb
);
4583 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4588 static inline int scan_frame_queue(struct fotg210_hcd
*fotg210
, unsigned frame
,
4589 unsigned now_frame
, bool live
)
4593 union fotg210_shadow q
, *q_p
;
4596 /* scan each element in frame's queue for completions */
4597 q_p
= &fotg210
->pshadow
[frame
];
4598 hw_p
= &fotg210
->periodic
[frame
];
4600 type
= Q_NEXT_TYPE(fotg210
, *hw_p
);
4604 switch (hc32_to_cpu(fotg210
, type
)) {
4606 /* If this ITD is still active, leave it for
4607 * later processing ... check the next entry.
4608 * No need to check for activity unless the
4611 if (frame
== now_frame
&& live
) {
4613 for (uf
= 0; uf
< 8; uf
++) {
4614 if (q
.itd
->hw_transaction
[uf
] &
4615 ITD_ACTIVE(fotg210
))
4619 q_p
= &q
.itd
->itd_next
;
4620 hw_p
= &q
.itd
->hw_next
;
4621 type
= Q_NEXT_TYPE(fotg210
,
4628 /* Take finished ITDs out of the schedule
4629 * and process them: recycle, maybe report
4630 * URB completion. HC won't cache the
4631 * pointer for much longer, if at all.
4633 *q_p
= q
.itd
->itd_next
;
4634 *hw_p
= q
.itd
->hw_next
;
4635 type
= Q_NEXT_TYPE(fotg210
, q
.itd
->hw_next
);
4637 modified
= itd_complete(fotg210
, q
.itd
);
4641 fotg210_dbg(fotg210
, "corrupt type %d frame %d shadow %p\n",
4642 type
, frame
, q
.ptr
);
4646 /* End of the iTDs and siTDs */
4651 /* assume completion callbacks modify the queue */
4652 if (unlikely(modified
&& fotg210
->isoc_count
> 0))
4658 static void scan_isoc(struct fotg210_hcd
*fotg210
)
4660 unsigned uf
, now_frame
, frame
, ret
;
4661 unsigned fmask
= fotg210
->periodic_size
- 1;
4665 * When running, scan from last scan point up to "now"
4666 * else clean up by scanning everything that's left.
4667 * Touches as few pages as possible: cache-friendly.
4669 if (fotg210
->rh_state
>= FOTG210_RH_RUNNING
) {
4670 uf
= fotg210_read_frame_index(fotg210
);
4671 now_frame
= (uf
>> 3) & fmask
;
4674 now_frame
= (fotg210
->next_frame
- 1) & fmask
;
4677 fotg210
->now_frame
= now_frame
;
4679 frame
= fotg210
->next_frame
;
4683 ret
= scan_frame_queue(fotg210
, frame
,
4686 /* Stop when we have reached the current frame */
4687 if (frame
== now_frame
)
4689 frame
= (frame
+ 1) & fmask
;
4691 fotg210
->next_frame
= now_frame
;
4694 /* Display / Set uframe_periodic_max
4696 static ssize_t
uframe_periodic_max_show(struct device
*dev
,
4697 struct device_attribute
*attr
, char *buf
)
4699 struct fotg210_hcd
*fotg210
;
4702 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4703 n
= scnprintf(buf
, PAGE_SIZE
, "%d\n", fotg210
->uframe_periodic_max
);
4708 static ssize_t
uframe_periodic_max_store(struct device
*dev
,
4709 struct device_attribute
*attr
, const char *buf
, size_t count
)
4711 struct fotg210_hcd
*fotg210
;
4712 unsigned uframe_periodic_max
;
4713 unsigned frame
, uframe
;
4714 unsigned short allocated_max
;
4715 unsigned long flags
;
4718 fotg210
= hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev
)));
4719 if (kstrtouint(buf
, 0, &uframe_periodic_max
) < 0)
4722 if (uframe_periodic_max
< 100 || uframe_periodic_max
>= 125) {
4723 fotg210_info(fotg210
, "rejecting invalid request for uframe_periodic_max=%u\n",
4724 uframe_periodic_max
);
4731 * lock, so that our checking does not race with possible periodic
4732 * bandwidth allocation through submitting new urbs.
4734 spin_lock_irqsave(&fotg210
->lock
, flags
);
4737 * for request to decrease max periodic bandwidth, we have to check
4738 * every microframe in the schedule to see whether the decrease is
4741 if (uframe_periodic_max
< fotg210
->uframe_periodic_max
) {
4744 for (frame
= 0; frame
< fotg210
->periodic_size
; ++frame
)
4745 for (uframe
= 0; uframe
< 7; ++uframe
)
4746 allocated_max
= max(allocated_max
,
4747 periodic_usecs(fotg210
, frame
,
4750 if (allocated_max
> uframe_periodic_max
) {
4751 fotg210_info(fotg210
,
4752 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4753 allocated_max
, uframe_periodic_max
);
4758 /* increasing is always ok */
4760 fotg210_info(fotg210
,
4761 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4762 100 * uframe_periodic_max
/125, uframe_periodic_max
);
4764 if (uframe_periodic_max
!= 100)
4765 fotg210_warn(fotg210
, "max periodic bandwidth set is non-standard\n");
4767 fotg210
->uframe_periodic_max
= uframe_periodic_max
;
4771 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
4775 static DEVICE_ATTR_RW(uframe_periodic_max
);
4777 static inline int create_sysfs_files(struct fotg210_hcd
*fotg210
)
4779 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4781 return device_create_file(controller
, &dev_attr_uframe_periodic_max
);
4784 static inline void remove_sysfs_files(struct fotg210_hcd
*fotg210
)
4786 struct device
*controller
= fotg210_to_hcd(fotg210
)->self
.controller
;
4788 device_remove_file(controller
, &dev_attr_uframe_periodic_max
);
4790 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4791 * The firmware seems to think that powering off is a wakeup event!
4792 * This routine turns off remote wakeup and everything else, on all ports.
4794 static void fotg210_turn_off_all_ports(struct fotg210_hcd
*fotg210
)
4796 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
4798 fotg210_writel(fotg210
, PORT_RWC_BITS
, status_reg
);
4801 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4802 * Must be called with interrupts enabled and the lock not held.
4804 static void fotg210_silence_controller(struct fotg210_hcd
*fotg210
)
4806 fotg210_halt(fotg210
);
4808 spin_lock_irq(&fotg210
->lock
);
4809 fotg210
->rh_state
= FOTG210_RH_HALTED
;
4810 fotg210_turn_off_all_ports(fotg210
);
4811 spin_unlock_irq(&fotg210
->lock
);
4814 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4815 * This forcibly disables dma and IRQs, helping kexec and other cases
4816 * where the next system software may expect clean state.
4818 static void fotg210_shutdown(struct usb_hcd
*hcd
)
4820 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4822 spin_lock_irq(&fotg210
->lock
);
4823 fotg210
->shutdown
= true;
4824 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
4825 fotg210
->enabled_hrtimer_events
= 0;
4826 spin_unlock_irq(&fotg210
->lock
);
4828 fotg210_silence_controller(fotg210
);
4830 hrtimer_cancel(&fotg210
->hrtimer
);
4833 /* fotg210_work is called from some interrupts, timers, and so on.
4834 * it calls driver completion functions, after dropping fotg210->lock.
4836 static void fotg210_work(struct fotg210_hcd
*fotg210
)
4838 /* another CPU may drop fotg210->lock during a schedule scan while
4839 * it reports urb completions. this flag guards against bogus
4840 * attempts at re-entrant schedule scanning.
4842 if (fotg210
->scanning
) {
4843 fotg210
->need_rescan
= true;
4846 fotg210
->scanning
= true;
4849 fotg210
->need_rescan
= false;
4850 if (fotg210
->async_count
)
4851 scan_async(fotg210
);
4852 if (fotg210
->intr_count
> 0)
4854 if (fotg210
->isoc_count
> 0)
4856 if (fotg210
->need_rescan
)
4858 fotg210
->scanning
= false;
4860 /* the IO watchdog guards against hardware or driver bugs that
4861 * misplace IRQs, and should let us run completely without IRQs.
4862 * such lossage has been observed on both VT6202 and VT8235.
4864 turn_on_io_watchdog(fotg210
);
4867 /* Called when the fotg210_hcd module is removed.
4869 static void fotg210_stop(struct usb_hcd
*hcd
)
4871 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4873 fotg210_dbg(fotg210
, "stop\n");
4875 /* no more interrupts ... */
4877 spin_lock_irq(&fotg210
->lock
);
4878 fotg210
->enabled_hrtimer_events
= 0;
4879 spin_unlock_irq(&fotg210
->lock
);
4881 fotg210_quiesce(fotg210
);
4882 fotg210_silence_controller(fotg210
);
4883 fotg210_reset(fotg210
);
4885 hrtimer_cancel(&fotg210
->hrtimer
);
4886 remove_sysfs_files(fotg210
);
4887 remove_debug_files(fotg210
);
4889 /* root hub is shut down separately (first, when possible) */
4890 spin_lock_irq(&fotg210
->lock
);
4891 end_free_itds(fotg210
);
4892 spin_unlock_irq(&fotg210
->lock
);
4893 fotg210_mem_cleanup(fotg210
);
4895 #ifdef FOTG210_STATS
4896 fotg210_dbg(fotg210
, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4897 fotg210
->stats
.normal
, fotg210
->stats
.error
,
4898 fotg210
->stats
.iaa
, fotg210
->stats
.lost_iaa
);
4899 fotg210_dbg(fotg210
, "complete %ld unlink %ld\n",
4900 fotg210
->stats
.complete
, fotg210
->stats
.unlink
);
4903 dbg_status(fotg210
, "fotg210_stop completed",
4904 fotg210_readl(fotg210
, &fotg210
->regs
->status
));
4907 /* one-time init, only for memory state */
4908 static int hcd_fotg210_init(struct usb_hcd
*hcd
)
4910 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
4914 struct fotg210_qh_hw
*hw
;
4916 spin_lock_init(&fotg210
->lock
);
4919 * keep io watchdog by default, those good HCDs could turn off it later
4921 fotg210
->need_io_watchdog
= 1;
4923 hrtimer_init(&fotg210
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
4924 fotg210
->hrtimer
.function
= fotg210_hrtimer_func
;
4925 fotg210
->next_hrtimer_event
= FOTG210_HRTIMER_NO_EVENT
;
4927 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
4930 * by default set standard 80% (== 100 usec/uframe) max periodic
4931 * bandwidth as required by USB 2.0
4933 fotg210
->uframe_periodic_max
= 100;
4936 * hw default: 1K periodic list heads, one per frame.
4937 * periodic_size can shrink by USBCMD update if hcc_params allows.
4939 fotg210
->periodic_size
= DEFAULT_I_TDPS
;
4940 INIT_LIST_HEAD(&fotg210
->intr_qh_list
);
4941 INIT_LIST_HEAD(&fotg210
->cached_itd_list
);
4943 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
4944 /* periodic schedule size can be smaller than default */
4945 switch (FOTG210_TUNE_FLS
) {
4947 fotg210
->periodic_size
= 1024;
4950 fotg210
->periodic_size
= 512;
4953 fotg210
->periodic_size
= 256;
4959 retval
= fotg210_mem_init(fotg210
, GFP_KERNEL
);
4963 /* controllers may cache some of the periodic schedule ... */
4964 fotg210
->i_thresh
= 2;
4967 * dedicate a qh for the async ring head, since we couldn't unlink
4968 * a 'real' qh without stopping the async schedule [4.8]. use it
4969 * as the 'reclamation list head' too.
4970 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4971 * from automatically advancing to the next td after short reads.
4973 fotg210
->async
->qh_next
.qh
= NULL
;
4974 hw
= fotg210
->async
->hw
;
4975 hw
->hw_next
= QH_NEXT(fotg210
, fotg210
->async
->qh_dma
);
4976 hw
->hw_info1
= cpu_to_hc32(fotg210
, QH_HEAD
);
4977 hw
->hw_token
= cpu_to_hc32(fotg210
, QTD_STS_HALT
);
4978 hw
->hw_qtd_next
= FOTG210_LIST_END(fotg210
);
4979 fotg210
->async
->qh_state
= QH_STATE_LINKED
;
4980 hw
->hw_alt_next
= QTD_NEXT(fotg210
, fotg210
->async
->dummy
->qtd_dma
);
4982 /* clear interrupt enables, set irq latency */
4983 if (log2_irq_thresh
< 0 || log2_irq_thresh
> 6)
4984 log2_irq_thresh
= 0;
4985 temp
= 1 << (16 + log2_irq_thresh
);
4986 if (HCC_CANPARK(hcc_params
)) {
4987 /* HW default park == 3, on hardware that supports it (like
4988 * NVidia and ALI silicon), maximizes throughput on the async
4989 * schedule by avoiding QH fetches between transfers.
4991 * With fast usb storage devices and NForce2, "park" seems to
4992 * make problems: throughput reduction (!), data errors...
4995 park
= min_t(unsigned, park
, 3);
4999 fotg210_dbg(fotg210
, "park %d\n", park
);
5001 if (HCC_PGM_FRAMELISTLEN(hcc_params
)) {
5002 /* periodic schedule size can be smaller than default */
5004 temp
|= (FOTG210_TUNE_FLS
<< 2);
5006 fotg210
->command
= temp
;
5008 /* Accept arbitrarily long scatter-gather lists */
5009 if (!(hcd
->driver
->flags
& HCD_LOCAL_MEM
))
5010 hcd
->self
.sg_tablesize
= ~0;
5014 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5015 static int fotg210_run(struct usb_hcd
*hcd
)
5017 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5021 hcd
->uses_new_polling
= 1;
5023 /* EHCI spec section 4.1 */
5025 fotg210_writel(fotg210
, fotg210
->periodic_dma
,
5026 &fotg210
->regs
->frame_list
);
5027 fotg210_writel(fotg210
, (u32
)fotg210
->async
->qh_dma
,
5028 &fotg210
->regs
->async_next
);
5031 * hcc_params controls whether fotg210->regs->segment must (!!!)
5032 * be used; it constrains QH/ITD/SITD and QTD locations.
5033 * dma_pool consistent memory always uses segment zero.
5034 * streaming mappings for I/O buffers, like pci_map_single(),
5035 * can return segments above 4GB, if the device allows.
5037 * NOTE: the dma mask is visible through dev->dma_mask, so
5038 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5039 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5040 * host side drivers though.
5042 hcc_params
= fotg210_readl(fotg210
, &fotg210
->caps
->hcc_params
);
5045 * Philips, Intel, and maybe others need CMD_RUN before the
5046 * root hub will detect new devices (why?); NEC doesn't
5048 fotg210
->command
&= ~(CMD_IAAD
|CMD_PSE
|CMD_ASE
|CMD_RESET
);
5049 fotg210
->command
|= CMD_RUN
;
5050 fotg210_writel(fotg210
, fotg210
->command
, &fotg210
->regs
->command
);
5051 dbg_cmd(fotg210
, "init", fotg210
->command
);
5054 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5055 * are explicitly handed to companion controller(s), so no TT is
5056 * involved with the root hub. (Except where one is integrated,
5057 * and there's no companion controller unless maybe for USB OTG.)
5059 * Turning on the CF flag will transfer ownership of all ports
5060 * from the companions to the EHCI controller. If any of the
5061 * companions are in the middle of a port reset at the time, it
5062 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5063 * guarantees that no resets are in progress. After we set CF,
5064 * a short delay lets the hardware catch up; new resets shouldn't
5065 * be started before the port switching actions could complete.
5067 down_write(&ehci_cf_port_reset_rwsem
);
5068 fotg210
->rh_state
= FOTG210_RH_RUNNING
;
5069 /* unblock posted writes */
5070 fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5071 usleep_range(5000, 10000);
5072 up_write(&ehci_cf_port_reset_rwsem
);
5073 fotg210
->last_periodic_enable
= ktime_get_real();
5075 temp
= HC_VERSION(fotg210
,
5076 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5077 fotg210_info(fotg210
,
5078 "USB %x.%x started, EHCI %x.%02x\n",
5079 ((fotg210
->sbrn
& 0xf0) >> 4), (fotg210
->sbrn
& 0x0f),
5080 temp
>> 8, temp
& 0xff);
5082 fotg210_writel(fotg210
, INTR_MASK
,
5083 &fotg210
->regs
->intr_enable
); /* Turn On Interrupts */
5085 /* GRR this is run-once init(), being done every time the HC starts.
5086 * So long as they're part of class devices, we can't do it init()
5087 * since the class device isn't created that early.
5089 create_debug_files(fotg210
);
5090 create_sysfs_files(fotg210
);
5095 static int fotg210_setup(struct usb_hcd
*hcd
)
5097 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5100 fotg210
->regs
= (void __iomem
*)fotg210
->caps
+
5102 fotg210_readl(fotg210
, &fotg210
->caps
->hc_capbase
));
5103 dbg_hcs_params(fotg210
, "reset");
5104 dbg_hcc_params(fotg210
, "reset");
5106 /* cache this readonly data; minimize chip reads */
5107 fotg210
->hcs_params
= fotg210_readl(fotg210
,
5108 &fotg210
->caps
->hcs_params
);
5110 fotg210
->sbrn
= HCD_USB2
;
5112 /* data structure init */
5113 retval
= hcd_fotg210_init(hcd
);
5117 retval
= fotg210_halt(fotg210
);
5121 fotg210_reset(fotg210
);
5126 static irqreturn_t
fotg210_irq(struct usb_hcd
*hcd
)
5128 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5129 u32 status
, masked_status
, pcd_status
= 0, cmd
;
5132 spin_lock(&fotg210
->lock
);
5134 status
= fotg210_readl(fotg210
, &fotg210
->regs
->status
);
5136 /* e.g. cardbus physical eject */
5137 if (status
== ~(u32
) 0) {
5138 fotg210_dbg(fotg210
, "device removed\n");
5143 * We don't use STS_FLR, but some controllers don't like it to
5144 * remain on, so mask it out along with the other status bits.
5146 masked_status
= status
& (INTR_MASK
| STS_FLR
);
5149 if (!masked_status
||
5150 unlikely(fotg210
->rh_state
== FOTG210_RH_HALTED
)) {
5151 spin_unlock(&fotg210
->lock
);
5155 /* clear (just) interrupts */
5156 fotg210_writel(fotg210
, masked_status
, &fotg210
->regs
->status
);
5157 cmd
= fotg210_readl(fotg210
, &fotg210
->regs
->command
);
5160 /* unrequested/ignored: Frame List Rollover */
5161 dbg_status(fotg210
, "irq", status
);
5163 /* INT, ERR, and IAA interrupt rates can be throttled */
5165 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5166 if (likely((status
& (STS_INT
|STS_ERR
)) != 0)) {
5167 if (likely((status
& STS_ERR
) == 0))
5168 COUNT(fotg210
->stats
.normal
);
5170 COUNT(fotg210
->stats
.error
);
5174 /* complete the unlinking of some qh [4.15.2.3] */
5175 if (status
& STS_IAA
) {
5177 /* Turn off the IAA watchdog */
5178 fotg210
->enabled_hrtimer_events
&=
5179 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG
);
5182 * Mild optimization: Allow another IAAD to reset the
5183 * hrtimer, if one occurs before the next expiration.
5184 * In theory we could always cancel the hrtimer, but
5185 * tests show that about half the time it will be reset
5186 * for some other event anyway.
5188 if (fotg210
->next_hrtimer_event
== FOTG210_HRTIMER_IAA_WATCHDOG
)
5189 ++fotg210
->next_hrtimer_event
;
5191 /* guard against (alleged) silicon errata */
5193 fotg210_dbg(fotg210
, "IAA with IAAD still set?\n");
5194 if (fotg210
->async_iaa
) {
5195 COUNT(fotg210
->stats
.iaa
);
5196 end_unlink_async(fotg210
);
5198 fotg210_dbg(fotg210
, "IAA with nothing unlinked?\n");
5201 /* remote wakeup [4.3.1] */
5202 if (status
& STS_PCD
) {
5204 u32 __iomem
*status_reg
= &fotg210
->regs
->port_status
;
5206 /* kick root hub later */
5207 pcd_status
= status
;
5209 /* resume root hub? */
5210 if (fotg210
->rh_state
== FOTG210_RH_SUSPENDED
)
5211 usb_hcd_resume_root_hub(hcd
);
5213 pstatus
= fotg210_readl(fotg210
, status_reg
);
5215 if (test_bit(0, &fotg210
->suspended_ports
) &&
5216 ((pstatus
& PORT_RESUME
) ||
5217 !(pstatus
& PORT_SUSPEND
)) &&
5218 (pstatus
& PORT_PE
) &&
5219 fotg210
->reset_done
[0] == 0) {
5221 /* start 20 msec resume signaling from this port,
5222 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5223 * stop that signaling. Use 5 ms extra for safety,
5224 * like usb_port_resume() does.
5226 fotg210
->reset_done
[0] = jiffies
+ msecs_to_jiffies(25);
5227 set_bit(0, &fotg210
->resuming_ports
);
5228 fotg210_dbg(fotg210
, "port 1 remote wakeup\n");
5229 mod_timer(&hcd
->rh_timer
, fotg210
->reset_done
[0]);
5233 /* PCI errors [4.15.2.4] */
5234 if (unlikely((status
& STS_FATAL
) != 0)) {
5235 fotg210_err(fotg210
, "fatal error\n");
5236 dbg_cmd(fotg210
, "fatal", cmd
);
5237 dbg_status(fotg210
, "fatal", status
);
5241 /* Don't let the controller do anything more */
5242 fotg210
->shutdown
= true;
5243 fotg210
->rh_state
= FOTG210_RH_STOPPING
;
5244 fotg210
->command
&= ~(CMD_RUN
| CMD_ASE
| CMD_PSE
);
5245 fotg210_writel(fotg210
, fotg210
->command
,
5246 &fotg210
->regs
->command
);
5247 fotg210_writel(fotg210
, 0, &fotg210
->regs
->intr_enable
);
5248 fotg210_handle_controller_death(fotg210
);
5250 /* Handle completions when the controller stops */
5255 fotg210_work(fotg210
);
5256 spin_unlock(&fotg210
->lock
);
5258 usb_hcd_poll_rh_status(hcd
);
5262 /* non-error returns are a promise to giveback() the urb later
5263 * we drop ownership so next owner (or urb unlink) can get it
5265 * urb + dev is in hcd.self.controller.urb_list
5266 * we're queueing TDs onto software and hardware lists
5268 * hcd-specific init for hcpriv hasn't been done yet
5270 * NOTE: control, bulk, and interrupt share the same code to append TDs
5271 * to a (possibly active) QH, and the same QH scanning code.
5273 static int fotg210_urb_enqueue(struct usb_hcd
*hcd
, struct urb
*urb
,
5276 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5277 struct list_head qtd_list
;
5279 INIT_LIST_HEAD(&qtd_list
);
5281 switch (usb_pipetype(urb
->pipe
)) {
5283 /* qh_completions() code doesn't handle all the fault cases
5284 * in multi-TD control transfers. Even 1KB is rare anyway.
5286 if (urb
->transfer_buffer_length
> (16 * 1024))
5289 /* case PIPE_BULK: */
5291 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5293 return submit_async(fotg210
, urb
, &qtd_list
, mem_flags
);
5295 case PIPE_INTERRUPT
:
5296 if (!qh_urb_transaction(fotg210
, urb
, &qtd_list
, mem_flags
))
5298 return intr_submit(fotg210
, urb
, &qtd_list
, mem_flags
);
5300 case PIPE_ISOCHRONOUS
:
5301 return itd_submit(fotg210
, urb
, mem_flags
);
5305 /* remove from hardware lists
5306 * completions normally happen asynchronously
5309 static int fotg210_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
5311 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5312 struct fotg210_qh
*qh
;
5313 unsigned long flags
;
5316 spin_lock_irqsave(&fotg210
->lock
, flags
);
5317 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
5321 switch (usb_pipetype(urb
->pipe
)) {
5322 /* case PIPE_CONTROL: */
5323 /* case PIPE_BULK:*/
5325 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5328 switch (qh
->qh_state
) {
5329 case QH_STATE_LINKED
:
5330 case QH_STATE_COMPLETING
:
5331 start_unlink_async(fotg210
, qh
);
5333 case QH_STATE_UNLINK
:
5334 case QH_STATE_UNLINK_WAIT
:
5335 /* already started */
5338 /* QH might be waiting for a Clear-TT-Buffer */
5339 qh_completions(fotg210
, qh
);
5344 case PIPE_INTERRUPT
:
5345 qh
= (struct fotg210_qh
*) urb
->hcpriv
;
5348 switch (qh
->qh_state
) {
5349 case QH_STATE_LINKED
:
5350 case QH_STATE_COMPLETING
:
5351 start_unlink_intr(fotg210
, qh
);
5354 qh_completions(fotg210
, qh
);
5357 fotg210_dbg(fotg210
, "bogus qh %p state %d\n",
5363 case PIPE_ISOCHRONOUS
:
5366 /* wait till next completion, do it then. */
5367 /* completion irqs can wait up to 1024 msec, */
5371 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5375 /* bulk qh holds the data toggle */
5377 static void fotg210_endpoint_disable(struct usb_hcd
*hcd
,
5378 struct usb_host_endpoint
*ep
)
5380 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5381 unsigned long flags
;
5382 struct fotg210_qh
*qh
, *tmp
;
5384 /* ASSERT: any requests/urbs are being unlinked */
5385 /* ASSERT: nobody can be submitting urbs for this any more */
5388 spin_lock_irqsave(&fotg210
->lock
, flags
);
5393 /* endpoints can be iso streams. for now, we don't
5394 * accelerate iso completions ... so spin a while.
5396 if (qh
->hw
== NULL
) {
5397 struct fotg210_iso_stream
*stream
= ep
->hcpriv
;
5399 if (!list_empty(&stream
->td_list
))
5402 /* BUG_ON(!list_empty(&stream->free_list)); */
5407 if (fotg210
->rh_state
< FOTG210_RH_RUNNING
)
5408 qh
->qh_state
= QH_STATE_IDLE
;
5409 switch (qh
->qh_state
) {
5410 case QH_STATE_LINKED
:
5411 case QH_STATE_COMPLETING
:
5412 for (tmp
= fotg210
->async
->qh_next
.qh
;
5414 tmp
= tmp
->qh_next
.qh
)
5416 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5417 * may already be unlinked.
5420 start_unlink_async(fotg210
, qh
);
5422 case QH_STATE_UNLINK
: /* wait for hw to finish? */
5423 case QH_STATE_UNLINK_WAIT
:
5425 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5426 schedule_timeout_uninterruptible(1);
5428 case QH_STATE_IDLE
: /* fully unlinked */
5429 if (qh
->clearing_tt
)
5431 if (list_empty(&qh
->qtd_list
)) {
5432 qh_destroy(fotg210
, qh
);
5437 /* caller was supposed to have unlinked any requests;
5438 * that's not our job. just leak this memory.
5440 fotg210_err(fotg210
, "qh %p (#%02x) state %d%s\n",
5441 qh
, ep
->desc
.bEndpointAddress
, qh
->qh_state
,
5442 list_empty(&qh
->qtd_list
) ? "" : "(has tds)");
5447 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5450 static void fotg210_endpoint_reset(struct usb_hcd
*hcd
,
5451 struct usb_host_endpoint
*ep
)
5453 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5454 struct fotg210_qh
*qh
;
5455 int eptype
= usb_endpoint_type(&ep
->desc
);
5456 int epnum
= usb_endpoint_num(&ep
->desc
);
5457 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
5458 unsigned long flags
;
5460 if (eptype
!= USB_ENDPOINT_XFER_BULK
&& eptype
!= USB_ENDPOINT_XFER_INT
)
5463 spin_lock_irqsave(&fotg210
->lock
, flags
);
5466 /* For Bulk and Interrupt endpoints we maintain the toggle state
5467 * in the hardware; the toggle bits in udev aren't used at all.
5468 * When an endpoint is reset by usb_clear_halt() we must reset
5469 * the toggle bit in the QH.
5472 usb_settoggle(qh
->dev
, epnum
, is_out
, 0);
5473 if (!list_empty(&qh
->qtd_list
)) {
5474 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5475 } else if (qh
->qh_state
== QH_STATE_LINKED
||
5476 qh
->qh_state
== QH_STATE_COMPLETING
) {
5478 /* The toggle value in the QH can't be updated
5479 * while the QH is active. Unlink it now;
5480 * re-linking will call qh_refresh().
5482 if (eptype
== USB_ENDPOINT_XFER_BULK
)
5483 start_unlink_async(fotg210
, qh
);
5485 start_unlink_intr(fotg210
, qh
);
5488 spin_unlock_irqrestore(&fotg210
->lock
, flags
);
5491 static int fotg210_get_frame(struct usb_hcd
*hcd
)
5493 struct fotg210_hcd
*fotg210
= hcd_to_fotg210(hcd
);
5495 return (fotg210_read_frame_index(fotg210
) >> 3) %
5496 fotg210
->periodic_size
;
5499 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5500 * because its registers (and irq) are shared between host/gadget/otg
5501 * functions and in order to facilitate role switching we cannot
5502 * give the fotg210 driver exclusive access to those.
5504 MODULE_DESCRIPTION(DRIVER_DESC
);
5505 MODULE_AUTHOR(DRIVER_AUTHOR
);
5506 MODULE_LICENSE("GPL");
5508 static const struct hc_driver fotg210_fotg210_hc_driver
= {
5509 .description
= hcd_name
,
5510 .product_desc
= "Faraday USB2.0 Host Controller",
5511 .hcd_priv_size
= sizeof(struct fotg210_hcd
),
5514 * generic hardware linkage
5517 .flags
= HCD_MEMORY
| HCD_USB2
,
5520 * basic lifecycle operations
5522 .reset
= hcd_fotg210_init
,
5523 .start
= fotg210_run
,
5524 .stop
= fotg210_stop
,
5525 .shutdown
= fotg210_shutdown
,
5528 * managing i/o requests and associated device resources
5530 .urb_enqueue
= fotg210_urb_enqueue
,
5531 .urb_dequeue
= fotg210_urb_dequeue
,
5532 .endpoint_disable
= fotg210_endpoint_disable
,
5533 .endpoint_reset
= fotg210_endpoint_reset
,
5536 * scheduling support
5538 .get_frame_number
= fotg210_get_frame
,
5543 .hub_status_data
= fotg210_hub_status_data
,
5544 .hub_control
= fotg210_hub_control
,
5545 .bus_suspend
= fotg210_bus_suspend
,
5546 .bus_resume
= fotg210_bus_resume
,
5548 .relinquish_port
= fotg210_relinquish_port
,
5549 .port_handed_over
= fotg210_port_handed_over
,
5551 .clear_tt_buffer_complete
= fotg210_clear_tt_buffer_complete
,
5554 static void fotg210_init(struct fotg210_hcd
*fotg210
)
5558 iowrite32(GMIR_MDEV_INT
| GMIR_MOTG_INT
| GMIR_INT_POLARITY
,
5559 &fotg210
->regs
->gmir
);
5561 value
= ioread32(&fotg210
->regs
->otgcsr
);
5562 value
&= ~OTGCSR_A_BUS_DROP
;
5563 value
|= OTGCSR_A_BUS_REQ
;
5564 iowrite32(value
, &fotg210
->regs
->otgcsr
);
5568 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5570 * Allocates basic resources for this USB host controller, and
5571 * then invokes the start() method for the HCD associated with it
5572 * through the hotplug entry's driver_data.
5574 static int fotg210_hcd_probe(struct platform_device
*pdev
)
5576 struct device
*dev
= &pdev
->dev
;
5577 struct usb_hcd
*hcd
;
5578 struct resource
*res
;
5580 int retval
= -ENODEV
;
5581 struct fotg210_hcd
*fotg210
;
5586 pdev
->dev
.power
.power_state
= PMSG_ON
;
5588 res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, 0);
5590 dev_err(dev
, "Found HC with no IRQ. Check %s setup!\n",
5597 hcd
= usb_create_hcd(&fotg210_fotg210_hc_driver
, dev
,
5600 dev_err(dev
, "failed to create hcd with err %d\n", retval
);
5602 goto fail_create_hcd
;
5607 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
5608 hcd
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
5609 if (IS_ERR(hcd
->regs
)) {
5610 retval
= PTR_ERR(hcd
->regs
);
5614 hcd
->rsrc_start
= res
->start
;
5615 hcd
->rsrc_len
= resource_size(res
);
5617 fotg210
= hcd_to_fotg210(hcd
);
5619 fotg210
->caps
= hcd
->regs
;
5621 retval
= fotg210_setup(hcd
);
5625 fotg210_init(fotg210
);
5627 retval
= usb_add_hcd(hcd
, irq
, IRQF_SHARED
);
5629 dev_err(dev
, "failed to add hcd with err %d\n", retval
);
5632 device_wakeup_enable(hcd
->self
.controller
);
5639 dev_err(dev
, "init %s fail, %d\n", dev_name(dev
), retval
);
5644 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5645 * @dev: USB Host Controller being removed
5648 static int fotg210_hcd_remove(struct platform_device
*pdev
)
5650 struct device
*dev
= &pdev
->dev
;
5651 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
5656 usb_remove_hcd(hcd
);
5662 static struct platform_driver fotg210_hcd_driver
= {
5664 .name
= "fotg210-hcd",
5666 .probe
= fotg210_hcd_probe
,
5667 .remove
= fotg210_hcd_remove
,
5670 static int __init
fotg210_hcd_init(void)
5677 pr_info("%s: " DRIVER_DESC
"\n", hcd_name
);
5678 set_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5679 if (test_bit(USB_UHCI_LOADED
, &usb_hcds_loaded
) ||
5680 test_bit(USB_OHCI_LOADED
, &usb_hcds_loaded
))
5681 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5683 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5684 hcd_name
, sizeof(struct fotg210_qh
),
5685 sizeof(struct fotg210_qtd
),
5686 sizeof(struct fotg210_itd
));
5688 fotg210_debug_root
= debugfs_create_dir("fotg210", usb_debug_root
);
5689 if (!fotg210_debug_root
) {
5694 retval
= platform_driver_register(&fotg210_hcd_driver
);
5700 debugfs_remove(fotg210_debug_root
);
5701 fotg210_debug_root
= NULL
;
5703 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5706 module_init(fotg210_hcd_init
);
5708 static void __exit
fotg210_hcd_cleanup(void)
5710 platform_driver_unregister(&fotg210_hcd_driver
);
5711 debugfs_remove(fotg210_debug_root
);
5712 clear_bit(USB_EHCI_LOADED
, &usb_hcds_loaded
);
5714 module_exit(fotg210_hcd_cleanup
);