2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
58 #include <linux/of_graph.h>
59 #include <video/of_display_timing.h>
60 #include <video/videomode.h>
62 #include <mach/hardware.h>
65 #include <asm/div64.h>
66 #include <mach/bitfield.h>
67 #include <linux/platform_data/video-pxafb.h>
70 * Complain if VAR is out of range.
76 /* Bits which should not be set in machine configuration structures */
77 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
78 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
79 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
81 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
82 LCCR3_PCD | LCCR3_BPP(0xf))
84 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
86 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
87 static void setup_base_frame(struct pxafb_info
*fbi
,
88 struct fb_var_screeninfo
*var
, int branch
);
89 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
90 unsigned long offset
, size_t size
);
92 static unsigned long video_mem_size
= 0;
94 static inline unsigned long
95 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
97 return __raw_readl(fbi
->mmio_base
+ off
);
101 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
103 __raw_writel(val
, fbi
->mmio_base
+ off
);
106 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
110 local_irq_save(flags
);
112 * We need to handle two requests being made at the same time.
113 * There are two important cases:
114 * 1. When we are changing VT (C_REENABLE) while unblanking
115 * (C_ENABLE) We must perform the unblanking, which will
116 * do our REENABLE for us.
117 * 2. When we are blanking, but immediately unblank before
118 * we have blanked. We do the "REENABLE" thing here as
119 * well, just to be sure.
121 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
123 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
126 if (state
!= (u_int
)-1) {
127 fbi
->task_state
= state
;
128 schedule_work(&fbi
->task
);
130 local_irq_restore(flags
);
133 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
136 chan
>>= 16 - bf
->length
;
137 return chan
<< bf
->offset
;
141 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
142 u_int trans
, struct fb_info
*info
)
144 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
147 if (regno
>= fbi
->palette_size
)
150 if (fbi
->fb
.var
.grayscale
) {
151 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
155 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
156 case LCCR4_PAL_FOR_0
:
157 val
= ((red
>> 0) & 0xf800);
158 val
|= ((green
>> 5) & 0x07e0);
159 val
|= ((blue
>> 11) & 0x001f);
160 fbi
->palette_cpu
[regno
] = val
;
162 case LCCR4_PAL_FOR_1
:
163 val
= ((red
<< 8) & 0x00f80000);
164 val
|= ((green
>> 0) & 0x0000fc00);
165 val
|= ((blue
>> 8) & 0x000000f8);
166 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
168 case LCCR4_PAL_FOR_2
:
169 val
= ((red
<< 8) & 0x00fc0000);
170 val
|= ((green
>> 0) & 0x0000fc00);
171 val
|= ((blue
>> 8) & 0x000000fc);
172 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
174 case LCCR4_PAL_FOR_3
:
175 val
= ((red
<< 8) & 0x00ff0000);
176 val
|= ((green
>> 0) & 0x0000ff00);
177 val
|= ((blue
>> 8) & 0x000000ff);
178 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
186 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
187 u_int trans
, struct fb_info
*info
)
189 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
194 * If inverse mode was selected, invert all the colours
195 * rather than the register number. The register number
196 * is what you poke into the framebuffer to produce the
197 * colour you requested.
199 if (fbi
->cmap_inverse
) {
201 green
= 0xffff - green
;
202 blue
= 0xffff - blue
;
206 * If greyscale is true, then we convert the RGB value
207 * to greyscale no matter what visual we are using.
209 if (fbi
->fb
.var
.grayscale
)
210 red
= green
= blue
= (19595 * red
+ 38470 * green
+
213 switch (fbi
->fb
.fix
.visual
) {
214 case FB_VISUAL_TRUECOLOR
:
216 * 16-bit True Colour. We encode the RGB value
217 * according to the RGB bitfield information.
220 u32
*pal
= fbi
->fb
.pseudo_palette
;
222 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
223 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
224 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
231 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
232 case FB_VISUAL_PSEUDOCOLOR
:
233 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
240 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
241 static inline int var_to_depth(struct fb_var_screeninfo
*var
)
243 return var
->red
.length
+ var
->green
.length
+
244 var
->blue
.length
+ var
->transp
.length
;
247 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
248 static int pxafb_var_to_bpp(struct fb_var_screeninfo
*var
)
252 switch (var
->bits_per_pixel
) {
253 case 1: bpp
= 0; break;
254 case 2: bpp
= 1; break;
255 case 4: bpp
= 2; break;
256 case 8: bpp
= 3; break;
257 case 16: bpp
= 4; break;
259 switch (var_to_depth(var
)) {
260 case 18: bpp
= 6; break; /* 18-bits/pixel packed */
261 case 19: bpp
= 8; break; /* 19-bits/pixel packed */
262 case 24: bpp
= 9; break;
266 switch (var_to_depth(var
)) {
267 case 18: bpp
= 5; break; /* 18-bits/pixel unpacked */
268 case 19: bpp
= 7; break; /* 19-bits/pixel unpacked */
269 case 25: bpp
= 10; break;
277 * pxafb_var_to_lccr3():
278 * Convert a bits per pixel value to the correct bit pattern for LCCR3
280 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
281 * implication of the acutal use of transparency bit, which we handle it
282 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
283 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
285 * Transparency for palette pixel formats is not supported at the moment.
287 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo
*var
)
289 int bpp
= pxafb_var_to_bpp(var
);
295 lccr3
= LCCR3_BPP(bpp
);
297 switch (var_to_depth(var
)) {
298 case 16: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_3
: 0; break;
299 case 18: lccr3
|= LCCR3_PDFOR_3
; break;
300 case 24: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_2
: LCCR3_PDFOR_3
;
303 case 25: lccr3
|= LCCR3_PDFOR_0
; break;
308 #define SET_PIXFMT(v, r, g, b, t) \
310 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
311 (v)->transp.length = (t) ? (t) : 0; \
312 (v)->blue.length = (b); (v)->blue.offset = 0; \
313 (v)->green.length = (g); (v)->green.offset = (b); \
314 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
317 /* set the RGBT bitfields of fb_var_screeninf according to
318 * var->bits_per_pixel and given depth
320 static void pxafb_set_pixfmt(struct fb_var_screeninfo
*var
, int depth
)
323 depth
= var
->bits_per_pixel
;
325 if (var
->bits_per_pixel
< 16) {
326 /* indexed pixel formats */
327 var
->red
.offset
= 0; var
->red
.length
= 8;
328 var
->green
.offset
= 0; var
->green
.length
= 8;
329 var
->blue
.offset
= 0; var
->blue
.length
= 8;
330 var
->transp
.offset
= 0; var
->transp
.length
= 8;
334 case 16: var
->transp
.length
?
335 SET_PIXFMT(var
, 5, 5, 5, 1) : /* RGBT555 */
336 SET_PIXFMT(var
, 5, 6, 5, 0); break; /* RGB565 */
337 case 18: SET_PIXFMT(var
, 6, 6, 6, 0); break; /* RGB666 */
338 case 19: SET_PIXFMT(var
, 6, 6, 6, 1); break; /* RGBT666 */
339 case 24: var
->transp
.length
?
340 SET_PIXFMT(var
, 8, 8, 7, 1) : /* RGBT887 */
341 SET_PIXFMT(var
, 8, 8, 8, 0); break; /* RGB888 */
342 case 25: SET_PIXFMT(var
, 8, 8, 8, 1); break; /* RGBT888 */
346 #ifdef CONFIG_CPU_FREQ
348 * pxafb_display_dma_period()
349 * Calculate the minimum period (in picoseconds) between two DMA
350 * requests for the LCD controller. If we hit this, it means we're
351 * doing nothing but LCD DMA.
353 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
356 * Period = pixclock * bits_per_byte * bytes_per_transfer
357 * / memory_bits_per_pixel;
359 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
364 * Select the smallest mode that allows the desired resolution to be
365 * displayed. If desired parameters can be rounded up.
367 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
368 struct fb_var_screeninfo
*var
)
370 struct pxafb_mode_info
*mode
= NULL
;
371 struct pxafb_mode_info
*modelist
= mach
->modes
;
372 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
375 for (i
= 0; i
< mach
->num_modes
; i
++) {
376 if (modelist
[i
].xres
>= var
->xres
&&
377 modelist
[i
].yres
>= var
->yres
&&
378 modelist
[i
].xres
< best_x
&&
379 modelist
[i
].yres
< best_y
&&
380 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
381 best_x
= modelist
[i
].xres
;
382 best_y
= modelist
[i
].yres
;
390 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
391 struct pxafb_mode_info
*mode
)
393 var
->xres
= mode
->xres
;
394 var
->yres
= mode
->yres
;
395 var
->bits_per_pixel
= mode
->bpp
;
396 var
->pixclock
= mode
->pixclock
;
397 var
->hsync_len
= mode
->hsync_len
;
398 var
->left_margin
= mode
->left_margin
;
399 var
->right_margin
= mode
->right_margin
;
400 var
->vsync_len
= mode
->vsync_len
;
401 var
->upper_margin
= mode
->upper_margin
;
402 var
->lower_margin
= mode
->lower_margin
;
403 var
->sync
= mode
->sync
;
404 var
->grayscale
= mode
->cmap_greyscale
;
405 var
->transp
.length
= mode
->transparency
;
407 /* set the initial RGBA bitfields */
408 pxafb_set_pixfmt(var
, mode
->depth
);
411 static int pxafb_adjust_timing(struct pxafb_info
*fbi
,
412 struct fb_var_screeninfo
*var
)
416 var
->xres
= max_t(int, var
->xres
, MIN_XRES
);
417 var
->yres
= max_t(int, var
->yres
, MIN_YRES
);
419 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
420 clamp_val(var
->hsync_len
, 1, 64);
421 clamp_val(var
->vsync_len
, 1, 64);
422 clamp_val(var
->left_margin
, 1, 255);
423 clamp_val(var
->right_margin
, 1, 255);
424 clamp_val(var
->upper_margin
, 1, 255);
425 clamp_val(var
->lower_margin
, 1, 255);
428 /* make sure each line is aligned on word boundary */
429 line_length
= var
->xres
* var
->bits_per_pixel
/ 8;
430 line_length
= ALIGN(line_length
, 4);
431 var
->xres
= line_length
* 8 / var
->bits_per_pixel
;
433 /* we don't support xpan, force xres_virtual to be equal to xres */
434 var
->xres_virtual
= var
->xres
;
436 if (var
->accel_flags
& FB_ACCELF_TEXT
)
437 var
->yres_virtual
= fbi
->fb
.fix
.smem_len
/ line_length
;
439 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
441 /* check for limits */
442 if (var
->xres
> MAX_XRES
|| var
->yres
> MAX_YRES
)
445 if (var
->yres
> var
->yres_virtual
)
453 * Get the video params out of 'var'. If a value doesn't fit, round it up,
454 * if it's too big, return -EINVAL.
456 * Round up in the following order: bits_per_pixel, xres,
457 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
458 * bitfields, horizontal timing, vertical timing.
460 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
462 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
463 struct pxafb_mach_info
*inf
= fbi
->inf
;
466 if (inf
->fixed_modes
) {
467 struct pxafb_mode_info
*mode
;
469 mode
= pxafb_getmode(inf
, var
);
472 pxafb_setmode(var
, mode
);
475 /* do a test conversion to BPP fields to check the color formats */
476 err
= pxafb_var_to_bpp(var
);
480 pxafb_set_pixfmt(var
, var_to_depth(var
));
482 err
= pxafb_adjust_timing(fbi
, var
);
486 #ifdef CONFIG_CPU_FREQ
487 pr_debug("pxafb: dma period = %d ps\n",
488 pxafb_display_dma_period(var
));
496 * Set the user defined part of the display for the specified console
498 static int pxafb_set_par(struct fb_info
*info
)
500 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
501 struct fb_var_screeninfo
*var
= &info
->var
;
503 if (var
->bits_per_pixel
>= 16)
504 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
505 else if (!fbi
->cmap_static
)
506 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
509 * Some people have weird ideas about wanting static
510 * pseudocolor maps. I suspect their user space
511 * applications are broken.
513 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
516 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
517 var
->bits_per_pixel
/ 8;
518 if (var
->bits_per_pixel
>= 16)
519 fbi
->palette_size
= 0;
521 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
522 4 : 1 << var
->bits_per_pixel
;
524 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
526 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
527 fb_dealloc_cmap(&fbi
->fb
.cmap
);
529 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
531 pxafb_activate_var(var
, fbi
);
536 static int pxafb_pan_display(struct fb_var_screeninfo
*var
,
537 struct fb_info
*info
)
539 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
540 struct fb_var_screeninfo newvar
;
541 int dma
= DMA_MAX
+ DMA_BASE
;
543 if (fbi
->state
!= C_ENABLE
)
546 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
547 * was passed in and copy the rest from the old screeninfo.
549 memcpy(&newvar
, &fbi
->fb
.var
, sizeof(newvar
));
550 newvar
.xoffset
= var
->xoffset
;
551 newvar
.yoffset
= var
->yoffset
;
552 newvar
.vmode
&= ~FB_VMODE_YWRAP
;
553 newvar
.vmode
|= var
->vmode
& FB_VMODE_YWRAP
;
555 setup_base_frame(fbi
, &newvar
, 1);
557 if (fbi
->lccr0
& LCCR0_SDS
)
558 lcd_writel(fbi
, FBR1
, fbi
->fdadr
[dma
+ 1] | 0x1);
560 lcd_writel(fbi
, FBR0
, fbi
->fdadr
[dma
] | 0x1);
566 * Blank the display by setting all palette values to zero. Note, the
567 * 16 bpp mode does not really use the palette, so this will not
568 * blank the display in all modes.
570 static int pxafb_blank(int blank
, struct fb_info
*info
)
572 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
576 case FB_BLANK_POWERDOWN
:
577 case FB_BLANK_VSYNC_SUSPEND
:
578 case FB_BLANK_HSYNC_SUSPEND
:
579 case FB_BLANK_NORMAL
:
580 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
581 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
582 for (i
= 0; i
< fbi
->palette_size
; i
++)
583 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
585 pxafb_schedule_work(fbi
, C_DISABLE
);
586 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
589 case FB_BLANK_UNBLANK
:
590 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
591 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
592 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
593 fb_set_cmap(&fbi
->fb
.cmap
, info
);
594 pxafb_schedule_work(fbi
, C_ENABLE
);
599 static struct fb_ops pxafb_ops
= {
600 .owner
= THIS_MODULE
,
601 .fb_check_var
= pxafb_check_var
,
602 .fb_set_par
= pxafb_set_par
,
603 .fb_pan_display
= pxafb_pan_display
,
604 .fb_setcolreg
= pxafb_setcolreg
,
605 .fb_fillrect
= cfb_fillrect
,
606 .fb_copyarea
= cfb_copyarea
,
607 .fb_imageblit
= cfb_imageblit
,
608 .fb_blank
= pxafb_blank
,
611 #ifdef CONFIG_FB_PXA_OVERLAY
612 static void overlay1fb_setup(struct pxafb_layer
*ofb
)
614 int size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
615 unsigned long start
= ofb
->video_mem_phys
;
616 setup_frame_dma(ofb
->fbi
, DMA_OV1
, PAL_NONE
, start
, size
);
619 /* Depending on the enable status of overlay1/2, the DMA should be
620 * updated from FDADRx (when disabled) or FBRx (when enabled).
622 static void overlay1fb_enable(struct pxafb_layer
*ofb
)
624 int enabled
= lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
;
625 uint32_t fdadr1
= ofb
->fbi
->fdadr
[DMA_OV1
] | (enabled
? 0x1 : 0);
627 lcd_writel(ofb
->fbi
, enabled
? FBR1
: FDADR1
, fdadr1
);
628 lcd_writel(ofb
->fbi
, OVL1C2
, ofb
->control
[1]);
629 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] | OVLxC1_OEN
);
632 static void overlay1fb_disable(struct pxafb_layer
*ofb
)
636 if (!(lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
))
639 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
641 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
643 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(1));
644 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(1));
645 lcd_writel(ofb
->fbi
, FBR1
, ofb
->fbi
->fdadr
[DMA_OV1
] | 0x3);
647 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
648 pr_warn("%s: timeout disabling overlay1\n", __func__
);
650 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
);
653 static void overlay2fb_setup(struct pxafb_layer
*ofb
)
655 int size
, div
= 1, pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
656 unsigned long start
[3] = { ofb
->video_mem_phys
, 0, 0 };
658 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
) {
659 size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
660 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
662 size
= ofb
->fb
.var
.xres_virtual
* ofb
->fb
.var
.yres_virtual
;
664 case OVERLAY_FORMAT_YUV444_PLANAR
: div
= 1; break;
665 case OVERLAY_FORMAT_YUV422_PLANAR
: div
= 2; break;
666 case OVERLAY_FORMAT_YUV420_PLANAR
: div
= 4; break;
668 start
[1] = start
[0] + size
;
669 start
[2] = start
[1] + size
/ div
;
670 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
671 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cb
, -1, start
[1], size
/ div
);
672 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cr
, -1, start
[2], size
/ div
);
676 static void overlay2fb_enable(struct pxafb_layer
*ofb
)
678 int pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
679 int enabled
= lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
;
680 uint32_t fdadr2
= ofb
->fbi
->fdadr
[DMA_OV2_Y
] | (enabled
? 0x1 : 0);
681 uint32_t fdadr3
= ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | (enabled
? 0x1 : 0);
682 uint32_t fdadr4
= ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | (enabled
? 0x1 : 0);
684 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
)
685 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
687 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
688 lcd_writel(ofb
->fbi
, enabled
? FBR3
: FDADR3
, fdadr3
);
689 lcd_writel(ofb
->fbi
, enabled
? FBR4
: FDADR4
, fdadr4
);
691 lcd_writel(ofb
->fbi
, OVL2C2
, ofb
->control
[1]);
692 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] | OVLxC1_OEN
);
695 static void overlay2fb_disable(struct pxafb_layer
*ofb
)
699 if (!(lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
))
702 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
704 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
706 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(2));
707 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(2));
708 lcd_writel(ofb
->fbi
, FBR2
, ofb
->fbi
->fdadr
[DMA_OV2_Y
] | 0x3);
709 lcd_writel(ofb
->fbi
, FBR3
, ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | 0x3);
710 lcd_writel(ofb
->fbi
, FBR4
, ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | 0x3);
712 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
713 pr_warn("%s: timeout disabling overlay2\n", __func__
);
716 static struct pxafb_layer_ops ofb_ops
[] = {
718 .enable
= overlay1fb_enable
,
719 .disable
= overlay1fb_disable
,
720 .setup
= overlay1fb_setup
,
723 .enable
= overlay2fb_enable
,
724 .disable
= overlay2fb_disable
,
725 .setup
= overlay2fb_setup
,
729 static int overlayfb_open(struct fb_info
*info
, int user
)
731 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
733 /* no support for framebuffer console on overlay */
737 if (ofb
->usage
++ == 0) {
738 /* unblank the base framebuffer */
740 fb_blank(&ofb
->fbi
->fb
, FB_BLANK_UNBLANK
);
747 static int overlayfb_release(struct fb_info
*info
, int user
)
749 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
751 if (ofb
->usage
== 1) {
752 ofb
->ops
->disable(ofb
);
753 ofb
->fb
.var
.height
= -1;
754 ofb
->fb
.var
.width
= -1;
755 ofb
->fb
.var
.xres
= ofb
->fb
.var
.xres_virtual
= 0;
756 ofb
->fb
.var
.yres
= ofb
->fb
.var
.yres_virtual
= 0;
763 static int overlayfb_check_var(struct fb_var_screeninfo
*var
,
764 struct fb_info
*info
)
766 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
767 struct fb_var_screeninfo
*base_var
= &ofb
->fbi
->fb
.var
;
768 int xpos
, ypos
, pfor
, bpp
;
770 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
771 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
772 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
774 bpp
= pxafb_var_to_bpp(var
);
778 /* no support for YUV format on overlay1 */
779 if (ofb
->id
== OVERLAY1
&& pfor
!= 0)
782 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
784 case OVERLAY_FORMAT_RGB
:
785 bpp
= pxafb_var_to_bpp(var
);
789 pxafb_set_pixfmt(var
, var_to_depth(var
));
791 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
792 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 8; break;
793 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 4; break;
794 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 2; break;
799 /* each line must start at a 32-bit word boundary */
800 if ((xpos
* bpp
) % 32)
803 /* xres must align on 32-bit word boundary */
804 var
->xres
= roundup(var
->xres
* bpp
, 32) / bpp
;
806 if ((xpos
+ var
->xres
> base_var
->xres
) ||
807 (ypos
+ var
->yres
> base_var
->yres
))
810 var
->xres_virtual
= var
->xres
;
811 var
->yres_virtual
= max(var
->yres
, var
->yres_virtual
);
815 static int overlayfb_check_video_memory(struct pxafb_layer
*ofb
)
817 struct fb_var_screeninfo
*var
= &ofb
->fb
.var
;
818 int pfor
= NONSTD_TO_PFOR(var
->nonstd
);
822 case OVERLAY_FORMAT_RGB
: bpp
= var
->bits_per_pixel
; break;
823 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
824 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 24; break;
825 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 16; break;
826 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 12; break;
829 ofb
->fb
.fix
.line_length
= var
->xres_virtual
* bpp
/ 8;
831 size
= PAGE_ALIGN(ofb
->fb
.fix
.line_length
* var
->yres_virtual
);
833 if (ofb
->video_mem
) {
834 if (ofb
->video_mem_size
>= size
)
840 static int overlayfb_set_par(struct fb_info
*info
)
842 struct pxafb_layer
*ofb
= container_of(info
, struct pxafb_layer
, fb
);
843 struct fb_var_screeninfo
*var
= &info
->var
;
844 int xpos
, ypos
, pfor
, bpp
, ret
;
846 ret
= overlayfb_check_video_memory(ofb
);
850 bpp
= pxafb_var_to_bpp(var
);
851 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
852 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
853 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
855 ofb
->control
[0] = OVLxC1_PPL(var
->xres
) | OVLxC1_LPO(var
->yres
) |
857 ofb
->control
[1] = OVLxC2_XPOS(xpos
) | OVLxC2_YPOS(ypos
);
859 if (ofb
->id
== OVERLAY2
)
860 ofb
->control
[1] |= OVL2C2_PFOR(pfor
);
862 ofb
->ops
->setup(ofb
);
863 ofb
->ops
->enable(ofb
);
867 static struct fb_ops overlay_fb_ops
= {
868 .owner
= THIS_MODULE
,
869 .fb_open
= overlayfb_open
,
870 .fb_release
= overlayfb_release
,
871 .fb_check_var
= overlayfb_check_var
,
872 .fb_set_par
= overlayfb_set_par
,
875 static void init_pxafb_overlay(struct pxafb_info
*fbi
, struct pxafb_layer
*ofb
,
878 sprintf(ofb
->fb
.fix
.id
, "overlay%d", id
+ 1);
880 ofb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
881 ofb
->fb
.fix
.xpanstep
= 0;
882 ofb
->fb
.fix
.ypanstep
= 1;
884 ofb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
885 ofb
->fb
.var
.height
= -1;
886 ofb
->fb
.var
.width
= -1;
887 ofb
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
889 ofb
->fb
.fbops
= &overlay_fb_ops
;
890 ofb
->fb
.flags
= FBINFO_FLAG_DEFAULT
;
892 ofb
->fb
.pseudo_palette
= NULL
;
895 ofb
->ops
= &ofb_ops
[id
];
898 init_completion(&ofb
->branch_done
);
901 static inline int pxafb_overlay_supported(void)
903 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
909 static int pxafb_overlay_map_video_memory(struct pxafb_info
*pxafb
,
910 struct pxafb_layer
*ofb
)
912 /* We assume that user will use at most video_mem_size for overlay fb,
913 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
915 ofb
->video_mem
= alloc_pages_exact(PAGE_ALIGN(pxafb
->video_mem_size
),
916 GFP_KERNEL
| __GFP_ZERO
);
917 if (ofb
->video_mem
== NULL
)
920 ofb
->video_mem_phys
= virt_to_phys(ofb
->video_mem
);
921 ofb
->video_mem_size
= PAGE_ALIGN(pxafb
->video_mem_size
);
923 mutex_lock(&ofb
->fb
.mm_lock
);
924 ofb
->fb
.fix
.smem_start
= ofb
->video_mem_phys
;
925 ofb
->fb
.fix
.smem_len
= pxafb
->video_mem_size
;
926 mutex_unlock(&ofb
->fb
.mm_lock
);
928 ofb
->fb
.screen_base
= ofb
->video_mem
;
933 static void pxafb_overlay_init(struct pxafb_info
*fbi
)
937 if (!pxafb_overlay_supported())
940 for (i
= 0; i
< 2; i
++) {
941 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
942 init_pxafb_overlay(fbi
, ofb
, i
);
943 ret
= register_framebuffer(&ofb
->fb
);
945 dev_err(fbi
->dev
, "failed to register overlay %d\n", i
);
948 ret
= pxafb_overlay_map_video_memory(fbi
, ofb
);
951 "failed to map video memory for overlay %d\n",
953 unregister_framebuffer(&ofb
->fb
);
959 /* mask all IU/BS/EOF/SOF interrupts */
960 lcd_writel(fbi
, LCCR5
, ~0);
962 pr_info("PXA Overlay driver loaded successfully!\n");
965 static void pxafb_overlay_exit(struct pxafb_info
*fbi
)
969 if (!pxafb_overlay_supported())
972 for (i
= 0; i
< 2; i
++) {
973 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
974 if (ofb
->registered
) {
976 free_pages_exact(ofb
->video_mem
,
977 ofb
->video_mem_size
);
978 unregister_framebuffer(&ofb
->fb
);
983 static inline void pxafb_overlay_init(struct pxafb_info
*fbi
) {}
984 static inline void pxafb_overlay_exit(struct pxafb_info
*fbi
) {}
985 #endif /* CONFIG_FB_PXA_OVERLAY */
988 * Calculate the PCD value from the clock rate (in picoseconds).
989 * We take account of the PPCR clock setting.
990 * From PXA Developer's Manual:
1001 * LCLK = LCD/Memory Clock
1004 * PixelClock here is in Hz while the pixclock argument given is the
1005 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1007 * The function get_lclk_frequency_10khz returns LCLK in units of
1008 * 10khz. Calling the result of this function lclk gives us the
1011 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1012 * -------------------------------------- - 1
1015 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1017 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
1018 unsigned int pixclock
)
1020 unsigned long long pcd
;
1022 /* FIXME: Need to take into account Double Pixel Clock mode
1023 * (DPC) bit? or perhaps set it based on the various clock
1025 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
1027 do_div(pcd
, 100000000 * 2);
1028 /* no need for this, since we should subtract 1 anyway. they cancel */
1029 /* pcd += 1; */ /* make up for integer math truncations */
1030 return (unsigned int)pcd
;
1034 * Some touchscreens need hsync information from the video driver to
1035 * function correctly. We export it here. Note that 'hsync_time' and
1036 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1037 * of the hsync period in seconds.
1039 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
1041 unsigned long htime
;
1043 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
1044 fbi
->hsync_time
= 0;
1048 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
1050 fbi
->hsync_time
= htime
;
1053 unsigned long pxafb_get_hsync_time(struct device
*dev
)
1055 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1057 /* If display is blanked/suspended, hsync isn't active */
1058 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
1061 return fbi
->hsync_time
;
1063 EXPORT_SYMBOL(pxafb_get_hsync_time
);
1065 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
1066 unsigned long start
, size_t size
)
1068 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
1069 unsigned int dma_desc_off
, pal_desc_off
;
1071 if (dma
< 0 || dma
>= DMA_MAX
* 2)
1074 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
1075 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
1077 dma_desc
->fsadr
= start
;
1079 dma_desc
->ldcmd
= size
;
1081 if (pal
< 0 || pal
>= PAL_MAX
* 2) {
1082 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1083 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1085 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
1086 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
1088 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
1091 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
1092 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
1094 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
1096 pal_desc
->ldcmd
|= LDCMD_PAL
;
1098 /* flip back and forth between palette and frame buffer */
1099 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1100 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
1101 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1107 static void setup_base_frame(struct pxafb_info
*fbi
,
1108 struct fb_var_screeninfo
*var
,
1111 struct fb_fix_screeninfo
*fix
= &fbi
->fb
.fix
;
1112 int nbytes
, dma
, pal
, bpp
= var
->bits_per_pixel
;
1113 unsigned long offset
;
1115 dma
= DMA_BASE
+ (branch
? DMA_MAX
: 0);
1116 pal
= (bpp
>= 16) ? PAL_NONE
: PAL_BASE
+ (branch
? PAL_MAX
: 0);
1118 nbytes
= fix
->line_length
* var
->yres
;
1119 offset
= fix
->line_length
* var
->yoffset
+ fbi
->video_mem_phys
;
1121 if (fbi
->lccr0
& LCCR0_SDS
) {
1122 nbytes
= nbytes
/ 2;
1123 setup_frame_dma(fbi
, dma
+ 1, PAL_NONE
, offset
+ nbytes
, nbytes
);
1126 setup_frame_dma(fbi
, dma
, pal
, offset
, nbytes
);
1129 #ifdef CONFIG_FB_PXA_SMARTPANEL
1130 static int setup_smart_dma(struct pxafb_info
*fbi
)
1132 struct pxafb_dma_descriptor
*dma_desc
;
1133 unsigned long dma_desc_off
, cmd_buff_off
;
1135 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
1136 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
1137 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
1139 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1140 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
1142 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
1144 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
1148 int pxafb_smart_flush(struct fb_info
*info
)
1150 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1154 /* disable controller until all registers are set up */
1155 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1157 /* 1. make it an even number of commands to align on 32-bit boundary
1158 * 2. add the interrupt command to the end of the chain so we can
1159 * keep track of the end of the transfer
1162 while (fbi
->n_smart_cmds
& 1)
1163 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
1165 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
1166 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
1167 setup_smart_dma(fbi
);
1169 /* continue to execute next command */
1170 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
1171 lcd_writel(fbi
, PRSR
, prsr
);
1173 /* stop the processor in case it executed "wait for sync" cmd */
1174 lcd_writel(fbi
, CMDCR
, 0x0001);
1176 /* don't send interrupts for fifo underruns on channel 6 */
1177 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
1179 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1180 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1181 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1182 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1183 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1184 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
1187 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1189 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
1190 pr_warn("%s: timeout waiting for command done\n", __func__
);
1195 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
1196 lcd_writel(fbi
, PRSR
, prsr
);
1197 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1198 lcd_writel(fbi
, FDADR6
, 0);
1199 fbi
->n_smart_cmds
= 0;
1203 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1206 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1208 for (i
= 0; i
< n_cmds
; i
++, cmds
++) {
1209 /* if it is a software delay, flush and delay */
1210 if ((*cmds
& 0xff00) == SMART_CMD_DELAY
) {
1211 pxafb_smart_flush(info
);
1212 mdelay(*cmds
& 0xff);
1216 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1217 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
1218 pxafb_smart_flush(info
);
1220 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
;
1226 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
1228 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
1229 return (t
== 0) ? 1 : t
;
1232 static void setup_smart_timing(struct pxafb_info
*fbi
,
1233 struct fb_var_screeninfo
*var
)
1235 struct pxafb_mach_info
*inf
= fbi
->inf
;
1236 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1237 unsigned long lclk
= clk_get_rate(fbi
->clk
);
1238 unsigned t1
, t2
, t3
, t4
;
1240 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
1241 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
1242 t3
= mode
->op_hold_time
;
1243 t4
= mode
->cmd_inh_time
;
1246 LCCR1_DisWdth(var
->xres
) |
1247 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
1248 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
1249 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
1251 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
1252 fbi
->reg_lccr3
= fbi
->lccr3
| LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
1253 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ? LCCR3_HSP
: 0;
1254 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ? LCCR3_VSP
: 0;
1256 /* FIXME: make this configurable */
1260 static int pxafb_smart_thread(void *arg
)
1262 struct pxafb_info
*fbi
= arg
;
1263 struct pxafb_mach_info
*inf
= fbi
->inf
;
1265 if (!inf
->smart_update
) {
1266 pr_err("%s: not properly initialized, thread terminated\n",
1271 pr_debug("%s(): task starting\n", __func__
);
1274 while (!kthread_should_stop()) {
1276 if (try_to_freeze())
1279 mutex_lock(&fbi
->ctrlr_lock
);
1281 if (fbi
->state
== C_ENABLE
) {
1282 inf
->smart_update(&fbi
->fb
);
1283 complete(&fbi
->refresh_done
);
1286 mutex_unlock(&fbi
->ctrlr_lock
);
1288 set_current_state(TASK_INTERRUPTIBLE
);
1289 schedule_timeout(msecs_to_jiffies(30));
1292 pr_debug("%s(): task ending\n", __func__
);
1296 static int pxafb_smart_init(struct pxafb_info
*fbi
)
1298 if (!(fbi
->lccr0
& LCCR0_LCDT
))
1301 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1302 fbi
->n_smart_cmds
= 0;
1304 init_completion(&fbi
->command_done
);
1305 init_completion(&fbi
->refresh_done
);
1307 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
1309 if (IS_ERR(fbi
->smart_thread
)) {
1310 pr_err("%s: unable to create kernel thread\n", __func__
);
1311 return PTR_ERR(fbi
->smart_thread
);
1317 static inline int pxafb_smart_init(struct pxafb_info
*fbi
) { return 0; }
1318 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1320 static void setup_parallel_timing(struct pxafb_info
*fbi
,
1321 struct fb_var_screeninfo
*var
)
1323 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
1326 LCCR1_DisWdth(var
->xres
) +
1327 LCCR1_HorSnchWdth(var
->hsync_len
) +
1328 LCCR1_BegLnDel(var
->left_margin
) +
1329 LCCR1_EndLnDel(var
->right_margin
);
1332 * If we have a dual scan LCD, we need to halve
1333 * the YRES parameter.
1335 lines_per_panel
= var
->yres
;
1336 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1337 lines_per_panel
/= 2;
1340 LCCR2_DisHght(lines_per_panel
) +
1341 LCCR2_VrtSnchWdth(var
->vsync_len
) +
1342 LCCR2_BegFrmDel(var
->upper_margin
) +
1343 LCCR2_EndFrmDel(var
->lower_margin
);
1345 fbi
->reg_lccr3
= fbi
->lccr3
|
1346 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
1347 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
1348 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
1349 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
1352 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
1353 set_hsync_time(fbi
, pcd
);
1358 * pxafb_activate_var():
1359 * Configures LCD Controller based on entries in var parameter.
1360 * Settings are only written to the controller if changes were made.
1362 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
1363 struct pxafb_info
*fbi
)
1367 /* Update shadow copy atomically */
1368 local_irq_save(flags
);
1370 #ifdef CONFIG_FB_PXA_SMARTPANEL
1371 if (fbi
->lccr0
& LCCR0_LCDT
)
1372 setup_smart_timing(fbi
, var
);
1375 setup_parallel_timing(fbi
, var
);
1377 setup_base_frame(fbi
, var
, 0);
1379 fbi
->reg_lccr0
= fbi
->lccr0
|
1380 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
1381 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
1383 fbi
->reg_lccr3
|= pxafb_var_to_lccr3(var
);
1385 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
1386 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
1387 local_irq_restore(flags
);
1390 * Only update the registers if the controller is enabled
1391 * and something has changed.
1393 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
1394 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
1395 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
1396 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
1397 (lcd_readl(fbi
, LCCR4
) != fbi
->reg_lccr4
) ||
1398 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
1399 ((fbi
->lccr0
& LCCR0_SDS
) &&
1400 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1])))
1401 pxafb_schedule_work(fbi
, C_REENABLE
);
1407 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1408 * Do not call them directly; set_ctrlr_state does the correct serialisation
1409 * to ensure that things happen in the right way 100% of time time.
1412 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
1414 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
1416 if (fbi
->backlight_power
)
1417 fbi
->backlight_power(on
);
1420 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
1422 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
1425 fbi
->lcd_power(on
, &fbi
->fb
.var
);
1428 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1430 pr_debug("pxafb: Enabling LCD controller\n");
1431 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1432 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1433 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1434 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1435 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1436 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1438 /* enable LCD controller clock */
1439 if (clk_prepare_enable(fbi
->clk
)) {
1440 pr_err("%s: Failed to prepare clock\n", __func__
);
1444 if (fbi
->lccr0
& LCCR0_LCDT
)
1447 /* Sequence from 11.7.10 */
1448 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1449 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1450 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1451 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1452 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1454 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1455 if (fbi
->lccr0
& LCCR0_SDS
)
1456 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1457 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1460 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1464 #ifdef CONFIG_FB_PXA_SMARTPANEL
1465 if (fbi
->lccr0
& LCCR0_LCDT
) {
1466 wait_for_completion_timeout(&fbi
->refresh_done
,
1467 msecs_to_jiffies(200));
1472 /* Clear LCD Status Register */
1473 lcd_writel(fbi
, LCSR
, 0xffffffff);
1475 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1476 lcd_writel(fbi
, LCCR0
, lccr0
);
1477 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1479 wait_for_completion_timeout(&fbi
->disable_done
, msecs_to_jiffies(200));
1481 /* disable LCD controller clock */
1482 clk_disable_unprepare(fbi
->clk
);
1486 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1488 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1490 struct pxafb_info
*fbi
= dev_id
;
1491 unsigned int lccr0
, lcsr
;
1493 lcsr
= lcd_readl(fbi
, LCSR
);
1494 if (lcsr
& LCSR_LDD
) {
1495 lccr0
= lcd_readl(fbi
, LCCR0
);
1496 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1497 complete(&fbi
->disable_done
);
1500 #ifdef CONFIG_FB_PXA_SMARTPANEL
1501 if (lcsr
& LCSR_CMD_INT
)
1502 complete(&fbi
->command_done
);
1504 lcd_writel(fbi
, LCSR
, lcsr
);
1506 #ifdef CONFIG_FB_PXA_OVERLAY
1508 unsigned int lcsr1
= lcd_readl(fbi
, LCSR1
);
1509 if (lcsr1
& LCSR1_BS(1))
1510 complete(&fbi
->overlay
[0].branch_done
);
1512 if (lcsr1
& LCSR1_BS(2))
1513 complete(&fbi
->overlay
[1].branch_done
);
1515 lcd_writel(fbi
, LCSR1
, lcsr1
);
1522 * This function must be called from task context only, since it will
1523 * sleep when disabling the LCD controller, or if we get two contending
1524 * processes trying to alter state.
1526 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1530 mutex_lock(&fbi
->ctrlr_lock
);
1532 old_state
= fbi
->state
;
1535 * Hack around fbcon initialisation.
1537 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1541 case C_DISABLE_CLKCHANGE
:
1543 * Disable controller for clock change. If the
1544 * controller is already disabled, then do nothing.
1546 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1548 /* TODO __pxafb_lcd_power(fbi, 0); */
1549 pxafb_disable_controller(fbi
);
1556 * Disable controller
1558 if (old_state
!= C_DISABLE
) {
1560 __pxafb_backlight_power(fbi
, 0);
1561 __pxafb_lcd_power(fbi
, 0);
1562 if (old_state
!= C_DISABLE_CLKCHANGE
)
1563 pxafb_disable_controller(fbi
);
1567 case C_ENABLE_CLKCHANGE
:
1569 * Enable the controller after clock change. Only
1570 * do this if we were disabled for the clock change.
1572 if (old_state
== C_DISABLE_CLKCHANGE
) {
1573 fbi
->state
= C_ENABLE
;
1574 pxafb_enable_controller(fbi
);
1575 /* TODO __pxafb_lcd_power(fbi, 1); */
1581 * Re-enable the controller only if it was already
1582 * enabled. This is so we reprogram the control
1585 if (old_state
== C_ENABLE
) {
1586 __pxafb_lcd_power(fbi
, 0);
1587 pxafb_disable_controller(fbi
);
1588 pxafb_enable_controller(fbi
);
1589 __pxafb_lcd_power(fbi
, 1);
1595 * Re-enable the controller after PM. This is not
1596 * perfect - think about the case where we were doing
1597 * a clock change, and we suspended half-way through.
1599 if (old_state
!= C_DISABLE_PM
)
1605 * Power up the LCD screen, enable controller, and
1606 * turn on the backlight.
1608 if (old_state
!= C_ENABLE
) {
1609 fbi
->state
= C_ENABLE
;
1610 pxafb_enable_controller(fbi
);
1611 __pxafb_lcd_power(fbi
, 1);
1612 __pxafb_backlight_power(fbi
, 1);
1616 mutex_unlock(&fbi
->ctrlr_lock
);
1620 * Our LCD controller task (which is called when we blank or unblank)
1623 static void pxafb_task(struct work_struct
*work
)
1625 struct pxafb_info
*fbi
=
1626 container_of(work
, struct pxafb_info
, task
);
1627 u_int state
= xchg(&fbi
->task_state
, -1);
1629 set_ctrlr_state(fbi
, state
);
1632 #ifdef CONFIG_CPU_FREQ
1634 * CPU clock speed change handler. We need to adjust the LCD timing
1635 * parameters when the CPU clock is adjusted by the power management
1638 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1641 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1643 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1644 /* TODO struct cpufreq_freqs *f = data; */
1648 case CPUFREQ_PRECHANGE
:
1649 #ifdef CONFIG_FB_PXA_OVERLAY
1650 if (!(fbi
->overlay
[0].usage
|| fbi
->overlay
[1].usage
))
1652 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1655 case CPUFREQ_POSTCHANGE
:
1656 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1657 set_hsync_time(fbi
, pcd
);
1658 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1659 LCCR3_PixClkDiv(pcd
);
1660 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1667 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1669 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1670 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1671 struct cpufreq_policy
*policy
= data
;
1674 case CPUFREQ_ADJUST
:
1675 pr_debug("min dma period: %d ps, "
1676 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1678 /* TODO: fill in min/max values */
1687 * Power management hooks. Note that we won't be called from IRQ context,
1688 * unlike the blank functions above, so we may sleep.
1690 static int pxafb_suspend(struct device
*dev
)
1692 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1694 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1698 static int pxafb_resume(struct device
*dev
)
1700 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1702 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1706 static const struct dev_pm_ops pxafb_pm_ops
= {
1707 .suspend
= pxafb_suspend
,
1708 .resume
= pxafb_resume
,
1712 static int pxafb_init_video_memory(struct pxafb_info
*fbi
)
1714 int size
= PAGE_ALIGN(fbi
->video_mem_size
);
1716 fbi
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
1717 if (fbi
->video_mem
== NULL
)
1720 fbi
->video_mem_phys
= virt_to_phys(fbi
->video_mem
);
1721 fbi
->video_mem_size
= size
;
1723 fbi
->fb
.fix
.smem_start
= fbi
->video_mem_phys
;
1724 fbi
->fb
.fix
.smem_len
= fbi
->video_mem_size
;
1725 fbi
->fb
.screen_base
= fbi
->video_mem
;
1727 return fbi
->video_mem
? 0 : -ENOMEM
;
1730 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1731 struct pxafb_mach_info
*inf
)
1733 unsigned int lcd_conn
= inf
->lcd_conn
;
1734 struct pxafb_mode_info
*m
;
1737 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1738 fbi
->cmap_static
= inf
->cmap_static
;
1739 fbi
->lccr4
= inf
->lccr4
;
1741 switch (lcd_conn
& LCD_TYPE_MASK
) {
1742 case LCD_TYPE_MONO_STN
:
1743 fbi
->lccr0
= LCCR0_CMS
;
1745 case LCD_TYPE_MONO_DSTN
:
1746 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1748 case LCD_TYPE_COLOR_STN
:
1751 case LCD_TYPE_COLOR_DSTN
:
1752 fbi
->lccr0
= LCCR0_SDS
;
1754 case LCD_TYPE_COLOR_TFT
:
1755 fbi
->lccr0
= LCCR0_PAS
;
1757 case LCD_TYPE_SMART_PANEL
:
1758 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1761 /* fall back to backward compatibility way */
1762 fbi
->lccr0
= inf
->lccr0
;
1763 fbi
->lccr3
= inf
->lccr3
;
1767 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1768 fbi
->lccr0
|= LCCR0_DPD
;
1770 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1772 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1773 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1774 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1777 pxafb_setmode(&fbi
->fb
.var
, &inf
->modes
[0]);
1779 /* decide video memory size as follows:
1780 * 1. default to mode of maximum resolution
1781 * 2. allow platform to override
1782 * 3. allow module parameter to override
1784 for (i
= 0, m
= &inf
->modes
[0]; i
< inf
->num_modes
; i
++, m
++)
1785 fbi
->video_mem_size
= max_t(size_t, fbi
->video_mem_size
,
1786 m
->xres
* m
->yres
* m
->bpp
/ 8);
1788 if (inf
->video_mem_size
> fbi
->video_mem_size
)
1789 fbi
->video_mem_size
= inf
->video_mem_size
;
1791 if (video_mem_size
> fbi
->video_mem_size
)
1792 fbi
->video_mem_size
= video_mem_size
;
1795 static struct pxafb_info
*pxafb_init_fbinfo(struct device
*dev
,
1796 struct pxafb_mach_info
*inf
)
1798 struct pxafb_info
*fbi
;
1801 /* Alloc the pxafb_info and pseudo_palette in one step */
1802 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1806 memset(fbi
, 0, sizeof(struct pxafb_info
));
1810 fbi
->clk
= clk_get(dev
, NULL
);
1811 if (IS_ERR(fbi
->clk
)) {
1816 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1818 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1819 fbi
->fb
.fix
.type_aux
= 0;
1820 fbi
->fb
.fix
.xpanstep
= 0;
1821 fbi
->fb
.fix
.ypanstep
= 1;
1822 fbi
->fb
.fix
.ywrapstep
= 0;
1823 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1825 fbi
->fb
.var
.nonstd
= 0;
1826 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1827 fbi
->fb
.var
.height
= -1;
1828 fbi
->fb
.var
.width
= -1;
1829 fbi
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1830 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1832 fbi
->fb
.fbops
= &pxafb_ops
;
1833 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1837 addr
= addr
+ sizeof(struct pxafb_info
);
1838 fbi
->fb
.pseudo_palette
= addr
;
1840 fbi
->state
= C_STARTUP
;
1841 fbi
->task_state
= (u_char
)-1;
1843 pxafb_decode_mach_info(fbi
, inf
);
1845 #ifdef CONFIG_FB_PXA_OVERLAY
1846 /* place overlay(s) on top of base */
1847 if (pxafb_overlay_supported())
1848 fbi
->lccr0
|= LCCR0_OUC
;
1851 init_waitqueue_head(&fbi
->ctrlr_wait
);
1852 INIT_WORK(&fbi
->task
, pxafb_task
);
1853 mutex_init(&fbi
->ctrlr_lock
);
1854 init_completion(&fbi
->disable_done
);
1859 #ifdef CONFIG_FB_PXA_PARAMETERS
1860 static int parse_opt_mode(struct device
*dev
, const char *this_opt
,
1861 struct pxafb_mach_info
*inf
)
1863 const char *name
= this_opt
+5;
1864 unsigned int namelen
= strlen(name
);
1865 int res_specified
= 0, bpp_specified
= 0;
1866 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1867 int yres_specified
= 0;
1869 for (i
= namelen
-1; i
>= 0; i
--) {
1873 if (!bpp_specified
&& !yres_specified
) {
1874 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1880 if (!yres_specified
) {
1881 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1892 if (i
< 0 && yres_specified
) {
1893 xres
= simple_strtoul(name
, NULL
, 0);
1897 if (res_specified
) {
1898 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1899 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1908 inf
->modes
[0].bpp
= bpp
;
1909 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1912 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1918 static int parse_opt(struct device
*dev
, char *this_opt
,
1919 struct pxafb_mach_info
*inf
)
1921 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1926 if (!strncmp(this_opt
, "vmem:", 5)) {
1927 video_mem_size
= memparse(this_opt
+ 5, NULL
);
1928 } else if (!strncmp(this_opt
, "mode:", 5)) {
1929 return parse_opt_mode(dev
, this_opt
, inf
);
1930 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1931 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1932 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1933 } else if (!strncmp(this_opt
, "left:", 5)) {
1934 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1935 sprintf(s
, "left: %u\n", mode
->left_margin
);
1936 } else if (!strncmp(this_opt
, "right:", 6)) {
1937 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1938 sprintf(s
, "right: %u\n", mode
->right_margin
);
1939 } else if (!strncmp(this_opt
, "upper:", 6)) {
1940 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1941 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1942 } else if (!strncmp(this_opt
, "lower:", 6)) {
1943 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1944 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1945 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1946 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1947 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1948 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1949 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1950 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1951 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1952 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1953 sprintf(s
, "hsync: Active Low\n");
1954 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1956 sprintf(s
, "hsync: Active High\n");
1957 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1959 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1960 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1961 sprintf(s
, "vsync: Active Low\n");
1962 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1964 sprintf(s
, "vsync: Active High\n");
1965 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1967 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1968 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1969 sprintf(s
, "double pixel clock: false\n");
1970 inf
->lccr3
&= ~LCCR3_DPC
;
1972 sprintf(s
, "double pixel clock: true\n");
1973 inf
->lccr3
|= LCCR3_DPC
;
1975 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1976 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1977 sprintf(s
, "output enable: active low\n");
1978 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1980 sprintf(s
, "output enable: active high\n");
1981 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1983 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1984 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1985 sprintf(s
, "pixel clock polarity: falling edge\n");
1986 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1988 sprintf(s
, "pixel clock polarity: rising edge\n");
1989 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1991 } else if (!strncmp(this_opt
, "color", 5)) {
1992 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1993 } else if (!strncmp(this_opt
, "mono", 4)) {
1994 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1995 } else if (!strncmp(this_opt
, "active", 6)) {
1996 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1997 } else if (!strncmp(this_opt
, "passive", 7)) {
1998 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1999 } else if (!strncmp(this_opt
, "single", 6)) {
2000 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
2001 } else if (!strncmp(this_opt
, "dual", 4)) {
2002 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
2003 } else if (!strncmp(this_opt
, "4pix", 4)) {
2004 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
2005 } else if (!strncmp(this_opt
, "8pix", 4)) {
2006 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
2008 dev_err(dev
, "unknown option: %s\n", this_opt
);
2013 dev_info(dev
, "override %s", s
);
2018 static int pxafb_parse_options(struct device
*dev
, char *options
,
2019 struct pxafb_mach_info
*inf
)
2024 if (!options
|| !*options
)
2027 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
2029 /* could be made table driven or similar?... */
2030 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
2031 ret
= parse_opt(dev
, this_opt
, inf
);
2038 static char g_options
[256] = "";
2041 static int __init
pxafb_setup_options(void)
2043 char *options
= NULL
;
2045 if (fb_get_options("pxafb", &options
))
2049 strlcpy(g_options
, options
, sizeof(g_options
));
2054 #define pxafb_setup_options() (0)
2056 module_param_string(options
, g_options
, sizeof(g_options
), 0);
2057 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
2061 #define pxafb_parse_options(...) (0)
2062 #define pxafb_setup_options() (0)
2066 /* Check for various illegal bit-combinations. Currently only
2067 * a warning is given. */
2068 static void pxafb_check_options(struct device
*dev
, struct pxafb_mach_info
*inf
)
2073 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
2074 dev_warn(dev
, "machine LCCR0 setting contains "
2075 "illegal bits: %08x\n",
2076 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
2077 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
2078 dev_warn(dev
, "machine LCCR3 setting contains "
2079 "illegal bits: %08x\n",
2080 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
2081 if (inf
->lccr0
& LCCR0_DPD
&&
2082 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
2083 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
2084 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
2085 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
2086 "only valid in passive mono"
2087 " single panel mode\n");
2088 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
2089 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
2090 dev_warn(dev
, "Dual panel only valid in passive mode\n");
2091 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
2092 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
2093 dev_warn(dev
, "Upper and lower margins must be 0 in "
2097 #define pxafb_check_options(...) do {} while (0)
2100 #if defined(CONFIG_OF)
2101 static const char * const lcd_types
[] = {
2102 "unknown", "mono-stn", "mono-dstn", "color-stn", "color-dstn",
2103 "color-tft", "smart-panel", NULL
2106 static int of_get_pxafb_display(struct device
*dev
, struct device_node
*disp
,
2107 struct pxafb_mach_info
*info
, u32 bus_width
)
2109 struct display_timings
*timings
;
2110 struct videomode vm
;
2111 int i
, ret
= -EINVAL
;
2114 ret
= of_property_read_string(disp
, "lcd-type", &s
);
2118 for (i
= 0; lcd_types
[i
]; i
++)
2119 if (!strcmp(s
, lcd_types
[i
]))
2121 if (!i
|| !lcd_types
[i
]) {
2122 dev_err(dev
, "lcd-type %s is unknown\n", s
);
2125 info
->lcd_conn
|= LCD_CONN_TYPE(i
);
2126 info
->lcd_conn
|= LCD_CONN_WIDTH(bus_width
);
2128 timings
= of_get_display_timings(disp
);
2133 info
->modes
= kmalloc_array(timings
->num_timings
,
2134 sizeof(info
->modes
[0]), GFP_KERNEL
);
2137 info
->num_modes
= timings
->num_timings
;
2139 for (i
= 0; i
< timings
->num_timings
; i
++) {
2140 ret
= videomode_from_timings(timings
, &vm
, i
);
2142 dev_err(dev
, "videomode_from_timings %d failed: %d\n",
2146 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_POSEDGE
)
2147 info
->lcd_conn
|= LCD_PCLK_EDGE_RISE
;
2148 if (vm
.flags
& DISPLAY_FLAGS_PIXDATA_NEGEDGE
)
2149 info
->lcd_conn
|= LCD_PCLK_EDGE_FALL
;
2150 if (vm
.flags
& DISPLAY_FLAGS_DE_HIGH
)
2151 info
->lcd_conn
|= LCD_BIAS_ACTIVE_HIGH
;
2152 if (vm
.flags
& DISPLAY_FLAGS_DE_LOW
)
2153 info
->lcd_conn
|= LCD_BIAS_ACTIVE_LOW
;
2154 if (vm
.flags
& DISPLAY_FLAGS_HSYNC_HIGH
)
2155 info
->modes
[i
].sync
|= FB_SYNC_HOR_HIGH_ACT
;
2156 if (vm
.flags
& DISPLAY_FLAGS_VSYNC_HIGH
)
2157 info
->modes
[i
].sync
|= FB_SYNC_VERT_HIGH_ACT
;
2159 info
->modes
[i
].pixclock
= 1000000000UL / (vm
.pixelclock
/ 1000);
2160 info
->modes
[i
].xres
= vm
.hactive
;
2161 info
->modes
[i
].yres
= vm
.vactive
;
2162 info
->modes
[i
].hsync_len
= vm
.hsync_len
;
2163 info
->modes
[i
].left_margin
= vm
.hback_porch
;
2164 info
->modes
[i
].right_margin
= vm
.hfront_porch
;
2165 info
->modes
[i
].vsync_len
= vm
.vsync_len
;
2166 info
->modes
[i
].upper_margin
= vm
.vback_porch
;
2167 info
->modes
[i
].lower_margin
= vm
.vfront_porch
;
2172 display_timings_release(timings
);
2176 static int of_get_pxafb_mode_info(struct device
*dev
,
2177 struct pxafb_mach_info
*info
)
2179 struct device_node
*display
, *np
;
2183 np
= of_graph_get_next_endpoint(dev
->of_node
, NULL
);
2185 dev_err(dev
, "could not find endpoint\n");
2188 ret
= of_property_read_u32(np
, "bus-width", &bus_width
);
2190 dev_err(dev
, "no bus-width specified: %d\n", ret
);
2195 display
= of_graph_get_remote_port_parent(np
);
2198 dev_err(dev
, "no display defined\n");
2202 ret
= of_get_pxafb_display(dev
, display
, info
, bus_width
);
2203 of_node_put(display
);
2207 for (i
= 0; i
< info
->num_modes
; i
++)
2208 info
->modes
[i
].bpp
= bus_width
;
2213 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2216 struct pxafb_mach_info
*info
;
2220 info
= devm_kzalloc(dev
, sizeof(*info
), GFP_KERNEL
);
2222 return ERR_PTR(-ENOMEM
);
2223 ret
= of_get_pxafb_mode_info(dev
, info
);
2226 return ERR_PTR(ret
);
2230 * On purpose, neither lccrX registers nor video memory size can be
2231 * specified through device-tree, they are considered more a debug hack
2232 * available through command line.
2237 static struct pxafb_mach_info
*of_pxafb_of_mach_info(struct device
*dev
)
2243 static int pxafb_probe(struct platform_device
*dev
)
2245 struct pxafb_info
*fbi
;
2246 struct pxafb_mach_info
*inf
, *pdata
;
2250 dev_dbg(&dev
->dev
, "pxafb_probe\n");
2253 pdata
= dev_get_platdata(&dev
->dev
);
2254 inf
= devm_kmalloc(&dev
->dev
, sizeof(*inf
), GFP_KERNEL
);
2261 devm_kmalloc_array(&dev
->dev
, pdata
->num_modes
,
2262 sizeof(inf
->modes
[0]), GFP_KERNEL
);
2265 for (i
= 0; i
< inf
->num_modes
; i
++)
2266 inf
->modes
[i
] = pdata
->modes
[i
];
2270 inf
= of_pxafb_of_mach_info(&dev
->dev
);
2271 if (IS_ERR_OR_NULL(inf
))
2274 ret
= pxafb_parse_options(&dev
->dev
, g_options
, inf
);
2278 pxafb_check_options(&dev
->dev
, inf
);
2280 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
2284 if (inf
->modes
->xres
== 0 ||
2285 inf
->modes
->yres
== 0 ||
2286 inf
->modes
->bpp
== 0) {
2287 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
2292 fbi
= pxafb_init_fbinfo(&dev
->dev
, inf
);
2294 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2295 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
2300 if (cpu_is_pxa3xx() && inf
->acceleration_enabled
)
2301 fbi
->fb
.fix
.accel
= FB_ACCEL_PXA3XX
;
2303 fbi
->backlight_power
= inf
->pxafb_backlight_power
;
2304 fbi
->lcd_power
= inf
->pxafb_lcd_power
;
2306 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2308 dev_err(&dev
->dev
, "no I/O memory resource defined\n");
2313 r
= request_mem_region(r
->start
, resource_size(r
), dev
->name
);
2315 dev_err(&dev
->dev
, "failed to request I/O memory\n");
2320 fbi
->mmio_base
= ioremap(r
->start
, resource_size(r
));
2321 if (fbi
->mmio_base
== NULL
) {
2322 dev_err(&dev
->dev
, "failed to map I/O memory\n");
2324 goto failed_free_res
;
2327 fbi
->dma_buff_size
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
2328 fbi
->dma_buff
= dma_alloc_coherent(fbi
->dev
, fbi
->dma_buff_size
,
2329 &fbi
->dma_buff_phys
, GFP_KERNEL
);
2330 if (fbi
->dma_buff
== NULL
) {
2331 dev_err(&dev
->dev
, "failed to allocate memory for DMA\n");
2333 goto failed_free_io
;
2336 ret
= pxafb_init_video_memory(fbi
);
2338 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
2340 goto failed_free_dma
;
2343 irq
= platform_get_irq(dev
, 0);
2345 dev_err(&dev
->dev
, "no IRQ defined\n");
2347 goto failed_free_mem
;
2350 ret
= request_irq(irq
, pxafb_handle_irq
, 0, "LCD", fbi
);
2352 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
2354 goto failed_free_mem
;
2357 ret
= pxafb_smart_init(fbi
);
2359 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
2360 goto failed_free_irq
;
2364 * This makes sure that our colour bitfield
2365 * descriptors are correctly initialised.
2367 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
2369 dev_err(&dev
->dev
, "failed to get suitable mode\n");
2370 goto failed_free_irq
;
2373 ret
= pxafb_set_par(&fbi
->fb
);
2375 dev_err(&dev
->dev
, "Failed to set parameters\n");
2376 goto failed_free_irq
;
2379 platform_set_drvdata(dev
, fbi
);
2381 ret
= register_framebuffer(&fbi
->fb
);
2384 "Failed to register framebuffer device: %d\n", ret
);
2385 goto failed_free_cmap
;
2388 pxafb_overlay_init(fbi
);
2390 #ifdef CONFIG_CPU_FREQ
2391 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
2392 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
2393 cpufreq_register_notifier(&fbi
->freq_transition
,
2394 CPUFREQ_TRANSITION_NOTIFIER
);
2395 cpufreq_register_notifier(&fbi
->freq_policy
,
2396 CPUFREQ_POLICY_NOTIFIER
);
2400 * Ok, now enable the LCD controller
2402 set_ctrlr_state(fbi
, C_ENABLE
);
2407 if (fbi
->fb
.cmap
.len
)
2408 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2412 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2414 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
,
2415 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2417 iounmap(fbi
->mmio_base
);
2419 release_mem_region(r
->start
, resource_size(r
));
2427 static int pxafb_remove(struct platform_device
*dev
)
2429 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
2432 struct fb_info
*info
;
2439 pxafb_overlay_exit(fbi
);
2440 unregister_framebuffer(info
);
2442 pxafb_disable_controller(fbi
);
2444 if (fbi
->fb
.cmap
.len
)
2445 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2447 irq
= platform_get_irq(dev
, 0);
2450 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2452 dma_free_wc(&dev
->dev
, fbi
->dma_buff_size
, fbi
->dma_buff
,
2453 fbi
->dma_buff_phys
);
2455 iounmap(fbi
->mmio_base
);
2457 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2458 release_mem_region(r
->start
, resource_size(r
));
2466 static const struct of_device_id pxafb_of_dev_id
[] = {
2467 { .compatible
= "marvell,pxa270-lcdc", },
2468 { .compatible
= "marvell,pxa300-lcdc", },
2469 { .compatible
= "marvell,pxa2xx-lcdc", },
2472 MODULE_DEVICE_TABLE(of
, pxafb_of_dev_id
);
2474 static struct platform_driver pxafb_driver
= {
2475 .probe
= pxafb_probe
,
2476 .remove
= pxafb_remove
,
2478 .name
= "pxa2xx-fb",
2479 .of_match_table
= pxafb_of_dev_id
,
2481 .pm
= &pxafb_pm_ops
,
2486 static int __init
pxafb_init(void)
2488 if (pxafb_setup_options())
2491 return platform_driver_register(&pxafb_driver
);
2494 static void __exit
pxafb_exit(void)
2496 platform_driver_unregister(&pxafb_driver
);
2499 module_init(pxafb_init
);
2500 module_exit(pxafb_exit
);
2502 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2503 MODULE_LICENSE("GPL");