Linux 4.16.11
[linux/fpc-iii.git] / drivers / video / fbdev / vermilion / vermilion.c
blob6f8d444eb0e3e90e8e0f59f94400a051381b2639
1 /*
2 * Copyright (c) Intel Corp. 2007.
3 * All Rights Reserved.
5 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6 * develop this driver.
8 * This file is part of the Vermilion Range fb driver.
9 * The Vermilion Range fb driver is free software;
10 * you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * The Vermilion Range fb driver is distributed
16 * in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 * Authors:
26 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27 * Michel Dänzer <michel-at-tungstengraphics-dot-com>
28 * Alan Hourihane <alanh-at-tungstengraphics-dot-com>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/mm.h>
38 #include <linux/fb.h>
39 #include <linux/pci.h>
40 #include <asm/set_memory.h>
41 #include <asm/tlbflush.h>
42 #include <linux/mmzone.h>
44 /* #define VERMILION_DEBUG */
46 #include "vermilion.h"
48 #define MODULE_NAME "vmlfb"
50 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
52 static struct mutex vml_mutex;
53 static struct list_head global_no_mode;
54 static struct list_head global_has_mode;
55 static struct fb_ops vmlfb_ops;
56 static struct vml_sys *subsys = NULL;
57 static char *vml_default_mode = "1024x768@60";
58 static const struct fb_videomode defaultmode = {
59 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
60 0, FB_VMODE_NONINTERLACED
63 static u32 vml_mem_requested = (10 * 1024 * 1024);
64 static u32 vml_mem_contig = (4 * 1024 * 1024);
65 static u32 vml_mem_min = (4 * 1024 * 1024);
67 static u32 vml_clocks[] = {
68 6750,
69 13500,
70 27000,
71 29700,
72 37125,
73 54000,
74 59400,
75 74250,
76 120000,
77 148500
80 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
83 * Allocate a contiguous vram area and make its linear kernel map
84 * uncached.
87 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
88 unsigned min_order)
90 gfp_t flags;
91 unsigned long i;
93 max_order++;
94 do {
96 * Really try hard to get the needed memory.
97 * We need memory below the first 32MB, so we
98 * add the __GFP_DMA flag that guarantees that we are
99 * below the first 16MB.
102 flags = __GFP_DMA | __GFP_HIGH | __GFP_KSWAPD_RECLAIM;
103 va->logical =
104 __get_free_pages(flags, --max_order);
105 } while (va->logical == 0 && max_order > min_order);
107 if (!va->logical)
108 return -ENOMEM;
110 va->phys = virt_to_phys((void *)va->logical);
111 va->size = PAGE_SIZE << max_order;
112 va->order = max_order;
115 * It seems like __get_free_pages only ups the usage count
116 * of the first page. This doesn't work with fault mapping, so
117 * up the usage count once more (XXX: should use split_page or
118 * compound page).
121 memset((void *)va->logical, 0x00, va->size);
122 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
123 get_page(virt_to_page(i));
127 * Change caching policy of the linear kernel map to avoid
128 * mapping type conflicts with user-space mappings.
130 set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
132 printk(KERN_DEBUG MODULE_NAME
133 ": Allocated %ld bytes vram area at 0x%08lx\n",
134 va->size, va->phys);
136 return 0;
140 * Free a contiguous vram area and reset its linear kernel map
141 * mapping type.
144 static void vmlfb_free_vram_area(struct vram_area *va)
146 unsigned long j;
148 if (va->logical) {
151 * Reset the linear kernel map caching policy.
154 set_pages_wb(virt_to_page(va->logical),
155 va->size >> PAGE_SHIFT);
158 * Decrease the usage count on the pages we've used
159 * to compensate for upping when allocating.
162 for (j = va->logical; j < va->logical + va->size;
163 j += PAGE_SIZE) {
164 (void)put_page_testzero(virt_to_page(j));
167 printk(KERN_DEBUG MODULE_NAME
168 ": Freeing %ld bytes vram area at 0x%08lx\n",
169 va->size, va->phys);
170 free_pages(va->logical, va->order);
172 va->logical = 0;
177 * Free allocated vram.
180 static void vmlfb_free_vram(struct vml_info *vinfo)
182 int i;
184 for (i = 0; i < vinfo->num_areas; ++i) {
185 vmlfb_free_vram_area(&vinfo->vram[i]);
187 vinfo->num_areas = 0;
191 * Allocate vram. Currently we try to allocate contiguous areas from the
192 * __GFP_DMA zone and puzzle them together. A better approach would be to
193 * allocate one contiguous area for scanout and use one-page allocations for
194 * offscreen areas. This requires user-space and GPU virtual mappings.
197 static int vmlfb_alloc_vram(struct vml_info *vinfo,
198 size_t requested,
199 size_t min_total, size_t min_contig)
201 int i, j;
202 int order;
203 int contiguous;
204 int err;
205 struct vram_area *va;
206 struct vram_area *va2;
208 vinfo->num_areas = 0;
209 for (i = 0; i < VML_VRAM_AREAS; ++i) {
210 va = &vinfo->vram[i];
211 order = 0;
213 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
214 order++;
216 err = vmlfb_alloc_vram_area(va, order, 0);
218 if (err)
219 break;
221 if (i == 0) {
222 vinfo->vram_start = va->phys;
223 vinfo->vram_logical = (void __iomem *) va->logical;
224 vinfo->vram_contig_size = va->size;
225 vinfo->num_areas = 1;
226 } else {
227 contiguous = 0;
229 for (j = 0; j < i; ++j) {
230 va2 = &vinfo->vram[j];
231 if (va->phys + va->size == va2->phys ||
232 va2->phys + va2->size == va->phys) {
233 contiguous = 1;
234 break;
238 if (contiguous) {
239 vinfo->num_areas++;
240 if (va->phys < vinfo->vram_start) {
241 vinfo->vram_start = va->phys;
242 vinfo->vram_logical =
243 (void __iomem *)va->logical;
245 vinfo->vram_contig_size += va->size;
246 } else {
247 vmlfb_free_vram_area(va);
248 break;
252 if (requested < va->size)
253 break;
254 else
255 requested -= va->size;
258 if (vinfo->vram_contig_size > min_total &&
259 vinfo->vram_contig_size > min_contig) {
261 printk(KERN_DEBUG MODULE_NAME
262 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
263 (unsigned long)vinfo->vram_contig_size,
264 (unsigned long)vinfo->vram_start);
266 return 0;
269 printk(KERN_ERR MODULE_NAME
270 ": Could not allocate requested minimal amount of vram.\n");
272 vmlfb_free_vram(vinfo);
274 return -ENOMEM;
278 * Find the GPU to use with our display controller.
281 static int vmlfb_get_gpu(struct vml_par *par)
283 mutex_lock(&vml_mutex);
285 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
287 if (!par->gpu) {
288 mutex_unlock(&vml_mutex);
289 return -ENODEV;
292 mutex_unlock(&vml_mutex);
294 if (pci_enable_device(par->gpu) < 0)
295 return -ENODEV;
297 return 0;
301 * Find a contiguous vram area that contains a given offset from vram start.
303 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
305 unsigned long aoffset;
306 unsigned i;
308 for (i = 0; i < vinfo->num_areas; ++i) {
309 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
311 if (aoffset < vinfo->vram[i].size) {
312 return 0;
316 return -EINVAL;
320 * Remap the MMIO register spaces of the VDC and the GPU.
323 static int vmlfb_enable_mmio(struct vml_par *par)
325 int err;
327 par->vdc_mem_base = pci_resource_start(par->vdc, 0);
328 par->vdc_mem_size = pci_resource_len(par->vdc, 0);
329 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
330 printk(KERN_ERR MODULE_NAME
331 ": Could not claim display controller MMIO.\n");
332 return -EBUSY;
334 par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
335 if (par->vdc_mem == NULL) {
336 printk(KERN_ERR MODULE_NAME
337 ": Could not map display controller MMIO.\n");
338 err = -ENOMEM;
339 goto out_err_0;
342 par->gpu_mem_base = pci_resource_start(par->gpu, 0);
343 par->gpu_mem_size = pci_resource_len(par->gpu, 0);
344 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
345 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
346 err = -EBUSY;
347 goto out_err_1;
349 par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
350 if (par->gpu_mem == NULL) {
351 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
352 err = -ENOMEM;
353 goto out_err_2;
356 return 0;
358 out_err_2:
359 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
360 out_err_1:
361 iounmap(par->vdc_mem);
362 out_err_0:
363 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
364 return err;
368 * Unmap the VDC and GPU register spaces.
371 static void vmlfb_disable_mmio(struct vml_par *par)
373 iounmap(par->gpu_mem);
374 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
375 iounmap(par->vdc_mem);
376 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
380 * Release and uninit the VDC and GPU.
383 static void vmlfb_release_devices(struct vml_par *par)
385 if (atomic_dec_and_test(&par->refcount)) {
386 pci_disable_device(par->gpu);
387 pci_disable_device(par->vdc);
392 * Free up allocated resources for a device.
395 static void vml_pci_remove(struct pci_dev *dev)
397 struct fb_info *info;
398 struct vml_info *vinfo;
399 struct vml_par *par;
401 info = pci_get_drvdata(dev);
402 if (info) {
403 vinfo = container_of(info, struct vml_info, info);
404 par = vinfo->par;
405 mutex_lock(&vml_mutex);
406 unregister_framebuffer(info);
407 fb_dealloc_cmap(&info->cmap);
408 vmlfb_free_vram(vinfo);
409 vmlfb_disable_mmio(par);
410 vmlfb_release_devices(par);
411 kfree(vinfo);
412 kfree(par);
413 mutex_unlock(&vml_mutex);
417 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
419 switch (var->bits_per_pixel) {
420 case 16:
421 var->blue.offset = 0;
422 var->blue.length = 5;
423 var->green.offset = 5;
424 var->green.length = 5;
425 var->red.offset = 10;
426 var->red.length = 5;
427 var->transp.offset = 15;
428 var->transp.length = 1;
429 break;
430 case 32:
431 var->blue.offset = 0;
432 var->blue.length = 8;
433 var->green.offset = 8;
434 var->green.length = 8;
435 var->red.offset = 16;
436 var->red.length = 8;
437 var->transp.offset = 24;
438 var->transp.length = 0;
439 break;
440 default:
441 break;
444 var->blue.msb_right = var->green.msb_right =
445 var->red.msb_right = var->transp.msb_right = 0;
449 * Device initialization.
450 * We initialize one vml_par struct per device and one vml_info
451 * struct per pipe. Currently we have only one pipe.
454 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
456 struct vml_info *vinfo;
457 struct fb_info *info;
458 struct vml_par *par;
459 int err = 0;
461 par = kzalloc(sizeof(*par), GFP_KERNEL);
462 if (par == NULL)
463 return -ENOMEM;
465 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
466 if (vinfo == NULL) {
467 err = -ENOMEM;
468 goto out_err_0;
471 vinfo->par = par;
472 par->vdc = dev;
473 atomic_set(&par->refcount, 1);
475 switch (id->device) {
476 case VML_DEVICE_VDC:
477 if ((err = vmlfb_get_gpu(par)))
478 goto out_err_1;
479 pci_set_drvdata(dev, &vinfo->info);
480 break;
481 default:
482 err = -ENODEV;
483 goto out_err_1;
486 info = &vinfo->info;
487 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
489 err = vmlfb_enable_mmio(par);
490 if (err)
491 goto out_err_2;
493 err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
494 vml_mem_contig, vml_mem_min);
495 if (err)
496 goto out_err_3;
498 strcpy(info->fix.id, "Vermilion Range");
499 info->fix.mmio_start = 0;
500 info->fix.mmio_len = 0;
501 info->fix.smem_start = vinfo->vram_start;
502 info->fix.smem_len = vinfo->vram_contig_size;
503 info->fix.type = FB_TYPE_PACKED_PIXELS;
504 info->fix.visual = FB_VISUAL_TRUECOLOR;
505 info->fix.ypanstep = 1;
506 info->fix.xpanstep = 1;
507 info->fix.ywrapstep = 0;
508 info->fix.accel = FB_ACCEL_NONE;
509 info->screen_base = vinfo->vram_logical;
510 info->pseudo_palette = vinfo->pseudo_palette;
511 info->par = par;
512 info->fbops = &vmlfb_ops;
513 info->device = &dev->dev;
515 INIT_LIST_HEAD(&vinfo->head);
516 vinfo->pipe_disabled = 1;
517 vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
519 info->var.grayscale = 0;
520 info->var.bits_per_pixel = 16;
521 vmlfb_set_pref_pixel_format(&info->var);
523 if (!fb_find_mode
524 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
525 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
528 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
529 err = -ENOMEM;
530 goto out_err_4;
533 err = register_framebuffer(info);
534 if (err) {
535 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
536 goto out_err_5;
539 printk("Initialized vmlfb\n");
541 return 0;
543 out_err_5:
544 fb_dealloc_cmap(&info->cmap);
545 out_err_4:
546 vmlfb_free_vram(vinfo);
547 out_err_3:
548 vmlfb_disable_mmio(par);
549 out_err_2:
550 vmlfb_release_devices(par);
551 out_err_1:
552 kfree(vinfo);
553 out_err_0:
554 kfree(par);
555 return err;
558 static int vmlfb_open(struct fb_info *info, int user)
561 * Save registers here?
563 return 0;
566 static int vmlfb_release(struct fb_info *info, int user)
569 * Restore registers here.
572 return 0;
575 static int vml_nearest_clock(int clock)
578 int i;
579 int cur_index;
580 int cur_diff;
581 int diff;
583 cur_index = 0;
584 cur_diff = clock - vml_clocks[0];
585 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
586 for (i = 1; i < vml_num_clocks; ++i) {
587 diff = clock - vml_clocks[i];
588 diff = (diff < 0) ? -diff : diff;
589 if (diff < cur_diff) {
590 cur_index = i;
591 cur_diff = diff;
594 return vml_clocks[cur_index];
597 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
598 struct vml_info *vinfo)
600 u32 pitch;
601 u64 mem;
602 int nearest_clock;
603 int clock;
604 int clock_diff;
605 struct fb_var_screeninfo v;
607 v = *var;
608 clock = PICOS2KHZ(var->pixclock);
610 if (subsys && subsys->nearest_clock) {
611 nearest_clock = subsys->nearest_clock(subsys, clock);
612 } else {
613 nearest_clock = vml_nearest_clock(clock);
617 * Accept a 20% diff.
620 clock_diff = nearest_clock - clock;
621 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
622 if (clock_diff > clock / 5) {
623 #if 0
624 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
625 #endif
626 return -EINVAL;
629 v.pixclock = KHZ2PICOS(nearest_clock);
631 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
632 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
633 return -EINVAL;
635 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
636 printk(KERN_DEBUG MODULE_NAME
637 ": Virtual resolution failure.\n");
638 return -EINVAL;
640 switch (v.bits_per_pixel) {
641 case 0 ... 16:
642 v.bits_per_pixel = 16;
643 break;
644 case 17 ... 32:
645 v.bits_per_pixel = 32;
646 break;
647 default:
648 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
649 var->bits_per_pixel);
650 return -EINVAL;
653 pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
654 mem = pitch * var->yres_virtual;
655 if (mem > vinfo->vram_contig_size) {
656 return -ENOMEM;
659 switch (v.bits_per_pixel) {
660 case 16:
661 if (var->blue.offset != 0 ||
662 var->blue.length != 5 ||
663 var->green.offset != 5 ||
664 var->green.length != 5 ||
665 var->red.offset != 10 ||
666 var->red.length != 5 ||
667 var->transp.offset != 15 || var->transp.length != 1) {
668 vmlfb_set_pref_pixel_format(&v);
670 break;
671 case 32:
672 if (var->blue.offset != 0 ||
673 var->blue.length != 8 ||
674 var->green.offset != 8 ||
675 var->green.length != 8 ||
676 var->red.offset != 16 ||
677 var->red.length != 8 ||
678 (var->transp.length != 0 && var->transp.length != 8) ||
679 (var->transp.length == 8 && var->transp.offset != 24)) {
680 vmlfb_set_pref_pixel_format(&v);
682 break;
683 default:
684 return -EINVAL;
687 *var = v;
689 return 0;
692 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
694 struct vml_info *vinfo = container_of(info, struct vml_info, info);
695 int ret;
697 mutex_lock(&vml_mutex);
698 ret = vmlfb_check_var_locked(var, vinfo);
699 mutex_unlock(&vml_mutex);
701 return ret;
704 static void vml_wait_vblank(struct vml_info *vinfo)
706 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
707 mdelay(20);
710 static void vmlfb_disable_pipe(struct vml_info *vinfo)
712 struct vml_par *par = vinfo->par;
714 /* Disable the MDVO pad */
715 VML_WRITE32(par, VML_RCOMPSTAT, 0);
716 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
718 /* Disable display planes */
719 VML_WRITE32(par, VML_DSPCCNTR,
720 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
721 (void)VML_READ32(par, VML_DSPCCNTR);
722 /* Wait for vblank for the disable to take effect */
723 vml_wait_vblank(vinfo);
725 /* Next, disable display pipes */
726 VML_WRITE32(par, VML_PIPEACONF, 0);
727 (void)VML_READ32(par, VML_PIPEACONF);
729 vinfo->pipe_disabled = 1;
732 #ifdef VERMILION_DEBUG
733 static void vml_dump_regs(struct vml_info *vinfo)
735 struct vml_par *par = vinfo->par;
737 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
738 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
739 (unsigned)VML_READ32(par, VML_HTOTAL_A));
740 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
741 (unsigned)VML_READ32(par, VML_HBLANK_A));
742 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
743 (unsigned)VML_READ32(par, VML_HSYNC_A));
744 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
745 (unsigned)VML_READ32(par, VML_VTOTAL_A));
746 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
747 (unsigned)VML_READ32(par, VML_VBLANK_A));
748 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
749 (unsigned)VML_READ32(par, VML_VSYNC_A));
750 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
751 (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
752 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
753 (unsigned)VML_READ32(par, VML_DSPCSIZE));
754 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
755 (unsigned)VML_READ32(par, VML_DSPCPOS));
756 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
757 (unsigned)VML_READ32(par, VML_DSPARB));
758 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
759 (unsigned)VML_READ32(par, VML_DSPCADDR));
760 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
761 (unsigned)VML_READ32(par, VML_BCLRPAT_A));
762 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
763 (unsigned)VML_READ32(par, VML_CANVSCLR_A));
764 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
765 (unsigned)VML_READ32(par, VML_PIPEASRC));
766 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
767 (unsigned)VML_READ32(par, VML_PIPEACONF));
768 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
769 (unsigned)VML_READ32(par, VML_DSPCCNTR));
770 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
771 (unsigned)VML_READ32(par, VML_RCOMPSTAT));
772 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
774 #endif
776 static int vmlfb_set_par_locked(struct vml_info *vinfo)
778 struct vml_par *par = vinfo->par;
779 struct fb_info *info = &vinfo->info;
780 struct fb_var_screeninfo *var = &info->var;
781 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
782 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
783 u32 dspcntr;
784 int clock;
786 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
787 vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
788 info->fix.line_length = vinfo->stride;
790 if (!subsys)
791 return 0;
793 htotal =
794 var->xres + var->right_margin + var->hsync_len + var->left_margin;
795 hactive = var->xres;
796 hblank_start = var->xres;
797 hblank_end = htotal;
798 hsync_start = hactive + var->right_margin;
799 hsync_end = hsync_start + var->hsync_len;
801 vtotal =
802 var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
803 vactive = var->yres;
804 vblank_start = var->yres;
805 vblank_end = vtotal;
806 vsync_start = vactive + var->lower_margin;
807 vsync_end = vsync_start + var->vsync_len;
809 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
810 clock = PICOS2KHZ(var->pixclock);
812 if (subsys->nearest_clock) {
813 clock = subsys->nearest_clock(subsys, clock);
814 } else {
815 clock = vml_nearest_clock(clock);
817 printk(KERN_DEBUG MODULE_NAME
818 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
819 ((clock / htotal) * 1000) / vtotal);
821 switch (var->bits_per_pixel) {
822 case 16:
823 dspcntr |= VML_GFX_ARGB1555;
824 break;
825 case 32:
826 if (var->transp.length == 8)
827 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
828 else
829 dspcntr |= VML_GFX_RGB0888;
830 break;
831 default:
832 return -EINVAL;
835 vmlfb_disable_pipe(vinfo);
836 mb();
838 if (subsys->set_clock)
839 subsys->set_clock(subsys, clock);
840 else
841 return -EINVAL;
843 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
844 VML_WRITE32(par, VML_HBLANK_A,
845 ((hblank_end - 1) << 16) | (hblank_start - 1));
846 VML_WRITE32(par, VML_HSYNC_A,
847 ((hsync_end - 1) << 16) | (hsync_start - 1));
848 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
849 VML_WRITE32(par, VML_VBLANK_A,
850 ((vblank_end - 1) << 16) | (vblank_start - 1));
851 VML_WRITE32(par, VML_VSYNC_A,
852 ((vsync_end - 1) << 16) | (vsync_start - 1));
853 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
854 VML_WRITE32(par, VML_DSPCSIZE,
855 ((var->yres - 1) << 16) | (var->xres - 1));
856 VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
857 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
858 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
859 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
860 VML_WRITE32(par, VML_PIPEASRC,
861 ((var->xres - 1) << 16) | (var->yres - 1));
863 wmb();
864 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
865 wmb();
866 VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
867 wmb();
868 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
869 var->yoffset * vinfo->stride +
870 var->xoffset * vinfo->bytes_per_pixel);
872 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
874 while (!(VML_READ32(par, VML_RCOMPSTAT) &
875 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
877 vinfo->pipe_disabled = 0;
878 #ifdef VERMILION_DEBUG
879 vml_dump_regs(vinfo);
880 #endif
882 return 0;
885 static int vmlfb_set_par(struct fb_info *info)
887 struct vml_info *vinfo = container_of(info, struct vml_info, info);
888 int ret;
890 mutex_lock(&vml_mutex);
891 list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
892 ret = vmlfb_set_par_locked(vinfo);
894 mutex_unlock(&vml_mutex);
895 return ret;
898 static int vmlfb_blank_locked(struct vml_info *vinfo)
900 struct vml_par *par = vinfo->par;
901 u32 cur = VML_READ32(par, VML_PIPEACONF);
903 switch (vinfo->cur_blank_mode) {
904 case FB_BLANK_UNBLANK:
905 if (vinfo->pipe_disabled) {
906 vmlfb_set_par_locked(vinfo);
908 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
909 (void)VML_READ32(par, VML_PIPEACONF);
910 break;
911 case FB_BLANK_NORMAL:
912 if (vinfo->pipe_disabled) {
913 vmlfb_set_par_locked(vinfo);
915 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
916 (void)VML_READ32(par, VML_PIPEACONF);
917 break;
918 case FB_BLANK_VSYNC_SUSPEND:
919 case FB_BLANK_HSYNC_SUSPEND:
920 if (!vinfo->pipe_disabled) {
921 vmlfb_disable_pipe(vinfo);
923 break;
924 case FB_BLANK_POWERDOWN:
925 if (!vinfo->pipe_disabled) {
926 vmlfb_disable_pipe(vinfo);
928 break;
929 default:
930 return -EINVAL;
933 return 0;
936 static int vmlfb_blank(int blank_mode, struct fb_info *info)
938 struct vml_info *vinfo = container_of(info, struct vml_info, info);
939 int ret;
941 mutex_lock(&vml_mutex);
942 vinfo->cur_blank_mode = blank_mode;
943 ret = vmlfb_blank_locked(vinfo);
944 mutex_unlock(&vml_mutex);
945 return ret;
948 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
949 struct fb_info *info)
951 struct vml_info *vinfo = container_of(info, struct vml_info, info);
952 struct vml_par *par = vinfo->par;
954 mutex_lock(&vml_mutex);
955 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
956 var->yoffset * vinfo->stride +
957 var->xoffset * vinfo->bytes_per_pixel);
958 (void)VML_READ32(par, VML_DSPCADDR);
959 mutex_unlock(&vml_mutex);
961 return 0;
964 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
965 u_int transp, struct fb_info *info)
967 u32 v;
969 if (regno >= 16)
970 return -EINVAL;
972 if (info->var.grayscale) {
973 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
976 if (info->fix.visual != FB_VISUAL_TRUECOLOR)
977 return -EINVAL;
979 red = VML_TOHW(red, info->var.red.length);
980 blue = VML_TOHW(blue, info->var.blue.length);
981 green = VML_TOHW(green, info->var.green.length);
982 transp = VML_TOHW(transp, info->var.transp.length);
984 v = (red << info->var.red.offset) |
985 (green << info->var.green.offset) |
986 (blue << info->var.blue.offset) |
987 (transp << info->var.transp.offset);
989 switch (info->var.bits_per_pixel) {
990 case 16:
991 ((u32 *) info->pseudo_palette)[regno] = v;
992 break;
993 case 24:
994 case 32:
995 ((u32 *) info->pseudo_palette)[regno] = v;
996 break;
998 return 0;
1001 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1003 struct vml_info *vinfo = container_of(info, struct vml_info, info);
1004 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1005 int ret;
1006 unsigned long prot;
1008 ret = vmlfb_vram_offset(vinfo, offset);
1009 if (ret)
1010 return -EINVAL;
1012 prot = pgprot_val(vma->vm_page_prot) & ~_PAGE_CACHE_MASK;
1013 pgprot_val(vma->vm_page_prot) =
1014 prot | cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS);
1016 return vm_iomap_memory(vma, vinfo->vram_start,
1017 vinfo->vram_contig_size);
1020 static int vmlfb_sync(struct fb_info *info)
1022 return 0;
1025 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1027 return -EINVAL; /* just to force soft_cursor() call */
1030 static struct fb_ops vmlfb_ops = {
1031 .owner = THIS_MODULE,
1032 .fb_open = vmlfb_open,
1033 .fb_release = vmlfb_release,
1034 .fb_check_var = vmlfb_check_var,
1035 .fb_set_par = vmlfb_set_par,
1036 .fb_blank = vmlfb_blank,
1037 .fb_pan_display = vmlfb_pan_display,
1038 .fb_fillrect = cfb_fillrect,
1039 .fb_copyarea = cfb_copyarea,
1040 .fb_imageblit = cfb_imageblit,
1041 .fb_cursor = vmlfb_cursor,
1042 .fb_sync = vmlfb_sync,
1043 .fb_mmap = vmlfb_mmap,
1044 .fb_setcolreg = vmlfb_setcolreg
1047 static const struct pci_device_id vml_ids[] = {
1048 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1052 static struct pci_driver vmlfb_pci_driver = {
1053 .name = "vmlfb",
1054 .id_table = vml_ids,
1055 .probe = vml_pci_probe,
1056 .remove = vml_pci_remove,
1059 static void __exit vmlfb_cleanup(void)
1061 pci_unregister_driver(&vmlfb_pci_driver);
1064 static int __init vmlfb_init(void)
1067 #ifndef MODULE
1068 char *option = NULL;
1070 if (fb_get_options(MODULE_NAME, &option))
1071 return -ENODEV;
1072 #endif
1074 printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1075 mutex_init(&vml_mutex);
1076 INIT_LIST_HEAD(&global_no_mode);
1077 INIT_LIST_HEAD(&global_has_mode);
1079 return pci_register_driver(&vmlfb_pci_driver);
1082 int vmlfb_register_subsys(struct vml_sys *sys)
1084 struct vml_info *entry;
1085 struct list_head *list;
1086 u32 save_activate;
1088 mutex_lock(&vml_mutex);
1089 if (subsys != NULL) {
1090 subsys->restore(subsys);
1092 subsys = sys;
1093 subsys->save(subsys);
1096 * We need to restart list traversal for each item, since we
1097 * release the list mutex in the loop.
1100 list = global_no_mode.next;
1101 while (list != &global_no_mode) {
1102 list_del_init(list);
1103 entry = list_entry(list, struct vml_info, head);
1106 * First, try the current mode which might not be
1107 * completely validated with respect to the pixel clock.
1110 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1111 vmlfb_set_par_locked(entry);
1112 list_add_tail(list, &global_has_mode);
1113 } else {
1116 * Didn't work. Try to find another mode,
1117 * that matches this subsys.
1120 mutex_unlock(&vml_mutex);
1121 save_activate = entry->info.var.activate;
1122 entry->info.var.bits_per_pixel = 16;
1123 vmlfb_set_pref_pixel_format(&entry->info.var);
1124 if (fb_find_mode(&entry->info.var,
1125 &entry->info,
1126 vml_default_mode, NULL, 0, NULL, 16)) {
1127 entry->info.var.activate |=
1128 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1129 fb_set_var(&entry->info, &entry->info.var);
1130 } else {
1131 printk(KERN_ERR MODULE_NAME
1132 ": Sorry. no mode found for this subsys.\n");
1134 entry->info.var.activate = save_activate;
1135 mutex_lock(&vml_mutex);
1137 vmlfb_blank_locked(entry);
1138 list = global_no_mode.next;
1140 mutex_unlock(&vml_mutex);
1142 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1143 subsys->name ? subsys->name : "unknown");
1144 return 0;
1147 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1149 void vmlfb_unregister_subsys(struct vml_sys *sys)
1151 struct vml_info *entry, *next;
1153 mutex_lock(&vml_mutex);
1154 if (subsys != sys) {
1155 mutex_unlock(&vml_mutex);
1156 return;
1158 subsys->restore(subsys);
1159 subsys = NULL;
1160 list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1161 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1162 vmlfb_disable_pipe(entry);
1163 list_move_tail(&entry->head, &global_no_mode);
1165 mutex_unlock(&vml_mutex);
1168 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1170 module_init(vmlfb_init);
1171 module_exit(vmlfb_cleanup);
1173 MODULE_AUTHOR("Tungsten Graphics");
1174 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1175 MODULE_VERSION("1.0.0");
1176 MODULE_LICENSE("GPL");