2 * Freescale DMA ALSA SoC PCM driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
41 * The formats that the DMA controller supports, which is anything
42 * that is 8, 16, or 32 bits.
44 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
45 SNDRV_PCM_FMTBIT_U8 | \
46 SNDRV_PCM_FMTBIT_S16_LE | \
47 SNDRV_PCM_FMTBIT_S16_BE | \
48 SNDRV_PCM_FMTBIT_U16_LE | \
49 SNDRV_PCM_FMTBIT_U16_BE | \
50 SNDRV_PCM_FMTBIT_S24_LE | \
51 SNDRV_PCM_FMTBIT_S24_BE | \
52 SNDRV_PCM_FMTBIT_U24_LE | \
53 SNDRV_PCM_FMTBIT_U24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | \
55 SNDRV_PCM_FMTBIT_S32_BE | \
56 SNDRV_PCM_FMTBIT_U32_LE | \
57 SNDRV_PCM_FMTBIT_U32_BE)
59 struct snd_soc_platform_driver dai
;
60 dma_addr_t ssi_stx_phys
;
61 dma_addr_t ssi_srx_phys
;
62 unsigned int ssi_fifo_depth
;
63 struct ccsr_dma_channel __iomem
*channel
;
69 * The number of DMA links to use. Two is the bare minimum, but if you
70 * have really small links you might need more.
72 #define NUM_DMA_LINKS 2
74 /** fsl_dma_private: p-substream DMA data
76 * Each substream has a 1-to-1 association with a DMA channel.
78 * The link[] array is first because it needs to be aligned on a 32-byte
79 * boundary, so putting it first will ensure alignment without padding the
82 * @link[]: array of link descriptors
83 * @dma_channel: pointer to the DMA channel's registers
84 * @irq: IRQ for this DMA channel
85 * @substream: pointer to the substream object, needed by the ISR
86 * @ssi_sxx_phys: bus address of the STX or SRX register to use
87 * @ld_buf_phys: physical address of the LD buffer
88 * @current_link: index into link[] of the link currently being processed
89 * @dma_buf_phys: physical address of the DMA buffer
90 * @dma_buf_next: physical address of the next period to process
91 * @dma_buf_end: physical address of the byte after the end of the DMA
92 * @buffer period_size: the size of a single period
93 * @num_periods: the number of periods in the DMA buffer
95 struct fsl_dma_private
{
96 struct fsl_dma_link_descriptor link
[NUM_DMA_LINKS
];
97 struct ccsr_dma_channel __iomem
*dma_channel
;
99 struct snd_pcm_substream
*substream
;
100 dma_addr_t ssi_sxx_phys
;
101 unsigned int ssi_fifo_depth
;
102 dma_addr_t ld_buf_phys
;
103 unsigned int current_link
;
104 dma_addr_t dma_buf_phys
;
105 dma_addr_t dma_buf_next
;
106 dma_addr_t dma_buf_end
;
108 unsigned int num_periods
;
112 * fsl_dma_hardare: define characteristics of the PCM hardware.
114 * The PCM hardware is the Freescale DMA controller. This structure defines
115 * the capabilities of that hardware.
117 * Since the sampling rate and data format are not controlled by the DMA
118 * controller, we specify no limits for those values. The only exception is
119 * period_bytes_min, which is set to a reasonably low value to prevent the
120 * DMA controller from generating too many interrupts per second.
122 * Since each link descriptor has a 32-bit byte count field, we set
123 * period_bytes_max to the largest 32-bit number. We also have no maximum
126 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127 * limitation in the SSI driver requires the sample rates for playback and
128 * capture to be the same.
130 static const struct snd_pcm_hardware fsl_dma_hardware
= {
132 .info
= SNDRV_PCM_INFO_INTERLEAVED
|
133 SNDRV_PCM_INFO_MMAP
|
134 SNDRV_PCM_INFO_MMAP_VALID
|
135 SNDRV_PCM_INFO_JOINT_DUPLEX
|
136 SNDRV_PCM_INFO_PAUSE
,
137 .formats
= FSLDMA_PCM_FORMATS
,
138 .period_bytes_min
= 512, /* A reasonable limit */
139 .period_bytes_max
= (u32
) -1,
140 .periods_min
= NUM_DMA_LINKS
,
141 .periods_max
= (unsigned int) -1,
142 .buffer_bytes_max
= 128 * 1024, /* A reasonable limit */
146 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
148 * This function should be called by the ISR whenever the DMA controller
149 * halts data transfer.
151 static void fsl_dma_abort_stream(struct snd_pcm_substream
*substream
)
153 snd_pcm_stop_xrun(substream
);
157 * fsl_dma_update_pointers - update LD pointers to point to the next period
159 * As each period is completed, this function changes the the link
160 * descriptor pointers for that period to point to the next period.
162 static void fsl_dma_update_pointers(struct fsl_dma_private
*dma_private
)
164 struct fsl_dma_link_descriptor
*link
=
165 &dma_private
->link
[dma_private
->current_link
];
167 /* Update our link descriptors to point to the next period. On a 36-bit
168 * system, we also need to update the ESAD bits. We also set (keep) the
169 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
171 if (dma_private
->substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
172 link
->source_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
173 #ifdef CONFIG_PHYS_64BIT
174 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
175 upper_32_bits(dma_private
->dma_buf_next
));
178 link
->dest_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
179 #ifdef CONFIG_PHYS_64BIT
180 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
181 upper_32_bits(dma_private
->dma_buf_next
));
185 /* Update our variables for next time */
186 dma_private
->dma_buf_next
+= dma_private
->period_size
;
188 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
189 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
191 if (++dma_private
->current_link
>= NUM_DMA_LINKS
)
192 dma_private
->current_link
= 0;
196 * fsl_dma_isr: interrupt handler for the DMA controller
198 * @irq: IRQ of the DMA channel
199 * @dev_id: pointer to the dma_private structure for this DMA channel
201 static irqreturn_t
fsl_dma_isr(int irq
, void *dev_id
)
203 struct fsl_dma_private
*dma_private
= dev_id
;
204 struct snd_pcm_substream
*substream
= dma_private
->substream
;
205 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
206 struct device
*dev
= rtd
->platform
->dev
;
207 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
208 irqreturn_t ret
= IRQ_NONE
;
211 /* We got an interrupt, so read the status register to see what we
212 were interrupted for.
214 sr
= in_be32(&dma_channel
->sr
);
216 if (sr
& CCSR_DMA_SR_TE
) {
217 dev_err(dev
, "dma transmit error\n");
218 fsl_dma_abort_stream(substream
);
219 sr2
|= CCSR_DMA_SR_TE
;
223 if (sr
& CCSR_DMA_SR_CH
)
226 if (sr
& CCSR_DMA_SR_PE
) {
227 dev_err(dev
, "dma programming error\n");
228 fsl_dma_abort_stream(substream
);
229 sr2
|= CCSR_DMA_SR_PE
;
233 if (sr
& CCSR_DMA_SR_EOLNI
) {
234 sr2
|= CCSR_DMA_SR_EOLNI
;
238 if (sr
& CCSR_DMA_SR_CB
)
241 if (sr
& CCSR_DMA_SR_EOSI
) {
242 /* Tell ALSA we completed a period. */
243 snd_pcm_period_elapsed(substream
);
246 * Update our link descriptors to point to the next period. We
247 * only need to do this if the number of periods is not equal to
248 * the number of links.
250 if (dma_private
->num_periods
!= NUM_DMA_LINKS
)
251 fsl_dma_update_pointers(dma_private
);
253 sr2
|= CCSR_DMA_SR_EOSI
;
257 if (sr
& CCSR_DMA_SR_EOLSI
) {
258 sr2
|= CCSR_DMA_SR_EOLSI
;
262 /* Clear the bits that we set */
264 out_be32(&dma_channel
->sr
, sr2
);
270 * fsl_dma_new: initialize this PCM driver.
272 * This function is called when the codec driver calls snd_soc_new_pcms(),
273 * once for each .dai_link in the machine driver's snd_soc_card
276 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
277 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
278 * is specified. Therefore, any DMA buffers we allocate will always be in low
279 * memory, but we support for 36-bit physical addresses anyway.
281 * Regardless of where the memory is actually allocated, since the device can
282 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
284 static int fsl_dma_new(struct snd_soc_pcm_runtime
*rtd
)
286 struct snd_card
*card
= rtd
->card
->snd_card
;
287 struct snd_pcm
*pcm
= rtd
->pcm
;
290 ret
= dma_coerce_mask_and_coherent(card
->dev
, DMA_BIT_MASK(36));
294 /* Some codecs have separate DAIs for playback and capture, so we
295 * should allocate a DMA buffer only for the streams that are valid.
298 if (pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
) {
299 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
300 fsl_dma_hardware
.buffer_bytes_max
,
301 &pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
->dma_buffer
);
303 dev_err(card
->dev
, "can't alloc playback dma buffer\n");
308 if (pcm
->streams
[SNDRV_PCM_STREAM_CAPTURE
].substream
) {
309 ret
= snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV
, card
->dev
,
310 fsl_dma_hardware
.buffer_bytes_max
,
311 &pcm
->streams
[SNDRV_PCM_STREAM_CAPTURE
].substream
->dma_buffer
);
313 dev_err(card
->dev
, "can't alloc capture dma buffer\n");
314 snd_dma_free_pages(&pcm
->streams
[SNDRV_PCM_STREAM_PLAYBACK
].substream
->dma_buffer
);
323 * fsl_dma_open: open a new substream.
325 * Each substream has its own DMA buffer.
327 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
328 * descriptors that ping-pong from one period to the next. For example, if
329 * there are six periods and two link descriptors, this is how they look
330 * before playback starts:
332 * The last link descriptor
333 * ____________ points back to the first
342 * _________________________________________
343 * | | | | | | | The DMA buffer is
344 * | | | | | | | divided into 6 parts
345 * |______|______|______|______|______|______|
347 * and here's how they look after the first period is finished playing:
359 * _________________________________________
362 * |______|______|______|______|______|______|
364 * The first link descriptor now points to the third period. The DMA
365 * controller is currently playing the second period. When it finishes, it
366 * will jump back to the first descriptor and play the third period.
368 * There are four reasons we do this:
370 * 1. The only way to get the DMA controller to automatically restart the
371 * transfer when it gets to the end of the buffer is to use chaining
372 * mode. Basic direct mode doesn't offer that feature.
373 * 2. We need to receive an interrupt at the end of every period. The DMA
374 * controller can generate an interrupt at the end of every link transfer
375 * (aka segment). Making each period into a DMA segment will give us the
376 * interrupts we need.
377 * 3. By creating only two link descriptors, regardless of the number of
378 * periods, we do not need to reallocate the link descriptors if the
379 * number of periods changes.
380 * 4. All of the audio data is still stored in a single, contiguous DMA
381 * buffer, which is what ALSA expects. We're just dividing it into
382 * contiguous parts, and creating a link descriptor for each one.
384 static int fsl_dma_open(struct snd_pcm_substream
*substream
)
386 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
387 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
388 struct device
*dev
= rtd
->platform
->dev
;
389 struct dma_object
*dma
=
390 container_of(rtd
->platform
->driver
, struct dma_object
, dai
);
391 struct fsl_dma_private
*dma_private
;
392 struct ccsr_dma_channel __iomem
*dma_channel
;
393 dma_addr_t ld_buf_phys
;
394 u64 temp_link
; /* Pointer to next link descriptor */
396 unsigned int channel
;
401 * Reject any DMA buffer whose size is not a multiple of the period
402 * size. We need to make sure that the DMA buffer can be evenly divided
405 ret
= snd_pcm_hw_constraint_integer(runtime
,
406 SNDRV_PCM_HW_PARAM_PERIODS
);
408 dev_err(dev
, "invalid buffer size\n");
412 channel
= substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
? 0 : 1;
415 dev_err(dev
, "dma channel already assigned\n");
419 dma_private
= dma_alloc_coherent(dev
, sizeof(struct fsl_dma_private
),
420 &ld_buf_phys
, GFP_KERNEL
);
422 dev_err(dev
, "can't allocate dma private data\n");
425 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
426 dma_private
->ssi_sxx_phys
= dma
->ssi_stx_phys
;
428 dma_private
->ssi_sxx_phys
= dma
->ssi_srx_phys
;
430 dma_private
->ssi_fifo_depth
= dma
->ssi_fifo_depth
;
431 dma_private
->dma_channel
= dma
->channel
;
432 dma_private
->irq
= dma
->irq
;
433 dma_private
->substream
= substream
;
434 dma_private
->ld_buf_phys
= ld_buf_phys
;
435 dma_private
->dma_buf_phys
= substream
->dma_buffer
.addr
;
437 ret
= request_irq(dma_private
->irq
, fsl_dma_isr
, 0, "fsldma-audio",
440 dev_err(dev
, "can't register ISR for IRQ %u (ret=%i)\n",
441 dma_private
->irq
, ret
);
442 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
443 dma_private
, dma_private
->ld_buf_phys
);
447 dma
->assigned
= true;
449 snd_pcm_set_runtime_buffer(substream
, &substream
->dma_buffer
);
450 snd_soc_set_runtime_hwparams(substream
, &fsl_dma_hardware
);
451 runtime
->private_data
= dma_private
;
453 /* Program the fixed DMA controller parameters */
455 dma_channel
= dma_private
->dma_channel
;
457 temp_link
= dma_private
->ld_buf_phys
+
458 sizeof(struct fsl_dma_link_descriptor
);
460 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
461 dma_private
->link
[i
].next
= cpu_to_be64(temp_link
);
463 temp_link
+= sizeof(struct fsl_dma_link_descriptor
);
465 /* The last link descriptor points to the first */
466 dma_private
->link
[i
- 1].next
= cpu_to_be64(dma_private
->ld_buf_phys
);
468 /* Tell the DMA controller where the first link descriptor is */
469 out_be32(&dma_channel
->clndar
,
470 CCSR_DMA_CLNDAR_ADDR(dma_private
->ld_buf_phys
));
471 out_be32(&dma_channel
->eclndar
,
472 CCSR_DMA_ECLNDAR_ADDR(dma_private
->ld_buf_phys
));
474 /* The manual says the BCR must be clear before enabling EMP */
475 out_be32(&dma_channel
->bcr
, 0);
478 * Program the mode register for interrupts, external master control,
479 * and source/destination hold. Also clear the Channel Abort bit.
481 mr
= in_be32(&dma_channel
->mr
) &
482 ~(CCSR_DMA_MR_CA
| CCSR_DMA_MR_DAHE
| CCSR_DMA_MR_SAHE
);
485 * We want External Master Start and External Master Pause enabled,
486 * because the SSI is controlling the DMA controller. We want the DMA
487 * controller to be set up in advance, and then we signal only the SSI
488 * to start transferring.
490 * We want End-Of-Segment Interrupts enabled, because this will generate
491 * an interrupt at the end of each segment (each link descriptor
492 * represents one segment). Each DMA segment is the same thing as an
493 * ALSA period, so this is how we get an interrupt at the end of every
496 * We want Error Interrupt enabled, so that we can get an error if
497 * the DMA controller is mis-programmed somehow.
499 mr
|= CCSR_DMA_MR_EOSIE
| CCSR_DMA_MR_EIE
| CCSR_DMA_MR_EMP_EN
|
502 /* For playback, we want the destination address to be held. For
503 capture, set the source address to be held. */
504 mr
|= (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ?
505 CCSR_DMA_MR_DAHE
: CCSR_DMA_MR_SAHE
;
507 out_be32(&dma_channel
->mr
, mr
);
513 * fsl_dma_hw_params: continue initializing the DMA links
515 * This function obtains hardware parameters about the opened stream and
516 * programs the DMA controller accordingly.
518 * One drawback of big-endian is that when copying integers of different
519 * sizes to a fixed-sized register, the address to which the integer must be
520 * copied is dependent on the size of the integer.
522 * For example, if P is the address of a 32-bit register, and X is a 32-bit
523 * integer, then X should be copied to address P. However, if X is a 16-bit
524 * integer, then it should be copied to P+2. If X is an 8-bit register,
525 * then it should be copied to P+3.
527 * So for playback of 8-bit samples, the DMA controller must transfer single
528 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
529 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
531 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
532 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
533 * and 8 bytes at a time). So we do not support packed 24-bit samples.
534 * 24-bit data must be padded to 32 bits.
536 static int fsl_dma_hw_params(struct snd_pcm_substream
*substream
,
537 struct snd_pcm_hw_params
*hw_params
)
539 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
540 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
541 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
542 struct device
*dev
= rtd
->platform
->dev
;
544 /* Number of bits per sample */
545 unsigned int sample_bits
=
546 snd_pcm_format_physical_width(params_format(hw_params
));
548 /* Number of bytes per frame */
549 unsigned int sample_bytes
= sample_bits
/ 8;
551 /* Bus address of SSI STX register */
552 dma_addr_t ssi_sxx_phys
= dma_private
->ssi_sxx_phys
;
554 /* Size of the DMA buffer, in bytes */
555 size_t buffer_size
= params_buffer_bytes(hw_params
);
557 /* Number of bytes per period */
558 size_t period_size
= params_period_bytes(hw_params
);
560 /* Pointer to next period */
561 dma_addr_t temp_addr
= substream
->dma_buffer
.addr
;
563 /* Pointer to DMA controller */
564 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
566 u32 mr
; /* DMA Mode Register */
570 /* Initialize our DMA tracking variables */
571 dma_private
->period_size
= period_size
;
572 dma_private
->num_periods
= params_periods(hw_params
);
573 dma_private
->dma_buf_end
= dma_private
->dma_buf_phys
+ buffer_size
;
574 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
+
575 (NUM_DMA_LINKS
* period_size
);
577 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
578 /* This happens if the number of periods == NUM_DMA_LINKS */
579 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
581 mr
= in_be32(&dma_channel
->mr
) & ~(CCSR_DMA_MR_BWC_MASK
|
582 CCSR_DMA_MR_SAHTS_MASK
| CCSR_DMA_MR_DAHTS_MASK
);
584 /* Due to a quirk of the SSI's STX register, the target address
585 * for the DMA operations depends on the sample size. So we calculate
586 * that offset here. While we're at it, also tell the DMA controller
587 * how much data to transfer per sample.
589 switch (sample_bits
) {
591 mr
|= CCSR_DMA_MR_DAHTS_1
| CCSR_DMA_MR_SAHTS_1
;
595 mr
|= CCSR_DMA_MR_DAHTS_2
| CCSR_DMA_MR_SAHTS_2
;
599 mr
|= CCSR_DMA_MR_DAHTS_4
| CCSR_DMA_MR_SAHTS_4
;
602 /* We should never get here */
603 dev_err(dev
, "unsupported sample size %u\n", sample_bits
);
608 * BWC determines how many bytes are sent/received before the DMA
609 * controller checks the SSI to see if it needs to stop. BWC should
610 * always be a multiple of the frame size, so that we always transmit
611 * whole frames. Each frame occupies two slots in the FIFO. The
612 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
613 * (MR[BWC] can only represent even powers of two).
615 * To simplify the process, we set BWC to the largest value that is
616 * less than or equal to the FIFO watermark. For playback, this ensures
617 * that we transfer the maximum amount without overrunning the FIFO.
618 * For capture, this ensures that we transfer the maximum amount without
619 * underrunning the FIFO.
622 * w = SSI watermark value (which equals f - 2)
623 * b = DMA bandwidth count (in bytes)
624 * s = sample size (in bytes, which equals frame_size * 2)
626 * For playback, we never transmit more than the transmit FIFO
627 * watermark, otherwise we might write more data than the FIFO can hold.
628 * The watermark is equal to the FIFO depth minus two.
630 * For capture, two equations must hold:
634 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
635 * b = s * w, which is equal to
636 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
638 mr
|= CCSR_DMA_MR_BWC((dma_private
->ssi_fifo_depth
- 2) * sample_bytes
);
640 out_be32(&dma_channel
->mr
, mr
);
642 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
643 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
645 link
->count
= cpu_to_be32(period_size
);
647 /* The snoop bit tells the DMA controller whether it should tell
648 * the ECM to snoop during a read or write to an address. For
649 * audio, we use DMA to transfer data between memory and an I/O
650 * device (the SSI's STX0 or SRX0 register). Snooping is only
651 * needed if there is a cache, so we need to snoop memory
652 * addresses only. For playback, that means we snoop the source
653 * but not the destination. For capture, we snoop the
654 * destination but not the source.
656 * Note that failing to snoop properly is unlikely to cause
657 * cache incoherency if the period size is larger than the
658 * size of L1 cache. This is because filling in one period will
659 * flush out the data for the previous period. So if you
660 * increased period_bytes_min to a large enough size, you might
661 * get more performance by not snooping, and you'll still be
662 * okay. You'll need to update fsl_dma_update_pointers() also.
664 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
665 link
->source_addr
= cpu_to_be32(temp_addr
);
666 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
667 upper_32_bits(temp_addr
));
669 link
->dest_addr
= cpu_to_be32(ssi_sxx_phys
);
670 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
671 upper_32_bits(ssi_sxx_phys
));
673 link
->source_addr
= cpu_to_be32(ssi_sxx_phys
);
674 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
675 upper_32_bits(ssi_sxx_phys
));
677 link
->dest_addr
= cpu_to_be32(temp_addr
);
678 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
679 upper_32_bits(temp_addr
));
682 temp_addr
+= period_size
;
689 * fsl_dma_pointer: determine the current position of the DMA transfer
691 * This function is called by ALSA when ALSA wants to know where in the
692 * stream buffer the hardware currently is.
694 * For playback, the SAR register contains the physical address of the most
695 * recent DMA transfer. For capture, the value is in the DAR register.
697 * The base address of the buffer is stored in the source_addr field of the
698 * first link descriptor.
700 static snd_pcm_uframes_t
fsl_dma_pointer(struct snd_pcm_substream
*substream
)
702 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
703 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
704 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
705 struct device
*dev
= rtd
->platform
->dev
;
706 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
708 snd_pcm_uframes_t frames
;
710 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
711 * only have 32-bit DMA addresses. This function is typically called
712 * in interrupt context, so we need to optimize it.
714 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
715 position
= in_be32(&dma_channel
->sar
);
716 #ifdef CONFIG_PHYS_64BIT
717 position
|= (u64
)(in_be32(&dma_channel
->satr
) &
718 CCSR_DMA_ATR_ESAD_MASK
) << 32;
721 position
= in_be32(&dma_channel
->dar
);
722 #ifdef CONFIG_PHYS_64BIT
723 position
|= (u64
)(in_be32(&dma_channel
->datr
) &
724 CCSR_DMA_ATR_ESAD_MASK
) << 32;
729 * When capture is started, the SSI immediately starts to fill its FIFO.
730 * This means that the DMA controller is not started until the FIFO is
731 * full. However, ALSA calls this function before that happens, when
732 * MR.DAR is still zero. In this case, just return zero to indicate
733 * that nothing has been received yet.
738 if ((position
< dma_private
->dma_buf_phys
) ||
739 (position
> dma_private
->dma_buf_end
)) {
740 dev_err(dev
, "dma pointer is out of range, halting stream\n");
741 return SNDRV_PCM_POS_XRUN
;
744 frames
= bytes_to_frames(runtime
, position
- dma_private
->dma_buf_phys
);
747 * If the current address is just past the end of the buffer, wrap it
750 if (frames
== runtime
->buffer_size
)
757 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
759 * Release the resources allocated in fsl_dma_hw_params() and de-program the
762 * This function can be called multiple times.
764 static int fsl_dma_hw_free(struct snd_pcm_substream
*substream
)
766 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
767 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
770 struct ccsr_dma_channel __iomem
*dma_channel
;
772 dma_channel
= dma_private
->dma_channel
;
775 out_be32(&dma_channel
->mr
, CCSR_DMA_MR_CA
);
776 out_be32(&dma_channel
->mr
, 0);
778 /* Reset all the other registers */
779 out_be32(&dma_channel
->sr
, -1);
780 out_be32(&dma_channel
->clndar
, 0);
781 out_be32(&dma_channel
->eclndar
, 0);
782 out_be32(&dma_channel
->satr
, 0);
783 out_be32(&dma_channel
->sar
, 0);
784 out_be32(&dma_channel
->datr
, 0);
785 out_be32(&dma_channel
->dar
, 0);
786 out_be32(&dma_channel
->bcr
, 0);
787 out_be32(&dma_channel
->nlndar
, 0);
788 out_be32(&dma_channel
->enlndar
, 0);
795 * fsl_dma_close: close the stream.
797 static int fsl_dma_close(struct snd_pcm_substream
*substream
)
799 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
800 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
801 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
802 struct device
*dev
= rtd
->platform
->dev
;
803 struct dma_object
*dma
=
804 container_of(rtd
->platform
->driver
, struct dma_object
, dai
);
807 if (dma_private
->irq
)
808 free_irq(dma_private
->irq
, dma_private
);
810 /* Deallocate the fsl_dma_private structure */
811 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
812 dma_private
, dma_private
->ld_buf_phys
);
813 substream
->runtime
->private_data
= NULL
;
816 dma
->assigned
= false;
822 * Remove this PCM driver.
824 static void fsl_dma_free_dma_buffers(struct snd_pcm
*pcm
)
826 struct snd_pcm_substream
*substream
;
829 for (i
= 0; i
< ARRAY_SIZE(pcm
->streams
); i
++) {
830 substream
= pcm
->streams
[i
].substream
;
832 snd_dma_free_pages(&substream
->dma_buffer
);
833 substream
->dma_buffer
.area
= NULL
;
834 substream
->dma_buffer
.addr
= 0;
840 * find_ssi_node -- returns the SSI node that points to its DMA channel node
842 * Although this DMA driver attempts to operate independently of the other
843 * devices, it still needs to determine some information about the SSI device
844 * that it's working with. Unfortunately, the device tree does not contain
845 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
846 * other way. So we need to scan the device tree for SSI nodes until we find
847 * the one that points to the given DMA channel node. It's ugly, but at least
848 * it's contained in this one function.
850 static struct device_node
*find_ssi_node(struct device_node
*dma_channel_np
)
852 struct device_node
*ssi_np
, *np
;
854 for_each_compatible_node(ssi_np
, NULL
, "fsl,mpc8610-ssi") {
855 /* Check each DMA phandle to see if it points to us. We
856 * assume that device_node pointers are a valid comparison.
858 np
= of_parse_phandle(ssi_np
, "fsl,playback-dma", 0);
860 if (np
== dma_channel_np
)
863 np
= of_parse_phandle(ssi_np
, "fsl,capture-dma", 0);
865 if (np
== dma_channel_np
)
872 static const struct snd_pcm_ops fsl_dma_ops
= {
873 .open
= fsl_dma_open
,
874 .close
= fsl_dma_close
,
875 .ioctl
= snd_pcm_lib_ioctl
,
876 .hw_params
= fsl_dma_hw_params
,
877 .hw_free
= fsl_dma_hw_free
,
878 .pointer
= fsl_dma_pointer
,
881 static int fsl_soc_dma_probe(struct platform_device
*pdev
)
883 struct dma_object
*dma
;
884 struct device_node
*np
= pdev
->dev
.of_node
;
885 struct device_node
*ssi_np
;
887 const uint32_t *iprop
;
890 /* Find the SSI node that points to us. */
891 ssi_np
= find_ssi_node(np
);
893 dev_err(&pdev
->dev
, "cannot find parent SSI node\n");
897 ret
= of_address_to_resource(ssi_np
, 0, &res
);
899 dev_err(&pdev
->dev
, "could not determine resources for %pOF\n",
905 dma
= kzalloc(sizeof(*dma
), GFP_KERNEL
);
911 dma
->dai
.ops
= &fsl_dma_ops
;
912 dma
->dai
.pcm_new
= fsl_dma_new
;
913 dma
->dai
.pcm_free
= fsl_dma_free_dma_buffers
;
915 /* Store the SSI-specific information that we need */
916 dma
->ssi_stx_phys
= res
.start
+ REG_SSI_STX0
;
917 dma
->ssi_srx_phys
= res
.start
+ REG_SSI_SRX0
;
919 iprop
= of_get_property(ssi_np
, "fsl,fifo-depth", NULL
);
921 dma
->ssi_fifo_depth
= be32_to_cpup(iprop
);
923 /* Older 8610 DTs didn't have the fifo-depth property */
924 dma
->ssi_fifo_depth
= 8;
928 ret
= snd_soc_register_platform(&pdev
->dev
, &dma
->dai
);
930 dev_err(&pdev
->dev
, "could not register platform\n");
935 dma
->channel
= of_iomap(np
, 0);
936 dma
->irq
= irq_of_parse_and_map(np
, 0);
938 dev_set_drvdata(&pdev
->dev
, dma
);
943 static int fsl_soc_dma_remove(struct platform_device
*pdev
)
945 struct dma_object
*dma
= dev_get_drvdata(&pdev
->dev
);
947 snd_soc_unregister_platform(&pdev
->dev
);
948 iounmap(dma
->channel
);
949 irq_dispose_mapping(dma
->irq
);
955 static const struct of_device_id fsl_soc_dma_ids
[] = {
956 { .compatible
= "fsl,ssi-dma-channel", },
959 MODULE_DEVICE_TABLE(of
, fsl_soc_dma_ids
);
961 static struct platform_driver fsl_soc_dma_driver
= {
963 .name
= "fsl-pcm-audio",
964 .of_match_table
= fsl_soc_dma_ids
,
966 .probe
= fsl_soc_dma_probe
,
967 .remove
= fsl_soc_dma_remove
,
970 module_platform_driver(fsl_soc_dma_driver
);
972 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
973 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
974 MODULE_LICENSE("GPL v2");