Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
blob377e5cbedbbb8c962d7d5f9b0fae7473b22b1481
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/page.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
60 #ifdef DEBUG
61 #define DBG(fmt...) udbg_printf(fmt)
62 #else
63 #define DBG(fmt...)
64 #endif
66 #ifdef DEBUG_LOW
67 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG_LOW(fmt...)
70 #endif
72 #define KB (1024)
73 #define MB (1024*KB)
74 #define GB (1024L*MB)
77 * Note: pte --> Linux PTE
78 * HPTE --> PowerPC Hashed Page Table Entry
80 * Execution context:
81 * htab_initialize is called with the MMU off (of course), but
82 * the kernel has been copied down to zero so it can directly
83 * reference global data. At this point it is very difficult
84 * to print debug info.
88 #ifdef CONFIG_U3_DART
89 extern unsigned long dart_tablebase;
90 #endif /* CONFIG_U3_DART */
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95 struct hash_pte *htab_address;
96 unsigned long htab_size_bytes;
97 unsigned long htab_hash_mask;
98 EXPORT_SYMBOL_GPL(htab_hash_mask);
99 int mmu_linear_psize = MMU_PAGE_4K;
100 int mmu_virtual_psize = MMU_PAGE_4K;
101 int mmu_vmalloc_psize = MMU_PAGE_4K;
102 #ifdef CONFIG_SPARSEMEM_VMEMMAP
103 int mmu_vmemmap_psize = MMU_PAGE_4K;
104 #endif
105 int mmu_io_psize = MMU_PAGE_4K;
106 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
107 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
108 u16 mmu_slb_size = 64;
109 EXPORT_SYMBOL_GPL(mmu_slb_size);
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
119 /* There are definitions of page sizes arrays to be used when none
120 * is provided by the firmware.
123 /* Pre-POWER4 CPUs (4k pages only)
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126 [MMU_PAGE_4K] = {
127 .shift = 12,
128 .sllp = 0,
129 .penc = 0,
130 .avpnm = 0,
131 .tlbiel = 0,
135 /* POWER4, GPUL, POWER5
137 * Support for 16Mb large pages
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140 [MMU_PAGE_4K] = {
141 .shift = 12,
142 .sllp = 0,
143 .penc = 0,
144 .avpnm = 0,
145 .tlbiel = 1,
147 [MMU_PAGE_16M] = {
148 .shift = 24,
149 .sllp = SLB_VSID_L,
150 .penc = 0,
151 .avpnm = 0x1UL,
152 .tlbiel = 0,
156 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
158 unsigned long rflags = pteflags & 0x1fa;
160 /* _PAGE_EXEC -> NOEXEC */
161 if ((pteflags & _PAGE_EXEC) == 0)
162 rflags |= HPTE_R_N;
164 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
165 * need to add in 0x1 if it's a read-only user page
167 if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
168 (pteflags & _PAGE_DIRTY)))
169 rflags |= 1;
171 /* Always add C */
172 return rflags | HPTE_R_C;
175 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
176 unsigned long pstart, unsigned long prot,
177 int psize, int ssize)
179 unsigned long vaddr, paddr;
180 unsigned int step, shift;
181 int ret = 0;
183 shift = mmu_psize_defs[psize].shift;
184 step = 1 << shift;
186 prot = htab_convert_pte_flags(prot);
188 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
189 vstart, vend, pstart, prot, psize, ssize);
191 for (vaddr = vstart, paddr = pstart; vaddr < vend;
192 vaddr += step, paddr += step) {
193 unsigned long hash, hpteg;
194 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
195 unsigned long va = hpt_va(vaddr, vsid, ssize);
196 unsigned long tprot = prot;
198 /* Make kernel text executable */
199 if (overlaps_kernel_text(vaddr, vaddr + step))
200 tprot &= ~HPTE_R_N;
202 hash = hpt_hash(va, shift, ssize);
203 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
205 BUG_ON(!ppc_md.hpte_insert);
206 ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
207 HPTE_V_BOLTED, psize, ssize);
209 if (ret < 0)
210 break;
211 #ifdef CONFIG_DEBUG_PAGEALLOC
212 if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
213 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
214 #endif /* CONFIG_DEBUG_PAGEALLOC */
216 return ret < 0 ? ret : 0;
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
221 int psize, int ssize)
223 unsigned long vaddr;
224 unsigned int step, shift;
226 shift = mmu_psize_defs[psize].shift;
227 step = 1 << shift;
229 if (!ppc_md.hpte_removebolted) {
230 printk(KERN_WARNING "Platform doesn't implement "
231 "hpte_removebolted\n");
232 return -EINVAL;
235 for (vaddr = vstart; vaddr < vend; vaddr += step)
236 ppc_md.hpte_removebolted(vaddr, psize, ssize);
238 return 0;
240 #endif /* CONFIG_MEMORY_HOTPLUG */
242 static int __init htab_dt_scan_seg_sizes(unsigned long node,
243 const char *uname, int depth,
244 void *data)
246 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
247 u32 *prop;
248 unsigned long size = 0;
250 /* We are scanning "cpu" nodes only */
251 if (type == NULL || strcmp(type, "cpu") != 0)
252 return 0;
254 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
255 &size);
256 if (prop == NULL)
257 return 0;
258 for (; size >= 4; size -= 4, ++prop) {
259 if (prop[0] == 40) {
260 DBG("1T segment support detected\n");
261 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
262 return 1;
265 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
266 return 0;
269 static void __init htab_init_seg_sizes(void)
271 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
274 static int __init htab_dt_scan_page_sizes(unsigned long node,
275 const char *uname, int depth,
276 void *data)
278 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
279 u32 *prop;
280 unsigned long size = 0;
282 /* We are scanning "cpu" nodes only */
283 if (type == NULL || strcmp(type, "cpu") != 0)
284 return 0;
286 prop = (u32 *)of_get_flat_dt_prop(node,
287 "ibm,segment-page-sizes", &size);
288 if (prop != NULL) {
289 DBG("Page sizes from device-tree:\n");
290 size /= 4;
291 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
292 while(size > 0) {
293 unsigned int shift = prop[0];
294 unsigned int slbenc = prop[1];
295 unsigned int lpnum = prop[2];
296 unsigned int lpenc = 0;
297 struct mmu_psize_def *def;
298 int idx = -1;
300 size -= 3; prop += 3;
301 while(size > 0 && lpnum) {
302 if (prop[0] == shift)
303 lpenc = prop[1];
304 prop += 2; size -= 2;
305 lpnum--;
307 switch(shift) {
308 case 0xc:
309 idx = MMU_PAGE_4K;
310 break;
311 case 0x10:
312 idx = MMU_PAGE_64K;
313 break;
314 case 0x14:
315 idx = MMU_PAGE_1M;
316 break;
317 case 0x18:
318 idx = MMU_PAGE_16M;
319 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
320 break;
321 case 0x22:
322 idx = MMU_PAGE_16G;
323 break;
325 if (idx < 0)
326 continue;
327 def = &mmu_psize_defs[idx];
328 def->shift = shift;
329 if (shift <= 23)
330 def->avpnm = 0;
331 else
332 def->avpnm = (1 << (shift - 23)) - 1;
333 def->sllp = slbenc;
334 def->penc = lpenc;
335 /* We don't know for sure what's up with tlbiel, so
336 * for now we only set it for 4K and 64K pages
338 if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
339 def->tlbiel = 1;
340 else
341 def->tlbiel = 0;
343 DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
344 "tlbiel=%d, penc=%d\n",
345 idx, shift, def->sllp, def->avpnm, def->tlbiel,
346 def->penc);
348 return 1;
350 return 0;
353 #ifdef CONFIG_HUGETLB_PAGE
354 /* Scan for 16G memory blocks that have been set aside for huge pages
355 * and reserve those blocks for 16G huge pages.
357 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
358 const char *uname, int depth,
359 void *data) {
360 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
361 unsigned long *addr_prop;
362 u32 *page_count_prop;
363 unsigned int expected_pages;
364 long unsigned int phys_addr;
365 long unsigned int block_size;
367 /* We are scanning "memory" nodes only */
368 if (type == NULL || strcmp(type, "memory") != 0)
369 return 0;
371 /* This property is the log base 2 of the number of virtual pages that
372 * will represent this memory block. */
373 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
374 if (page_count_prop == NULL)
375 return 0;
376 expected_pages = (1 << page_count_prop[0]);
377 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
378 if (addr_prop == NULL)
379 return 0;
380 phys_addr = addr_prop[0];
381 block_size = addr_prop[1];
382 if (block_size != (16 * GB))
383 return 0;
384 printk(KERN_INFO "Huge page(16GB) memory: "
385 "addr = 0x%lX size = 0x%lX pages = %d\n",
386 phys_addr, block_size, expected_pages);
387 if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
388 memblock_reserve(phys_addr, block_size * expected_pages);
389 add_gpage(phys_addr, block_size, expected_pages);
391 return 0;
393 #endif /* CONFIG_HUGETLB_PAGE */
395 static void __init htab_init_page_sizes(void)
397 int rc;
399 /* Default to 4K pages only */
400 memcpy(mmu_psize_defs, mmu_psize_defaults_old,
401 sizeof(mmu_psize_defaults_old));
404 * Try to find the available page sizes in the device-tree
406 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
407 if (rc != 0) /* Found */
408 goto found;
411 * Not in the device-tree, let's fallback on known size
412 * list for 16M capable GP & GR
414 if (mmu_has_feature(MMU_FTR_16M_PAGE))
415 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
416 sizeof(mmu_psize_defaults_gp));
417 found:
418 #ifndef CONFIG_DEBUG_PAGEALLOC
420 * Pick a size for the linear mapping. Currently, we only support
421 * 16M, 1M and 4K which is the default
423 if (mmu_psize_defs[MMU_PAGE_16M].shift)
424 mmu_linear_psize = MMU_PAGE_16M;
425 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
426 mmu_linear_psize = MMU_PAGE_1M;
427 #endif /* CONFIG_DEBUG_PAGEALLOC */
429 #ifdef CONFIG_PPC_64K_PAGES
431 * Pick a size for the ordinary pages. Default is 4K, we support
432 * 64K for user mappings and vmalloc if supported by the processor.
433 * We only use 64k for ioremap if the processor
434 * (and firmware) support cache-inhibited large pages.
435 * If not, we use 4k and set mmu_ci_restrictions so that
436 * hash_page knows to switch processes that use cache-inhibited
437 * mappings to 4k pages.
439 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
440 mmu_virtual_psize = MMU_PAGE_64K;
441 mmu_vmalloc_psize = MMU_PAGE_64K;
442 if (mmu_linear_psize == MMU_PAGE_4K)
443 mmu_linear_psize = MMU_PAGE_64K;
444 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
446 * Don't use 64k pages for ioremap on pSeries, since
447 * that would stop us accessing the HEA ethernet.
449 if (!machine_is(pseries))
450 mmu_io_psize = MMU_PAGE_64K;
451 } else
452 mmu_ci_restrictions = 1;
454 #endif /* CONFIG_PPC_64K_PAGES */
456 #ifdef CONFIG_SPARSEMEM_VMEMMAP
457 /* We try to use 16M pages for vmemmap if that is supported
458 * and we have at least 1G of RAM at boot
460 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
461 memblock_phys_mem_size() >= 0x40000000)
462 mmu_vmemmap_psize = MMU_PAGE_16M;
463 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
464 mmu_vmemmap_psize = MMU_PAGE_64K;
465 else
466 mmu_vmemmap_psize = MMU_PAGE_4K;
467 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
469 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
470 "virtual = %d, io = %d"
471 #ifdef CONFIG_SPARSEMEM_VMEMMAP
472 ", vmemmap = %d"
473 #endif
474 "\n",
475 mmu_psize_defs[mmu_linear_psize].shift,
476 mmu_psize_defs[mmu_virtual_psize].shift,
477 mmu_psize_defs[mmu_io_psize].shift
478 #ifdef CONFIG_SPARSEMEM_VMEMMAP
479 ,mmu_psize_defs[mmu_vmemmap_psize].shift
480 #endif
483 #ifdef CONFIG_HUGETLB_PAGE
484 /* Reserve 16G huge page memory sections for huge pages */
485 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
486 #endif /* CONFIG_HUGETLB_PAGE */
489 static int __init htab_dt_scan_pftsize(unsigned long node,
490 const char *uname, int depth,
491 void *data)
493 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
494 u32 *prop;
496 /* We are scanning "cpu" nodes only */
497 if (type == NULL || strcmp(type, "cpu") != 0)
498 return 0;
500 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
501 if (prop != NULL) {
502 /* pft_size[0] is the NUMA CEC cookie */
503 ppc64_pft_size = prop[1];
504 return 1;
506 return 0;
509 static unsigned long __init htab_get_table_size(void)
511 unsigned long mem_size, rnd_mem_size, pteg_count, psize;
513 /* If hash size isn't already provided by the platform, we try to
514 * retrieve it from the device-tree. If it's not there neither, we
515 * calculate it now based on the total RAM size
517 if (ppc64_pft_size == 0)
518 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
519 if (ppc64_pft_size)
520 return 1UL << ppc64_pft_size;
522 /* round mem_size up to next power of 2 */
523 mem_size = memblock_phys_mem_size();
524 rnd_mem_size = 1UL << __ilog2(mem_size);
525 if (rnd_mem_size < mem_size)
526 rnd_mem_size <<= 1;
528 /* # pages / 2 */
529 psize = mmu_psize_defs[mmu_virtual_psize].shift;
530 pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
532 return pteg_count << 7;
535 #ifdef CONFIG_MEMORY_HOTPLUG
536 int create_section_mapping(unsigned long start, unsigned long end)
538 return htab_bolt_mapping(start, end, __pa(start),
539 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
540 mmu_kernel_ssize);
543 int remove_section_mapping(unsigned long start, unsigned long end)
545 return htab_remove_mapping(start, end, mmu_linear_psize,
546 mmu_kernel_ssize);
548 #endif /* CONFIG_MEMORY_HOTPLUG */
550 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
552 static void __init htab_finish_init(void)
554 extern unsigned int *htab_call_hpte_insert1;
555 extern unsigned int *htab_call_hpte_insert2;
556 extern unsigned int *htab_call_hpte_remove;
557 extern unsigned int *htab_call_hpte_updatepp;
559 #ifdef CONFIG_PPC_HAS_HASH_64K
560 extern unsigned int *ht64_call_hpte_insert1;
561 extern unsigned int *ht64_call_hpte_insert2;
562 extern unsigned int *ht64_call_hpte_remove;
563 extern unsigned int *ht64_call_hpte_updatepp;
565 patch_branch(ht64_call_hpte_insert1,
566 FUNCTION_TEXT(ppc_md.hpte_insert),
567 BRANCH_SET_LINK);
568 patch_branch(ht64_call_hpte_insert2,
569 FUNCTION_TEXT(ppc_md.hpte_insert),
570 BRANCH_SET_LINK);
571 patch_branch(ht64_call_hpte_remove,
572 FUNCTION_TEXT(ppc_md.hpte_remove),
573 BRANCH_SET_LINK);
574 patch_branch(ht64_call_hpte_updatepp,
575 FUNCTION_TEXT(ppc_md.hpte_updatepp),
576 BRANCH_SET_LINK);
578 #endif /* CONFIG_PPC_HAS_HASH_64K */
580 patch_branch(htab_call_hpte_insert1,
581 FUNCTION_TEXT(ppc_md.hpte_insert),
582 BRANCH_SET_LINK);
583 patch_branch(htab_call_hpte_insert2,
584 FUNCTION_TEXT(ppc_md.hpte_insert),
585 BRANCH_SET_LINK);
586 patch_branch(htab_call_hpte_remove,
587 FUNCTION_TEXT(ppc_md.hpte_remove),
588 BRANCH_SET_LINK);
589 patch_branch(htab_call_hpte_updatepp,
590 FUNCTION_TEXT(ppc_md.hpte_updatepp),
591 BRANCH_SET_LINK);
594 static void __init htab_initialize(void)
596 unsigned long table;
597 unsigned long pteg_count;
598 unsigned long prot;
599 unsigned long base = 0, size = 0, limit;
600 struct memblock_region *reg;
602 DBG(" -> htab_initialize()\n");
604 /* Initialize segment sizes */
605 htab_init_seg_sizes();
607 /* Initialize page sizes */
608 htab_init_page_sizes();
610 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
611 mmu_kernel_ssize = MMU_SEGSIZE_1T;
612 mmu_highuser_ssize = MMU_SEGSIZE_1T;
613 printk(KERN_INFO "Using 1TB segments\n");
617 * Calculate the required size of the htab. We want the number of
618 * PTEGs to equal one half the number of real pages.
620 htab_size_bytes = htab_get_table_size();
621 pteg_count = htab_size_bytes >> 7;
623 htab_hash_mask = pteg_count - 1;
625 if (firmware_has_feature(FW_FEATURE_LPAR)) {
626 /* Using a hypervisor which owns the htab */
627 htab_address = NULL;
628 _SDR1 = 0;
629 #ifdef CONFIG_FA_DUMP
631 * If firmware assisted dump is active firmware preserves
632 * the contents of htab along with entire partition memory.
633 * Clear the htab if firmware assisted dump is active so
634 * that we dont end up using old mappings.
636 if (is_fadump_active() && ppc_md.hpte_clear_all)
637 ppc_md.hpte_clear_all();
638 #endif
639 } else {
640 /* Find storage for the HPT. Must be contiguous in
641 * the absolute address space. On cell we want it to be
642 * in the first 2 Gig so we can use it for IOMMU hacks.
644 if (machine_is(cell))
645 limit = 0x80000000;
646 else
647 limit = MEMBLOCK_ALLOC_ANYWHERE;
649 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
651 DBG("Hash table allocated at %lx, size: %lx\n", table,
652 htab_size_bytes);
654 htab_address = abs_to_virt(table);
656 /* htab absolute addr + encoded htabsize */
657 _SDR1 = table + __ilog2(pteg_count) - 11;
659 /* Initialize the HPT with no entries */
660 memset((void *)table, 0, htab_size_bytes);
662 /* Set SDR1 */
663 mtspr(SPRN_SDR1, _SDR1);
666 prot = pgprot_val(PAGE_KERNEL);
668 #ifdef CONFIG_DEBUG_PAGEALLOC
669 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
670 linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
671 1, ppc64_rma_size));
672 memset(linear_map_hash_slots, 0, linear_map_hash_count);
673 #endif /* CONFIG_DEBUG_PAGEALLOC */
675 /* On U3 based machines, we need to reserve the DART area and
676 * _NOT_ map it to avoid cache paradoxes as it's remapped non
677 * cacheable later on
680 /* create bolted the linear mapping in the hash table */
681 for_each_memblock(memory, reg) {
682 base = (unsigned long)__va(reg->base);
683 size = reg->size;
685 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
686 base, size, prot);
688 #ifdef CONFIG_U3_DART
689 /* Do not map the DART space. Fortunately, it will be aligned
690 * in such a way that it will not cross two memblock regions and
691 * will fit within a single 16Mb page.
692 * The DART space is assumed to be a full 16Mb region even if
693 * we only use 2Mb of that space. We will use more of it later
694 * for AGP GART. We have to use a full 16Mb large page.
696 DBG("DART base: %lx\n", dart_tablebase);
698 if (dart_tablebase != 0 && dart_tablebase >= base
699 && dart_tablebase < (base + size)) {
700 unsigned long dart_table_end = dart_tablebase + 16 * MB;
701 if (base != dart_tablebase)
702 BUG_ON(htab_bolt_mapping(base, dart_tablebase,
703 __pa(base), prot,
704 mmu_linear_psize,
705 mmu_kernel_ssize));
706 if ((base + size) > dart_table_end)
707 BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
708 base + size,
709 __pa(dart_table_end),
710 prot,
711 mmu_linear_psize,
712 mmu_kernel_ssize));
713 continue;
715 #endif /* CONFIG_U3_DART */
716 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
717 prot, mmu_linear_psize, mmu_kernel_ssize));
719 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
722 * If we have a memory_limit and we've allocated TCEs then we need to
723 * explicitly map the TCE area at the top of RAM. We also cope with the
724 * case that the TCEs start below memory_limit.
725 * tce_alloc_start/end are 16MB aligned so the mapping should work
726 * for either 4K or 16MB pages.
728 if (tce_alloc_start) {
729 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
730 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
732 if (base + size >= tce_alloc_start)
733 tce_alloc_start = base + size + 1;
735 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
736 __pa(tce_alloc_start), prot,
737 mmu_linear_psize, mmu_kernel_ssize));
740 htab_finish_init();
742 DBG(" <- htab_initialize()\n");
744 #undef KB
745 #undef MB
747 void __init early_init_mmu(void)
749 /* Setup initial STAB address in the PACA */
750 get_paca()->stab_real = __pa((u64)&initial_stab);
751 get_paca()->stab_addr = (u64)&initial_stab;
753 /* Initialize the MMU Hash table and create the linear mapping
754 * of memory. Has to be done before stab/slb initialization as
755 * this is currently where the page size encoding is obtained
757 htab_initialize();
759 /* Initialize stab / SLB management */
760 if (mmu_has_feature(MMU_FTR_SLB))
761 slb_initialize();
764 #ifdef CONFIG_SMP
765 void __cpuinit early_init_mmu_secondary(void)
767 /* Initialize hash table for that CPU */
768 if (!firmware_has_feature(FW_FEATURE_LPAR))
769 mtspr(SPRN_SDR1, _SDR1);
771 /* Initialize STAB/SLB. We use a virtual address as it works
772 * in real mode on pSeries.
774 if (mmu_has_feature(MMU_FTR_SLB))
775 slb_initialize();
776 else
777 stab_initialize(get_paca()->stab_addr);
779 #endif /* CONFIG_SMP */
782 * Called by asm hashtable.S for doing lazy icache flush
784 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
786 struct page *page;
788 if (!pfn_valid(pte_pfn(pte)))
789 return pp;
791 page = pte_page(pte);
793 /* page is dirty */
794 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
795 if (trap == 0x400) {
796 flush_dcache_icache_page(page);
797 set_bit(PG_arch_1, &page->flags);
798 } else
799 pp |= HPTE_R_N;
801 return pp;
804 #ifdef CONFIG_PPC_MM_SLICES
805 unsigned int get_paca_psize(unsigned long addr)
807 unsigned long index, slices;
809 if (addr < SLICE_LOW_TOP) {
810 slices = get_paca()->context.low_slices_psize;
811 index = GET_LOW_SLICE_INDEX(addr);
812 } else {
813 slices = get_paca()->context.high_slices_psize;
814 index = GET_HIGH_SLICE_INDEX(addr);
816 return (slices >> (index * 4)) & 0xF;
819 #else
820 unsigned int get_paca_psize(unsigned long addr)
822 return get_paca()->context.user_psize;
824 #endif
827 * Demote a segment to using 4k pages.
828 * For now this makes the whole process use 4k pages.
830 #ifdef CONFIG_PPC_64K_PAGES
831 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
833 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
834 return;
835 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
836 #ifdef CONFIG_SPU_BASE
837 spu_flush_all_slbs(mm);
838 #endif
839 if (get_paca_psize(addr) != MMU_PAGE_4K) {
840 get_paca()->context = mm->context;
841 slb_flush_and_rebolt();
844 #endif /* CONFIG_PPC_64K_PAGES */
846 #ifdef CONFIG_PPC_SUBPAGE_PROT
848 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
849 * Userspace sets the subpage permissions using the subpage_prot system call.
851 * Result is 0: full permissions, _PAGE_RW: read-only,
852 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
854 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
856 struct subpage_prot_table *spt = &mm->context.spt;
857 u32 spp = 0;
858 u32 **sbpm, *sbpp;
860 if (ea >= spt->maxaddr)
861 return 0;
862 if (ea < 0x100000000) {
863 /* addresses below 4GB use spt->low_prot */
864 sbpm = spt->low_prot;
865 } else {
866 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
867 if (!sbpm)
868 return 0;
870 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
871 if (!sbpp)
872 return 0;
873 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
875 /* extract 2-bit bitfield for this 4k subpage */
876 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
878 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
879 spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
880 return spp;
883 #else /* CONFIG_PPC_SUBPAGE_PROT */
884 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
886 return 0;
888 #endif
890 void hash_failure_debug(unsigned long ea, unsigned long access,
891 unsigned long vsid, unsigned long trap,
892 int ssize, int psize, unsigned long pte)
894 if (!printk_ratelimit())
895 return;
896 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
897 ea, access, current->comm);
898 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
899 trap, vsid, ssize, psize, pte);
902 /* Result code is:
903 * 0 - handled
904 * 1 - normal page fault
905 * -1 - critical hash insertion error
906 * -2 - access not permitted by subpage protection mechanism
908 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
910 pgd_t *pgdir;
911 unsigned long vsid;
912 struct mm_struct *mm;
913 pte_t *ptep;
914 unsigned hugeshift;
915 const struct cpumask *tmp;
916 int rc, user_region = 0, local = 0;
917 int psize, ssize;
919 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
920 ea, access, trap);
922 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
923 DBG_LOW(" out of pgtable range !\n");
924 return 1;
927 /* Get region & vsid */
928 switch (REGION_ID(ea)) {
929 case USER_REGION_ID:
930 user_region = 1;
931 mm = current->mm;
932 if (! mm) {
933 DBG_LOW(" user region with no mm !\n");
934 return 1;
936 psize = get_slice_psize(mm, ea);
937 ssize = user_segment_size(ea);
938 vsid = get_vsid(mm->context.id, ea, ssize);
939 break;
940 case VMALLOC_REGION_ID:
941 mm = &init_mm;
942 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
943 if (ea < VMALLOC_END)
944 psize = mmu_vmalloc_psize;
945 else
946 psize = mmu_io_psize;
947 ssize = mmu_kernel_ssize;
948 break;
949 default:
950 /* Not a valid range
951 * Send the problem up to do_page_fault
953 return 1;
955 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
957 /* Get pgdir */
958 pgdir = mm->pgd;
959 if (pgdir == NULL)
960 return 1;
962 /* Check CPU locality */
963 tmp = cpumask_of(smp_processor_id());
964 if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
965 local = 1;
967 #ifndef CONFIG_PPC_64K_PAGES
968 /* If we use 4K pages and our psize is not 4K, then we might
969 * be hitting a special driver mapping, and need to align the
970 * address before we fetch the PTE.
972 * It could also be a hugepage mapping, in which case this is
973 * not necessary, but it's not harmful, either.
975 if (psize != MMU_PAGE_4K)
976 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
977 #endif /* CONFIG_PPC_64K_PAGES */
979 /* Get PTE and page size from page tables */
980 ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
981 if (ptep == NULL || !pte_present(*ptep)) {
982 DBG_LOW(" no PTE !\n");
983 return 1;
986 /* Add _PAGE_PRESENT to the required access perm */
987 access |= _PAGE_PRESENT;
989 /* Pre-check access permissions (will be re-checked atomically
990 * in __hash_page_XX but this pre-check is a fast path
992 if (access & ~pte_val(*ptep)) {
993 DBG_LOW(" no access !\n");
994 return 1;
997 #ifdef CONFIG_HUGETLB_PAGE
998 if (hugeshift)
999 return __hash_page_huge(ea, access, vsid, ptep, trap, local,
1000 ssize, hugeshift, psize);
1001 #endif /* CONFIG_HUGETLB_PAGE */
1003 #ifndef CONFIG_PPC_64K_PAGES
1004 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1005 #else
1006 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1007 pte_val(*(ptep + PTRS_PER_PTE)));
1008 #endif
1009 /* Do actual hashing */
1010 #ifdef CONFIG_PPC_64K_PAGES
1011 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1012 if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1013 demote_segment_4k(mm, ea);
1014 psize = MMU_PAGE_4K;
1017 /* If this PTE is non-cacheable and we have restrictions on
1018 * using non cacheable large pages, then we switch to 4k
1020 if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1021 (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1022 if (user_region) {
1023 demote_segment_4k(mm, ea);
1024 psize = MMU_PAGE_4K;
1025 } else if (ea < VMALLOC_END) {
1027 * some driver did a non-cacheable mapping
1028 * in vmalloc space, so switch vmalloc
1029 * to 4k pages
1031 printk(KERN_ALERT "Reducing vmalloc segment "
1032 "to 4kB pages because of "
1033 "non-cacheable mapping\n");
1034 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1035 #ifdef CONFIG_SPU_BASE
1036 spu_flush_all_slbs(mm);
1037 #endif
1040 if (user_region) {
1041 if (psize != get_paca_psize(ea)) {
1042 get_paca()->context = mm->context;
1043 slb_flush_and_rebolt();
1045 } else if (get_paca()->vmalloc_sllp !=
1046 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1047 get_paca()->vmalloc_sllp =
1048 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1049 slb_vmalloc_update();
1051 #endif /* CONFIG_PPC_64K_PAGES */
1053 #ifdef CONFIG_PPC_HAS_HASH_64K
1054 if (psize == MMU_PAGE_64K)
1055 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1056 else
1057 #endif /* CONFIG_PPC_HAS_HASH_64K */
1059 int spp = subpage_protection(mm, ea);
1060 if (access & spp)
1061 rc = -2;
1062 else
1063 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1064 local, ssize, spp);
1067 /* Dump some info in case of hash insertion failure, they should
1068 * never happen so it is really useful to know if/when they do
1070 if (rc == -1)
1071 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1072 pte_val(*ptep));
1073 #ifndef CONFIG_PPC_64K_PAGES
1074 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1075 #else
1076 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1077 pte_val(*(ptep + PTRS_PER_PTE)));
1078 #endif
1079 DBG_LOW(" -> rc=%d\n", rc);
1080 return rc;
1082 EXPORT_SYMBOL_GPL(hash_page);
1084 void hash_preload(struct mm_struct *mm, unsigned long ea,
1085 unsigned long access, unsigned long trap)
1087 unsigned long vsid;
1088 pgd_t *pgdir;
1089 pte_t *ptep;
1090 unsigned long flags;
1091 int rc, ssize, local = 0;
1093 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1095 #ifdef CONFIG_PPC_MM_SLICES
1096 /* We only prefault standard pages for now */
1097 if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1098 return;
1099 #endif
1101 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1102 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1104 /* Get Linux PTE if available */
1105 pgdir = mm->pgd;
1106 if (pgdir == NULL)
1107 return;
1108 ptep = find_linux_pte(pgdir, ea);
1109 if (!ptep)
1110 return;
1112 #ifdef CONFIG_PPC_64K_PAGES
1113 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1114 * a 64K kernel), then we don't preload, hash_page() will take
1115 * care of it once we actually try to access the page.
1116 * That way we don't have to duplicate all of the logic for segment
1117 * page size demotion here
1119 if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1120 return;
1121 #endif /* CONFIG_PPC_64K_PAGES */
1123 /* Get VSID */
1124 ssize = user_segment_size(ea);
1125 vsid = get_vsid(mm->context.id, ea, ssize);
1127 /* Hash doesn't like irqs */
1128 local_irq_save(flags);
1130 /* Is that local to this CPU ? */
1131 if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1132 local = 1;
1134 /* Hash it in */
1135 #ifdef CONFIG_PPC_HAS_HASH_64K
1136 if (mm->context.user_psize == MMU_PAGE_64K)
1137 rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1138 else
1139 #endif /* CONFIG_PPC_HAS_HASH_64K */
1140 rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1141 subpage_protection(mm, ea));
1143 /* Dump some info in case of hash insertion failure, they should
1144 * never happen so it is really useful to know if/when they do
1146 if (rc == -1)
1147 hash_failure_debug(ea, access, vsid, trap, ssize,
1148 mm->context.user_psize, pte_val(*ptep));
1150 local_irq_restore(flags);
1153 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1154 * do not forget to update the assembly call site !
1156 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1157 int local)
1159 unsigned long hash, index, shift, hidx, slot;
1161 DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1162 pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1163 hash = hpt_hash(va, shift, ssize);
1164 hidx = __rpte_to_hidx(pte, index);
1165 if (hidx & _PTEIDX_SECONDARY)
1166 hash = ~hash;
1167 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1168 slot += hidx & _PTEIDX_GROUP_IX;
1169 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1170 ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1171 } pte_iterate_hashed_end();
1174 void flush_hash_range(unsigned long number, int local)
1176 if (ppc_md.flush_hash_range)
1177 ppc_md.flush_hash_range(number, local);
1178 else {
1179 int i;
1180 struct ppc64_tlb_batch *batch =
1181 &__get_cpu_var(ppc64_tlb_batch);
1183 for (i = 0; i < number; i++)
1184 flush_hash_page(batch->vaddr[i], batch->pte[i],
1185 batch->psize, batch->ssize, local);
1190 * low_hash_fault is called when we the low level hash code failed
1191 * to instert a PTE due to an hypervisor error
1193 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1195 if (user_mode(regs)) {
1196 #ifdef CONFIG_PPC_SUBPAGE_PROT
1197 if (rc == -2)
1198 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1199 else
1200 #endif
1201 _exception(SIGBUS, regs, BUS_ADRERR, address);
1202 } else
1203 bad_page_fault(regs, address, SIGBUS);
1206 #ifdef CONFIG_DEBUG_PAGEALLOC
1207 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1209 unsigned long hash, hpteg;
1210 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1211 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1212 unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1213 int ret;
1215 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1216 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1218 ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1219 mode, HPTE_V_BOLTED,
1220 mmu_linear_psize, mmu_kernel_ssize);
1221 BUG_ON (ret < 0);
1222 spin_lock(&linear_map_hash_lock);
1223 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1224 linear_map_hash_slots[lmi] = ret | 0x80;
1225 spin_unlock(&linear_map_hash_lock);
1228 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1230 unsigned long hash, hidx, slot;
1231 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1232 unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1234 hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1235 spin_lock(&linear_map_hash_lock);
1236 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1237 hidx = linear_map_hash_slots[lmi] & 0x7f;
1238 linear_map_hash_slots[lmi] = 0;
1239 spin_unlock(&linear_map_hash_lock);
1240 if (hidx & _PTEIDX_SECONDARY)
1241 hash = ~hash;
1242 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1243 slot += hidx & _PTEIDX_GROUP_IX;
1244 ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1247 void kernel_map_pages(struct page *page, int numpages, int enable)
1249 unsigned long flags, vaddr, lmi;
1250 int i;
1252 local_irq_save(flags);
1253 for (i = 0; i < numpages; i++, page++) {
1254 vaddr = (unsigned long)page_address(page);
1255 lmi = __pa(vaddr) >> PAGE_SHIFT;
1256 if (lmi >= linear_map_hash_count)
1257 continue;
1258 if (enable)
1259 kernel_map_linear_page(vaddr, lmi);
1260 else
1261 kernel_unmap_linear_page(vaddr, lmi);
1263 local_irq_restore(flags);
1265 #endif /* CONFIG_DEBUG_PAGEALLOC */
1267 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1268 phys_addr_t first_memblock_size)
1270 /* We don't currently support the first MEMBLOCK not mapping 0
1271 * physical on those processors
1273 BUG_ON(first_memblock_base != 0);
1275 /* On LPAR systems, the first entry is our RMA region,
1276 * non-LPAR 64-bit hash MMU systems don't have a limitation
1277 * on real mode access, but using the first entry works well
1278 * enough. We also clamp it to 1G to avoid some funky things
1279 * such as RTAS bugs etc...
1281 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1283 /* Finally limit subsequent allocations */
1284 memblock_set_current_limit(ppc64_rma_size);