Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[linux/fpc-iii.git] / arch / powerpc / mm / stab.c
blob9106ebb118f52e516e1053b2d0b9fe88367a442c
1 /*
2 * PowerPC64 Segment Translation Support.
4 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
5 * Copyright (c) 2001 Dave Engebretsen
7 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <linux/memblock.h>
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/prom.h>
23 #include <asm/abs_addr.h>
25 struct stab_entry {
26 unsigned long esid_data;
27 unsigned long vsid_data;
30 #define NR_STAB_CACHE_ENTRIES 8
31 static DEFINE_PER_CPU(long, stab_cache_ptr);
32 static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache);
35 * Create a segment table entry for the given esid/vsid pair.
37 static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
39 unsigned long esid_data, vsid_data;
40 unsigned long entry, group, old_esid, castout_entry, i;
41 unsigned int global_entry;
42 struct stab_entry *ste, *castout_ste;
43 unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET;
45 vsid_data = vsid << STE_VSID_SHIFT;
46 esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V;
47 if (! kernel_segment)
48 esid_data |= STE_ESID_KS;
50 /* Search the primary group first. */
51 global_entry = (esid & 0x1f) << 3;
52 ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
54 /* Find an empty entry, if one exists. */
55 for (group = 0; group < 2; group++) {
56 for (entry = 0; entry < 8; entry++, ste++) {
57 if (!(ste->esid_data & STE_ESID_V)) {
58 ste->vsid_data = vsid_data;
59 eieio();
60 ste->esid_data = esid_data;
61 return (global_entry | entry);
64 /* Now search the secondary group. */
65 global_entry = ((~esid) & 0x1f) << 3;
66 ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
70 * Could not find empty entry, pick one with a round robin selection.
71 * Search all entries in the two groups.
73 castout_entry = get_paca()->stab_rr;
74 for (i = 0; i < 16; i++) {
75 if (castout_entry < 8) {
76 global_entry = (esid & 0x1f) << 3;
77 ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
78 castout_ste = ste + castout_entry;
79 } else {
80 global_entry = ((~esid) & 0x1f) << 3;
81 ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
82 castout_ste = ste + (castout_entry - 8);
85 /* Dont cast out the first kernel segment */
86 if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET)
87 break;
89 castout_entry = (castout_entry + 1) & 0xf;
92 get_paca()->stab_rr = (castout_entry + 1) & 0xf;
94 /* Modify the old entry to the new value. */
96 /* Force previous translations to complete. DRENG */
97 asm volatile("isync" : : : "memory");
99 old_esid = castout_ste->esid_data >> SID_SHIFT;
100 castout_ste->esid_data = 0; /* Invalidate old entry */
102 asm volatile("sync" : : : "memory"); /* Order update */
104 castout_ste->vsid_data = vsid_data;
105 eieio(); /* Order update */
106 castout_ste->esid_data = esid_data;
108 asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT));
109 /* Ensure completion of slbie */
110 asm volatile("sync" : : : "memory");
112 return (global_entry | (castout_entry & 0x7));
116 * Allocate a segment table entry for the given ea and mm
118 static int __ste_allocate(unsigned long ea, struct mm_struct *mm)
120 unsigned long vsid;
121 unsigned char stab_entry;
122 unsigned long offset;
124 /* Kernel or user address? */
125 if (is_kernel_addr(ea)) {
126 vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M);
127 } else {
128 if ((ea >= TASK_SIZE_USER64) || (! mm))
129 return 1;
131 vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M);
134 stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid);
136 if (!is_kernel_addr(ea)) {
137 offset = __get_cpu_var(stab_cache_ptr);
138 if (offset < NR_STAB_CACHE_ENTRIES)
139 __get_cpu_var(stab_cache[offset++]) = stab_entry;
140 else
141 offset = NR_STAB_CACHE_ENTRIES+1;
142 __get_cpu_var(stab_cache_ptr) = offset;
144 /* Order update */
145 asm volatile("sync":::"memory");
148 return 0;
151 int ste_allocate(unsigned long ea)
153 return __ste_allocate(ea, current->mm);
157 * Do the segment table work for a context switch: flush all user
158 * entries from the table, then preload some probably useful entries
159 * for the new task
161 void switch_stab(struct task_struct *tsk, struct mm_struct *mm)
163 struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr;
164 struct stab_entry *ste;
165 unsigned long offset;
166 unsigned long pc = KSTK_EIP(tsk);
167 unsigned long stack = KSTK_ESP(tsk);
168 unsigned long unmapped_base;
170 /* Force previous translations to complete. DRENG */
171 asm volatile("isync" : : : "memory");
174 * We need interrupts hard-disabled here, not just soft-disabled,
175 * so that a PMU interrupt can't occur, which might try to access
176 * user memory (to get a stack trace) and possible cause an STAB miss
177 * which would update the stab_cache/stab_cache_ptr per-cpu variables.
179 hard_irq_disable();
181 offset = __get_cpu_var(stab_cache_ptr);
182 if (offset <= NR_STAB_CACHE_ENTRIES) {
183 int i;
185 for (i = 0; i < offset; i++) {
186 ste = stab + __get_cpu_var(stab_cache[i]);
187 ste->esid_data = 0; /* invalidate entry */
189 } else {
190 unsigned long entry;
192 /* Invalidate all entries. */
193 ste = stab;
195 /* Never flush the first entry. */
196 ste += 1;
197 for (entry = 1;
198 entry < (HW_PAGE_SIZE / sizeof(struct stab_entry));
199 entry++, ste++) {
200 unsigned long ea;
201 ea = ste->esid_data & ESID_MASK;
202 if (!is_kernel_addr(ea)) {
203 ste->esid_data = 0;
208 asm volatile("sync; slbia; sync":::"memory");
210 __get_cpu_var(stab_cache_ptr) = 0;
212 /* Now preload some entries for the new task */
213 if (test_tsk_thread_flag(tsk, TIF_32BIT))
214 unmapped_base = TASK_UNMAPPED_BASE_USER32;
215 else
216 unmapped_base = TASK_UNMAPPED_BASE_USER64;
218 __ste_allocate(pc, mm);
220 if (GET_ESID(pc) == GET_ESID(stack))
221 return;
223 __ste_allocate(stack, mm);
225 if ((GET_ESID(pc) == GET_ESID(unmapped_base))
226 || (GET_ESID(stack) == GET_ESID(unmapped_base)))
227 return;
229 __ste_allocate(unmapped_base, mm);
231 /* Order update */
232 asm volatile("sync" : : : "memory");
236 * Allocate segment tables for secondary CPUs. These must all go in
237 * the first (bolted) segment, so that do_stab_bolted won't get a
238 * recursive segment miss on the segment table itself.
240 void __init stabs_alloc(void)
242 int cpu;
244 if (mmu_has_feature(MMU_FTR_SLB))
245 return;
247 for_each_possible_cpu(cpu) {
248 unsigned long newstab;
250 if (cpu == 0)
251 continue; /* stab for CPU 0 is statically allocated */
253 newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE,
254 1<<SID_SHIFT);
255 newstab = (unsigned long)__va(newstab);
257 memset((void *)newstab, 0, HW_PAGE_SIZE);
259 paca[cpu].stab_addr = newstab;
260 paca[cpu].stab_real = virt_to_abs(newstab);
261 printk(KERN_INFO "Segment table for CPU %d at 0x%llx "
262 "virtual, 0x%llx absolute\n",
263 cpu, paca[cpu].stab_addr, paca[cpu].stab_real);
268 * Build an entry for the base kernel segment and put it into
269 * the segment table or SLB. All other segment table or SLB
270 * entries are faulted in.
272 void stab_initialize(unsigned long stab)
274 unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M);
275 unsigned long stabreal;
277 asm volatile("isync; slbia; isync":::"memory");
278 make_ste(stab, GET_ESID(PAGE_OFFSET), vsid);
280 /* Order update */
281 asm volatile("sync":::"memory");
283 /* Set ASR */
284 stabreal = get_paca()->stab_real | 0x1ul;
286 mtspr(SPRN_ASR, stabreal);