2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
31 struct extent_inode_elem
{
34 struct extent_inode_elem
*next
;
37 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
38 struct btrfs_file_extent_item
*fi
,
40 struct extent_inode_elem
**eie
)
43 struct extent_inode_elem
*e
;
45 if (!btrfs_file_extent_compression(eb
, fi
) &&
46 !btrfs_file_extent_encryption(eb
, fi
) &&
47 !btrfs_file_extent_other_encoding(eb
, fi
)) {
51 data_offset
= btrfs_file_extent_offset(eb
, fi
);
52 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
54 if (extent_item_pos
< data_offset
||
55 extent_item_pos
>= data_offset
+ data_len
)
57 offset
= extent_item_pos
- data_offset
;
60 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
65 e
->inum
= key
->objectid
;
66 e
->offset
= key
->offset
+ offset
;
72 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
74 struct extent_inode_elem
*eie_next
;
76 for (; eie
; eie
= eie_next
) {
82 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
84 struct extent_inode_elem
**eie
)
88 struct btrfs_file_extent_item
*fi
;
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
99 nritems
= btrfs_header_nritems(eb
);
100 for (slot
= 0; slot
< nritems
; ++slot
) {
101 btrfs_item_key_to_cpu(eb
, &key
, slot
);
102 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
104 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
105 extent_type
= btrfs_file_extent_type(eb
, fi
);
106 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
110 if (disk_byte
!= wanted_disk_byte
)
113 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
122 * this structure records all encountered refs on the way up to the root
124 struct __prelim_ref
{
125 struct list_head list
;
127 struct btrfs_key key_for_search
;
130 struct extent_inode_elem
*inode_list
;
132 u64 wanted_disk_byte
;
135 static struct kmem_cache
*btrfs_prelim_ref_cache
;
137 int __init
btrfs_prelim_ref_init(void)
139 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref
),
142 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
144 if (!btrfs_prelim_ref_cache
)
149 void btrfs_prelim_ref_exit(void)
151 if (btrfs_prelim_ref_cache
)
152 kmem_cache_destroy(btrfs_prelim_ref_cache
);
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
194 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
195 struct btrfs_key
*key
, int level
,
196 u64 parent
, u64 wanted_disk_byte
, int count
,
199 struct __prelim_ref
*ref
;
201 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
204 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
208 ref
->root_id
= root_id
;
210 ref
->key_for_search
= *key
;
212 * We can often find data backrefs with an offset that is too
213 * large (>= LLONG_MAX, maximum allowed file offset) due to
214 * underflows when subtracting a file's offset with the data
215 * offset of its corresponding extent data item. This can
216 * happen for example in the clone ioctl.
217 * So if we detect such case we set the search key's offset to
218 * zero to make sure we will find the matching file extent item
219 * at add_all_parents(), otherwise we will miss it because the
220 * offset taken form the backref is much larger then the offset
221 * of the file extent item. This can make us scan a very large
222 * number of file extent items, but at least it will not make
224 * This is an ugly workaround for a behaviour that should have
225 * never existed, but it does and a fix for the clone ioctl
226 * would touch a lot of places, cause backwards incompatibility
227 * and would not fix the problem for extents cloned with older
230 if (ref
->key_for_search
.type
== BTRFS_EXTENT_DATA_KEY
&&
231 ref
->key_for_search
.offset
>= LLONG_MAX
)
232 ref
->key_for_search
.offset
= 0;
234 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
237 ref
->inode_list
= NULL
;
240 ref
->parent
= parent
;
241 ref
->wanted_disk_byte
= wanted_disk_byte
;
242 list_add_tail(&ref
->list
, head
);
247 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
248 struct ulist
*parents
, struct __prelim_ref
*ref
,
249 int level
, u64 time_seq
, const u64
*extent_item_pos
,
254 struct extent_buffer
*eb
;
255 struct btrfs_key key
;
256 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
257 struct btrfs_file_extent_item
*fi
;
258 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
260 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
264 eb
= path
->nodes
[level
];
265 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
272 * We normally enter this function with the path already pointing to
273 * the first item to check. But sometimes, we may enter it with
274 * slot==nritems. In that case, go to the next leaf before we continue.
276 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
277 if (time_seq
== (u64
)-1)
278 ret
= btrfs_next_leaf(root
, path
);
280 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
283 while (!ret
&& count
< total_refs
) {
285 slot
= path
->slots
[0];
287 btrfs_item_key_to_cpu(eb
, &key
, slot
);
289 if (key
.objectid
!= key_for_search
->objectid
||
290 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
293 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
294 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
296 if (disk_byte
== wanted_disk_byte
) {
300 if (extent_item_pos
) {
301 ret
= check_extent_in_eb(&key
, eb
, fi
,
309 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
310 eie
, (void **)&old
, GFP_NOFS
);
313 if (!ret
&& extent_item_pos
) {
321 if (time_seq
== (u64
)-1)
322 ret
= btrfs_next_item(root
, path
);
324 ret
= btrfs_next_old_item(root
, path
, time_seq
);
330 free_inode_elem_list(eie
);
335 * resolve an indirect backref in the form (root_id, key, level)
336 * to a logical address
338 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
339 struct btrfs_path
*path
, u64 time_seq
,
340 struct __prelim_ref
*ref
,
341 struct ulist
*parents
,
342 const u64
*extent_item_pos
, u64 total_refs
)
344 struct btrfs_root
*root
;
345 struct btrfs_key root_key
;
346 struct extent_buffer
*eb
;
349 int level
= ref
->level
;
352 root_key
.objectid
= ref
->root_id
;
353 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
354 root_key
.offset
= (u64
)-1;
356 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
358 root
= btrfs_get_fs_root(fs_info
, &root_key
, false);
360 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
365 if (btrfs_test_is_dummy_root(root
)) {
366 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
371 if (path
->search_commit_root
)
372 root_level
= btrfs_header_level(root
->commit_root
);
373 else if (time_seq
== (u64
)-1)
374 root_level
= btrfs_header_level(root
->node
);
376 root_level
= btrfs_old_root_level(root
, time_seq
);
378 if (root_level
+ 1 == level
) {
379 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
383 path
->lowest_level
= level
;
384 if (time_seq
== (u64
)-1)
385 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
,
388 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
,
391 /* root node has been locked, we can release @subvol_srcu safely here */
392 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
394 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
395 "%d for key (%llu %u %llu)\n",
396 ref
->root_id
, level
, ref
->count
, ret
,
397 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
398 ref
->key_for_search
.offset
);
402 eb
= path
->nodes
[level
];
404 if (WARN_ON(!level
)) {
409 eb
= path
->nodes
[level
];
412 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
413 extent_item_pos
, total_refs
);
415 path
->lowest_level
= 0;
416 btrfs_release_path(path
);
421 * resolve all indirect backrefs from the list
423 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
424 struct btrfs_path
*path
, u64 time_seq
,
425 struct list_head
*head
,
426 const u64
*extent_item_pos
, u64 total_refs
,
431 struct __prelim_ref
*ref
;
432 struct __prelim_ref
*ref_safe
;
433 struct __prelim_ref
*new_ref
;
434 struct ulist
*parents
;
435 struct ulist_node
*node
;
436 struct ulist_iterator uiter
;
438 parents
= ulist_alloc(GFP_NOFS
);
443 * _safe allows us to insert directly after the current item without
444 * iterating over the newly inserted items.
445 * we're also allowed to re-assign ref during iteration.
447 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
448 if (ref
->parent
) /* already direct */
452 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
453 ret
= BACKREF_FOUND_SHARED
;
456 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
457 parents
, extent_item_pos
,
460 * we can only tolerate ENOENT,otherwise,we should catch error
461 * and return directly.
463 if (err
== -ENOENT
) {
470 /* we put the first parent into the ref at hand */
471 ULIST_ITER_INIT(&uiter
);
472 node
= ulist_next(parents
, &uiter
);
473 ref
->parent
= node
? node
->val
: 0;
474 ref
->inode_list
= node
?
475 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
477 /* additional parents require new refs being added here */
478 while ((node
= ulist_next(parents
, &uiter
))) {
479 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
485 memcpy(new_ref
, ref
, sizeof(*ref
));
486 new_ref
->parent
= node
->val
;
487 new_ref
->inode_list
= (struct extent_inode_elem
*)
488 (uintptr_t)node
->aux
;
489 list_add(&new_ref
->list
, &ref
->list
);
491 ulist_reinit(parents
);
498 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
499 struct __prelim_ref
*ref2
)
501 if (ref1
->level
!= ref2
->level
)
503 if (ref1
->root_id
!= ref2
->root_id
)
505 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
507 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
509 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
511 if (ref1
->parent
!= ref2
->parent
)
518 * read tree blocks and add keys where required.
520 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
521 struct list_head
*head
)
523 struct list_head
*pos
;
524 struct extent_buffer
*eb
;
526 list_for_each(pos
, head
) {
527 struct __prelim_ref
*ref
;
528 ref
= list_entry(pos
, struct __prelim_ref
, list
);
532 if (ref
->key_for_search
.type
)
534 BUG_ON(!ref
->wanted_disk_byte
);
535 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
539 } else if (!extent_buffer_uptodate(eb
)) {
540 free_extent_buffer(eb
);
543 btrfs_tree_read_lock(eb
);
544 if (btrfs_header_level(eb
) == 0)
545 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
547 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
548 btrfs_tree_read_unlock(eb
);
549 free_extent_buffer(eb
);
555 * merge backrefs and adjust counts accordingly
557 * mode = 1: merge identical keys, if key is set
558 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
559 * additionally, we could even add a key range for the blocks we
560 * looked into to merge even more (-> replace unresolved refs by those
562 * mode = 2: merge identical parents
564 static void __merge_refs(struct list_head
*head
, int mode
)
566 struct list_head
*pos1
;
568 list_for_each(pos1
, head
) {
569 struct list_head
*n2
;
570 struct list_head
*pos2
;
571 struct __prelim_ref
*ref1
;
573 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
575 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
576 pos2
= n2
, n2
= pos2
->next
) {
577 struct __prelim_ref
*ref2
;
578 struct __prelim_ref
*xchg
;
579 struct extent_inode_elem
*eie
;
581 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
583 if (!ref_for_same_block(ref1
, ref2
))
586 if (!ref1
->parent
&& ref2
->parent
) {
592 if (ref1
->parent
!= ref2
->parent
)
596 eie
= ref1
->inode_list
;
597 while (eie
&& eie
->next
)
600 eie
->next
= ref2
->inode_list
;
602 ref1
->inode_list
= ref2
->inode_list
;
603 ref1
->count
+= ref2
->count
;
605 list_del(&ref2
->list
);
606 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
613 * add all currently queued delayed refs from this head whose seq nr is
614 * smaller or equal that seq to the list
616 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
617 struct list_head
*prefs
, u64
*total_refs
,
620 struct btrfs_delayed_ref_node
*node
;
621 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
622 struct btrfs_key key
;
623 struct btrfs_key op_key
= {0};
627 if (extent_op
&& extent_op
->update_key
)
628 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
630 spin_lock(&head
->lock
);
631 list_for_each_entry(node
, &head
->ref_list
, list
) {
635 switch (node
->action
) {
636 case BTRFS_ADD_DELAYED_EXTENT
:
637 case BTRFS_UPDATE_DELAYED_HEAD
:
640 case BTRFS_ADD_DELAYED_REF
:
643 case BTRFS_DROP_DELAYED_REF
:
649 *total_refs
+= (node
->ref_mod
* sgn
);
650 switch (node
->type
) {
651 case BTRFS_TREE_BLOCK_REF_KEY
: {
652 struct btrfs_delayed_tree_ref
*ref
;
654 ref
= btrfs_delayed_node_to_tree_ref(node
);
655 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
656 ref
->level
+ 1, 0, node
->bytenr
,
657 node
->ref_mod
* sgn
, GFP_ATOMIC
);
660 case BTRFS_SHARED_BLOCK_REF_KEY
: {
661 struct btrfs_delayed_tree_ref
*ref
;
663 ref
= btrfs_delayed_node_to_tree_ref(node
);
664 ret
= __add_prelim_ref(prefs
, 0, NULL
,
665 ref
->level
+ 1, ref
->parent
,
667 node
->ref_mod
* sgn
, GFP_ATOMIC
);
670 case BTRFS_EXTENT_DATA_REF_KEY
: {
671 struct btrfs_delayed_data_ref
*ref
;
672 ref
= btrfs_delayed_node_to_data_ref(node
);
674 key
.objectid
= ref
->objectid
;
675 key
.type
= BTRFS_EXTENT_DATA_KEY
;
676 key
.offset
= ref
->offset
;
679 * Found a inum that doesn't match our known inum, we
682 if (inum
&& ref
->objectid
!= inum
) {
683 ret
= BACKREF_FOUND_SHARED
;
687 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
689 node
->ref_mod
* sgn
, GFP_ATOMIC
);
692 case BTRFS_SHARED_DATA_REF_KEY
: {
693 struct btrfs_delayed_data_ref
*ref
;
695 ref
= btrfs_delayed_node_to_data_ref(node
);
696 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0,
697 ref
->parent
, node
->bytenr
,
698 node
->ref_mod
* sgn
, GFP_ATOMIC
);
707 spin_unlock(&head
->lock
);
712 * add all inline backrefs for bytenr to the list
714 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
715 struct btrfs_path
*path
, u64 bytenr
,
716 int *info_level
, struct list_head
*prefs
,
717 u64
*total_refs
, u64 inum
)
721 struct extent_buffer
*leaf
;
722 struct btrfs_key key
;
723 struct btrfs_key found_key
;
726 struct btrfs_extent_item
*ei
;
731 * enumerate all inline refs
733 leaf
= path
->nodes
[0];
734 slot
= path
->slots
[0];
736 item_size
= btrfs_item_size_nr(leaf
, slot
);
737 BUG_ON(item_size
< sizeof(*ei
));
739 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
740 flags
= btrfs_extent_flags(leaf
, ei
);
741 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
742 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
744 ptr
= (unsigned long)(ei
+ 1);
745 end
= (unsigned long)ei
+ item_size
;
747 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
748 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
749 struct btrfs_tree_block_info
*info
;
751 info
= (struct btrfs_tree_block_info
*)ptr
;
752 *info_level
= btrfs_tree_block_level(leaf
, info
);
753 ptr
+= sizeof(struct btrfs_tree_block_info
);
755 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
756 *info_level
= found_key
.offset
;
758 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
762 struct btrfs_extent_inline_ref
*iref
;
766 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
767 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
768 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
771 case BTRFS_SHARED_BLOCK_REF_KEY
:
772 ret
= __add_prelim_ref(prefs
, 0, NULL
,
773 *info_level
+ 1, offset
,
774 bytenr
, 1, GFP_NOFS
);
776 case BTRFS_SHARED_DATA_REF_KEY
: {
777 struct btrfs_shared_data_ref
*sdref
;
780 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
781 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
782 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
783 bytenr
, count
, GFP_NOFS
);
786 case BTRFS_TREE_BLOCK_REF_KEY
:
787 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
789 bytenr
, 1, GFP_NOFS
);
791 case BTRFS_EXTENT_DATA_REF_KEY
: {
792 struct btrfs_extent_data_ref
*dref
;
796 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
797 count
= btrfs_extent_data_ref_count(leaf
, dref
);
798 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
800 key
.type
= BTRFS_EXTENT_DATA_KEY
;
801 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
803 if (inum
&& key
.objectid
!= inum
) {
804 ret
= BACKREF_FOUND_SHARED
;
808 root
= btrfs_extent_data_ref_root(leaf
, dref
);
809 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
810 bytenr
, count
, GFP_NOFS
);
818 ptr
+= btrfs_extent_inline_ref_size(type
);
825 * add all non-inline backrefs for bytenr to the list
827 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
828 struct btrfs_path
*path
, u64 bytenr
,
829 int info_level
, struct list_head
*prefs
, u64 inum
)
831 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
834 struct extent_buffer
*leaf
;
835 struct btrfs_key key
;
838 ret
= btrfs_next_item(extent_root
, path
);
846 slot
= path
->slots
[0];
847 leaf
= path
->nodes
[0];
848 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
850 if (key
.objectid
!= bytenr
)
852 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
854 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
858 case BTRFS_SHARED_BLOCK_REF_KEY
:
859 ret
= __add_prelim_ref(prefs
, 0, NULL
,
860 info_level
+ 1, key
.offset
,
861 bytenr
, 1, GFP_NOFS
);
863 case BTRFS_SHARED_DATA_REF_KEY
: {
864 struct btrfs_shared_data_ref
*sdref
;
867 sdref
= btrfs_item_ptr(leaf
, slot
,
868 struct btrfs_shared_data_ref
);
869 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
870 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
871 bytenr
, count
, GFP_NOFS
);
874 case BTRFS_TREE_BLOCK_REF_KEY
:
875 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
877 bytenr
, 1, GFP_NOFS
);
879 case BTRFS_EXTENT_DATA_REF_KEY
: {
880 struct btrfs_extent_data_ref
*dref
;
884 dref
= btrfs_item_ptr(leaf
, slot
,
885 struct btrfs_extent_data_ref
);
886 count
= btrfs_extent_data_ref_count(leaf
, dref
);
887 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
889 key
.type
= BTRFS_EXTENT_DATA_KEY
;
890 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
892 if (inum
&& key
.objectid
!= inum
) {
893 ret
= BACKREF_FOUND_SHARED
;
897 root
= btrfs_extent_data_ref_root(leaf
, dref
);
898 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
899 bytenr
, count
, GFP_NOFS
);
914 * this adds all existing backrefs (inline backrefs, backrefs and delayed
915 * refs) for the given bytenr to the refs list, merges duplicates and resolves
916 * indirect refs to their parent bytenr.
917 * When roots are found, they're added to the roots list
919 * NOTE: This can return values > 0
921 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
922 * much like trans == NULL case, the difference only lies in it will not
924 * The special case is for qgroup to search roots in commit_transaction().
926 * FIXME some caching might speed things up
928 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
929 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
930 u64 time_seq
, struct ulist
*refs
,
931 struct ulist
*roots
, const u64
*extent_item_pos
,
932 u64 root_objectid
, u64 inum
)
934 struct btrfs_key key
;
935 struct btrfs_path
*path
;
936 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
937 struct btrfs_delayed_ref_head
*head
;
940 struct list_head prefs_delayed
;
941 struct list_head prefs
;
942 struct __prelim_ref
*ref
;
943 struct extent_inode_elem
*eie
= NULL
;
946 INIT_LIST_HEAD(&prefs
);
947 INIT_LIST_HEAD(&prefs_delayed
);
949 key
.objectid
= bytenr
;
950 key
.offset
= (u64
)-1;
951 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
952 key
.type
= BTRFS_METADATA_ITEM_KEY
;
954 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
956 path
= btrfs_alloc_path();
960 path
->search_commit_root
= 1;
961 path
->skip_locking
= 1;
964 if (time_seq
== (u64
)-1)
965 path
->skip_locking
= 1;
968 * grab both a lock on the path and a lock on the delayed ref head.
969 * We need both to get a consistent picture of how the refs look
970 * at a specified point in time
975 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
980 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
981 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
982 time_seq
!= (u64
)-1) {
984 if (trans
&& time_seq
!= (u64
)-1) {
987 * look if there are updates for this ref queued and lock the
990 delayed_refs
= &trans
->transaction
->delayed_refs
;
991 spin_lock(&delayed_refs
->lock
);
992 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
994 if (!mutex_trylock(&head
->mutex
)) {
995 atomic_inc(&head
->node
.refs
);
996 spin_unlock(&delayed_refs
->lock
);
998 btrfs_release_path(path
);
1001 * Mutex was contended, block until it's
1002 * released and try again
1004 mutex_lock(&head
->mutex
);
1005 mutex_unlock(&head
->mutex
);
1006 btrfs_put_delayed_ref(&head
->node
);
1009 spin_unlock(&delayed_refs
->lock
);
1010 ret
= __add_delayed_refs(head
, time_seq
,
1011 &prefs_delayed
, &total_refs
,
1013 mutex_unlock(&head
->mutex
);
1017 spin_unlock(&delayed_refs
->lock
);
1021 if (path
->slots
[0]) {
1022 struct extent_buffer
*leaf
;
1026 leaf
= path
->nodes
[0];
1027 slot
= path
->slots
[0];
1028 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1029 if (key
.objectid
== bytenr
&&
1030 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1031 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1032 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
1033 &info_level
, &prefs
,
1037 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
1038 info_level
, &prefs
, inum
);
1043 btrfs_release_path(path
);
1045 list_splice_init(&prefs_delayed
, &prefs
);
1047 ret
= __add_missing_keys(fs_info
, &prefs
);
1051 __merge_refs(&prefs
, 1);
1053 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
1054 extent_item_pos
, total_refs
,
1059 __merge_refs(&prefs
, 2);
1061 while (!list_empty(&prefs
)) {
1062 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1063 WARN_ON(ref
->count
< 0);
1064 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1065 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
1066 ret
= BACKREF_FOUND_SHARED
;
1070 /* no parent == root of tree */
1071 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1075 if (ref
->count
&& ref
->parent
) {
1076 if (extent_item_pos
&& !ref
->inode_list
&&
1078 struct extent_buffer
*eb
;
1080 eb
= read_tree_block(fs_info
->extent_root
,
1085 } else if (!extent_buffer_uptodate(eb
)) {
1086 free_extent_buffer(eb
);
1090 btrfs_tree_read_lock(eb
);
1091 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1092 ret
= find_extent_in_eb(eb
, bytenr
,
1093 *extent_item_pos
, &eie
);
1094 btrfs_tree_read_unlock_blocking(eb
);
1095 free_extent_buffer(eb
);
1098 ref
->inode_list
= eie
;
1100 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1102 (void **)&eie
, GFP_NOFS
);
1105 if (!ret
&& extent_item_pos
) {
1107 * we've recorded that parent, so we must extend
1108 * its inode list here
1113 eie
->next
= ref
->inode_list
;
1117 list_del(&ref
->list
);
1118 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1122 btrfs_free_path(path
);
1123 while (!list_empty(&prefs
)) {
1124 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1125 list_del(&ref
->list
);
1126 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1128 while (!list_empty(&prefs_delayed
)) {
1129 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1131 list_del(&ref
->list
);
1132 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1135 free_inode_elem_list(eie
);
1139 static void free_leaf_list(struct ulist
*blocks
)
1141 struct ulist_node
*node
= NULL
;
1142 struct extent_inode_elem
*eie
;
1143 struct ulist_iterator uiter
;
1145 ULIST_ITER_INIT(&uiter
);
1146 while ((node
= ulist_next(blocks
, &uiter
))) {
1149 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1150 free_inode_elem_list(eie
);
1158 * Finds all leafs with a reference to the specified combination of bytenr and
1159 * offset. key_list_head will point to a list of corresponding keys (caller must
1160 * free each list element). The leafs will be stored in the leafs ulist, which
1161 * must be freed with ulist_free.
1163 * returns 0 on success, <0 on error
1165 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1166 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1167 u64 time_seq
, struct ulist
**leafs
,
1168 const u64
*extent_item_pos
)
1172 *leafs
= ulist_alloc(GFP_NOFS
);
1176 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1177 time_seq
, *leafs
, NULL
, extent_item_pos
, 0, 0);
1178 if (ret
< 0 && ret
!= -ENOENT
) {
1179 free_leaf_list(*leafs
);
1187 * walk all backrefs for a given extent to find all roots that reference this
1188 * extent. Walking a backref means finding all extents that reference this
1189 * extent and in turn walk the backrefs of those, too. Naturally this is a
1190 * recursive process, but here it is implemented in an iterative fashion: We
1191 * find all referencing extents for the extent in question and put them on a
1192 * list. In turn, we find all referencing extents for those, further appending
1193 * to the list. The way we iterate the list allows adding more elements after
1194 * the current while iterating. The process stops when we reach the end of the
1195 * list. Found roots are added to the roots list.
1197 * returns 0 on success, < 0 on error.
1199 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1200 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1201 u64 time_seq
, struct ulist
**roots
)
1204 struct ulist_node
*node
= NULL
;
1205 struct ulist_iterator uiter
;
1208 tmp
= ulist_alloc(GFP_NOFS
);
1211 *roots
= ulist_alloc(GFP_NOFS
);
1217 ULIST_ITER_INIT(&uiter
);
1219 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1220 time_seq
, tmp
, *roots
, NULL
, 0, 0);
1221 if (ret
< 0 && ret
!= -ENOENT
) {
1226 node
= ulist_next(tmp
, &uiter
);
1237 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1238 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1239 u64 time_seq
, struct ulist
**roots
)
1244 down_read(&fs_info
->commit_root_sem
);
1245 ret
= __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
1247 up_read(&fs_info
->commit_root_sem
);
1252 * btrfs_check_shared - tell us whether an extent is shared
1254 * @trans: optional trans handle
1256 * btrfs_check_shared uses the backref walking code but will short
1257 * circuit as soon as it finds a root or inode that doesn't match the
1258 * one passed in. This provides a significant performance benefit for
1259 * callers (such as fiemap) which want to know whether the extent is
1260 * shared but do not need a ref count.
1262 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1264 int btrfs_check_shared(struct btrfs_trans_handle
*trans
,
1265 struct btrfs_fs_info
*fs_info
, u64 root_objectid
,
1266 u64 inum
, u64 bytenr
)
1268 struct ulist
*tmp
= NULL
;
1269 struct ulist
*roots
= NULL
;
1270 struct ulist_iterator uiter
;
1271 struct ulist_node
*node
;
1272 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1275 tmp
= ulist_alloc(GFP_NOFS
);
1276 roots
= ulist_alloc(GFP_NOFS
);
1277 if (!tmp
|| !roots
) {
1284 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1286 down_read(&fs_info
->commit_root_sem
);
1287 ULIST_ITER_INIT(&uiter
);
1289 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1290 roots
, NULL
, root_objectid
, inum
);
1291 if (ret
== BACKREF_FOUND_SHARED
) {
1292 /* this is the only condition under which we return 1 */
1296 if (ret
< 0 && ret
!= -ENOENT
)
1299 node
= ulist_next(tmp
, &uiter
);
1306 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1308 up_read(&fs_info
->commit_root_sem
);
1314 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1315 u64 start_off
, struct btrfs_path
*path
,
1316 struct btrfs_inode_extref
**ret_extref
,
1320 struct btrfs_key key
;
1321 struct btrfs_key found_key
;
1322 struct btrfs_inode_extref
*extref
;
1323 struct extent_buffer
*leaf
;
1326 key
.objectid
= inode_objectid
;
1327 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1328 key
.offset
= start_off
;
1330 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1335 leaf
= path
->nodes
[0];
1336 slot
= path
->slots
[0];
1337 if (slot
>= btrfs_header_nritems(leaf
)) {
1339 * If the item at offset is not found,
1340 * btrfs_search_slot will point us to the slot
1341 * where it should be inserted. In our case
1342 * that will be the slot directly before the
1343 * next INODE_REF_KEY_V2 item. In the case
1344 * that we're pointing to the last slot in a
1345 * leaf, we must move one leaf over.
1347 ret
= btrfs_next_leaf(root
, path
);
1356 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1359 * Check that we're still looking at an extended ref key for
1360 * this particular objectid. If we have different
1361 * objectid or type then there are no more to be found
1362 * in the tree and we can exit.
1365 if (found_key
.objectid
!= inode_objectid
)
1367 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1371 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1372 extref
= (struct btrfs_inode_extref
*)ptr
;
1373 *ret_extref
= extref
;
1375 *found_off
= found_key
.offset
;
1383 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1384 * Elements of the path are separated by '/' and the path is guaranteed to be
1385 * 0-terminated. the path is only given within the current file system.
1386 * Therefore, it never starts with a '/'. the caller is responsible to provide
1387 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1388 * the start point of the resulting string is returned. this pointer is within
1390 * in case the path buffer would overflow, the pointer is decremented further
1391 * as if output was written to the buffer, though no more output is actually
1392 * generated. that way, the caller can determine how much space would be
1393 * required for the path to fit into the buffer. in that case, the returned
1394 * value will be smaller than dest. callers must check this!
1396 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1397 u32 name_len
, unsigned long name_off
,
1398 struct extent_buffer
*eb_in
, u64 parent
,
1399 char *dest
, u32 size
)
1404 s64 bytes_left
= ((s64
)size
) - 1;
1405 struct extent_buffer
*eb
= eb_in
;
1406 struct btrfs_key found_key
;
1407 int leave_spinning
= path
->leave_spinning
;
1408 struct btrfs_inode_ref
*iref
;
1410 if (bytes_left
>= 0)
1411 dest
[bytes_left
] = '\0';
1413 path
->leave_spinning
= 1;
1415 bytes_left
-= name_len
;
1416 if (bytes_left
>= 0)
1417 read_extent_buffer(eb
, dest
+ bytes_left
,
1418 name_off
, name_len
);
1420 if (!path
->skip_locking
)
1421 btrfs_tree_read_unlock_blocking(eb
);
1422 free_extent_buffer(eb
);
1424 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1425 BTRFS_INODE_REF_KEY
, &found_key
);
1431 next_inum
= found_key
.offset
;
1433 /* regular exit ahead */
1434 if (parent
== next_inum
)
1437 slot
= path
->slots
[0];
1438 eb
= path
->nodes
[0];
1439 /* make sure we can use eb after releasing the path */
1441 if (!path
->skip_locking
)
1442 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1443 path
->nodes
[0] = NULL
;
1446 btrfs_release_path(path
);
1447 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1449 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1450 name_off
= (unsigned long)(iref
+ 1);
1454 if (bytes_left
>= 0)
1455 dest
[bytes_left
] = '/';
1458 btrfs_release_path(path
);
1459 path
->leave_spinning
= leave_spinning
;
1462 return ERR_PTR(ret
);
1464 return dest
+ bytes_left
;
1468 * this makes the path point to (logical EXTENT_ITEM *)
1469 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1470 * tree blocks and <0 on error.
1472 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1473 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1480 struct extent_buffer
*eb
;
1481 struct btrfs_extent_item
*ei
;
1482 struct btrfs_key key
;
1484 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1485 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1487 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1488 key
.objectid
= logical
;
1489 key
.offset
= (u64
)-1;
1491 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1495 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1501 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1502 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1503 size
= fs_info
->extent_root
->nodesize
;
1504 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1505 size
= found_key
->offset
;
1507 if (found_key
->objectid
> logical
||
1508 found_key
->objectid
+ size
<= logical
) {
1509 pr_debug("logical %llu is not within any extent\n", logical
);
1513 eb
= path
->nodes
[0];
1514 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1515 BUG_ON(item_size
< sizeof(*ei
));
1517 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1518 flags
= btrfs_extent_flags(eb
, ei
);
1520 pr_debug("logical %llu is at position %llu within the extent (%llu "
1521 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1522 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1523 found_key
->offset
, flags
, item_size
);
1525 WARN_ON(!flags_ret
);
1527 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1528 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1529 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1530 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1540 * helper function to iterate extent inline refs. ptr must point to a 0 value
1541 * for the first call and may be modified. it is used to track state.
1542 * if more refs exist, 0 is returned and the next call to
1543 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1544 * next ref. after the last ref was processed, 1 is returned.
1545 * returns <0 on error
1547 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1548 struct btrfs_key
*key
,
1549 struct btrfs_extent_item
*ei
, u32 item_size
,
1550 struct btrfs_extent_inline_ref
**out_eiref
,
1555 struct btrfs_tree_block_info
*info
;
1559 flags
= btrfs_extent_flags(eb
, ei
);
1560 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1561 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1562 /* a skinny metadata extent */
1564 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1566 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1567 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1569 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1572 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1574 *ptr
= (unsigned long)*out_eiref
;
1575 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1579 end
= (unsigned long)ei
+ item_size
;
1580 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1581 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1583 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1584 WARN_ON(*ptr
> end
);
1586 return 1; /* last */
1592 * reads the tree block backref for an extent. tree level and root are returned
1593 * through out_level and out_root. ptr must point to a 0 value for the first
1594 * call and may be modified (see __get_extent_inline_ref comment).
1595 * returns 0 if data was provided, 1 if there was no more data to provide or
1598 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1599 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1600 u32 item_size
, u64
*out_root
, u8
*out_level
)
1604 struct btrfs_extent_inline_ref
*eiref
;
1606 if (*ptr
== (unsigned long)-1)
1610 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1615 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1616 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1623 /* we can treat both ref types equally here */
1624 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1626 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1627 struct btrfs_tree_block_info
*info
;
1629 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1630 *out_level
= btrfs_tree_block_level(eb
, info
);
1632 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1633 *out_level
= (u8
)key
->offset
;
1637 *ptr
= (unsigned long)-1;
1642 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1643 u64 root
, u64 extent_item_objectid
,
1644 iterate_extent_inodes_t
*iterate
, void *ctx
)
1646 struct extent_inode_elem
*eie
;
1649 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1650 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1651 "root %llu\n", extent_item_objectid
,
1652 eie
->inum
, eie
->offset
, root
);
1653 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1655 pr_debug("stopping iteration for %llu due to ret=%d\n",
1656 extent_item_objectid
, ret
);
1665 * calls iterate() for every inode that references the extent identified by
1666 * the given parameters.
1667 * when the iterator function returns a non-zero value, iteration stops.
1669 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1670 u64 extent_item_objectid
, u64 extent_item_pos
,
1671 int search_commit_root
,
1672 iterate_extent_inodes_t
*iterate
, void *ctx
)
1675 struct btrfs_trans_handle
*trans
= NULL
;
1676 struct ulist
*refs
= NULL
;
1677 struct ulist
*roots
= NULL
;
1678 struct ulist_node
*ref_node
= NULL
;
1679 struct ulist_node
*root_node
= NULL
;
1680 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1681 struct ulist_iterator ref_uiter
;
1682 struct ulist_iterator root_uiter
;
1684 pr_debug("resolving all inodes for extent %llu\n",
1685 extent_item_objectid
);
1687 if (!search_commit_root
) {
1688 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1690 return PTR_ERR(trans
);
1691 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1693 down_read(&fs_info
->commit_root_sem
);
1696 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1697 tree_mod_seq_elem
.seq
, &refs
,
1702 ULIST_ITER_INIT(&ref_uiter
);
1703 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1704 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1705 tree_mod_seq_elem
.seq
, &roots
);
1708 ULIST_ITER_INIT(&root_uiter
);
1709 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1710 pr_debug("root %llu references leaf %llu, data list "
1711 "%#llx\n", root_node
->val
, ref_node
->val
,
1713 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1714 (uintptr_t)ref_node
->aux
,
1716 extent_item_objectid
,
1722 free_leaf_list(refs
);
1724 if (!search_commit_root
) {
1725 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1726 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1728 up_read(&fs_info
->commit_root_sem
);
1734 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1735 struct btrfs_path
*path
,
1736 iterate_extent_inodes_t
*iterate
, void *ctx
)
1739 u64 extent_item_pos
;
1741 struct btrfs_key found_key
;
1742 int search_commit_root
= path
->search_commit_root
;
1744 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1745 btrfs_release_path(path
);
1748 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1751 extent_item_pos
= logical
- found_key
.objectid
;
1752 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1753 extent_item_pos
, search_commit_root
,
1759 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1760 struct extent_buffer
*eb
, void *ctx
);
1762 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1763 struct btrfs_path
*path
,
1764 iterate_irefs_t
*iterate
, void *ctx
)
1773 struct extent_buffer
*eb
;
1774 struct btrfs_item
*item
;
1775 struct btrfs_inode_ref
*iref
;
1776 struct btrfs_key found_key
;
1779 ret
= btrfs_find_item(fs_root
, path
, inum
,
1780 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
1786 ret
= found
? 0 : -ENOENT
;
1791 parent
= found_key
.offset
;
1792 slot
= path
->slots
[0];
1793 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1798 extent_buffer_get(eb
);
1799 btrfs_tree_read_lock(eb
);
1800 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1801 btrfs_release_path(path
);
1803 item
= btrfs_item_nr(slot
);
1804 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1806 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1807 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1808 /* path must be released before calling iterate()! */
1809 pr_debug("following ref at offset %u for inode %llu in "
1810 "tree %llu\n", cur
, found_key
.objectid
,
1812 ret
= iterate(parent
, name_len
,
1813 (unsigned long)(iref
+ 1), eb
, ctx
);
1816 len
= sizeof(*iref
) + name_len
;
1817 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1819 btrfs_tree_read_unlock_blocking(eb
);
1820 free_extent_buffer(eb
);
1823 btrfs_release_path(path
);
1828 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1829 struct btrfs_path
*path
,
1830 iterate_irefs_t
*iterate
, void *ctx
)
1837 struct extent_buffer
*eb
;
1838 struct btrfs_inode_extref
*extref
;
1844 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1849 ret
= found
? 0 : -ENOENT
;
1854 slot
= path
->slots
[0];
1855 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1860 extent_buffer_get(eb
);
1862 btrfs_tree_read_lock(eb
);
1863 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1864 btrfs_release_path(path
);
1866 item_size
= btrfs_item_size_nr(eb
, slot
);
1867 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1870 while (cur_offset
< item_size
) {
1873 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1874 parent
= btrfs_inode_extref_parent(eb
, extref
);
1875 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1876 ret
= iterate(parent
, name_len
,
1877 (unsigned long)&extref
->name
, eb
, ctx
);
1881 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
1882 cur_offset
+= sizeof(*extref
);
1884 btrfs_tree_read_unlock_blocking(eb
);
1885 free_extent_buffer(eb
);
1890 btrfs_release_path(path
);
1895 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1896 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1902 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1905 else if (ret
!= -ENOENT
)
1908 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1909 if (ret
== -ENOENT
&& found_refs
)
1916 * returns 0 if the path could be dumped (probably truncated)
1917 * returns <0 in case of an error
1919 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1920 struct extent_buffer
*eb
, void *ctx
)
1922 struct inode_fs_paths
*ipath
= ctx
;
1925 int i
= ipath
->fspath
->elem_cnt
;
1926 const int s_ptr
= sizeof(char *);
1929 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1930 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1932 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1933 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1934 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1936 return PTR_ERR(fspath
);
1938 if (fspath
> fspath_min
) {
1939 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1940 ++ipath
->fspath
->elem_cnt
;
1941 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1943 ++ipath
->fspath
->elem_missed
;
1944 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1945 ipath
->fspath
->bytes_left
= 0;
1952 * this dumps all file system paths to the inode into the ipath struct, provided
1953 * is has been created large enough. each path is zero-terminated and accessed
1954 * from ipath->fspath->val[i].
1955 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1956 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1957 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1958 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1959 * have been needed to return all paths.
1961 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1963 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1964 inode_to_path
, ipath
);
1967 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1969 struct btrfs_data_container
*data
;
1972 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1973 data
= vmalloc(alloc_bytes
);
1975 return ERR_PTR(-ENOMEM
);
1977 if (total_bytes
>= sizeof(*data
)) {
1978 data
->bytes_left
= total_bytes
- sizeof(*data
);
1979 data
->bytes_missing
= 0;
1981 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1982 data
->bytes_left
= 0;
1986 data
->elem_missed
= 0;
1992 * allocates space to return multiple file system paths for an inode.
1993 * total_bytes to allocate are passed, note that space usable for actual path
1994 * information will be total_bytes - sizeof(struct inode_fs_paths).
1995 * the returned pointer must be freed with free_ipath() in the end.
1997 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1998 struct btrfs_path
*path
)
2000 struct inode_fs_paths
*ifp
;
2001 struct btrfs_data_container
*fspath
;
2003 fspath
= init_data_container(total_bytes
);
2005 return (void *)fspath
;
2007 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
2010 return ERR_PTR(-ENOMEM
);
2013 ifp
->btrfs_path
= path
;
2014 ifp
->fspath
= fspath
;
2015 ifp
->fs_root
= fs_root
;
2020 void free_ipath(struct inode_fs_paths
*ipath
)
2024 vfree(ipath
->fspath
);