ocfs2: fix locking for res->tracking and dlm->tracking_list
[linux/fpc-iii.git] / fs / btrfs / disk-io.c
blobae6e3a30e61e33cd34d17b8b37e9378597b1f246
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
79 struct btrfs_end_io_wq {
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
85 enum btrfs_wq_endio_type metadata;
86 struct list_head list;
87 struct btrfs_work work;
90 static struct kmem_cache *btrfs_end_io_wq_cache;
92 int __init btrfs_end_io_wq_init(void)
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
104 void btrfs_end_io_wq_exit(void)
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
115 struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
121 int rw;
122 int mirror_num;
123 unsigned long bio_flags;
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
128 u64 bio_offset;
129 struct btrfs_work work;
130 int error;
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 # error
159 # endif
161 static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
178 { .id = 0, .name_stem = "tree" },
181 void __init btrfs_init_lockdep(void)
183 int i, j;
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
198 struct btrfs_lockdep_keyset *ks;
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
211 #endif
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 struct page *page, size_t pg_offset, u64 start, u64 len,
219 int create)
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
225 read_lock(&em_tree->lock);
226 em = lookup_extent_mapping(em_tree, start, len);
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 read_unlock(&em_tree->lock);
231 goto out;
233 read_unlock(&em_tree->lock);
235 em = alloc_extent_map();
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
240 em->start = 0;
241 em->len = (u64)-1;
242 em->block_len = (u64)-1;
243 em->block_start = 0;
244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
246 write_lock(&em_tree->lock);
247 ret = add_extent_mapping(em_tree, em, 0);
248 if (ret == -EEXIST) {
249 free_extent_map(em);
250 em = lookup_extent_mapping(em_tree, start, len);
251 if (!em)
252 em = ERR_PTR(-EIO);
253 } else if (ret) {
254 free_extent_map(em);
255 em = ERR_PTR(ret);
257 write_unlock(&em_tree->lock);
259 out:
260 return em;
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
265 return btrfs_crc32c(seed, data, len);
268 void btrfs_csum_final(u32 crc, char *result)
270 put_unaligned_le32(~crc, result);
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
279 int verify)
281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 char *result = NULL;
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
291 unsigned long inline_result;
293 len = buf->len - offset;
294 while (len > 0) {
295 err = map_private_extent_buffer(buf, offset, 32,
296 &kaddr, &map_start, &map_len);
297 if (err)
298 return 1;
299 cur_len = min(len, map_len - (offset - map_start));
300 crc = btrfs_csum_data(kaddr + offset - map_start,
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
305 if (csum_size > sizeof(inline_result)) {
306 result = kzalloc(csum_size, GFP_NOFS);
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
313 btrfs_csum_final(crc, result);
315 if (verify) {
316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 u32 val;
318 u32 found = 0;
319 memcpy(&found, result, csum_size);
321 read_extent_buffer(buf, &val, 0, csum_size);
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
325 fs_info->sb->s_id, buf->start,
326 val, found, btrfs_header_level(buf));
327 if (result != (char *)&inline_result)
328 kfree(result);
329 return 1;
331 } else {
332 write_extent_buffer(buf, result, 0, csum_size);
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return 0;
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
349 struct extent_state *cached_state = NULL;
350 int ret;
351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
356 if (atomic)
357 return -EAGAIN;
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 0, &cached_state);
366 if (extent_buffer_uptodate(eb) &&
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
374 parent_transid, btrfs_header_generation(eb));
375 ret = 1;
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
387 out:
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
392 return ret;
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
399 static int btrfs_check_super_csum(char *raw_disk_sb)
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 csum_type);
427 ret = 1;
430 return ret;
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
439 u64 start, u64 parent_transid)
441 struct extent_io_tree *io_tree;
442 int failed = 0;
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
446 int failed_mirror = 0;
448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
453 btree_get_extent, mirror_num);
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
456 parent_transid, 0))
457 break;
458 else
459 ret = -EIO;
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 break;
470 num_copies = btrfs_num_copies(root->fs_info,
471 eb->start, eb->len);
472 if (num_copies == 1)
473 break;
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
480 mirror_num++;
481 if (mirror_num == failed_mirror)
482 mirror_num++;
484 if (mirror_num > num_copies)
485 break;
488 if (failed && !ret && failed_mirror)
489 repair_eb_io_failure(root, eb, failed_mirror);
491 return ret;
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 u64 start = page_offset(page);
502 u64 found_start;
503 struct extent_buffer *eb;
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
508 found_start = btrfs_header_bytenr(eb);
509 if (WARN_ON(found_start != start || !PageUptodate(page)))
510 return 0;
511 csum_tree_block(fs_info, eb, 0);
512 return 0;
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 struct extent_buffer *eb)
518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
528 fs_devices = fs_devices->seed;
530 return ret;
533 #define CORRUPT(reason, eb, root, slot) \
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
536 btrfs_header_bytenr(eb), root->objectid, slot)
538 static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
546 if (nritems == 0)
547 return 0;
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
596 return 0;
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
603 u64 found_start;
604 int found_level;
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 int ret = 0;
608 int reads_done;
610 if (!page->private)
611 goto out;
613 eb = (struct extent_buffer *)page->private;
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
618 extent_buffer_get(eb);
620 reads_done = atomic_dec_and_test(&eb->io_pages);
621 if (!reads_done)
622 goto err;
624 eb->read_mirror = mirror;
625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 ret = -EIO;
627 goto err;
630 found_start = btrfs_header_bytenr(eb);
631 if (found_start != eb->start) {
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
634 ret = -EIO;
635 goto err;
637 if (check_tree_block_fsid(root->fs_info, eb)) {
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
640 ret = -EIO;
641 goto err;
643 found_level = btrfs_header_level(eb);
644 if (found_level >= BTRFS_MAX_LEVEL) {
645 btrfs_err(root->fs_info, "bad tree block level %d",
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
654 ret = csum_tree_block(root->fs_info, eb, 1);
655 if (ret) {
656 ret = -EIO;
657 goto err;
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(root, eb, eb->start, ret);
677 if (ret) {
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
686 free_extent_buffer(eb);
687 out:
688 return ret;
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 eb = (struct extent_buffer *)page->private;
697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698 eb->read_mirror = failed_mirror;
699 atomic_dec(&eb->io_pages);
700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701 btree_readahead_hook(root, eb, eb->start, -EIO);
702 return -EIO; /* we fixed nothing */
705 static void end_workqueue_bio(struct bio *bio)
707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708 struct btrfs_fs_info *fs_info;
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
712 fs_info = end_io_wq->info;
713 end_io_wq->error = bio->bi_error;
715 if (bio->bi_rw & REQ_WRITE) {
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
729 } else {
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751 enum btrfs_wq_endio_type metadata)
753 struct btrfs_end_io_wq *end_io_wq;
755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756 if (!end_io_wq)
757 return -ENOMEM;
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
761 end_io_wq->info = info;
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
764 end_io_wq->metadata = metadata;
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
768 return 0;
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 unsigned long limit = min_t(unsigned long,
774 info->thread_pool_size,
775 info->fs_devices->open_devices);
776 return 256 * limit;
779 static void run_one_async_start(struct btrfs_work *work)
781 struct async_submit_bio *async;
782 int ret;
784 async = container_of(work, struct async_submit_bio, work);
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
792 static void run_one_async_done(struct btrfs_work *work)
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
796 int limit;
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
801 limit = btrfs_async_submit_limit(fs_info);
802 limit = limit * 2 / 3;
805 * atomic_dec_return implies a barrier for waitqueue_active
807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808 waitqueue_active(&fs_info->async_submit_wait))
809 wake_up(&fs_info->async_submit_wait);
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
815 return;
818 async->submit_bio_done(async->inode, async->rw, async->bio,
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
823 static void run_one_async_free(struct btrfs_work *work)
825 struct async_submit_bio *async;
827 async = container_of(work, struct async_submit_bio, work);
828 kfree(async);
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
833 unsigned long bio_flags,
834 u64 bio_offset,
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
838 struct async_submit_bio *async;
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852 run_one_async_done, run_one_async_free);
854 async->bio_flags = bio_flags;
855 async->bio_offset = bio_offset;
857 async->error = 0;
859 atomic_inc(&fs_info->nr_async_submits);
861 if (rw & REQ_SYNC)
862 btrfs_set_work_high_priority(&async->work);
864 btrfs_queue_work(fs_info->workers, &async->work);
866 while (atomic_read(&fs_info->async_submit_draining) &&
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
872 return 0;
875 static int btree_csum_one_bio(struct bio *bio)
877 struct bio_vec *bvec;
878 struct btrfs_root *root;
879 int i, ret = 0;
881 bio_for_each_segment_all(bvec, bio, i) {
882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884 if (ret)
885 break;
888 return ret;
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
893 unsigned long bio_flags,
894 u64 bio_offset)
897 * when we're called for a write, we're already in the async
898 * submission context. Just jump into btrfs_map_bio
900 return btree_csum_one_bio(bio);
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
907 int ret;
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
918 return ret;
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925 #ifdef CONFIG_X86
926 if (static_cpu_has(X86_FEATURE_XMM4_2))
927 return 0;
928 #endif
929 return 1;
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
936 int async = check_async_write(inode, bio_flags);
937 int ret;
939 if (!(rw & REQ_WRITE)) {
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945 bio, BTRFS_WQ_ENDIO_METADATA);
946 if (ret)
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
968 if (ret)
969 goto out_w_error;
970 return 0;
972 out_w_error:
973 bio->bi_error = ret;
974 bio_endio(bio);
975 return ret;
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
987 if (PageDirty(page))
988 return -EAGAIN;
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
996 return migrate_page(mapping, newpage, page, mode);
998 #endif
1001 static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1007 if (wbc->sync_mode == WB_SYNC_NONE) {
1009 if (wbc->for_kupdate)
1010 return 0;
1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013 /* this is a bit racy, but that's ok */
1014 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH,
1016 fs_info->dirty_metadata_batch);
1017 if (ret < 0)
1018 return 0;
1020 return btree_write_cache_pages(mapping, wbc);
1023 static int btree_readpage(struct file *file, struct page *page)
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
1027 return extent_read_full_page(tree, page, btree_get_extent, 0);
1030 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1032 if (PageWriteback(page) || PageDirty(page))
1033 return 0;
1035 return try_release_extent_buffer(page);
1038 static void btree_invalidatepage(struct page *page, unsigned int offset,
1039 unsigned int length)
1041 struct extent_io_tree *tree;
1042 tree = &BTRFS_I(page->mapping->host)->io_tree;
1043 extent_invalidatepage(tree, page, offset);
1044 btree_releasepage(page, GFP_NOFS);
1045 if (PagePrivate(page)) {
1046 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1047 "page private not zero on page %llu",
1048 (unsigned long long)page_offset(page));
1049 ClearPagePrivate(page);
1050 set_page_private(page, 0);
1051 page_cache_release(page);
1055 static int btree_set_page_dirty(struct page *page)
1057 #ifdef DEBUG
1058 struct extent_buffer *eb;
1060 BUG_ON(!PagePrivate(page));
1061 eb = (struct extent_buffer *)page->private;
1062 BUG_ON(!eb);
1063 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1064 BUG_ON(!atomic_read(&eb->refs));
1065 btrfs_assert_tree_locked(eb);
1066 #endif
1067 return __set_page_dirty_nobuffers(page);
1070 static const struct address_space_operations btree_aops = {
1071 .readpage = btree_readpage,
1072 .writepages = btree_writepages,
1073 .releasepage = btree_releasepage,
1074 .invalidatepage = btree_invalidatepage,
1075 #ifdef CONFIG_MIGRATION
1076 .migratepage = btree_migratepage,
1077 #endif
1078 .set_page_dirty = btree_set_page_dirty,
1081 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
1086 buf = btrfs_find_create_tree_block(root, bytenr);
1087 if (!buf)
1088 return;
1089 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1090 buf, 0, WAIT_NONE, btree_get_extent, 0);
1091 free_extent_buffer(buf);
1094 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1095 int mirror_num, struct extent_buffer **eb)
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1100 int ret;
1102 buf = btrfs_find_create_tree_block(root, bytenr);
1103 if (!buf)
1104 return 0;
1106 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1108 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1109 btree_get_extent, mirror_num);
1110 if (ret) {
1111 free_extent_buffer(buf);
1112 return ret;
1115 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1116 free_extent_buffer(buf);
1117 return -EIO;
1118 } else if (extent_buffer_uptodate(buf)) {
1119 *eb = buf;
1120 } else {
1121 free_extent_buffer(buf);
1123 return 0;
1126 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1127 u64 bytenr)
1129 return find_extent_buffer(fs_info, bytenr);
1132 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1133 u64 bytenr)
1135 if (btrfs_test_is_dummy_root(root))
1136 return alloc_test_extent_buffer(root->fs_info, bytenr);
1137 return alloc_extent_buffer(root->fs_info, bytenr);
1141 int btrfs_write_tree_block(struct extent_buffer *buf)
1143 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1144 buf->start + buf->len - 1);
1147 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1149 return filemap_fdatawait_range(buf->pages[0]->mapping,
1150 buf->start, buf->start + buf->len - 1);
1153 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1154 u64 parent_transid)
1156 struct extent_buffer *buf = NULL;
1157 int ret;
1159 buf = btrfs_find_create_tree_block(root, bytenr);
1160 if (!buf)
1161 return ERR_PTR(-ENOMEM);
1163 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1164 if (ret) {
1165 free_extent_buffer(buf);
1166 return ERR_PTR(ret);
1168 return buf;
1172 void clean_tree_block(struct btrfs_trans_handle *trans,
1173 struct btrfs_fs_info *fs_info,
1174 struct extent_buffer *buf)
1176 if (btrfs_header_generation(buf) ==
1177 fs_info->running_transaction->transid) {
1178 btrfs_assert_tree_locked(buf);
1180 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1181 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1182 -buf->len,
1183 fs_info->dirty_metadata_batch);
1184 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1185 btrfs_set_lock_blocking(buf);
1186 clear_extent_buffer_dirty(buf);
1191 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1193 struct btrfs_subvolume_writers *writers;
1194 int ret;
1196 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1197 if (!writers)
1198 return ERR_PTR(-ENOMEM);
1200 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1201 if (ret < 0) {
1202 kfree(writers);
1203 return ERR_PTR(ret);
1206 init_waitqueue_head(&writers->wait);
1207 return writers;
1210 static void
1211 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1213 percpu_counter_destroy(&writers->counter);
1214 kfree(writers);
1217 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1218 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1219 u64 objectid)
1221 root->node = NULL;
1222 root->commit_root = NULL;
1223 root->sectorsize = sectorsize;
1224 root->nodesize = nodesize;
1225 root->stripesize = stripesize;
1226 root->state = 0;
1227 root->orphan_cleanup_state = 0;
1229 root->objectid = objectid;
1230 root->last_trans = 0;
1231 root->highest_objectid = 0;
1232 root->nr_delalloc_inodes = 0;
1233 root->nr_ordered_extents = 0;
1234 root->name = NULL;
1235 root->inode_tree = RB_ROOT;
1236 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1237 root->block_rsv = NULL;
1238 root->orphan_block_rsv = NULL;
1240 INIT_LIST_HEAD(&root->dirty_list);
1241 INIT_LIST_HEAD(&root->root_list);
1242 INIT_LIST_HEAD(&root->delalloc_inodes);
1243 INIT_LIST_HEAD(&root->delalloc_root);
1244 INIT_LIST_HEAD(&root->ordered_extents);
1245 INIT_LIST_HEAD(&root->ordered_root);
1246 INIT_LIST_HEAD(&root->logged_list[0]);
1247 INIT_LIST_HEAD(&root->logged_list[1]);
1248 spin_lock_init(&root->orphan_lock);
1249 spin_lock_init(&root->inode_lock);
1250 spin_lock_init(&root->delalloc_lock);
1251 spin_lock_init(&root->ordered_extent_lock);
1252 spin_lock_init(&root->accounting_lock);
1253 spin_lock_init(&root->log_extents_lock[0]);
1254 spin_lock_init(&root->log_extents_lock[1]);
1255 mutex_init(&root->objectid_mutex);
1256 mutex_init(&root->log_mutex);
1257 mutex_init(&root->ordered_extent_mutex);
1258 mutex_init(&root->delalloc_mutex);
1259 init_waitqueue_head(&root->log_writer_wait);
1260 init_waitqueue_head(&root->log_commit_wait[0]);
1261 init_waitqueue_head(&root->log_commit_wait[1]);
1262 INIT_LIST_HEAD(&root->log_ctxs[0]);
1263 INIT_LIST_HEAD(&root->log_ctxs[1]);
1264 atomic_set(&root->log_commit[0], 0);
1265 atomic_set(&root->log_commit[1], 0);
1266 atomic_set(&root->log_writers, 0);
1267 atomic_set(&root->log_batch, 0);
1268 atomic_set(&root->orphan_inodes, 0);
1269 atomic_set(&root->refs, 1);
1270 atomic_set(&root->will_be_snapshoted, 0);
1271 atomic_set(&root->qgroup_meta_rsv, 0);
1272 root->log_transid = 0;
1273 root->log_transid_committed = -1;
1274 root->last_log_commit = 0;
1275 if (fs_info)
1276 extent_io_tree_init(&root->dirty_log_pages,
1277 fs_info->btree_inode->i_mapping);
1279 memset(&root->root_key, 0, sizeof(root->root_key));
1280 memset(&root->root_item, 0, sizeof(root->root_item));
1281 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1282 if (fs_info)
1283 root->defrag_trans_start = fs_info->generation;
1284 else
1285 root->defrag_trans_start = 0;
1286 root->root_key.objectid = objectid;
1287 root->anon_dev = 0;
1289 spin_lock_init(&root->root_item_lock);
1292 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1294 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1295 if (root)
1296 root->fs_info = fs_info;
1297 return root;
1300 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1301 /* Should only be used by the testing infrastructure */
1302 struct btrfs_root *btrfs_alloc_dummy_root(void)
1304 struct btrfs_root *root;
1306 root = btrfs_alloc_root(NULL);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
1309 __setup_root(4096, 4096, 4096, root, NULL, 1);
1310 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1311 root->alloc_bytenr = 0;
1313 return root;
1315 #endif
1317 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_fs_info *fs_info,
1319 u64 objectid)
1321 struct extent_buffer *leaf;
1322 struct btrfs_root *tree_root = fs_info->tree_root;
1323 struct btrfs_root *root;
1324 struct btrfs_key key;
1325 int ret = 0;
1326 uuid_le uuid;
1328 root = btrfs_alloc_root(fs_info);
1329 if (!root)
1330 return ERR_PTR(-ENOMEM);
1332 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1333 tree_root->stripesize, root, fs_info, objectid);
1334 root->root_key.objectid = objectid;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = 0;
1338 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1339 if (IS_ERR(leaf)) {
1340 ret = PTR_ERR(leaf);
1341 leaf = NULL;
1342 goto fail;
1345 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, objectid);
1350 root->node = leaf;
1352 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1353 BTRFS_FSID_SIZE);
1354 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1355 btrfs_header_chunk_tree_uuid(leaf),
1356 BTRFS_UUID_SIZE);
1357 btrfs_mark_buffer_dirty(leaf);
1359 root->commit_root = btrfs_root_node(root);
1360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1362 root->root_item.flags = 0;
1363 root->root_item.byte_limit = 0;
1364 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1365 btrfs_set_root_generation(&root->root_item, trans->transid);
1366 btrfs_set_root_level(&root->root_item, 0);
1367 btrfs_set_root_refs(&root->root_item, 1);
1368 btrfs_set_root_used(&root->root_item, leaf->len);
1369 btrfs_set_root_last_snapshot(&root->root_item, 0);
1370 btrfs_set_root_dirid(&root->root_item, 0);
1371 uuid_le_gen(&uuid);
1372 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1373 root->root_item.drop_level = 0;
1375 key.objectid = objectid;
1376 key.type = BTRFS_ROOT_ITEM_KEY;
1377 key.offset = 0;
1378 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1379 if (ret)
1380 goto fail;
1382 btrfs_tree_unlock(leaf);
1384 return root;
1386 fail:
1387 if (leaf) {
1388 btrfs_tree_unlock(leaf);
1389 free_extent_buffer(root->commit_root);
1390 free_extent_buffer(leaf);
1392 kfree(root);
1394 return ERR_PTR(ret);
1397 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info)
1400 struct btrfs_root *root;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
1402 struct extent_buffer *leaf;
1404 root = btrfs_alloc_root(fs_info);
1405 if (!root)
1406 return ERR_PTR(-ENOMEM);
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info,
1410 BTRFS_TREE_LOG_OBJECTID);
1412 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1417 * DON'T set REF_COWS for log trees
1419 * log trees do not get reference counted because they go away
1420 * before a real commit is actually done. They do store pointers
1421 * to file data extents, and those reference counts still get
1422 * updated (along with back refs to the log tree).
1425 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1426 NULL, 0, 0, 0);
1427 if (IS_ERR(leaf)) {
1428 kfree(root);
1429 return ERR_CAST(leaf);
1432 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1433 btrfs_set_header_bytenr(leaf, leaf->start);
1434 btrfs_set_header_generation(leaf, trans->transid);
1435 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1437 root->node = leaf;
1439 write_extent_buffer(root->node, root->fs_info->fsid,
1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1441 btrfs_mark_buffer_dirty(root->node);
1442 btrfs_tree_unlock(root->node);
1443 return root;
1446 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info)
1449 struct btrfs_root *log_root;
1451 log_root = alloc_log_tree(trans, fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454 WARN_ON(fs_info->log_root_tree);
1455 fs_info->log_root_tree = log_root;
1456 return 0;
1459 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1462 struct btrfs_root *log_root;
1463 struct btrfs_inode_item *inode_item;
1465 log_root = alloc_log_tree(trans, root->fs_info);
1466 if (IS_ERR(log_root))
1467 return PTR_ERR(log_root);
1469 log_root->last_trans = trans->transid;
1470 log_root->root_key.offset = root->root_key.objectid;
1472 inode_item = &log_root->root_item.inode;
1473 btrfs_set_stack_inode_generation(inode_item, 1);
1474 btrfs_set_stack_inode_size(inode_item, 3);
1475 btrfs_set_stack_inode_nlink(inode_item, 1);
1476 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1479 btrfs_set_root_node(&log_root->root_item, log_root->node);
1481 WARN_ON(root->log_root);
1482 root->log_root = log_root;
1483 root->log_transid = 0;
1484 root->log_transid_committed = -1;
1485 root->last_log_commit = 0;
1486 return 0;
1489 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *key)
1492 struct btrfs_root *root;
1493 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1494 struct btrfs_path *path;
1495 u64 generation;
1496 int ret;
1498 path = btrfs_alloc_path();
1499 if (!path)
1500 return ERR_PTR(-ENOMEM);
1502 root = btrfs_alloc_root(fs_info);
1503 if (!root) {
1504 ret = -ENOMEM;
1505 goto alloc_fail;
1508 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1509 tree_root->stripesize, root, fs_info, key->objectid);
1511 ret = btrfs_find_root(tree_root, key, path,
1512 &root->root_item, &root->root_key);
1513 if (ret) {
1514 if (ret > 0)
1515 ret = -ENOENT;
1516 goto find_fail;
1519 generation = btrfs_root_generation(&root->root_item);
1520 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1521 generation);
1522 if (IS_ERR(root->node)) {
1523 ret = PTR_ERR(root->node);
1524 goto find_fail;
1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 ret = -EIO;
1527 free_extent_buffer(root->node);
1528 goto find_fail;
1530 root->commit_root = btrfs_root_node(root);
1531 out:
1532 btrfs_free_path(path);
1533 return root;
1535 find_fail:
1536 kfree(root);
1537 alloc_fail:
1538 root = ERR_PTR(ret);
1539 goto out;
1542 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *location)
1545 struct btrfs_root *root;
1547 root = btrfs_read_tree_root(tree_root, location);
1548 if (IS_ERR(root))
1549 return root;
1551 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1552 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1553 btrfs_check_and_init_root_item(&root->root_item);
1556 return root;
1559 int btrfs_init_fs_root(struct btrfs_root *root)
1561 int ret;
1562 struct btrfs_subvolume_writers *writers;
1564 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1565 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1566 GFP_NOFS);
1567 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 ret = -ENOMEM;
1569 goto fail;
1572 writers = btrfs_alloc_subvolume_writers();
1573 if (IS_ERR(writers)) {
1574 ret = PTR_ERR(writers);
1575 goto fail;
1577 root->subv_writers = writers;
1579 btrfs_init_free_ino_ctl(root);
1580 spin_lock_init(&root->ino_cache_lock);
1581 init_waitqueue_head(&root->ino_cache_wait);
1583 ret = get_anon_bdev(&root->anon_dev);
1584 if (ret)
1585 goto free_writers;
1587 mutex_lock(&root->objectid_mutex);
1588 ret = btrfs_find_highest_objectid(root,
1589 &root->highest_objectid);
1590 if (ret) {
1591 mutex_unlock(&root->objectid_mutex);
1592 goto free_root_dev;
1595 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1597 mutex_unlock(&root->objectid_mutex);
1599 return 0;
1601 free_root_dev:
1602 free_anon_bdev(root->anon_dev);
1603 free_writers:
1604 btrfs_free_subvolume_writers(root->subv_writers);
1605 fail:
1606 kfree(root->free_ino_ctl);
1607 kfree(root->free_ino_pinned);
1608 return ret;
1611 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1612 u64 root_id)
1614 struct btrfs_root *root;
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1618 (unsigned long)root_id);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 return root;
1623 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1624 struct btrfs_root *root)
1626 int ret;
1628 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1629 if (ret)
1630 return ret;
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1634 (unsigned long)root->root_key.objectid,
1635 root);
1636 if (ret == 0)
1637 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1638 spin_unlock(&fs_info->fs_roots_radix_lock);
1639 radix_tree_preload_end();
1641 return ret;
1644 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1645 struct btrfs_key *location,
1646 bool check_ref)
1648 struct btrfs_root *root;
1649 struct btrfs_path *path;
1650 struct btrfs_key key;
1651 int ret;
1653 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1654 return fs_info->tree_root;
1655 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1656 return fs_info->extent_root;
1657 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1658 return fs_info->chunk_root;
1659 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1660 return fs_info->dev_root;
1661 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1662 return fs_info->csum_root;
1663 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1664 return fs_info->quota_root ? fs_info->quota_root :
1665 ERR_PTR(-ENOENT);
1666 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1667 return fs_info->uuid_root ? fs_info->uuid_root :
1668 ERR_PTR(-ENOENT);
1669 again:
1670 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1671 if (root) {
1672 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1673 return ERR_PTR(-ENOENT);
1674 return root;
1677 root = btrfs_read_fs_root(fs_info->tree_root, location);
1678 if (IS_ERR(root))
1679 return root;
1681 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1682 ret = -ENOENT;
1683 goto fail;
1686 ret = btrfs_init_fs_root(root);
1687 if (ret)
1688 goto fail;
1690 path = btrfs_alloc_path();
1691 if (!path) {
1692 ret = -ENOMEM;
1693 goto fail;
1695 key.objectid = BTRFS_ORPHAN_OBJECTID;
1696 key.type = BTRFS_ORPHAN_ITEM_KEY;
1697 key.offset = location->objectid;
1699 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1700 btrfs_free_path(path);
1701 if (ret < 0)
1702 goto fail;
1703 if (ret == 0)
1704 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1706 ret = btrfs_insert_fs_root(fs_info, root);
1707 if (ret) {
1708 if (ret == -EEXIST) {
1709 free_fs_root(root);
1710 goto again;
1712 goto fail;
1714 return root;
1715 fail:
1716 free_fs_root(root);
1717 return ERR_PTR(ret);
1720 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1722 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1723 int ret = 0;
1724 struct btrfs_device *device;
1725 struct backing_dev_info *bdi;
1727 rcu_read_lock();
1728 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1729 if (!device->bdev)
1730 continue;
1731 bdi = blk_get_backing_dev_info(device->bdev);
1732 if (bdi_congested(bdi, bdi_bits)) {
1733 ret = 1;
1734 break;
1737 rcu_read_unlock();
1738 return ret;
1741 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1743 int err;
1745 err = bdi_setup_and_register(bdi, "btrfs");
1746 if (err)
1747 return err;
1749 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1750 bdi->congested_fn = btrfs_congested_fn;
1751 bdi->congested_data = info;
1752 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1753 return 0;
1757 * called by the kthread helper functions to finally call the bio end_io
1758 * functions. This is where read checksum verification actually happens
1760 static void end_workqueue_fn(struct btrfs_work *work)
1762 struct bio *bio;
1763 struct btrfs_end_io_wq *end_io_wq;
1765 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1766 bio = end_io_wq->bio;
1768 bio->bi_error = end_io_wq->error;
1769 bio->bi_private = end_io_wq->private;
1770 bio->bi_end_io = end_io_wq->end_io;
1771 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1772 bio_endio(bio);
1775 static int cleaner_kthread(void *arg)
1777 struct btrfs_root *root = arg;
1778 int again;
1779 struct btrfs_trans_handle *trans;
1781 do {
1782 again = 0;
1784 /* Make the cleaner go to sleep early. */
1785 if (btrfs_need_cleaner_sleep(root))
1786 goto sleep;
1788 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1789 goto sleep;
1792 * Avoid the problem that we change the status of the fs
1793 * during the above check and trylock.
1795 if (btrfs_need_cleaner_sleep(root)) {
1796 mutex_unlock(&root->fs_info->cleaner_mutex);
1797 goto sleep;
1800 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1801 btrfs_run_delayed_iputs(root);
1802 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1804 again = btrfs_clean_one_deleted_snapshot(root);
1805 mutex_unlock(&root->fs_info->cleaner_mutex);
1808 * The defragger has dealt with the R/O remount and umount,
1809 * needn't do anything special here.
1811 btrfs_run_defrag_inodes(root->fs_info);
1814 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1815 * with relocation (btrfs_relocate_chunk) and relocation
1816 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1817 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1818 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1819 * unused block groups.
1821 btrfs_delete_unused_bgs(root->fs_info);
1822 sleep:
1823 if (!try_to_freeze() && !again) {
1824 set_current_state(TASK_INTERRUPTIBLE);
1825 if (!kthread_should_stop())
1826 schedule();
1827 __set_current_state(TASK_RUNNING);
1829 } while (!kthread_should_stop());
1832 * Transaction kthread is stopped before us and wakes us up.
1833 * However we might have started a new transaction and COWed some
1834 * tree blocks when deleting unused block groups for example. So
1835 * make sure we commit the transaction we started to have a clean
1836 * shutdown when evicting the btree inode - if it has dirty pages
1837 * when we do the final iput() on it, eviction will trigger a
1838 * writeback for it which will fail with null pointer dereferences
1839 * since work queues and other resources were already released and
1840 * destroyed by the time the iput/eviction/writeback is made.
1842 trans = btrfs_attach_transaction(root);
1843 if (IS_ERR(trans)) {
1844 if (PTR_ERR(trans) != -ENOENT)
1845 btrfs_err(root->fs_info,
1846 "cleaner transaction attach returned %ld",
1847 PTR_ERR(trans));
1848 } else {
1849 int ret;
1851 ret = btrfs_commit_transaction(trans, root);
1852 if (ret)
1853 btrfs_err(root->fs_info,
1854 "cleaner open transaction commit returned %d",
1855 ret);
1858 return 0;
1861 static int transaction_kthread(void *arg)
1863 struct btrfs_root *root = arg;
1864 struct btrfs_trans_handle *trans;
1865 struct btrfs_transaction *cur;
1866 u64 transid;
1867 unsigned long now;
1868 unsigned long delay;
1869 bool cannot_commit;
1871 do {
1872 cannot_commit = false;
1873 delay = HZ * root->fs_info->commit_interval;
1874 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1876 spin_lock(&root->fs_info->trans_lock);
1877 cur = root->fs_info->running_transaction;
1878 if (!cur) {
1879 spin_unlock(&root->fs_info->trans_lock);
1880 goto sleep;
1883 now = get_seconds();
1884 if (cur->state < TRANS_STATE_BLOCKED &&
1885 (now < cur->start_time ||
1886 now - cur->start_time < root->fs_info->commit_interval)) {
1887 spin_unlock(&root->fs_info->trans_lock);
1888 delay = HZ * 5;
1889 goto sleep;
1891 transid = cur->transid;
1892 spin_unlock(&root->fs_info->trans_lock);
1894 /* If the file system is aborted, this will always fail. */
1895 trans = btrfs_attach_transaction(root);
1896 if (IS_ERR(trans)) {
1897 if (PTR_ERR(trans) != -ENOENT)
1898 cannot_commit = true;
1899 goto sleep;
1901 if (transid == trans->transid) {
1902 btrfs_commit_transaction(trans, root);
1903 } else {
1904 btrfs_end_transaction(trans, root);
1906 sleep:
1907 wake_up_process(root->fs_info->cleaner_kthread);
1908 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1910 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1911 &root->fs_info->fs_state)))
1912 btrfs_cleanup_transaction(root);
1913 if (!try_to_freeze()) {
1914 set_current_state(TASK_INTERRUPTIBLE);
1915 if (!kthread_should_stop() &&
1916 (!btrfs_transaction_blocked(root->fs_info) ||
1917 cannot_commit))
1918 schedule_timeout(delay);
1919 __set_current_state(TASK_RUNNING);
1921 } while (!kthread_should_stop());
1922 return 0;
1926 * this will find the highest generation in the array of
1927 * root backups. The index of the highest array is returned,
1928 * or -1 if we can't find anything.
1930 * We check to make sure the array is valid by comparing the
1931 * generation of the latest root in the array with the generation
1932 * in the super block. If they don't match we pitch it.
1934 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1936 u64 cur;
1937 int newest_index = -1;
1938 struct btrfs_root_backup *root_backup;
1939 int i;
1941 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1942 root_backup = info->super_copy->super_roots + i;
1943 cur = btrfs_backup_tree_root_gen(root_backup);
1944 if (cur == newest_gen)
1945 newest_index = i;
1948 /* check to see if we actually wrapped around */
1949 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1950 root_backup = info->super_copy->super_roots;
1951 cur = btrfs_backup_tree_root_gen(root_backup);
1952 if (cur == newest_gen)
1953 newest_index = 0;
1955 return newest_index;
1960 * find the oldest backup so we know where to store new entries
1961 * in the backup array. This will set the backup_root_index
1962 * field in the fs_info struct
1964 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1965 u64 newest_gen)
1967 int newest_index = -1;
1969 newest_index = find_newest_super_backup(info, newest_gen);
1970 /* if there was garbage in there, just move along */
1971 if (newest_index == -1) {
1972 info->backup_root_index = 0;
1973 } else {
1974 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1979 * copy all the root pointers into the super backup array.
1980 * this will bump the backup pointer by one when it is
1981 * done
1983 static void backup_super_roots(struct btrfs_fs_info *info)
1985 int next_backup;
1986 struct btrfs_root_backup *root_backup;
1987 int last_backup;
1989 next_backup = info->backup_root_index;
1990 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1991 BTRFS_NUM_BACKUP_ROOTS;
1994 * just overwrite the last backup if we're at the same generation
1995 * this happens only at umount
1997 root_backup = info->super_for_commit->super_roots + last_backup;
1998 if (btrfs_backup_tree_root_gen(root_backup) ==
1999 btrfs_header_generation(info->tree_root->node))
2000 next_backup = last_backup;
2002 root_backup = info->super_for_commit->super_roots + next_backup;
2005 * make sure all of our padding and empty slots get zero filled
2006 * regardless of which ones we use today
2008 memset(root_backup, 0, sizeof(*root_backup));
2010 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2013 btrfs_set_backup_tree_root_gen(root_backup,
2014 btrfs_header_generation(info->tree_root->node));
2016 btrfs_set_backup_tree_root_level(root_backup,
2017 btrfs_header_level(info->tree_root->node));
2019 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2020 btrfs_set_backup_chunk_root_gen(root_backup,
2021 btrfs_header_generation(info->chunk_root->node));
2022 btrfs_set_backup_chunk_root_level(root_backup,
2023 btrfs_header_level(info->chunk_root->node));
2025 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2026 btrfs_set_backup_extent_root_gen(root_backup,
2027 btrfs_header_generation(info->extent_root->node));
2028 btrfs_set_backup_extent_root_level(root_backup,
2029 btrfs_header_level(info->extent_root->node));
2032 * we might commit during log recovery, which happens before we set
2033 * the fs_root. Make sure it is valid before we fill it in.
2035 if (info->fs_root && info->fs_root->node) {
2036 btrfs_set_backup_fs_root(root_backup,
2037 info->fs_root->node->start);
2038 btrfs_set_backup_fs_root_gen(root_backup,
2039 btrfs_header_generation(info->fs_root->node));
2040 btrfs_set_backup_fs_root_level(root_backup,
2041 btrfs_header_level(info->fs_root->node));
2044 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2045 btrfs_set_backup_dev_root_gen(root_backup,
2046 btrfs_header_generation(info->dev_root->node));
2047 btrfs_set_backup_dev_root_level(root_backup,
2048 btrfs_header_level(info->dev_root->node));
2050 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2051 btrfs_set_backup_csum_root_gen(root_backup,
2052 btrfs_header_generation(info->csum_root->node));
2053 btrfs_set_backup_csum_root_level(root_backup,
2054 btrfs_header_level(info->csum_root->node));
2056 btrfs_set_backup_total_bytes(root_backup,
2057 btrfs_super_total_bytes(info->super_copy));
2058 btrfs_set_backup_bytes_used(root_backup,
2059 btrfs_super_bytes_used(info->super_copy));
2060 btrfs_set_backup_num_devices(root_backup,
2061 btrfs_super_num_devices(info->super_copy));
2064 * if we don't copy this out to the super_copy, it won't get remembered
2065 * for the next commit
2067 memcpy(&info->super_copy->super_roots,
2068 &info->super_for_commit->super_roots,
2069 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2073 * this copies info out of the root backup array and back into
2074 * the in-memory super block. It is meant to help iterate through
2075 * the array, so you send it the number of backups you've already
2076 * tried and the last backup index you used.
2078 * this returns -1 when it has tried all the backups
2080 static noinline int next_root_backup(struct btrfs_fs_info *info,
2081 struct btrfs_super_block *super,
2082 int *num_backups_tried, int *backup_index)
2084 struct btrfs_root_backup *root_backup;
2085 int newest = *backup_index;
2087 if (*num_backups_tried == 0) {
2088 u64 gen = btrfs_super_generation(super);
2090 newest = find_newest_super_backup(info, gen);
2091 if (newest == -1)
2092 return -1;
2094 *backup_index = newest;
2095 *num_backups_tried = 1;
2096 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2097 /* we've tried all the backups, all done */
2098 return -1;
2099 } else {
2100 /* jump to the next oldest backup */
2101 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2102 BTRFS_NUM_BACKUP_ROOTS;
2103 *backup_index = newest;
2104 *num_backups_tried += 1;
2106 root_backup = super->super_roots + newest;
2108 btrfs_set_super_generation(super,
2109 btrfs_backup_tree_root_gen(root_backup));
2110 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2111 btrfs_set_super_root_level(super,
2112 btrfs_backup_tree_root_level(root_backup));
2113 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2116 * fixme: the total bytes and num_devices need to match or we should
2117 * need a fsck
2119 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2120 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2121 return 0;
2124 /* helper to cleanup workers */
2125 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2127 btrfs_destroy_workqueue(fs_info->fixup_workers);
2128 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2129 btrfs_destroy_workqueue(fs_info->workers);
2130 btrfs_destroy_workqueue(fs_info->endio_workers);
2131 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2132 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2133 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2134 btrfs_destroy_workqueue(fs_info->rmw_workers);
2135 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2136 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2137 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2138 btrfs_destroy_workqueue(fs_info->submit_workers);
2139 btrfs_destroy_workqueue(fs_info->delayed_workers);
2140 btrfs_destroy_workqueue(fs_info->caching_workers);
2141 btrfs_destroy_workqueue(fs_info->readahead_workers);
2142 btrfs_destroy_workqueue(fs_info->flush_workers);
2143 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2144 btrfs_destroy_workqueue(fs_info->extent_workers);
2147 static void free_root_extent_buffers(struct btrfs_root *root)
2149 if (root) {
2150 free_extent_buffer(root->node);
2151 free_extent_buffer(root->commit_root);
2152 root->node = NULL;
2153 root->commit_root = NULL;
2157 /* helper to cleanup tree roots */
2158 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2160 free_root_extent_buffers(info->tree_root);
2162 free_root_extent_buffers(info->dev_root);
2163 free_root_extent_buffers(info->extent_root);
2164 free_root_extent_buffers(info->csum_root);
2165 free_root_extent_buffers(info->quota_root);
2166 free_root_extent_buffers(info->uuid_root);
2167 if (chunk_root)
2168 free_root_extent_buffers(info->chunk_root);
2171 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2173 int ret;
2174 struct btrfs_root *gang[8];
2175 int i;
2177 while (!list_empty(&fs_info->dead_roots)) {
2178 gang[0] = list_entry(fs_info->dead_roots.next,
2179 struct btrfs_root, root_list);
2180 list_del(&gang[0]->root_list);
2182 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2183 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2184 } else {
2185 free_extent_buffer(gang[0]->node);
2186 free_extent_buffer(gang[0]->commit_root);
2187 btrfs_put_fs_root(gang[0]);
2191 while (1) {
2192 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2193 (void **)gang, 0,
2194 ARRAY_SIZE(gang));
2195 if (!ret)
2196 break;
2197 for (i = 0; i < ret; i++)
2198 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2201 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2202 btrfs_free_log_root_tree(NULL, fs_info);
2203 btrfs_destroy_pinned_extent(fs_info->tree_root,
2204 fs_info->pinned_extents);
2208 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2210 mutex_init(&fs_info->scrub_lock);
2211 atomic_set(&fs_info->scrubs_running, 0);
2212 atomic_set(&fs_info->scrub_pause_req, 0);
2213 atomic_set(&fs_info->scrubs_paused, 0);
2214 atomic_set(&fs_info->scrub_cancel_req, 0);
2215 init_waitqueue_head(&fs_info->scrub_pause_wait);
2216 fs_info->scrub_workers_refcnt = 0;
2219 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2221 spin_lock_init(&fs_info->balance_lock);
2222 mutex_init(&fs_info->balance_mutex);
2223 atomic_set(&fs_info->balance_running, 0);
2224 atomic_set(&fs_info->balance_pause_req, 0);
2225 atomic_set(&fs_info->balance_cancel_req, 0);
2226 fs_info->balance_ctl = NULL;
2227 init_waitqueue_head(&fs_info->balance_wait_q);
2230 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2231 struct btrfs_root *tree_root)
2233 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2234 set_nlink(fs_info->btree_inode, 1);
2236 * we set the i_size on the btree inode to the max possible int.
2237 * the real end of the address space is determined by all of
2238 * the devices in the system
2240 fs_info->btree_inode->i_size = OFFSET_MAX;
2241 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2243 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2244 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2245 fs_info->btree_inode->i_mapping);
2246 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2247 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2249 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2251 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2252 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2253 sizeof(struct btrfs_key));
2254 set_bit(BTRFS_INODE_DUMMY,
2255 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2256 btrfs_insert_inode_hash(fs_info->btree_inode);
2259 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2261 fs_info->dev_replace.lock_owner = 0;
2262 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2263 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2264 mutex_init(&fs_info->dev_replace.lock_management_lock);
2265 mutex_init(&fs_info->dev_replace.lock);
2266 init_waitqueue_head(&fs_info->replace_wait);
2269 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2271 spin_lock_init(&fs_info->qgroup_lock);
2272 mutex_init(&fs_info->qgroup_ioctl_lock);
2273 fs_info->qgroup_tree = RB_ROOT;
2274 fs_info->qgroup_op_tree = RB_ROOT;
2275 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2276 fs_info->qgroup_seq = 1;
2277 fs_info->quota_enabled = 0;
2278 fs_info->pending_quota_state = 0;
2279 fs_info->qgroup_ulist = NULL;
2280 fs_info->qgroup_rescan_running = false;
2281 mutex_init(&fs_info->qgroup_rescan_lock);
2284 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2285 struct btrfs_fs_devices *fs_devices)
2287 int max_active = fs_info->thread_pool_size;
2288 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2290 fs_info->workers =
2291 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2292 max_active, 16);
2294 fs_info->delalloc_workers =
2295 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2297 fs_info->flush_workers =
2298 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2300 fs_info->caching_workers =
2301 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2304 * a higher idle thresh on the submit workers makes it much more
2305 * likely that bios will be send down in a sane order to the
2306 * devices
2308 fs_info->submit_workers =
2309 btrfs_alloc_workqueue("submit", flags,
2310 min_t(u64, fs_devices->num_devices,
2311 max_active), 64);
2313 fs_info->fixup_workers =
2314 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2317 * endios are largely parallel and should have a very
2318 * low idle thresh
2320 fs_info->endio_workers =
2321 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2322 fs_info->endio_meta_workers =
2323 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2324 fs_info->endio_meta_write_workers =
2325 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2326 fs_info->endio_raid56_workers =
2327 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2328 fs_info->endio_repair_workers =
2329 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2330 fs_info->rmw_workers =
2331 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2332 fs_info->endio_write_workers =
2333 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2334 fs_info->endio_freespace_worker =
2335 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2336 fs_info->delayed_workers =
2337 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2338 fs_info->readahead_workers =
2339 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2340 fs_info->qgroup_rescan_workers =
2341 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2342 fs_info->extent_workers =
2343 btrfs_alloc_workqueue("extent-refs", flags,
2344 min_t(u64, fs_devices->num_devices,
2345 max_active), 8);
2347 if (!(fs_info->workers && fs_info->delalloc_workers &&
2348 fs_info->submit_workers && fs_info->flush_workers &&
2349 fs_info->endio_workers && fs_info->endio_meta_workers &&
2350 fs_info->endio_meta_write_workers &&
2351 fs_info->endio_repair_workers &&
2352 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2353 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2354 fs_info->caching_workers && fs_info->readahead_workers &&
2355 fs_info->fixup_workers && fs_info->delayed_workers &&
2356 fs_info->extent_workers &&
2357 fs_info->qgroup_rescan_workers)) {
2358 return -ENOMEM;
2361 return 0;
2364 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2365 struct btrfs_fs_devices *fs_devices)
2367 int ret;
2368 struct btrfs_root *tree_root = fs_info->tree_root;
2369 struct btrfs_root *log_tree_root;
2370 struct btrfs_super_block *disk_super = fs_info->super_copy;
2371 u64 bytenr = btrfs_super_log_root(disk_super);
2373 if (fs_devices->rw_devices == 0) {
2374 btrfs_warn(fs_info, "log replay required on RO media");
2375 return -EIO;
2378 log_tree_root = btrfs_alloc_root(fs_info);
2379 if (!log_tree_root)
2380 return -ENOMEM;
2382 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2383 tree_root->stripesize, log_tree_root, fs_info,
2384 BTRFS_TREE_LOG_OBJECTID);
2386 log_tree_root->node = read_tree_block(tree_root, bytenr,
2387 fs_info->generation + 1);
2388 if (IS_ERR(log_tree_root->node)) {
2389 btrfs_warn(fs_info, "failed to read log tree");
2390 ret = PTR_ERR(log_tree_root->node);
2391 kfree(log_tree_root);
2392 return ret;
2393 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2394 btrfs_err(fs_info, "failed to read log tree");
2395 free_extent_buffer(log_tree_root->node);
2396 kfree(log_tree_root);
2397 return -EIO;
2399 /* returns with log_tree_root freed on success */
2400 ret = btrfs_recover_log_trees(log_tree_root);
2401 if (ret) {
2402 btrfs_std_error(tree_root->fs_info, ret,
2403 "Failed to recover log tree");
2404 free_extent_buffer(log_tree_root->node);
2405 kfree(log_tree_root);
2406 return ret;
2409 if (fs_info->sb->s_flags & MS_RDONLY) {
2410 ret = btrfs_commit_super(tree_root);
2411 if (ret)
2412 return ret;
2415 return 0;
2418 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2419 struct btrfs_root *tree_root)
2421 struct btrfs_root *root;
2422 struct btrfs_key location;
2423 int ret;
2425 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2426 location.type = BTRFS_ROOT_ITEM_KEY;
2427 location.offset = 0;
2429 root = btrfs_read_tree_root(tree_root, &location);
2430 if (IS_ERR(root))
2431 return PTR_ERR(root);
2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2433 fs_info->extent_root = root;
2435 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2436 root = btrfs_read_tree_root(tree_root, &location);
2437 if (IS_ERR(root))
2438 return PTR_ERR(root);
2439 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2440 fs_info->dev_root = root;
2441 btrfs_init_devices_late(fs_info);
2443 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2444 root = btrfs_read_tree_root(tree_root, &location);
2445 if (IS_ERR(root))
2446 return PTR_ERR(root);
2447 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2448 fs_info->csum_root = root;
2450 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2451 root = btrfs_read_tree_root(tree_root, &location);
2452 if (!IS_ERR(root)) {
2453 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 fs_info->quota_enabled = 1;
2455 fs_info->pending_quota_state = 1;
2456 fs_info->quota_root = root;
2459 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2460 root = btrfs_read_tree_root(tree_root, &location);
2461 if (IS_ERR(root)) {
2462 ret = PTR_ERR(root);
2463 if (ret != -ENOENT)
2464 return ret;
2465 } else {
2466 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467 fs_info->uuid_root = root;
2470 return 0;
2473 int open_ctree(struct super_block *sb,
2474 struct btrfs_fs_devices *fs_devices,
2475 char *options)
2477 u32 sectorsize;
2478 u32 nodesize;
2479 u32 stripesize;
2480 u64 generation;
2481 u64 features;
2482 struct btrfs_key location;
2483 struct buffer_head *bh;
2484 struct btrfs_super_block *disk_super;
2485 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2486 struct btrfs_root *tree_root;
2487 struct btrfs_root *chunk_root;
2488 int ret;
2489 int err = -EINVAL;
2490 int num_backups_tried = 0;
2491 int backup_index = 0;
2492 int max_active;
2494 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2495 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2496 if (!tree_root || !chunk_root) {
2497 err = -ENOMEM;
2498 goto fail;
2501 ret = init_srcu_struct(&fs_info->subvol_srcu);
2502 if (ret) {
2503 err = ret;
2504 goto fail;
2507 ret = setup_bdi(fs_info, &fs_info->bdi);
2508 if (ret) {
2509 err = ret;
2510 goto fail_srcu;
2513 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2514 if (ret) {
2515 err = ret;
2516 goto fail_bdi;
2518 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2519 (1 + ilog2(nr_cpu_ids));
2521 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2522 if (ret) {
2523 err = ret;
2524 goto fail_dirty_metadata_bytes;
2527 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2528 if (ret) {
2529 err = ret;
2530 goto fail_delalloc_bytes;
2533 fs_info->btree_inode = new_inode(sb);
2534 if (!fs_info->btree_inode) {
2535 err = -ENOMEM;
2536 goto fail_bio_counter;
2539 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2541 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2542 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2543 INIT_LIST_HEAD(&fs_info->trans_list);
2544 INIT_LIST_HEAD(&fs_info->dead_roots);
2545 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2546 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2547 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2548 spin_lock_init(&fs_info->delalloc_root_lock);
2549 spin_lock_init(&fs_info->trans_lock);
2550 spin_lock_init(&fs_info->fs_roots_radix_lock);
2551 spin_lock_init(&fs_info->delayed_iput_lock);
2552 spin_lock_init(&fs_info->defrag_inodes_lock);
2553 spin_lock_init(&fs_info->free_chunk_lock);
2554 spin_lock_init(&fs_info->tree_mod_seq_lock);
2555 spin_lock_init(&fs_info->super_lock);
2556 spin_lock_init(&fs_info->qgroup_op_lock);
2557 spin_lock_init(&fs_info->buffer_lock);
2558 spin_lock_init(&fs_info->unused_bgs_lock);
2559 rwlock_init(&fs_info->tree_mod_log_lock);
2560 mutex_init(&fs_info->unused_bg_unpin_mutex);
2561 mutex_init(&fs_info->delete_unused_bgs_mutex);
2562 mutex_init(&fs_info->reloc_mutex);
2563 mutex_init(&fs_info->delalloc_root_mutex);
2564 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2565 seqlock_init(&fs_info->profiles_lock);
2567 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2568 INIT_LIST_HEAD(&fs_info->space_info);
2569 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2570 INIT_LIST_HEAD(&fs_info->unused_bgs);
2571 btrfs_mapping_init(&fs_info->mapping_tree);
2572 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2573 BTRFS_BLOCK_RSV_GLOBAL);
2574 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2575 BTRFS_BLOCK_RSV_DELALLOC);
2576 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2577 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2578 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2579 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2580 BTRFS_BLOCK_RSV_DELOPS);
2581 atomic_set(&fs_info->nr_async_submits, 0);
2582 atomic_set(&fs_info->async_delalloc_pages, 0);
2583 atomic_set(&fs_info->async_submit_draining, 0);
2584 atomic_set(&fs_info->nr_async_bios, 0);
2585 atomic_set(&fs_info->defrag_running, 0);
2586 atomic_set(&fs_info->qgroup_op_seq, 0);
2587 atomic64_set(&fs_info->tree_mod_seq, 0);
2588 fs_info->sb = sb;
2589 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2590 fs_info->metadata_ratio = 0;
2591 fs_info->defrag_inodes = RB_ROOT;
2592 fs_info->free_chunk_space = 0;
2593 fs_info->tree_mod_log = RB_ROOT;
2594 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2595 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2596 /* readahead state */
2597 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2598 spin_lock_init(&fs_info->reada_lock);
2600 fs_info->thread_pool_size = min_t(unsigned long,
2601 num_online_cpus() + 2, 8);
2603 INIT_LIST_HEAD(&fs_info->ordered_roots);
2604 spin_lock_init(&fs_info->ordered_root_lock);
2605 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2606 GFP_NOFS);
2607 if (!fs_info->delayed_root) {
2608 err = -ENOMEM;
2609 goto fail_iput;
2611 btrfs_init_delayed_root(fs_info->delayed_root);
2613 btrfs_init_scrub(fs_info);
2614 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2615 fs_info->check_integrity_print_mask = 0;
2616 #endif
2617 btrfs_init_balance(fs_info);
2618 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2620 sb->s_blocksize = 4096;
2621 sb->s_blocksize_bits = blksize_bits(4096);
2622 sb->s_bdi = &fs_info->bdi;
2624 btrfs_init_btree_inode(fs_info, tree_root);
2626 spin_lock_init(&fs_info->block_group_cache_lock);
2627 fs_info->block_group_cache_tree = RB_ROOT;
2628 fs_info->first_logical_byte = (u64)-1;
2630 extent_io_tree_init(&fs_info->freed_extents[0],
2631 fs_info->btree_inode->i_mapping);
2632 extent_io_tree_init(&fs_info->freed_extents[1],
2633 fs_info->btree_inode->i_mapping);
2634 fs_info->pinned_extents = &fs_info->freed_extents[0];
2635 fs_info->do_barriers = 1;
2638 mutex_init(&fs_info->ordered_operations_mutex);
2639 mutex_init(&fs_info->tree_log_mutex);
2640 mutex_init(&fs_info->chunk_mutex);
2641 mutex_init(&fs_info->transaction_kthread_mutex);
2642 mutex_init(&fs_info->cleaner_mutex);
2643 mutex_init(&fs_info->volume_mutex);
2644 mutex_init(&fs_info->ro_block_group_mutex);
2645 init_rwsem(&fs_info->commit_root_sem);
2646 init_rwsem(&fs_info->cleanup_work_sem);
2647 init_rwsem(&fs_info->subvol_sem);
2648 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2650 btrfs_init_dev_replace_locks(fs_info);
2651 btrfs_init_qgroup(fs_info);
2653 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2654 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2656 init_waitqueue_head(&fs_info->transaction_throttle);
2657 init_waitqueue_head(&fs_info->transaction_wait);
2658 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2659 init_waitqueue_head(&fs_info->async_submit_wait);
2661 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2663 ret = btrfs_alloc_stripe_hash_table(fs_info);
2664 if (ret) {
2665 err = ret;
2666 goto fail_alloc;
2669 __setup_root(4096, 4096, 4096, tree_root,
2670 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2672 invalidate_bdev(fs_devices->latest_bdev);
2675 * Read super block and check the signature bytes only
2677 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2678 if (IS_ERR(bh)) {
2679 err = PTR_ERR(bh);
2680 goto fail_alloc;
2684 * We want to check superblock checksum, the type is stored inside.
2685 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2687 if (btrfs_check_super_csum(bh->b_data)) {
2688 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2689 err = -EINVAL;
2690 brelse(bh);
2691 goto fail_alloc;
2695 * super_copy is zeroed at allocation time and we never touch the
2696 * following bytes up to INFO_SIZE, the checksum is calculated from
2697 * the whole block of INFO_SIZE
2699 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2700 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2701 sizeof(*fs_info->super_for_commit));
2702 brelse(bh);
2704 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2706 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2707 if (ret) {
2708 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2709 err = -EINVAL;
2710 goto fail_alloc;
2713 disk_super = fs_info->super_copy;
2714 if (!btrfs_super_root(disk_super))
2715 goto fail_alloc;
2717 /* check FS state, whether FS is broken. */
2718 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2719 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2722 * run through our array of backup supers and setup
2723 * our ring pointer to the oldest one
2725 generation = btrfs_super_generation(disk_super);
2726 find_oldest_super_backup(fs_info, generation);
2729 * In the long term, we'll store the compression type in the super
2730 * block, and it'll be used for per file compression control.
2732 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2734 ret = btrfs_parse_options(tree_root, options);
2735 if (ret) {
2736 err = ret;
2737 goto fail_alloc;
2740 features = btrfs_super_incompat_flags(disk_super) &
2741 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2742 if (features) {
2743 printk(KERN_ERR "BTRFS: couldn't mount because of "
2744 "unsupported optional features (%Lx).\n",
2745 features);
2746 err = -EINVAL;
2747 goto fail_alloc;
2751 * Leafsize and nodesize were always equal, this is only a sanity check.
2753 if (le32_to_cpu(disk_super->__unused_leafsize) !=
2754 btrfs_super_nodesize(disk_super)) {
2755 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2756 "blocksizes don't match. node %d leaf %d\n",
2757 btrfs_super_nodesize(disk_super),
2758 le32_to_cpu(disk_super->__unused_leafsize));
2759 err = -EINVAL;
2760 goto fail_alloc;
2762 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2763 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2764 "blocksize (%d) was too large\n",
2765 btrfs_super_nodesize(disk_super));
2766 err = -EINVAL;
2767 goto fail_alloc;
2770 features = btrfs_super_incompat_flags(disk_super);
2771 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2772 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2773 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2775 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2776 printk(KERN_INFO "BTRFS: has skinny extents\n");
2779 * flag our filesystem as having big metadata blocks if
2780 * they are bigger than the page size
2782 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2783 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2784 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2785 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2788 nodesize = btrfs_super_nodesize(disk_super);
2789 sectorsize = btrfs_super_sectorsize(disk_super);
2790 stripesize = btrfs_super_stripesize(disk_super);
2791 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2792 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2795 * mixed block groups end up with duplicate but slightly offset
2796 * extent buffers for the same range. It leads to corruptions
2798 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2799 (sectorsize != nodesize)) {
2800 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2801 "are not allowed for mixed block groups on %s\n",
2802 sb->s_id);
2803 goto fail_alloc;
2807 * Needn't use the lock because there is no other task which will
2808 * update the flag.
2810 btrfs_set_super_incompat_flags(disk_super, features);
2812 features = btrfs_super_compat_ro_flags(disk_super) &
2813 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2814 if (!(sb->s_flags & MS_RDONLY) && features) {
2815 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2816 "unsupported option features (%Lx).\n",
2817 features);
2818 err = -EINVAL;
2819 goto fail_alloc;
2822 max_active = fs_info->thread_pool_size;
2824 ret = btrfs_init_workqueues(fs_info, fs_devices);
2825 if (ret) {
2826 err = ret;
2827 goto fail_sb_buffer;
2830 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2831 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2832 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2834 tree_root->nodesize = nodesize;
2835 tree_root->sectorsize = sectorsize;
2836 tree_root->stripesize = stripesize;
2838 sb->s_blocksize = sectorsize;
2839 sb->s_blocksize_bits = blksize_bits(sectorsize);
2841 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2842 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2843 goto fail_sb_buffer;
2846 if (sectorsize != PAGE_SIZE) {
2847 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2848 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2849 goto fail_sb_buffer;
2852 mutex_lock(&fs_info->chunk_mutex);
2853 ret = btrfs_read_sys_array(tree_root);
2854 mutex_unlock(&fs_info->chunk_mutex);
2855 if (ret) {
2856 printk(KERN_ERR "BTRFS: failed to read the system "
2857 "array on %s\n", sb->s_id);
2858 goto fail_sb_buffer;
2861 generation = btrfs_super_chunk_root_generation(disk_super);
2863 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2864 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2866 chunk_root->node = read_tree_block(chunk_root,
2867 btrfs_super_chunk_root(disk_super),
2868 generation);
2869 if (IS_ERR(chunk_root->node) ||
2870 !extent_buffer_uptodate(chunk_root->node)) {
2871 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2872 sb->s_id);
2873 if (!IS_ERR(chunk_root->node))
2874 free_extent_buffer(chunk_root->node);
2875 chunk_root->node = NULL;
2876 goto fail_tree_roots;
2878 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2879 chunk_root->commit_root = btrfs_root_node(chunk_root);
2881 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2882 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2884 ret = btrfs_read_chunk_tree(chunk_root);
2885 if (ret) {
2886 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2887 sb->s_id);
2888 goto fail_tree_roots;
2892 * keep the device that is marked to be the target device for the
2893 * dev_replace procedure
2895 btrfs_close_extra_devices(fs_devices, 0);
2897 if (!fs_devices->latest_bdev) {
2898 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2899 sb->s_id);
2900 goto fail_tree_roots;
2903 retry_root_backup:
2904 generation = btrfs_super_generation(disk_super);
2906 tree_root->node = read_tree_block(tree_root,
2907 btrfs_super_root(disk_super),
2908 generation);
2909 if (IS_ERR(tree_root->node) ||
2910 !extent_buffer_uptodate(tree_root->node)) {
2911 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2912 sb->s_id);
2913 if (!IS_ERR(tree_root->node))
2914 free_extent_buffer(tree_root->node);
2915 tree_root->node = NULL;
2916 goto recovery_tree_root;
2919 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2920 tree_root->commit_root = btrfs_root_node(tree_root);
2921 btrfs_set_root_refs(&tree_root->root_item, 1);
2923 mutex_lock(&tree_root->objectid_mutex);
2924 ret = btrfs_find_highest_objectid(tree_root,
2925 &tree_root->highest_objectid);
2926 if (ret) {
2927 mutex_unlock(&tree_root->objectid_mutex);
2928 goto recovery_tree_root;
2931 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2933 mutex_unlock(&tree_root->objectid_mutex);
2935 ret = btrfs_read_roots(fs_info, tree_root);
2936 if (ret)
2937 goto recovery_tree_root;
2939 fs_info->generation = generation;
2940 fs_info->last_trans_committed = generation;
2942 ret = btrfs_recover_balance(fs_info);
2943 if (ret) {
2944 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2945 goto fail_block_groups;
2948 ret = btrfs_init_dev_stats(fs_info);
2949 if (ret) {
2950 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2951 ret);
2952 goto fail_block_groups;
2955 ret = btrfs_init_dev_replace(fs_info);
2956 if (ret) {
2957 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2958 goto fail_block_groups;
2961 btrfs_close_extra_devices(fs_devices, 1);
2963 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2964 if (ret) {
2965 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2966 goto fail_block_groups;
2969 ret = btrfs_sysfs_add_device(fs_devices);
2970 if (ret) {
2971 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2972 goto fail_fsdev_sysfs;
2975 ret = btrfs_sysfs_add_mounted(fs_info);
2976 if (ret) {
2977 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2978 goto fail_fsdev_sysfs;
2981 ret = btrfs_init_space_info(fs_info);
2982 if (ret) {
2983 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2984 goto fail_sysfs;
2987 ret = btrfs_read_block_groups(fs_info->extent_root);
2988 if (ret) {
2989 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2990 goto fail_sysfs;
2992 fs_info->num_tolerated_disk_barrier_failures =
2993 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2994 if (fs_info->fs_devices->missing_devices >
2995 fs_info->num_tolerated_disk_barrier_failures &&
2996 !(sb->s_flags & MS_RDONLY)) {
2997 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2998 fs_info->fs_devices->missing_devices,
2999 fs_info->num_tolerated_disk_barrier_failures);
3000 goto fail_sysfs;
3003 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3004 "btrfs-cleaner");
3005 if (IS_ERR(fs_info->cleaner_kthread))
3006 goto fail_sysfs;
3008 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3009 tree_root,
3010 "btrfs-transaction");
3011 if (IS_ERR(fs_info->transaction_kthread))
3012 goto fail_cleaner;
3014 if (!btrfs_test_opt(tree_root, SSD) &&
3015 !btrfs_test_opt(tree_root, NOSSD) &&
3016 !fs_info->fs_devices->rotating) {
3017 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3018 "mode\n");
3019 btrfs_set_opt(fs_info->mount_opt, SSD);
3023 * Mount does not set all options immediatelly, we can do it now and do
3024 * not have to wait for transaction commit
3026 btrfs_apply_pending_changes(fs_info);
3028 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3029 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3030 ret = btrfsic_mount(tree_root, fs_devices,
3031 btrfs_test_opt(tree_root,
3032 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3033 1 : 0,
3034 fs_info->check_integrity_print_mask);
3035 if (ret)
3036 printk(KERN_WARNING "BTRFS: failed to initialize"
3037 " integrity check module %s\n", sb->s_id);
3039 #endif
3040 ret = btrfs_read_qgroup_config(fs_info);
3041 if (ret)
3042 goto fail_trans_kthread;
3044 /* do not make disk changes in broken FS */
3045 if (btrfs_super_log_root(disk_super) != 0) {
3046 ret = btrfs_replay_log(fs_info, fs_devices);
3047 if (ret) {
3048 err = ret;
3049 goto fail_qgroup;
3053 ret = btrfs_find_orphan_roots(tree_root);
3054 if (ret)
3055 goto fail_qgroup;
3057 if (!(sb->s_flags & MS_RDONLY)) {
3058 ret = btrfs_cleanup_fs_roots(fs_info);
3059 if (ret)
3060 goto fail_qgroup;
3062 mutex_lock(&fs_info->cleaner_mutex);
3063 ret = btrfs_recover_relocation(tree_root);
3064 mutex_unlock(&fs_info->cleaner_mutex);
3065 if (ret < 0) {
3066 printk(KERN_WARNING
3067 "BTRFS: failed to recover relocation\n");
3068 err = -EINVAL;
3069 goto fail_qgroup;
3073 location.objectid = BTRFS_FS_TREE_OBJECTID;
3074 location.type = BTRFS_ROOT_ITEM_KEY;
3075 location.offset = 0;
3077 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3078 if (IS_ERR(fs_info->fs_root)) {
3079 err = PTR_ERR(fs_info->fs_root);
3080 goto fail_qgroup;
3083 if (sb->s_flags & MS_RDONLY)
3084 return 0;
3086 down_read(&fs_info->cleanup_work_sem);
3087 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3088 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3089 up_read(&fs_info->cleanup_work_sem);
3090 close_ctree(tree_root);
3091 return ret;
3093 up_read(&fs_info->cleanup_work_sem);
3095 ret = btrfs_resume_balance_async(fs_info);
3096 if (ret) {
3097 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3098 close_ctree(tree_root);
3099 return ret;
3102 ret = btrfs_resume_dev_replace_async(fs_info);
3103 if (ret) {
3104 pr_warn("BTRFS: failed to resume dev_replace\n");
3105 close_ctree(tree_root);
3106 return ret;
3109 btrfs_qgroup_rescan_resume(fs_info);
3111 if (!fs_info->uuid_root) {
3112 pr_info("BTRFS: creating UUID tree\n");
3113 ret = btrfs_create_uuid_tree(fs_info);
3114 if (ret) {
3115 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3116 ret);
3117 close_ctree(tree_root);
3118 return ret;
3120 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3121 fs_info->generation !=
3122 btrfs_super_uuid_tree_generation(disk_super)) {
3123 pr_info("BTRFS: checking UUID tree\n");
3124 ret = btrfs_check_uuid_tree(fs_info);
3125 if (ret) {
3126 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3127 ret);
3128 close_ctree(tree_root);
3129 return ret;
3131 } else {
3132 fs_info->update_uuid_tree_gen = 1;
3135 fs_info->open = 1;
3137 return 0;
3139 fail_qgroup:
3140 btrfs_free_qgroup_config(fs_info);
3141 fail_trans_kthread:
3142 kthread_stop(fs_info->transaction_kthread);
3143 btrfs_cleanup_transaction(fs_info->tree_root);
3144 btrfs_free_fs_roots(fs_info);
3145 fail_cleaner:
3146 kthread_stop(fs_info->cleaner_kthread);
3149 * make sure we're done with the btree inode before we stop our
3150 * kthreads
3152 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3154 fail_sysfs:
3155 btrfs_sysfs_remove_mounted(fs_info);
3157 fail_fsdev_sysfs:
3158 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3160 fail_block_groups:
3161 btrfs_put_block_group_cache(fs_info);
3162 btrfs_free_block_groups(fs_info);
3164 fail_tree_roots:
3165 free_root_pointers(fs_info, 1);
3166 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3168 fail_sb_buffer:
3169 btrfs_stop_all_workers(fs_info);
3170 fail_alloc:
3171 fail_iput:
3172 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3174 iput(fs_info->btree_inode);
3175 fail_bio_counter:
3176 percpu_counter_destroy(&fs_info->bio_counter);
3177 fail_delalloc_bytes:
3178 percpu_counter_destroy(&fs_info->delalloc_bytes);
3179 fail_dirty_metadata_bytes:
3180 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3181 fail_bdi:
3182 bdi_destroy(&fs_info->bdi);
3183 fail_srcu:
3184 cleanup_srcu_struct(&fs_info->subvol_srcu);
3185 fail:
3186 btrfs_free_stripe_hash_table(fs_info);
3187 btrfs_close_devices(fs_info->fs_devices);
3188 return err;
3190 recovery_tree_root:
3191 if (!btrfs_test_opt(tree_root, RECOVERY))
3192 goto fail_tree_roots;
3194 free_root_pointers(fs_info, 0);
3196 /* don't use the log in recovery mode, it won't be valid */
3197 btrfs_set_super_log_root(disk_super, 0);
3199 /* we can't trust the free space cache either */
3200 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3202 ret = next_root_backup(fs_info, fs_info->super_copy,
3203 &num_backups_tried, &backup_index);
3204 if (ret == -1)
3205 goto fail_block_groups;
3206 goto retry_root_backup;
3209 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3211 if (uptodate) {
3212 set_buffer_uptodate(bh);
3213 } else {
3214 struct btrfs_device *device = (struct btrfs_device *)
3215 bh->b_private;
3217 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3218 "lost page write due to IO error on %s",
3219 rcu_str_deref(device->name));
3220 /* note, we dont' set_buffer_write_io_error because we have
3221 * our own ways of dealing with the IO errors
3223 clear_buffer_uptodate(bh);
3224 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3226 unlock_buffer(bh);
3227 put_bh(bh);
3230 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3231 struct buffer_head **bh_ret)
3233 struct buffer_head *bh;
3234 struct btrfs_super_block *super;
3235 u64 bytenr;
3237 bytenr = btrfs_sb_offset(copy_num);
3238 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3239 return -EINVAL;
3241 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3243 * If we fail to read from the underlying devices, as of now
3244 * the best option we have is to mark it EIO.
3246 if (!bh)
3247 return -EIO;
3249 super = (struct btrfs_super_block *)bh->b_data;
3250 if (btrfs_super_bytenr(super) != bytenr ||
3251 btrfs_super_magic(super) != BTRFS_MAGIC) {
3252 brelse(bh);
3253 return -EINVAL;
3256 *bh_ret = bh;
3257 return 0;
3261 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3263 struct buffer_head *bh;
3264 struct buffer_head *latest = NULL;
3265 struct btrfs_super_block *super;
3266 int i;
3267 u64 transid = 0;
3268 int ret = -EINVAL;
3270 /* we would like to check all the supers, but that would make
3271 * a btrfs mount succeed after a mkfs from a different FS.
3272 * So, we need to add a special mount option to scan for
3273 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3275 for (i = 0; i < 1; i++) {
3276 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3277 if (ret)
3278 continue;
3280 super = (struct btrfs_super_block *)bh->b_data;
3282 if (!latest || btrfs_super_generation(super) > transid) {
3283 brelse(latest);
3284 latest = bh;
3285 transid = btrfs_super_generation(super);
3286 } else {
3287 brelse(bh);
3291 if (!latest)
3292 return ERR_PTR(ret);
3294 return latest;
3298 * this should be called twice, once with wait == 0 and
3299 * once with wait == 1. When wait == 0 is done, all the buffer heads
3300 * we write are pinned.
3302 * They are released when wait == 1 is done.
3303 * max_mirrors must be the same for both runs, and it indicates how
3304 * many supers on this one device should be written.
3306 * max_mirrors == 0 means to write them all.
3308 static int write_dev_supers(struct btrfs_device *device,
3309 struct btrfs_super_block *sb,
3310 int do_barriers, int wait, int max_mirrors)
3312 struct buffer_head *bh;
3313 int i;
3314 int ret;
3315 int errors = 0;
3316 u32 crc;
3317 u64 bytenr;
3319 if (max_mirrors == 0)
3320 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3322 for (i = 0; i < max_mirrors; i++) {
3323 bytenr = btrfs_sb_offset(i);
3324 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3325 device->commit_total_bytes)
3326 break;
3328 if (wait) {
3329 bh = __find_get_block(device->bdev, bytenr / 4096,
3330 BTRFS_SUPER_INFO_SIZE);
3331 if (!bh) {
3332 errors++;
3333 continue;
3335 wait_on_buffer(bh);
3336 if (!buffer_uptodate(bh))
3337 errors++;
3339 /* drop our reference */
3340 brelse(bh);
3342 /* drop the reference from the wait == 0 run */
3343 brelse(bh);
3344 continue;
3345 } else {
3346 btrfs_set_super_bytenr(sb, bytenr);
3348 crc = ~(u32)0;
3349 crc = btrfs_csum_data((char *)sb +
3350 BTRFS_CSUM_SIZE, crc,
3351 BTRFS_SUPER_INFO_SIZE -
3352 BTRFS_CSUM_SIZE);
3353 btrfs_csum_final(crc, sb->csum);
3356 * one reference for us, and we leave it for the
3357 * caller
3359 bh = __getblk(device->bdev, bytenr / 4096,
3360 BTRFS_SUPER_INFO_SIZE);
3361 if (!bh) {
3362 btrfs_err(device->dev_root->fs_info,
3363 "couldn't get super buffer head for bytenr %llu",
3364 bytenr);
3365 errors++;
3366 continue;
3369 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3371 /* one reference for submit_bh */
3372 get_bh(bh);
3374 set_buffer_uptodate(bh);
3375 lock_buffer(bh);
3376 bh->b_end_io = btrfs_end_buffer_write_sync;
3377 bh->b_private = device;
3381 * we fua the first super. The others we allow
3382 * to go down lazy.
3384 if (i == 0)
3385 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3386 else
3387 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3388 if (ret)
3389 errors++;
3391 return errors < i ? 0 : -1;
3395 * endio for the write_dev_flush, this will wake anyone waiting
3396 * for the barrier when it is done
3398 static void btrfs_end_empty_barrier(struct bio *bio)
3400 if (bio->bi_private)
3401 complete(bio->bi_private);
3402 bio_put(bio);
3406 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3407 * sent down. With wait == 1, it waits for the previous flush.
3409 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3410 * capable
3412 static int write_dev_flush(struct btrfs_device *device, int wait)
3414 struct bio *bio;
3415 int ret = 0;
3417 if (device->nobarriers)
3418 return 0;
3420 if (wait) {
3421 bio = device->flush_bio;
3422 if (!bio)
3423 return 0;
3425 wait_for_completion(&device->flush_wait);
3427 if (bio->bi_error) {
3428 ret = bio->bi_error;
3429 btrfs_dev_stat_inc_and_print(device,
3430 BTRFS_DEV_STAT_FLUSH_ERRS);
3433 /* drop the reference from the wait == 0 run */
3434 bio_put(bio);
3435 device->flush_bio = NULL;
3437 return ret;
3441 * one reference for us, and we leave it for the
3442 * caller
3444 device->flush_bio = NULL;
3445 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3446 if (!bio)
3447 return -ENOMEM;
3449 bio->bi_end_io = btrfs_end_empty_barrier;
3450 bio->bi_bdev = device->bdev;
3451 init_completion(&device->flush_wait);
3452 bio->bi_private = &device->flush_wait;
3453 device->flush_bio = bio;
3455 bio_get(bio);
3456 btrfsic_submit_bio(WRITE_FLUSH, bio);
3458 return 0;
3462 * send an empty flush down to each device in parallel,
3463 * then wait for them
3465 static int barrier_all_devices(struct btrfs_fs_info *info)
3467 struct list_head *head;
3468 struct btrfs_device *dev;
3469 int errors_send = 0;
3470 int errors_wait = 0;
3471 int ret;
3473 /* send down all the barriers */
3474 head = &info->fs_devices->devices;
3475 list_for_each_entry_rcu(dev, head, dev_list) {
3476 if (dev->missing)
3477 continue;
3478 if (!dev->bdev) {
3479 errors_send++;
3480 continue;
3482 if (!dev->in_fs_metadata || !dev->writeable)
3483 continue;
3485 ret = write_dev_flush(dev, 0);
3486 if (ret)
3487 errors_send++;
3490 /* wait for all the barriers */
3491 list_for_each_entry_rcu(dev, head, dev_list) {
3492 if (dev->missing)
3493 continue;
3494 if (!dev->bdev) {
3495 errors_wait++;
3496 continue;
3498 if (!dev->in_fs_metadata || !dev->writeable)
3499 continue;
3501 ret = write_dev_flush(dev, 1);
3502 if (ret)
3503 errors_wait++;
3505 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3506 errors_wait > info->num_tolerated_disk_barrier_failures)
3507 return -EIO;
3508 return 0;
3511 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3513 int raid_type;
3514 int min_tolerated = INT_MAX;
3516 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3517 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3518 min_tolerated = min(min_tolerated,
3519 btrfs_raid_array[BTRFS_RAID_SINGLE].
3520 tolerated_failures);
3522 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3523 if (raid_type == BTRFS_RAID_SINGLE)
3524 continue;
3525 if (!(flags & btrfs_raid_group[raid_type]))
3526 continue;
3527 min_tolerated = min(min_tolerated,
3528 btrfs_raid_array[raid_type].
3529 tolerated_failures);
3532 if (min_tolerated == INT_MAX) {
3533 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3534 min_tolerated = 0;
3537 return min_tolerated;
3540 int btrfs_calc_num_tolerated_disk_barrier_failures(
3541 struct btrfs_fs_info *fs_info)
3543 struct btrfs_ioctl_space_info space;
3544 struct btrfs_space_info *sinfo;
3545 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3546 BTRFS_BLOCK_GROUP_SYSTEM,
3547 BTRFS_BLOCK_GROUP_METADATA,
3548 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3549 int i;
3550 int c;
3551 int num_tolerated_disk_barrier_failures =
3552 (int)fs_info->fs_devices->num_devices;
3554 for (i = 0; i < ARRAY_SIZE(types); i++) {
3555 struct btrfs_space_info *tmp;
3557 sinfo = NULL;
3558 rcu_read_lock();
3559 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3560 if (tmp->flags == types[i]) {
3561 sinfo = tmp;
3562 break;
3565 rcu_read_unlock();
3567 if (!sinfo)
3568 continue;
3570 down_read(&sinfo->groups_sem);
3571 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3572 u64 flags;
3574 if (list_empty(&sinfo->block_groups[c]))
3575 continue;
3577 btrfs_get_block_group_info(&sinfo->block_groups[c],
3578 &space);
3579 if (space.total_bytes == 0 || space.used_bytes == 0)
3580 continue;
3581 flags = space.flags;
3583 num_tolerated_disk_barrier_failures = min(
3584 num_tolerated_disk_barrier_failures,
3585 btrfs_get_num_tolerated_disk_barrier_failures(
3586 flags));
3588 up_read(&sinfo->groups_sem);
3591 return num_tolerated_disk_barrier_failures;
3594 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3596 struct list_head *head;
3597 struct btrfs_device *dev;
3598 struct btrfs_super_block *sb;
3599 struct btrfs_dev_item *dev_item;
3600 int ret;
3601 int do_barriers;
3602 int max_errors;
3603 int total_errors = 0;
3604 u64 flags;
3606 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3607 backup_super_roots(root->fs_info);
3609 sb = root->fs_info->super_for_commit;
3610 dev_item = &sb->dev_item;
3612 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3613 head = &root->fs_info->fs_devices->devices;
3614 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3616 if (do_barriers) {
3617 ret = barrier_all_devices(root->fs_info);
3618 if (ret) {
3619 mutex_unlock(
3620 &root->fs_info->fs_devices->device_list_mutex);
3621 btrfs_std_error(root->fs_info, ret,
3622 "errors while submitting device barriers.");
3623 return ret;
3627 list_for_each_entry_rcu(dev, head, dev_list) {
3628 if (!dev->bdev) {
3629 total_errors++;
3630 continue;
3632 if (!dev->in_fs_metadata || !dev->writeable)
3633 continue;
3635 btrfs_set_stack_device_generation(dev_item, 0);
3636 btrfs_set_stack_device_type(dev_item, dev->type);
3637 btrfs_set_stack_device_id(dev_item, dev->devid);
3638 btrfs_set_stack_device_total_bytes(dev_item,
3639 dev->commit_total_bytes);
3640 btrfs_set_stack_device_bytes_used(dev_item,
3641 dev->commit_bytes_used);
3642 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3643 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3644 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3645 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3646 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3648 flags = btrfs_super_flags(sb);
3649 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3651 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3652 if (ret)
3653 total_errors++;
3655 if (total_errors > max_errors) {
3656 btrfs_err(root->fs_info, "%d errors while writing supers",
3657 total_errors);
3658 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3660 /* FUA is masked off if unsupported and can't be the reason */
3661 btrfs_std_error(root->fs_info, -EIO,
3662 "%d errors while writing supers", total_errors);
3663 return -EIO;
3666 total_errors = 0;
3667 list_for_each_entry_rcu(dev, head, dev_list) {
3668 if (!dev->bdev)
3669 continue;
3670 if (!dev->in_fs_metadata || !dev->writeable)
3671 continue;
3673 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3674 if (ret)
3675 total_errors++;
3677 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3678 if (total_errors > max_errors) {
3679 btrfs_std_error(root->fs_info, -EIO,
3680 "%d errors while writing supers", total_errors);
3681 return -EIO;
3683 return 0;
3686 int write_ctree_super(struct btrfs_trans_handle *trans,
3687 struct btrfs_root *root, int max_mirrors)
3689 return write_all_supers(root, max_mirrors);
3692 /* Drop a fs root from the radix tree and free it. */
3693 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3694 struct btrfs_root *root)
3696 spin_lock(&fs_info->fs_roots_radix_lock);
3697 radix_tree_delete(&fs_info->fs_roots_radix,
3698 (unsigned long)root->root_key.objectid);
3699 spin_unlock(&fs_info->fs_roots_radix_lock);
3701 if (btrfs_root_refs(&root->root_item) == 0)
3702 synchronize_srcu(&fs_info->subvol_srcu);
3704 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3705 btrfs_free_log(NULL, root);
3707 if (root->free_ino_pinned)
3708 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3709 if (root->free_ino_ctl)
3710 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3711 free_fs_root(root);
3714 static void free_fs_root(struct btrfs_root *root)
3716 iput(root->ino_cache_inode);
3717 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3718 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3719 root->orphan_block_rsv = NULL;
3720 if (root->anon_dev)
3721 free_anon_bdev(root->anon_dev);
3722 if (root->subv_writers)
3723 btrfs_free_subvolume_writers(root->subv_writers);
3724 free_extent_buffer(root->node);
3725 free_extent_buffer(root->commit_root);
3726 kfree(root->free_ino_ctl);
3727 kfree(root->free_ino_pinned);
3728 kfree(root->name);
3729 btrfs_put_fs_root(root);
3732 void btrfs_free_fs_root(struct btrfs_root *root)
3734 free_fs_root(root);
3737 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3739 u64 root_objectid = 0;
3740 struct btrfs_root *gang[8];
3741 int i = 0;
3742 int err = 0;
3743 unsigned int ret = 0;
3744 int index;
3746 while (1) {
3747 index = srcu_read_lock(&fs_info->subvol_srcu);
3748 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3749 (void **)gang, root_objectid,
3750 ARRAY_SIZE(gang));
3751 if (!ret) {
3752 srcu_read_unlock(&fs_info->subvol_srcu, index);
3753 break;
3755 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3757 for (i = 0; i < ret; i++) {
3758 /* Avoid to grab roots in dead_roots */
3759 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3760 gang[i] = NULL;
3761 continue;
3763 /* grab all the search result for later use */
3764 gang[i] = btrfs_grab_fs_root(gang[i]);
3766 srcu_read_unlock(&fs_info->subvol_srcu, index);
3768 for (i = 0; i < ret; i++) {
3769 if (!gang[i])
3770 continue;
3771 root_objectid = gang[i]->root_key.objectid;
3772 err = btrfs_orphan_cleanup(gang[i]);
3773 if (err)
3774 break;
3775 btrfs_put_fs_root(gang[i]);
3777 root_objectid++;
3780 /* release the uncleaned roots due to error */
3781 for (; i < ret; i++) {
3782 if (gang[i])
3783 btrfs_put_fs_root(gang[i]);
3785 return err;
3788 int btrfs_commit_super(struct btrfs_root *root)
3790 struct btrfs_trans_handle *trans;
3792 mutex_lock(&root->fs_info->cleaner_mutex);
3793 btrfs_run_delayed_iputs(root);
3794 mutex_unlock(&root->fs_info->cleaner_mutex);
3795 wake_up_process(root->fs_info->cleaner_kthread);
3797 /* wait until ongoing cleanup work done */
3798 down_write(&root->fs_info->cleanup_work_sem);
3799 up_write(&root->fs_info->cleanup_work_sem);
3801 trans = btrfs_join_transaction(root);
3802 if (IS_ERR(trans))
3803 return PTR_ERR(trans);
3804 return btrfs_commit_transaction(trans, root);
3807 void close_ctree(struct btrfs_root *root)
3809 struct btrfs_fs_info *fs_info = root->fs_info;
3810 int ret;
3812 fs_info->closing = 1;
3813 smp_mb();
3815 /* wait for the qgroup rescan worker to stop */
3816 btrfs_qgroup_wait_for_completion(fs_info, false);
3818 /* wait for the uuid_scan task to finish */
3819 down(&fs_info->uuid_tree_rescan_sem);
3820 /* avoid complains from lockdep et al., set sem back to initial state */
3821 up(&fs_info->uuid_tree_rescan_sem);
3823 /* pause restriper - we want to resume on mount */
3824 btrfs_pause_balance(fs_info);
3826 btrfs_dev_replace_suspend_for_unmount(fs_info);
3828 btrfs_scrub_cancel(fs_info);
3830 /* wait for any defraggers to finish */
3831 wait_event(fs_info->transaction_wait,
3832 (atomic_read(&fs_info->defrag_running) == 0));
3834 /* clear out the rbtree of defraggable inodes */
3835 btrfs_cleanup_defrag_inodes(fs_info);
3837 cancel_work_sync(&fs_info->async_reclaim_work);
3839 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3841 * If the cleaner thread is stopped and there are
3842 * block groups queued for removal, the deletion will be
3843 * skipped when we quit the cleaner thread.
3845 btrfs_delete_unused_bgs(root->fs_info);
3847 ret = btrfs_commit_super(root);
3848 if (ret)
3849 btrfs_err(fs_info, "commit super ret %d", ret);
3852 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3853 btrfs_error_commit_super(root);
3855 kthread_stop(fs_info->transaction_kthread);
3856 kthread_stop(fs_info->cleaner_kthread);
3858 fs_info->closing = 2;
3859 smp_mb();
3861 btrfs_free_qgroup_config(fs_info);
3863 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3864 btrfs_info(fs_info, "at unmount delalloc count %lld",
3865 percpu_counter_sum(&fs_info->delalloc_bytes));
3868 btrfs_sysfs_remove_mounted(fs_info);
3869 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3871 btrfs_free_fs_roots(fs_info);
3873 btrfs_put_block_group_cache(fs_info);
3875 btrfs_free_block_groups(fs_info);
3878 * we must make sure there is not any read request to
3879 * submit after we stopping all workers.
3881 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3882 btrfs_stop_all_workers(fs_info);
3884 fs_info->open = 0;
3885 free_root_pointers(fs_info, 1);
3887 iput(fs_info->btree_inode);
3889 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3890 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3891 btrfsic_unmount(root, fs_info->fs_devices);
3892 #endif
3894 btrfs_close_devices(fs_info->fs_devices);
3895 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3897 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3898 percpu_counter_destroy(&fs_info->delalloc_bytes);
3899 percpu_counter_destroy(&fs_info->bio_counter);
3900 bdi_destroy(&fs_info->bdi);
3901 cleanup_srcu_struct(&fs_info->subvol_srcu);
3903 btrfs_free_stripe_hash_table(fs_info);
3905 __btrfs_free_block_rsv(root->orphan_block_rsv);
3906 root->orphan_block_rsv = NULL;
3908 lock_chunks(root);
3909 while (!list_empty(&fs_info->pinned_chunks)) {
3910 struct extent_map *em;
3912 em = list_first_entry(&fs_info->pinned_chunks,
3913 struct extent_map, list);
3914 list_del_init(&em->list);
3915 free_extent_map(em);
3917 unlock_chunks(root);
3920 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3921 int atomic)
3923 int ret;
3924 struct inode *btree_inode = buf->pages[0]->mapping->host;
3926 ret = extent_buffer_uptodate(buf);
3927 if (!ret)
3928 return ret;
3930 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3931 parent_transid, atomic);
3932 if (ret == -EAGAIN)
3933 return ret;
3934 return !ret;
3937 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3939 return set_extent_buffer_uptodate(buf);
3942 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3944 struct btrfs_root *root;
3945 u64 transid = btrfs_header_generation(buf);
3946 int was_dirty;
3948 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3950 * This is a fast path so only do this check if we have sanity tests
3951 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3952 * outside of the sanity tests.
3954 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3955 return;
3956 #endif
3957 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3958 btrfs_assert_tree_locked(buf);
3959 if (transid != root->fs_info->generation)
3960 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3961 "found %llu running %llu\n",
3962 buf->start, transid, root->fs_info->generation);
3963 was_dirty = set_extent_buffer_dirty(buf);
3964 if (!was_dirty)
3965 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3966 buf->len,
3967 root->fs_info->dirty_metadata_batch);
3968 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3969 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3970 btrfs_print_leaf(root, buf);
3971 ASSERT(0);
3973 #endif
3976 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3977 int flush_delayed)
3980 * looks as though older kernels can get into trouble with
3981 * this code, they end up stuck in balance_dirty_pages forever
3983 int ret;
3985 if (current->flags & PF_MEMALLOC)
3986 return;
3988 if (flush_delayed)
3989 btrfs_balance_delayed_items(root);
3991 ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3992 BTRFS_DIRTY_METADATA_THRESH,
3993 root->fs_info->dirty_metadata_batch);
3994 if (ret > 0) {
3995 balance_dirty_pages_ratelimited(
3996 root->fs_info->btree_inode->i_mapping);
3998 return;
4001 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4003 __btrfs_btree_balance_dirty(root, 1);
4006 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4008 __btrfs_btree_balance_dirty(root, 0);
4011 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4013 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4014 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4017 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4018 int read_only)
4020 struct btrfs_super_block *sb = fs_info->super_copy;
4021 int ret = 0;
4023 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4024 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4025 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4026 ret = -EINVAL;
4028 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4029 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4030 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4031 ret = -EINVAL;
4033 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4034 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4035 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4036 ret = -EINVAL;
4040 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4041 * items yet, they'll be verified later. Issue just a warning.
4043 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4044 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4045 btrfs_super_root(sb));
4046 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4047 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4048 btrfs_super_chunk_root(sb));
4049 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4050 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4051 btrfs_super_log_root(sb));
4054 * Check the lower bound, the alignment and other constraints are
4055 * checked later.
4057 if (btrfs_super_nodesize(sb) < 4096) {
4058 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4059 btrfs_super_nodesize(sb));
4060 ret = -EINVAL;
4062 if (btrfs_super_sectorsize(sb) < 4096) {
4063 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4064 btrfs_super_sectorsize(sb));
4065 ret = -EINVAL;
4068 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4069 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4070 fs_info->fsid, sb->dev_item.fsid);
4071 ret = -EINVAL;
4075 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4076 * done later
4078 if (btrfs_super_num_devices(sb) > (1UL << 31))
4079 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4080 btrfs_super_num_devices(sb));
4081 if (btrfs_super_num_devices(sb) == 0) {
4082 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4083 ret = -EINVAL;
4086 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4087 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4088 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4089 ret = -EINVAL;
4093 * Obvious sys_chunk_array corruptions, it must hold at least one key
4094 * and one chunk
4096 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4097 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4098 btrfs_super_sys_array_size(sb),
4099 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4100 ret = -EINVAL;
4102 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4103 + sizeof(struct btrfs_chunk)) {
4104 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4105 btrfs_super_sys_array_size(sb),
4106 sizeof(struct btrfs_disk_key)
4107 + sizeof(struct btrfs_chunk));
4108 ret = -EINVAL;
4112 * The generation is a global counter, we'll trust it more than the others
4113 * but it's still possible that it's the one that's wrong.
4115 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4116 printk(KERN_WARNING
4117 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4118 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4119 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4120 && btrfs_super_cache_generation(sb) != (u64)-1)
4121 printk(KERN_WARNING
4122 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4123 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4125 return ret;
4128 static void btrfs_error_commit_super(struct btrfs_root *root)
4130 mutex_lock(&root->fs_info->cleaner_mutex);
4131 btrfs_run_delayed_iputs(root);
4132 mutex_unlock(&root->fs_info->cleaner_mutex);
4134 down_write(&root->fs_info->cleanup_work_sem);
4135 up_write(&root->fs_info->cleanup_work_sem);
4137 /* cleanup FS via transaction */
4138 btrfs_cleanup_transaction(root);
4141 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4143 struct btrfs_ordered_extent *ordered;
4145 spin_lock(&root->ordered_extent_lock);
4147 * This will just short circuit the ordered completion stuff which will
4148 * make sure the ordered extent gets properly cleaned up.
4150 list_for_each_entry(ordered, &root->ordered_extents,
4151 root_extent_list)
4152 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4153 spin_unlock(&root->ordered_extent_lock);
4156 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4158 struct btrfs_root *root;
4159 struct list_head splice;
4161 INIT_LIST_HEAD(&splice);
4163 spin_lock(&fs_info->ordered_root_lock);
4164 list_splice_init(&fs_info->ordered_roots, &splice);
4165 while (!list_empty(&splice)) {
4166 root = list_first_entry(&splice, struct btrfs_root,
4167 ordered_root);
4168 list_move_tail(&root->ordered_root,
4169 &fs_info->ordered_roots);
4171 spin_unlock(&fs_info->ordered_root_lock);
4172 btrfs_destroy_ordered_extents(root);
4174 cond_resched();
4175 spin_lock(&fs_info->ordered_root_lock);
4177 spin_unlock(&fs_info->ordered_root_lock);
4180 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4181 struct btrfs_root *root)
4183 struct rb_node *node;
4184 struct btrfs_delayed_ref_root *delayed_refs;
4185 struct btrfs_delayed_ref_node *ref;
4186 int ret = 0;
4188 delayed_refs = &trans->delayed_refs;
4190 spin_lock(&delayed_refs->lock);
4191 if (atomic_read(&delayed_refs->num_entries) == 0) {
4192 spin_unlock(&delayed_refs->lock);
4193 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4194 return ret;
4197 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4198 struct btrfs_delayed_ref_head *head;
4199 struct btrfs_delayed_ref_node *tmp;
4200 bool pin_bytes = false;
4202 head = rb_entry(node, struct btrfs_delayed_ref_head,
4203 href_node);
4204 if (!mutex_trylock(&head->mutex)) {
4205 atomic_inc(&head->node.refs);
4206 spin_unlock(&delayed_refs->lock);
4208 mutex_lock(&head->mutex);
4209 mutex_unlock(&head->mutex);
4210 btrfs_put_delayed_ref(&head->node);
4211 spin_lock(&delayed_refs->lock);
4212 continue;
4214 spin_lock(&head->lock);
4215 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4216 list) {
4217 ref->in_tree = 0;
4218 list_del(&ref->list);
4219 atomic_dec(&delayed_refs->num_entries);
4220 btrfs_put_delayed_ref(ref);
4222 if (head->must_insert_reserved)
4223 pin_bytes = true;
4224 btrfs_free_delayed_extent_op(head->extent_op);
4225 delayed_refs->num_heads--;
4226 if (head->processing == 0)
4227 delayed_refs->num_heads_ready--;
4228 atomic_dec(&delayed_refs->num_entries);
4229 head->node.in_tree = 0;
4230 rb_erase(&head->href_node, &delayed_refs->href_root);
4231 spin_unlock(&head->lock);
4232 spin_unlock(&delayed_refs->lock);
4233 mutex_unlock(&head->mutex);
4235 if (pin_bytes)
4236 btrfs_pin_extent(root, head->node.bytenr,
4237 head->node.num_bytes, 1);
4238 btrfs_put_delayed_ref(&head->node);
4239 cond_resched();
4240 spin_lock(&delayed_refs->lock);
4243 spin_unlock(&delayed_refs->lock);
4245 return ret;
4248 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4250 struct btrfs_inode *btrfs_inode;
4251 struct list_head splice;
4253 INIT_LIST_HEAD(&splice);
4255 spin_lock(&root->delalloc_lock);
4256 list_splice_init(&root->delalloc_inodes, &splice);
4258 while (!list_empty(&splice)) {
4259 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4260 delalloc_inodes);
4262 list_del_init(&btrfs_inode->delalloc_inodes);
4263 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4264 &btrfs_inode->runtime_flags);
4265 spin_unlock(&root->delalloc_lock);
4267 btrfs_invalidate_inodes(btrfs_inode->root);
4269 spin_lock(&root->delalloc_lock);
4272 spin_unlock(&root->delalloc_lock);
4275 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4277 struct btrfs_root *root;
4278 struct list_head splice;
4280 INIT_LIST_HEAD(&splice);
4282 spin_lock(&fs_info->delalloc_root_lock);
4283 list_splice_init(&fs_info->delalloc_roots, &splice);
4284 while (!list_empty(&splice)) {
4285 root = list_first_entry(&splice, struct btrfs_root,
4286 delalloc_root);
4287 list_del_init(&root->delalloc_root);
4288 root = btrfs_grab_fs_root(root);
4289 BUG_ON(!root);
4290 spin_unlock(&fs_info->delalloc_root_lock);
4292 btrfs_destroy_delalloc_inodes(root);
4293 btrfs_put_fs_root(root);
4295 spin_lock(&fs_info->delalloc_root_lock);
4297 spin_unlock(&fs_info->delalloc_root_lock);
4300 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4301 struct extent_io_tree *dirty_pages,
4302 int mark)
4304 int ret;
4305 struct extent_buffer *eb;
4306 u64 start = 0;
4307 u64 end;
4309 while (1) {
4310 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4311 mark, NULL);
4312 if (ret)
4313 break;
4315 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4316 while (start <= end) {
4317 eb = btrfs_find_tree_block(root->fs_info, start);
4318 start += root->nodesize;
4319 if (!eb)
4320 continue;
4321 wait_on_extent_buffer_writeback(eb);
4323 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4324 &eb->bflags))
4325 clear_extent_buffer_dirty(eb);
4326 free_extent_buffer_stale(eb);
4330 return ret;
4333 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4334 struct extent_io_tree *pinned_extents)
4336 struct extent_io_tree *unpin;
4337 u64 start;
4338 u64 end;
4339 int ret;
4340 bool loop = true;
4342 unpin = pinned_extents;
4343 again:
4344 while (1) {
4345 ret = find_first_extent_bit(unpin, 0, &start, &end,
4346 EXTENT_DIRTY, NULL);
4347 if (ret)
4348 break;
4350 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4351 btrfs_error_unpin_extent_range(root, start, end);
4352 cond_resched();
4355 if (loop) {
4356 if (unpin == &root->fs_info->freed_extents[0])
4357 unpin = &root->fs_info->freed_extents[1];
4358 else
4359 unpin = &root->fs_info->freed_extents[0];
4360 loop = false;
4361 goto again;
4364 return 0;
4367 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4368 struct btrfs_root *root)
4370 btrfs_destroy_delayed_refs(cur_trans, root);
4372 cur_trans->state = TRANS_STATE_COMMIT_START;
4373 wake_up(&root->fs_info->transaction_blocked_wait);
4375 cur_trans->state = TRANS_STATE_UNBLOCKED;
4376 wake_up(&root->fs_info->transaction_wait);
4378 btrfs_destroy_delayed_inodes(root);
4379 btrfs_assert_delayed_root_empty(root);
4381 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4382 EXTENT_DIRTY);
4383 btrfs_destroy_pinned_extent(root,
4384 root->fs_info->pinned_extents);
4386 cur_trans->state =TRANS_STATE_COMPLETED;
4387 wake_up(&cur_trans->commit_wait);
4390 memset(cur_trans, 0, sizeof(*cur_trans));
4391 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4395 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4397 struct btrfs_transaction *t;
4399 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4401 spin_lock(&root->fs_info->trans_lock);
4402 while (!list_empty(&root->fs_info->trans_list)) {
4403 t = list_first_entry(&root->fs_info->trans_list,
4404 struct btrfs_transaction, list);
4405 if (t->state >= TRANS_STATE_COMMIT_START) {
4406 atomic_inc(&t->use_count);
4407 spin_unlock(&root->fs_info->trans_lock);
4408 btrfs_wait_for_commit(root, t->transid);
4409 btrfs_put_transaction(t);
4410 spin_lock(&root->fs_info->trans_lock);
4411 continue;
4413 if (t == root->fs_info->running_transaction) {
4414 t->state = TRANS_STATE_COMMIT_DOING;
4415 spin_unlock(&root->fs_info->trans_lock);
4417 * We wait for 0 num_writers since we don't hold a trans
4418 * handle open currently for this transaction.
4420 wait_event(t->writer_wait,
4421 atomic_read(&t->num_writers) == 0);
4422 } else {
4423 spin_unlock(&root->fs_info->trans_lock);
4425 btrfs_cleanup_one_transaction(t, root);
4427 spin_lock(&root->fs_info->trans_lock);
4428 if (t == root->fs_info->running_transaction)
4429 root->fs_info->running_transaction = NULL;
4430 list_del_init(&t->list);
4431 spin_unlock(&root->fs_info->trans_lock);
4433 btrfs_put_transaction(t);
4434 trace_btrfs_transaction_commit(root);
4435 spin_lock(&root->fs_info->trans_lock);
4437 spin_unlock(&root->fs_info->trans_lock);
4438 btrfs_destroy_all_ordered_extents(root->fs_info);
4439 btrfs_destroy_delayed_inodes(root);
4440 btrfs_assert_delayed_root_empty(root);
4441 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4442 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4443 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4445 return 0;
4448 static const struct extent_io_ops btree_extent_io_ops = {
4449 .readpage_end_io_hook = btree_readpage_end_io_hook,
4450 .readpage_io_failed_hook = btree_io_failed_hook,
4451 .submit_bio_hook = btree_submit_bio_hook,
4452 /* note we're sharing with inode.c for the merge bio hook */
4453 .merge_bio_hook = btrfs_merge_bio_hook,