4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
47 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
48 static int submit_bh_wbc(int rw
, struct buffer_head
*bh
,
49 unsigned long bio_flags
,
50 struct writeback_control
*wbc
);
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
56 bh
->b_end_io
= handler
;
57 bh
->b_private
= private;
59 EXPORT_SYMBOL(init_buffer
);
61 inline void touch_buffer(struct buffer_head
*bh
)
63 trace_block_touch_buffer(bh
);
64 mark_page_accessed(bh
->b_page
);
66 EXPORT_SYMBOL(touch_buffer
);
68 void __lock_buffer(struct buffer_head
*bh
)
70 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
72 EXPORT_SYMBOL(__lock_buffer
);
74 void unlock_buffer(struct buffer_head
*bh
)
76 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh
->b_state
, BH_Lock
);
80 EXPORT_SYMBOL(unlock_buffer
);
83 * Returns if the page has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the PageDirty information is stale. If
85 * any of the pages are locked, it is assumed they are locked for IO.
87 void buffer_check_dirty_writeback(struct page
*page
,
88 bool *dirty
, bool *writeback
)
90 struct buffer_head
*head
, *bh
;
94 BUG_ON(!PageLocked(page
));
96 if (!page_has_buffers(page
))
99 if (PageWriteback(page
))
102 head
= page_buffers(page
);
105 if (buffer_locked(bh
))
108 if (buffer_dirty(bh
))
111 bh
= bh
->b_this_page
;
112 } while (bh
!= head
);
114 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
121 void __wait_on_buffer(struct buffer_head
* bh
)
123 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
125 EXPORT_SYMBOL(__wait_on_buffer
);
128 __clear_page_buffers(struct page
*page
)
130 ClearPagePrivate(page
);
131 set_page_private(page
, 0);
132 page_cache_release(page
);
135 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
137 char b
[BDEVNAME_SIZE
];
139 if (!test_bit(BH_Quiet
, &bh
->b_state
))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %s, logical block %llu%s\n",
142 bdevname(bh
->b_bdev
, b
),
143 (unsigned long long)bh
->b_blocknr
, msg
);
147 * End-of-IO handler helper function which does not touch the bh after
149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150 * a race there is benign: unlock_buffer() only use the bh's address for
151 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
157 set_buffer_uptodate(bh
);
159 /* This happens, due to failed READA attempts. */
160 clear_buffer_uptodate(bh
);
166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
167 * unlock the buffer. This is what ll_rw_block uses too.
169 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
171 __end_buffer_read_notouch(bh
, uptodate
);
174 EXPORT_SYMBOL(end_buffer_read_sync
);
176 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
179 set_buffer_uptodate(bh
);
181 buffer_io_error(bh
, ", lost sync page write");
182 set_buffer_write_io_error(bh
);
183 clear_buffer_uptodate(bh
);
188 EXPORT_SYMBOL(end_buffer_write_sync
);
191 * Various filesystems appear to want __find_get_block to be non-blocking.
192 * But it's the page lock which protects the buffers. To get around this,
193 * we get exclusion from try_to_free_buffers with the blockdev mapping's
196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197 * may be quite high. This code could TryLock the page, and if that
198 * succeeds, there is no need to take private_lock. (But if
199 * private_lock is contended then so is mapping->tree_lock).
201 static struct buffer_head
*
202 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
204 struct inode
*bd_inode
= bdev
->bd_inode
;
205 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
206 struct buffer_head
*ret
= NULL
;
208 struct buffer_head
*bh
;
209 struct buffer_head
*head
;
213 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
214 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
218 spin_lock(&bd_mapping
->private_lock
);
219 if (!page_has_buffers(page
))
221 head
= page_buffers(page
);
224 if (!buffer_mapped(bh
))
226 else if (bh
->b_blocknr
== block
) {
231 bh
= bh
->b_this_page
;
232 } while (bh
!= head
);
234 /* we might be here because some of the buffers on this page are
235 * not mapped. This is due to various races between
236 * file io on the block device and getblk. It gets dealt with
237 * elsewhere, don't buffer_error if we had some unmapped buffers
240 char b
[BDEVNAME_SIZE
];
242 printk("__find_get_block_slow() failed. "
243 "block=%llu, b_blocknr=%llu\n",
244 (unsigned long long)block
,
245 (unsigned long long)bh
->b_blocknr
);
246 printk("b_state=0x%08lx, b_size=%zu\n",
247 bh
->b_state
, bh
->b_size
);
248 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
249 1 << bd_inode
->i_blkbits
);
252 spin_unlock(&bd_mapping
->private_lock
);
253 page_cache_release(page
);
259 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
261 static void free_more_memory(void)
266 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
269 for_each_online_node(nid
) {
270 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
271 gfp_zone(GFP_NOFS
), NULL
,
274 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
280 * I/O completion handler for block_read_full_page() - pages
281 * which come unlocked at the end of I/O.
283 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
286 struct buffer_head
*first
;
287 struct buffer_head
*tmp
;
289 int page_uptodate
= 1;
291 BUG_ON(!buffer_async_read(bh
));
295 set_buffer_uptodate(bh
);
297 clear_buffer_uptodate(bh
);
298 buffer_io_error(bh
, ", async page read");
303 * Be _very_ careful from here on. Bad things can happen if
304 * two buffer heads end IO at almost the same time and both
305 * decide that the page is now completely done.
307 first
= page_buffers(page
);
308 local_irq_save(flags
);
309 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
310 clear_buffer_async_read(bh
);
314 if (!buffer_uptodate(tmp
))
316 if (buffer_async_read(tmp
)) {
317 BUG_ON(!buffer_locked(tmp
));
320 tmp
= tmp
->b_this_page
;
322 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
323 local_irq_restore(flags
);
326 * If none of the buffers had errors and they are all
327 * uptodate then we can set the page uptodate.
329 if (page_uptodate
&& !PageError(page
))
330 SetPageUptodate(page
);
335 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
336 local_irq_restore(flags
);
341 * Completion handler for block_write_full_page() - pages which are unlocked
342 * during I/O, and which have PageWriteback cleared upon I/O completion.
344 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
347 struct buffer_head
*first
;
348 struct buffer_head
*tmp
;
351 BUG_ON(!buffer_async_write(bh
));
355 set_buffer_uptodate(bh
);
357 buffer_io_error(bh
, ", lost async page write");
358 set_bit(AS_EIO
, &page
->mapping
->flags
);
359 set_buffer_write_io_error(bh
);
360 clear_buffer_uptodate(bh
);
364 first
= page_buffers(page
);
365 local_irq_save(flags
);
366 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
368 clear_buffer_async_write(bh
);
370 tmp
= bh
->b_this_page
;
372 if (buffer_async_write(tmp
)) {
373 BUG_ON(!buffer_locked(tmp
));
376 tmp
= tmp
->b_this_page
;
378 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
379 local_irq_restore(flags
);
380 end_page_writeback(page
);
384 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
385 local_irq_restore(flags
);
388 EXPORT_SYMBOL(end_buffer_async_write
);
391 * If a page's buffers are under async readin (end_buffer_async_read
392 * completion) then there is a possibility that another thread of
393 * control could lock one of the buffers after it has completed
394 * but while some of the other buffers have not completed. This
395 * locked buffer would confuse end_buffer_async_read() into not unlocking
396 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
397 * that this buffer is not under async I/O.
399 * The page comes unlocked when it has no locked buffer_async buffers
402 * PageLocked prevents anyone starting new async I/O reads any of
405 * PageWriteback is used to prevent simultaneous writeout of the same
408 * PageLocked prevents anyone from starting writeback of a page which is
409 * under read I/O (PageWriteback is only ever set against a locked page).
411 static void mark_buffer_async_read(struct buffer_head
*bh
)
413 bh
->b_end_io
= end_buffer_async_read
;
414 set_buffer_async_read(bh
);
417 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
418 bh_end_io_t
*handler
)
420 bh
->b_end_io
= handler
;
421 set_buffer_async_write(bh
);
424 void mark_buffer_async_write(struct buffer_head
*bh
)
426 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
428 EXPORT_SYMBOL(mark_buffer_async_write
);
432 * fs/buffer.c contains helper functions for buffer-backed address space's
433 * fsync functions. A common requirement for buffer-based filesystems is
434 * that certain data from the backing blockdev needs to be written out for
435 * a successful fsync(). For example, ext2 indirect blocks need to be
436 * written back and waited upon before fsync() returns.
438 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
439 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
440 * management of a list of dependent buffers at ->i_mapping->private_list.
442 * Locking is a little subtle: try_to_free_buffers() will remove buffers
443 * from their controlling inode's queue when they are being freed. But
444 * try_to_free_buffers() will be operating against the *blockdev* mapping
445 * at the time, not against the S_ISREG file which depends on those buffers.
446 * So the locking for private_list is via the private_lock in the address_space
447 * which backs the buffers. Which is different from the address_space
448 * against which the buffers are listed. So for a particular address_space,
449 * mapping->private_lock does *not* protect mapping->private_list! In fact,
450 * mapping->private_list will always be protected by the backing blockdev's
453 * Which introduces a requirement: all buffers on an address_space's
454 * ->private_list must be from the same address_space: the blockdev's.
456 * address_spaces which do not place buffers at ->private_list via these
457 * utility functions are free to use private_lock and private_list for
458 * whatever they want. The only requirement is that list_empty(private_list)
459 * be true at clear_inode() time.
461 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
462 * filesystems should do that. invalidate_inode_buffers() should just go
463 * BUG_ON(!list_empty).
465 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
466 * take an address_space, not an inode. And it should be called
467 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
470 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
471 * list if it is already on a list. Because if the buffer is on a list,
472 * it *must* already be on the right one. If not, the filesystem is being
473 * silly. This will save a ton of locking. But first we have to ensure
474 * that buffers are taken *off* the old inode's list when they are freed
475 * (presumably in truncate). That requires careful auditing of all
476 * filesystems (do it inside bforget()). It could also be done by bringing
481 * The buffer's backing address_space's private_lock must be held
483 static void __remove_assoc_queue(struct buffer_head
*bh
)
485 list_del_init(&bh
->b_assoc_buffers
);
486 WARN_ON(!bh
->b_assoc_map
);
487 if (buffer_write_io_error(bh
))
488 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
489 bh
->b_assoc_map
= NULL
;
492 int inode_has_buffers(struct inode
*inode
)
494 return !list_empty(&inode
->i_data
.private_list
);
498 * osync is designed to support O_SYNC io. It waits synchronously for
499 * all already-submitted IO to complete, but does not queue any new
500 * writes to the disk.
502 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
503 * you dirty the buffers, and then use osync_inode_buffers to wait for
504 * completion. Any other dirty buffers which are not yet queued for
505 * write will not be flushed to disk by the osync.
507 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
509 struct buffer_head
*bh
;
515 list_for_each_prev(p
, list
) {
517 if (buffer_locked(bh
)) {
521 if (!buffer_uptodate(bh
))
532 static void do_thaw_one(struct super_block
*sb
, void *unused
)
534 char b
[BDEVNAME_SIZE
];
535 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
536 printk(KERN_WARNING
"Emergency Thaw on %s\n",
537 bdevname(sb
->s_bdev
, b
));
540 static void do_thaw_all(struct work_struct
*work
)
542 iterate_supers(do_thaw_one
, NULL
);
544 printk(KERN_WARNING
"Emergency Thaw complete\n");
548 * emergency_thaw_all -- forcibly thaw every frozen filesystem
550 * Used for emergency unfreeze of all filesystems via SysRq
552 void emergency_thaw_all(void)
554 struct work_struct
*work
;
556 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
558 INIT_WORK(work
, do_thaw_all
);
564 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
565 * @mapping: the mapping which wants those buffers written
567 * Starts I/O against the buffers at mapping->private_list, and waits upon
570 * Basically, this is a convenience function for fsync().
571 * @mapping is a file or directory which needs those buffers to be written for
572 * a successful fsync().
574 int sync_mapping_buffers(struct address_space
*mapping
)
576 struct address_space
*buffer_mapping
= mapping
->private_data
;
578 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
581 return fsync_buffers_list(&buffer_mapping
->private_lock
,
582 &mapping
->private_list
);
584 EXPORT_SYMBOL(sync_mapping_buffers
);
587 * Called when we've recently written block `bblock', and it is known that
588 * `bblock' was for a buffer_boundary() buffer. This means that the block at
589 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
590 * dirty, schedule it for IO. So that indirects merge nicely with their data.
592 void write_boundary_block(struct block_device
*bdev
,
593 sector_t bblock
, unsigned blocksize
)
595 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
597 if (buffer_dirty(bh
))
598 ll_rw_block(WRITE
, 1, &bh
);
603 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
605 struct address_space
*mapping
= inode
->i_mapping
;
606 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
608 mark_buffer_dirty(bh
);
609 if (!mapping
->private_data
) {
610 mapping
->private_data
= buffer_mapping
;
612 BUG_ON(mapping
->private_data
!= buffer_mapping
);
614 if (!bh
->b_assoc_map
) {
615 spin_lock(&buffer_mapping
->private_lock
);
616 list_move_tail(&bh
->b_assoc_buffers
,
617 &mapping
->private_list
);
618 bh
->b_assoc_map
= mapping
;
619 spin_unlock(&buffer_mapping
->private_lock
);
622 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
625 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
628 * If warn is true, then emit a warning if the page is not uptodate and has
629 * not been truncated.
631 * The caller must hold mem_cgroup_begin_page_stat() lock.
633 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
634 struct mem_cgroup
*memcg
, int warn
)
638 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
639 if (page
->mapping
) { /* Race with truncate? */
640 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
641 account_page_dirtied(page
, mapping
, memcg
);
642 radix_tree_tag_set(&mapping
->page_tree
,
643 page_index(page
), PAGECACHE_TAG_DIRTY
);
645 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
649 * Add a page to the dirty page list.
651 * It is a sad fact of life that this function is called from several places
652 * deeply under spinlocking. It may not sleep.
654 * If the page has buffers, the uptodate buffers are set dirty, to preserve
655 * dirty-state coherency between the page and the buffers. It the page does
656 * not have buffers then when they are later attached they will all be set
659 * The buffers are dirtied before the page is dirtied. There's a small race
660 * window in which a writepage caller may see the page cleanness but not the
661 * buffer dirtiness. That's fine. If this code were to set the page dirty
662 * before the buffers, a concurrent writepage caller could clear the page dirty
663 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
664 * page on the dirty page list.
666 * We use private_lock to lock against try_to_free_buffers while using the
667 * page's buffer list. Also use this to protect against clean buffers being
668 * added to the page after it was set dirty.
670 * FIXME: may need to call ->reservepage here as well. That's rather up to the
671 * address_space though.
673 int __set_page_dirty_buffers(struct page
*page
)
676 struct mem_cgroup
*memcg
;
677 struct address_space
*mapping
= page_mapping(page
);
679 if (unlikely(!mapping
))
680 return !TestSetPageDirty(page
);
682 spin_lock(&mapping
->private_lock
);
683 if (page_has_buffers(page
)) {
684 struct buffer_head
*head
= page_buffers(page
);
685 struct buffer_head
*bh
= head
;
688 set_buffer_dirty(bh
);
689 bh
= bh
->b_this_page
;
690 } while (bh
!= head
);
693 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
694 * per-memcg dirty page counters.
696 memcg
= mem_cgroup_begin_page_stat(page
);
697 newly_dirty
= !TestSetPageDirty(page
);
698 spin_unlock(&mapping
->private_lock
);
701 __set_page_dirty(page
, mapping
, memcg
, 1);
703 mem_cgroup_end_page_stat(memcg
);
706 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
710 EXPORT_SYMBOL(__set_page_dirty_buffers
);
713 * Write out and wait upon a list of buffers.
715 * We have conflicting pressures: we want to make sure that all
716 * initially dirty buffers get waited on, but that any subsequently
717 * dirtied buffers don't. After all, we don't want fsync to last
718 * forever if somebody is actively writing to the file.
720 * Do this in two main stages: first we copy dirty buffers to a
721 * temporary inode list, queueing the writes as we go. Then we clean
722 * up, waiting for those writes to complete.
724 * During this second stage, any subsequent updates to the file may end
725 * up refiling the buffer on the original inode's dirty list again, so
726 * there is a chance we will end up with a buffer queued for write but
727 * not yet completed on that list. So, as a final cleanup we go through
728 * the osync code to catch these locked, dirty buffers without requeuing
729 * any newly dirty buffers for write.
731 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
733 struct buffer_head
*bh
;
734 struct list_head tmp
;
735 struct address_space
*mapping
;
737 struct blk_plug plug
;
739 INIT_LIST_HEAD(&tmp
);
740 blk_start_plug(&plug
);
743 while (!list_empty(list
)) {
744 bh
= BH_ENTRY(list
->next
);
745 mapping
= bh
->b_assoc_map
;
746 __remove_assoc_queue(bh
);
747 /* Avoid race with mark_buffer_dirty_inode() which does
748 * a lockless check and we rely on seeing the dirty bit */
750 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
751 list_add(&bh
->b_assoc_buffers
, &tmp
);
752 bh
->b_assoc_map
= mapping
;
753 if (buffer_dirty(bh
)) {
757 * Ensure any pending I/O completes so that
758 * write_dirty_buffer() actually writes the
759 * current contents - it is a noop if I/O is
760 * still in flight on potentially older
763 write_dirty_buffer(bh
, WRITE_SYNC
);
766 * Kick off IO for the previous mapping. Note
767 * that we will not run the very last mapping,
768 * wait_on_buffer() will do that for us
769 * through sync_buffer().
778 blk_finish_plug(&plug
);
781 while (!list_empty(&tmp
)) {
782 bh
= BH_ENTRY(tmp
.prev
);
784 mapping
= bh
->b_assoc_map
;
785 __remove_assoc_queue(bh
);
786 /* Avoid race with mark_buffer_dirty_inode() which does
787 * a lockless check and we rely on seeing the dirty bit */
789 if (buffer_dirty(bh
)) {
790 list_add(&bh
->b_assoc_buffers
,
791 &mapping
->private_list
);
792 bh
->b_assoc_map
= mapping
;
796 if (!buffer_uptodate(bh
))
803 err2
= osync_buffers_list(lock
, list
);
811 * Invalidate any and all dirty buffers on a given inode. We are
812 * probably unmounting the fs, but that doesn't mean we have already
813 * done a sync(). Just drop the buffers from the inode list.
815 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
816 * assumes that all the buffers are against the blockdev. Not true
819 void invalidate_inode_buffers(struct inode
*inode
)
821 if (inode_has_buffers(inode
)) {
822 struct address_space
*mapping
= &inode
->i_data
;
823 struct list_head
*list
= &mapping
->private_list
;
824 struct address_space
*buffer_mapping
= mapping
->private_data
;
826 spin_lock(&buffer_mapping
->private_lock
);
827 while (!list_empty(list
))
828 __remove_assoc_queue(BH_ENTRY(list
->next
));
829 spin_unlock(&buffer_mapping
->private_lock
);
832 EXPORT_SYMBOL(invalidate_inode_buffers
);
835 * Remove any clean buffers from the inode's buffer list. This is called
836 * when we're trying to free the inode itself. Those buffers can pin it.
838 * Returns true if all buffers were removed.
840 int remove_inode_buffers(struct inode
*inode
)
844 if (inode_has_buffers(inode
)) {
845 struct address_space
*mapping
= &inode
->i_data
;
846 struct list_head
*list
= &mapping
->private_list
;
847 struct address_space
*buffer_mapping
= mapping
->private_data
;
849 spin_lock(&buffer_mapping
->private_lock
);
850 while (!list_empty(list
)) {
851 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
852 if (buffer_dirty(bh
)) {
856 __remove_assoc_queue(bh
);
858 spin_unlock(&buffer_mapping
->private_lock
);
864 * Create the appropriate buffers when given a page for data area and
865 * the size of each buffer.. Use the bh->b_this_page linked list to
866 * follow the buffers created. Return NULL if unable to create more
869 * The retry flag is used to differentiate async IO (paging, swapping)
870 * which may not fail from ordinary buffer allocations.
872 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
875 struct buffer_head
*bh
, *head
;
881 while ((offset
-= size
) >= 0) {
882 bh
= alloc_buffer_head(GFP_NOFS
);
886 bh
->b_this_page
= head
;
892 /* Link the buffer to its page */
893 set_bh_page(bh
, page
, offset
);
897 * In case anything failed, we just free everything we got.
903 head
= head
->b_this_page
;
904 free_buffer_head(bh
);
909 * Return failure for non-async IO requests. Async IO requests
910 * are not allowed to fail, so we have to wait until buffer heads
911 * become available. But we don't want tasks sleeping with
912 * partially complete buffers, so all were released above.
917 /* We're _really_ low on memory. Now we just
918 * wait for old buffer heads to become free due to
919 * finishing IO. Since this is an async request and
920 * the reserve list is empty, we're sure there are
921 * async buffer heads in use.
926 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
929 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
931 struct buffer_head
*bh
, *tail
;
936 bh
= bh
->b_this_page
;
938 tail
->b_this_page
= head
;
939 attach_page_buffers(page
, head
);
942 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
944 sector_t retval
= ~((sector_t
)0);
945 loff_t sz
= i_size_read(bdev
->bd_inode
);
948 unsigned int sizebits
= blksize_bits(size
);
949 retval
= (sz
>> sizebits
);
955 * Initialise the state of a blockdev page's buffers.
958 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
959 sector_t block
, int size
)
961 struct buffer_head
*head
= page_buffers(page
);
962 struct buffer_head
*bh
= head
;
963 int uptodate
= PageUptodate(page
);
964 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
967 if (!buffer_mapped(bh
)) {
968 init_buffer(bh
, NULL
, NULL
);
970 bh
->b_blocknr
= block
;
972 set_buffer_uptodate(bh
);
973 if (block
< end_block
)
974 set_buffer_mapped(bh
);
977 bh
= bh
->b_this_page
;
978 } while (bh
!= head
);
981 * Caller needs to validate requested block against end of device.
987 * Create the page-cache page that contains the requested block.
989 * This is used purely for blockdev mappings.
992 grow_dev_page(struct block_device
*bdev
, sector_t block
,
993 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
995 struct inode
*inode
= bdev
->bd_inode
;
997 struct buffer_head
*bh
;
999 int ret
= 0; /* Will call free_more_memory() */
1002 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
1005 * XXX: __getblk_slow() can not really deal with failure and
1006 * will endlessly loop on improvised global reclaim. Prefer
1007 * looping in the allocator rather than here, at least that
1008 * code knows what it's doing.
1010 gfp_mask
|= __GFP_NOFAIL
;
1012 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1016 BUG_ON(!PageLocked(page
));
1018 if (page_has_buffers(page
)) {
1019 bh
= page_buffers(page
);
1020 if (bh
->b_size
== size
) {
1021 end_block
= init_page_buffers(page
, bdev
,
1022 (sector_t
)index
<< sizebits
,
1026 if (!try_to_free_buffers(page
))
1031 * Allocate some buffers for this page
1033 bh
= alloc_page_buffers(page
, size
, 0);
1038 * Link the page to the buffers and initialise them. Take the
1039 * lock to be atomic wrt __find_get_block(), which does not
1040 * run under the page lock.
1042 spin_lock(&inode
->i_mapping
->private_lock
);
1043 link_dev_buffers(page
, bh
);
1044 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1046 spin_unlock(&inode
->i_mapping
->private_lock
);
1048 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1051 page_cache_release(page
);
1056 * Create buffers for the specified block device block's page. If
1057 * that page was dirty, the buffers are set dirty also.
1060 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1068 } while ((size
<< sizebits
) < PAGE_SIZE
);
1070 index
= block
>> sizebits
;
1073 * Check for a block which wants to lie outside our maximum possible
1074 * pagecache index. (this comparison is done using sector_t types).
1076 if (unlikely(index
!= block
>> sizebits
)) {
1077 char b
[BDEVNAME_SIZE
];
1079 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1081 __func__
, (unsigned long long)block
,
1086 /* Create a page with the proper size buffers.. */
1087 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1090 struct buffer_head
*
1091 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1092 unsigned size
, gfp_t gfp
)
1094 /* Size must be multiple of hard sectorsize */
1095 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1096 (size
< 512 || size
> PAGE_SIZE
))) {
1097 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1099 printk(KERN_ERR
"logical block size: %d\n",
1100 bdev_logical_block_size(bdev
));
1107 struct buffer_head
*bh
;
1110 bh
= __find_get_block(bdev
, block
, size
);
1114 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1121 EXPORT_SYMBOL(__getblk_slow
);
1124 * The relationship between dirty buffers and dirty pages:
1126 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127 * the page is tagged dirty in its radix tree.
1129 * At all times, the dirtiness of the buffers represents the dirtiness of
1130 * subsections of the page. If the page has buffers, the page dirty bit is
1131 * merely a hint about the true dirty state.
1133 * When a page is set dirty in its entirety, all its buffers are marked dirty
1134 * (if the page has buffers).
1136 * When a buffer is marked dirty, its page is dirtied, but the page's other
1139 * Also. When blockdev buffers are explicitly read with bread(), they
1140 * individually become uptodate. But their backing page remains not
1141 * uptodate - even if all of its buffers are uptodate. A subsequent
1142 * block_read_full_page() against that page will discover all the uptodate
1143 * buffers, will set the page uptodate and will perform no I/O.
1147 * mark_buffer_dirty - mark a buffer_head as needing writeout
1148 * @bh: the buffer_head to mark dirty
1150 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151 * backing page dirty, then tag the page as dirty in its address_space's radix
1152 * tree and then attach the address_space's inode to its superblock's dirty
1155 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1156 * mapping->tree_lock and mapping->host->i_lock.
1158 void mark_buffer_dirty(struct buffer_head
*bh
)
1160 WARN_ON_ONCE(!buffer_uptodate(bh
));
1162 trace_block_dirty_buffer(bh
);
1165 * Very *carefully* optimize the it-is-already-dirty case.
1167 * Don't let the final "is it dirty" escape to before we
1168 * perhaps modified the buffer.
1170 if (buffer_dirty(bh
)) {
1172 if (buffer_dirty(bh
))
1176 if (!test_set_buffer_dirty(bh
)) {
1177 struct page
*page
= bh
->b_page
;
1178 struct address_space
*mapping
= NULL
;
1179 struct mem_cgroup
*memcg
;
1181 memcg
= mem_cgroup_begin_page_stat(page
);
1182 if (!TestSetPageDirty(page
)) {
1183 mapping
= page_mapping(page
);
1185 __set_page_dirty(page
, mapping
, memcg
, 0);
1187 mem_cgroup_end_page_stat(memcg
);
1189 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1192 EXPORT_SYMBOL(mark_buffer_dirty
);
1195 * Decrement a buffer_head's reference count. If all buffers against a page
1196 * have zero reference count, are clean and unlocked, and if the page is clean
1197 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1198 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1199 * a page but it ends up not being freed, and buffers may later be reattached).
1201 void __brelse(struct buffer_head
* buf
)
1203 if (atomic_read(&buf
->b_count
)) {
1207 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1209 EXPORT_SYMBOL(__brelse
);
1212 * bforget() is like brelse(), except it discards any
1213 * potentially dirty data.
1215 void __bforget(struct buffer_head
*bh
)
1217 clear_buffer_dirty(bh
);
1218 if (bh
->b_assoc_map
) {
1219 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1221 spin_lock(&buffer_mapping
->private_lock
);
1222 list_del_init(&bh
->b_assoc_buffers
);
1223 bh
->b_assoc_map
= NULL
;
1224 spin_unlock(&buffer_mapping
->private_lock
);
1228 EXPORT_SYMBOL(__bforget
);
1230 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1233 if (buffer_uptodate(bh
)) {
1238 bh
->b_end_io
= end_buffer_read_sync
;
1239 submit_bh(READ
, bh
);
1241 if (buffer_uptodate(bh
))
1249 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1250 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1251 * refcount elevated by one when they're in an LRU. A buffer can only appear
1252 * once in a particular CPU's LRU. A single buffer can be present in multiple
1253 * CPU's LRUs at the same time.
1255 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1256 * sb_find_get_block().
1258 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1259 * a local interrupt disable for that.
1262 #define BH_LRU_SIZE 16
1265 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1268 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1271 #define bh_lru_lock() local_irq_disable()
1272 #define bh_lru_unlock() local_irq_enable()
1274 #define bh_lru_lock() preempt_disable()
1275 #define bh_lru_unlock() preempt_enable()
1278 static inline void check_irqs_on(void)
1280 #ifdef irqs_disabled
1281 BUG_ON(irqs_disabled());
1286 * The LRU management algorithm is dopey-but-simple. Sorry.
1288 static void bh_lru_install(struct buffer_head
*bh
)
1290 struct buffer_head
*evictee
= NULL
;
1294 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1295 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1301 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1302 struct buffer_head
*bh2
=
1303 __this_cpu_read(bh_lrus
.bhs
[in
]);
1308 if (out
>= BH_LRU_SIZE
) {
1309 BUG_ON(evictee
!= NULL
);
1316 while (out
< BH_LRU_SIZE
)
1318 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1327 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1329 static struct buffer_head
*
1330 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1332 struct buffer_head
*ret
= NULL
;
1337 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1338 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1340 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1341 bh
->b_size
== size
) {
1344 __this_cpu_write(bh_lrus
.bhs
[i
],
1345 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1348 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1360 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1361 * it in the LRU and mark it as accessed. If it is not present then return
1364 struct buffer_head
*
1365 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1367 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1370 /* __find_get_block_slow will mark the page accessed */
1371 bh
= __find_get_block_slow(bdev
, block
);
1379 EXPORT_SYMBOL(__find_get_block
);
1382 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1383 * which corresponds to the passed block_device, block and size. The
1384 * returned buffer has its reference count incremented.
1386 * __getblk_gfp() will lock up the machine if grow_dev_page's
1387 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1389 struct buffer_head
*
1390 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1391 unsigned size
, gfp_t gfp
)
1393 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1397 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1400 EXPORT_SYMBOL(__getblk_gfp
);
1403 * Do async read-ahead on a buffer..
1405 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1407 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1409 ll_rw_block(READA
, 1, &bh
);
1413 EXPORT_SYMBOL(__breadahead
);
1416 * __bread_gfp() - reads a specified block and returns the bh
1417 * @bdev: the block_device to read from
1418 * @block: number of block
1419 * @size: size (in bytes) to read
1420 * @gfp: page allocation flag
1422 * Reads a specified block, and returns buffer head that contains it.
1423 * The page cache can be allocated from non-movable area
1424 * not to prevent page migration if you set gfp to zero.
1425 * It returns NULL if the block was unreadable.
1427 struct buffer_head
*
1428 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1429 unsigned size
, gfp_t gfp
)
1431 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1433 if (likely(bh
) && !buffer_uptodate(bh
))
1434 bh
= __bread_slow(bh
);
1437 EXPORT_SYMBOL(__bread_gfp
);
1440 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1441 * This doesn't race because it runs in each cpu either in irq
1442 * or with preempt disabled.
1444 static void invalidate_bh_lru(void *arg
)
1446 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1449 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1453 put_cpu_var(bh_lrus
);
1456 static bool has_bh_in_lru(int cpu
, void *dummy
)
1458 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1461 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1469 void invalidate_bh_lrus(void)
1471 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1473 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1475 void set_bh_page(struct buffer_head
*bh
,
1476 struct page
*page
, unsigned long offset
)
1479 BUG_ON(offset
>= PAGE_SIZE
);
1480 if (PageHighMem(page
))
1482 * This catches illegal uses and preserves the offset:
1484 bh
->b_data
= (char *)(0 + offset
);
1486 bh
->b_data
= page_address(page
) + offset
;
1488 EXPORT_SYMBOL(set_bh_page
);
1491 * Called when truncating a buffer on a page completely.
1494 /* Bits that are cleared during an invalidate */
1495 #define BUFFER_FLAGS_DISCARD \
1496 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1497 1 << BH_Delay | 1 << BH_Unwritten)
1499 static void discard_buffer(struct buffer_head
* bh
)
1501 unsigned long b_state
, b_state_old
;
1504 clear_buffer_dirty(bh
);
1506 b_state
= bh
->b_state
;
1508 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1509 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1510 if (b_state_old
== b_state
)
1512 b_state
= b_state_old
;
1518 * block_invalidatepage - invalidate part or all of a buffer-backed page
1520 * @page: the page which is affected
1521 * @offset: start of the range to invalidate
1522 * @length: length of the range to invalidate
1524 * block_invalidatepage() is called when all or part of the page has become
1525 * invalidated by a truncate operation.
1527 * block_invalidatepage() does not have to release all buffers, but it must
1528 * ensure that no dirty buffer is left outside @offset and that no I/O
1529 * is underway against any of the blocks which are outside the truncation
1530 * point. Because the caller is about to free (and possibly reuse) those
1533 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1534 unsigned int length
)
1536 struct buffer_head
*head
, *bh
, *next
;
1537 unsigned int curr_off
= 0;
1538 unsigned int stop
= length
+ offset
;
1540 BUG_ON(!PageLocked(page
));
1541 if (!page_has_buffers(page
))
1545 * Check for overflow
1547 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1549 head
= page_buffers(page
);
1552 unsigned int next_off
= curr_off
+ bh
->b_size
;
1553 next
= bh
->b_this_page
;
1556 * Are we still fully in range ?
1558 if (next_off
> stop
)
1562 * is this block fully invalidated?
1564 if (offset
<= curr_off
)
1566 curr_off
= next_off
;
1568 } while (bh
!= head
);
1571 * We release buffers only if the entire page is being invalidated.
1572 * The get_block cached value has been unconditionally invalidated,
1573 * so real IO is not possible anymore.
1576 try_to_release_page(page
, 0);
1580 EXPORT_SYMBOL(block_invalidatepage
);
1584 * We attach and possibly dirty the buffers atomically wrt
1585 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1586 * is already excluded via the page lock.
1588 void create_empty_buffers(struct page
*page
,
1589 unsigned long blocksize
, unsigned long b_state
)
1591 struct buffer_head
*bh
, *head
, *tail
;
1593 head
= alloc_page_buffers(page
, blocksize
, 1);
1596 bh
->b_state
|= b_state
;
1598 bh
= bh
->b_this_page
;
1600 tail
->b_this_page
= head
;
1602 spin_lock(&page
->mapping
->private_lock
);
1603 if (PageUptodate(page
) || PageDirty(page
)) {
1606 if (PageDirty(page
))
1607 set_buffer_dirty(bh
);
1608 if (PageUptodate(page
))
1609 set_buffer_uptodate(bh
);
1610 bh
= bh
->b_this_page
;
1611 } while (bh
!= head
);
1613 attach_page_buffers(page
, head
);
1614 spin_unlock(&page
->mapping
->private_lock
);
1616 EXPORT_SYMBOL(create_empty_buffers
);
1619 * We are taking a block for data and we don't want any output from any
1620 * buffer-cache aliases starting from return from that function and
1621 * until the moment when something will explicitly mark the buffer
1622 * dirty (hopefully that will not happen until we will free that block ;-)
1623 * We don't even need to mark it not-uptodate - nobody can expect
1624 * anything from a newly allocated buffer anyway. We used to used
1625 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1626 * don't want to mark the alias unmapped, for example - it would confuse
1627 * anyone who might pick it with bread() afterwards...
1629 * Also.. Note that bforget() doesn't lock the buffer. So there can
1630 * be writeout I/O going on against recently-freed buffers. We don't
1631 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1632 * only if we really need to. That happens here.
1634 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1636 struct buffer_head
*old_bh
;
1640 old_bh
= __find_get_block_slow(bdev
, block
);
1642 clear_buffer_dirty(old_bh
);
1643 wait_on_buffer(old_bh
);
1644 clear_buffer_req(old_bh
);
1648 EXPORT_SYMBOL(unmap_underlying_metadata
);
1651 * Size is a power-of-two in the range 512..PAGE_SIZE,
1652 * and the case we care about most is PAGE_SIZE.
1654 * So this *could* possibly be written with those
1655 * constraints in mind (relevant mostly if some
1656 * architecture has a slow bit-scan instruction)
1658 static inline int block_size_bits(unsigned int blocksize
)
1660 return ilog2(blocksize
);
1663 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1665 BUG_ON(!PageLocked(page
));
1667 if (!page_has_buffers(page
))
1668 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1669 return page_buffers(page
);
1673 * NOTE! All mapped/uptodate combinations are valid:
1675 * Mapped Uptodate Meaning
1677 * No No "unknown" - must do get_block()
1678 * No Yes "hole" - zero-filled
1679 * Yes No "allocated" - allocated on disk, not read in
1680 * Yes Yes "valid" - allocated and up-to-date in memory.
1682 * "Dirty" is valid only with the last case (mapped+uptodate).
1686 * While block_write_full_page is writing back the dirty buffers under
1687 * the page lock, whoever dirtied the buffers may decide to clean them
1688 * again at any time. We handle that by only looking at the buffer
1689 * state inside lock_buffer().
1691 * If block_write_full_page() is called for regular writeback
1692 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1693 * locked buffer. This only can happen if someone has written the buffer
1694 * directly, with submit_bh(). At the address_space level PageWriteback
1695 * prevents this contention from occurring.
1697 * If block_write_full_page() is called with wbc->sync_mode ==
1698 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1699 * causes the writes to be flagged as synchronous writes.
1701 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1702 get_block_t
*get_block
, struct writeback_control
*wbc
,
1703 bh_end_io_t
*handler
)
1707 sector_t last_block
;
1708 struct buffer_head
*bh
, *head
;
1709 unsigned int blocksize
, bbits
;
1710 int nr_underway
= 0;
1711 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
);
1713 head
= create_page_buffers(page
, inode
,
1714 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1717 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1718 * here, and the (potentially unmapped) buffers may become dirty at
1719 * any time. If a buffer becomes dirty here after we've inspected it
1720 * then we just miss that fact, and the page stays dirty.
1722 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1723 * handle that here by just cleaning them.
1727 blocksize
= bh
->b_size
;
1728 bbits
= block_size_bits(blocksize
);
1730 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1731 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1734 * Get all the dirty buffers mapped to disk addresses and
1735 * handle any aliases from the underlying blockdev's mapping.
1738 if (block
> last_block
) {
1740 * mapped buffers outside i_size will occur, because
1741 * this page can be outside i_size when there is a
1742 * truncate in progress.
1745 * The buffer was zeroed by block_write_full_page()
1747 clear_buffer_dirty(bh
);
1748 set_buffer_uptodate(bh
);
1749 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1751 WARN_ON(bh
->b_size
!= blocksize
);
1752 err
= get_block(inode
, block
, bh
, 1);
1755 clear_buffer_delay(bh
);
1756 if (buffer_new(bh
)) {
1757 /* blockdev mappings never come here */
1758 clear_buffer_new(bh
);
1759 unmap_underlying_metadata(bh
->b_bdev
,
1763 bh
= bh
->b_this_page
;
1765 } while (bh
!= head
);
1768 if (!buffer_mapped(bh
))
1771 * If it's a fully non-blocking write attempt and we cannot
1772 * lock the buffer then redirty the page. Note that this can
1773 * potentially cause a busy-wait loop from writeback threads
1774 * and kswapd activity, but those code paths have their own
1775 * higher-level throttling.
1777 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1779 } else if (!trylock_buffer(bh
)) {
1780 redirty_page_for_writepage(wbc
, page
);
1783 if (test_clear_buffer_dirty(bh
)) {
1784 mark_buffer_async_write_endio(bh
, handler
);
1788 } while ((bh
= bh
->b_this_page
) != head
);
1791 * The page and its buffers are protected by PageWriteback(), so we can
1792 * drop the bh refcounts early.
1794 BUG_ON(PageWriteback(page
));
1795 set_page_writeback(page
);
1798 struct buffer_head
*next
= bh
->b_this_page
;
1799 if (buffer_async_write(bh
)) {
1800 submit_bh_wbc(write_op
, bh
, 0, wbc
);
1804 } while (bh
!= head
);
1809 if (nr_underway
== 0) {
1811 * The page was marked dirty, but the buffers were
1812 * clean. Someone wrote them back by hand with
1813 * ll_rw_block/submit_bh. A rare case.
1815 end_page_writeback(page
);
1818 * The page and buffer_heads can be released at any time from
1826 * ENOSPC, or some other error. We may already have added some
1827 * blocks to the file, so we need to write these out to avoid
1828 * exposing stale data.
1829 * The page is currently locked and not marked for writeback
1832 /* Recovery: lock and submit the mapped buffers */
1834 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1835 !buffer_delay(bh
)) {
1837 mark_buffer_async_write_endio(bh
, handler
);
1840 * The buffer may have been set dirty during
1841 * attachment to a dirty page.
1843 clear_buffer_dirty(bh
);
1845 } while ((bh
= bh
->b_this_page
) != head
);
1847 BUG_ON(PageWriteback(page
));
1848 mapping_set_error(page
->mapping
, err
);
1849 set_page_writeback(page
);
1851 struct buffer_head
*next
= bh
->b_this_page
;
1852 if (buffer_async_write(bh
)) {
1853 clear_buffer_dirty(bh
);
1854 submit_bh_wbc(write_op
, bh
, 0, wbc
);
1858 } while (bh
!= head
);
1864 * If a page has any new buffers, zero them out here, and mark them uptodate
1865 * and dirty so they'll be written out (in order to prevent uninitialised
1866 * block data from leaking). And clear the new bit.
1868 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1870 unsigned int block_start
, block_end
;
1871 struct buffer_head
*head
, *bh
;
1873 BUG_ON(!PageLocked(page
));
1874 if (!page_has_buffers(page
))
1877 bh
= head
= page_buffers(page
);
1880 block_end
= block_start
+ bh
->b_size
;
1882 if (buffer_new(bh
)) {
1883 if (block_end
> from
&& block_start
< to
) {
1884 if (!PageUptodate(page
)) {
1885 unsigned start
, size
;
1887 start
= max(from
, block_start
);
1888 size
= min(to
, block_end
) - start
;
1890 zero_user(page
, start
, size
);
1891 set_buffer_uptodate(bh
);
1894 clear_buffer_new(bh
);
1895 mark_buffer_dirty(bh
);
1899 block_start
= block_end
;
1900 bh
= bh
->b_this_page
;
1901 } while (bh
!= head
);
1903 EXPORT_SYMBOL(page_zero_new_buffers
);
1905 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1906 get_block_t
*get_block
)
1908 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1909 unsigned to
= from
+ len
;
1910 struct inode
*inode
= page
->mapping
->host
;
1911 unsigned block_start
, block_end
;
1914 unsigned blocksize
, bbits
;
1915 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1917 BUG_ON(!PageLocked(page
));
1918 BUG_ON(from
> PAGE_CACHE_SIZE
);
1919 BUG_ON(to
> PAGE_CACHE_SIZE
);
1922 head
= create_page_buffers(page
, inode
, 0);
1923 blocksize
= head
->b_size
;
1924 bbits
= block_size_bits(blocksize
);
1926 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1928 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1929 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1930 block_end
= block_start
+ blocksize
;
1931 if (block_end
<= from
|| block_start
>= to
) {
1932 if (PageUptodate(page
)) {
1933 if (!buffer_uptodate(bh
))
1934 set_buffer_uptodate(bh
);
1939 clear_buffer_new(bh
);
1940 if (!buffer_mapped(bh
)) {
1941 WARN_ON(bh
->b_size
!= blocksize
);
1942 err
= get_block(inode
, block
, bh
, 1);
1945 if (buffer_new(bh
)) {
1946 unmap_underlying_metadata(bh
->b_bdev
,
1948 if (PageUptodate(page
)) {
1949 clear_buffer_new(bh
);
1950 set_buffer_uptodate(bh
);
1951 mark_buffer_dirty(bh
);
1954 if (block_end
> to
|| block_start
< from
)
1955 zero_user_segments(page
,
1961 if (PageUptodate(page
)) {
1962 if (!buffer_uptodate(bh
))
1963 set_buffer_uptodate(bh
);
1966 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1967 !buffer_unwritten(bh
) &&
1968 (block_start
< from
|| block_end
> to
)) {
1969 ll_rw_block(READ
, 1, &bh
);
1974 * If we issued read requests - let them complete.
1976 while(wait_bh
> wait
) {
1977 wait_on_buffer(*--wait_bh
);
1978 if (!buffer_uptodate(*wait_bh
))
1982 page_zero_new_buffers(page
, from
, to
);
1985 EXPORT_SYMBOL(__block_write_begin
);
1987 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1988 unsigned from
, unsigned to
)
1990 unsigned block_start
, block_end
;
1993 struct buffer_head
*bh
, *head
;
1995 bh
= head
= page_buffers(page
);
1996 blocksize
= bh
->b_size
;
2000 block_end
= block_start
+ blocksize
;
2001 if (block_end
<= from
|| block_start
>= to
) {
2002 if (!buffer_uptodate(bh
))
2005 set_buffer_uptodate(bh
);
2006 mark_buffer_dirty(bh
);
2008 clear_buffer_new(bh
);
2010 block_start
= block_end
;
2011 bh
= bh
->b_this_page
;
2012 } while (bh
!= head
);
2015 * If this is a partial write which happened to make all buffers
2016 * uptodate then we can optimize away a bogus readpage() for
2017 * the next read(). Here we 'discover' whether the page went
2018 * uptodate as a result of this (potentially partial) write.
2021 SetPageUptodate(page
);
2026 * block_write_begin takes care of the basic task of block allocation and
2027 * bringing partial write blocks uptodate first.
2029 * The filesystem needs to handle block truncation upon failure.
2031 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2032 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2034 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2038 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2042 status
= __block_write_begin(page
, pos
, len
, get_block
);
2043 if (unlikely(status
)) {
2045 page_cache_release(page
);
2052 EXPORT_SYMBOL(block_write_begin
);
2054 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2055 loff_t pos
, unsigned len
, unsigned copied
,
2056 struct page
*page
, void *fsdata
)
2058 struct inode
*inode
= mapping
->host
;
2061 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2063 if (unlikely(copied
< len
)) {
2065 * The buffers that were written will now be uptodate, so we
2066 * don't have to worry about a readpage reading them and
2067 * overwriting a partial write. However if we have encountered
2068 * a short write and only partially written into a buffer, it
2069 * will not be marked uptodate, so a readpage might come in and
2070 * destroy our partial write.
2072 * Do the simplest thing, and just treat any short write to a
2073 * non uptodate page as a zero-length write, and force the
2074 * caller to redo the whole thing.
2076 if (!PageUptodate(page
))
2079 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2081 flush_dcache_page(page
);
2083 /* This could be a short (even 0-length) commit */
2084 __block_commit_write(inode
, page
, start
, start
+copied
);
2088 EXPORT_SYMBOL(block_write_end
);
2090 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2091 loff_t pos
, unsigned len
, unsigned copied
,
2092 struct page
*page
, void *fsdata
)
2094 struct inode
*inode
= mapping
->host
;
2095 loff_t old_size
= inode
->i_size
;
2096 int i_size_changed
= 0;
2098 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2101 * No need to use i_size_read() here, the i_size
2102 * cannot change under us because we hold i_mutex.
2104 * But it's important to update i_size while still holding page lock:
2105 * page writeout could otherwise come in and zero beyond i_size.
2107 if (pos
+copied
> inode
->i_size
) {
2108 i_size_write(inode
, pos
+copied
);
2113 page_cache_release(page
);
2116 pagecache_isize_extended(inode
, old_size
, pos
);
2118 * Don't mark the inode dirty under page lock. First, it unnecessarily
2119 * makes the holding time of page lock longer. Second, it forces lock
2120 * ordering of page lock and transaction start for journaling
2124 mark_inode_dirty(inode
);
2128 EXPORT_SYMBOL(generic_write_end
);
2131 * block_is_partially_uptodate checks whether buffers within a page are
2134 * Returns true if all buffers which correspond to a file portion
2135 * we want to read are uptodate.
2137 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2138 unsigned long count
)
2140 unsigned block_start
, block_end
, blocksize
;
2142 struct buffer_head
*bh
, *head
;
2145 if (!page_has_buffers(page
))
2148 head
= page_buffers(page
);
2149 blocksize
= head
->b_size
;
2150 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, count
);
2152 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2158 block_end
= block_start
+ blocksize
;
2159 if (block_end
> from
&& block_start
< to
) {
2160 if (!buffer_uptodate(bh
)) {
2164 if (block_end
>= to
)
2167 block_start
= block_end
;
2168 bh
= bh
->b_this_page
;
2169 } while (bh
!= head
);
2173 EXPORT_SYMBOL(block_is_partially_uptodate
);
2176 * Generic "read page" function for block devices that have the normal
2177 * get_block functionality. This is most of the block device filesystems.
2178 * Reads the page asynchronously --- the unlock_buffer() and
2179 * set/clear_buffer_uptodate() functions propagate buffer state into the
2180 * page struct once IO has completed.
2182 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2184 struct inode
*inode
= page
->mapping
->host
;
2185 sector_t iblock
, lblock
;
2186 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2187 unsigned int blocksize
, bbits
;
2189 int fully_mapped
= 1;
2191 head
= create_page_buffers(page
, inode
, 0);
2192 blocksize
= head
->b_size
;
2193 bbits
= block_size_bits(blocksize
);
2195 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2196 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2202 if (buffer_uptodate(bh
))
2205 if (!buffer_mapped(bh
)) {
2209 if (iblock
< lblock
) {
2210 WARN_ON(bh
->b_size
!= blocksize
);
2211 err
= get_block(inode
, iblock
, bh
, 0);
2215 if (!buffer_mapped(bh
)) {
2216 zero_user(page
, i
* blocksize
, blocksize
);
2218 set_buffer_uptodate(bh
);
2222 * get_block() might have updated the buffer
2225 if (buffer_uptodate(bh
))
2229 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2232 SetPageMappedToDisk(page
);
2236 * All buffers are uptodate - we can set the page uptodate
2237 * as well. But not if get_block() returned an error.
2239 if (!PageError(page
))
2240 SetPageUptodate(page
);
2245 /* Stage two: lock the buffers */
2246 for (i
= 0; i
< nr
; i
++) {
2249 mark_buffer_async_read(bh
);
2253 * Stage 3: start the IO. Check for uptodateness
2254 * inside the buffer lock in case another process reading
2255 * the underlying blockdev brought it uptodate (the sct fix).
2257 for (i
= 0; i
< nr
; i
++) {
2259 if (buffer_uptodate(bh
))
2260 end_buffer_async_read(bh
, 1);
2262 submit_bh(READ
, bh
);
2266 EXPORT_SYMBOL(block_read_full_page
);
2268 /* utility function for filesystems that need to do work on expanding
2269 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2270 * deal with the hole.
2272 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2274 struct address_space
*mapping
= inode
->i_mapping
;
2279 err
= inode_newsize_ok(inode
, size
);
2283 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2284 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2289 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2295 EXPORT_SYMBOL(generic_cont_expand_simple
);
2297 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2298 loff_t pos
, loff_t
*bytes
)
2300 struct inode
*inode
= mapping
->host
;
2301 unsigned int blocksize
= i_blocksize(inode
);
2304 pgoff_t index
, curidx
;
2306 unsigned zerofrom
, offset
, len
;
2309 index
= pos
>> PAGE_CACHE_SHIFT
;
2310 offset
= pos
& ~PAGE_CACHE_MASK
;
2312 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2313 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2314 if (zerofrom
& (blocksize
-1)) {
2315 *bytes
|= (blocksize
-1);
2318 len
= PAGE_CACHE_SIZE
- zerofrom
;
2320 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2321 AOP_FLAG_UNINTERRUPTIBLE
,
2325 zero_user(page
, zerofrom
, len
);
2326 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2333 balance_dirty_pages_ratelimited(mapping
);
2335 if (unlikely(fatal_signal_pending(current
))) {
2341 /* page covers the boundary, find the boundary offset */
2342 if (index
== curidx
) {
2343 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2344 /* if we will expand the thing last block will be filled */
2345 if (offset
<= zerofrom
) {
2348 if (zerofrom
& (blocksize
-1)) {
2349 *bytes
|= (blocksize
-1);
2352 len
= offset
- zerofrom
;
2354 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2355 AOP_FLAG_UNINTERRUPTIBLE
,
2359 zero_user(page
, zerofrom
, len
);
2360 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2372 * For moronic filesystems that do not allow holes in file.
2373 * We may have to extend the file.
2375 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2376 loff_t pos
, unsigned len
, unsigned flags
,
2377 struct page
**pagep
, void **fsdata
,
2378 get_block_t
*get_block
, loff_t
*bytes
)
2380 struct inode
*inode
= mapping
->host
;
2381 unsigned int blocksize
= i_blocksize(inode
);
2382 unsigned int zerofrom
;
2385 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2389 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2390 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2391 *bytes
|= (blocksize
-1);
2395 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2397 EXPORT_SYMBOL(cont_write_begin
);
2399 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2401 struct inode
*inode
= page
->mapping
->host
;
2402 __block_commit_write(inode
,page
,from
,to
);
2405 EXPORT_SYMBOL(block_commit_write
);
2408 * block_page_mkwrite() is not allowed to change the file size as it gets
2409 * called from a page fault handler when a page is first dirtied. Hence we must
2410 * be careful to check for EOF conditions here. We set the page up correctly
2411 * for a written page which means we get ENOSPC checking when writing into
2412 * holes and correct delalloc and unwritten extent mapping on filesystems that
2413 * support these features.
2415 * We are not allowed to take the i_mutex here so we have to play games to
2416 * protect against truncate races as the page could now be beyond EOF. Because
2417 * truncate writes the inode size before removing pages, once we have the
2418 * page lock we can determine safely if the page is beyond EOF. If it is not
2419 * beyond EOF, then the page is guaranteed safe against truncation until we
2422 * Direct callers of this function should protect against filesystem freezing
2423 * using sb_start_pagefault() - sb_end_pagefault() functions.
2425 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2426 get_block_t get_block
)
2428 struct page
*page
= vmf
->page
;
2429 struct inode
*inode
= file_inode(vma
->vm_file
);
2435 size
= i_size_read(inode
);
2436 if ((page
->mapping
!= inode
->i_mapping
) ||
2437 (page_offset(page
) > size
)) {
2438 /* We overload EFAULT to mean page got truncated */
2443 /* page is wholly or partially inside EOF */
2444 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2445 end
= size
& ~PAGE_CACHE_MASK
;
2447 end
= PAGE_CACHE_SIZE
;
2449 ret
= __block_write_begin(page
, 0, end
, get_block
);
2451 ret
= block_commit_write(page
, 0, end
);
2453 if (unlikely(ret
< 0))
2455 set_page_dirty(page
);
2456 wait_for_stable_page(page
);
2462 EXPORT_SYMBOL(block_page_mkwrite
);
2465 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2466 * immediately, while under the page lock. So it needs a special end_io
2467 * handler which does not touch the bh after unlocking it.
2469 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2471 __end_buffer_read_notouch(bh
, uptodate
);
2475 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2476 * the page (converting it to circular linked list and taking care of page
2479 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2481 struct buffer_head
*bh
;
2483 BUG_ON(!PageLocked(page
));
2485 spin_lock(&page
->mapping
->private_lock
);
2488 if (PageDirty(page
))
2489 set_buffer_dirty(bh
);
2490 if (!bh
->b_this_page
)
2491 bh
->b_this_page
= head
;
2492 bh
= bh
->b_this_page
;
2493 } while (bh
!= head
);
2494 attach_page_buffers(page
, head
);
2495 spin_unlock(&page
->mapping
->private_lock
);
2499 * On entry, the page is fully not uptodate.
2500 * On exit the page is fully uptodate in the areas outside (from,to)
2501 * The filesystem needs to handle block truncation upon failure.
2503 int nobh_write_begin(struct address_space
*mapping
,
2504 loff_t pos
, unsigned len
, unsigned flags
,
2505 struct page
**pagep
, void **fsdata
,
2506 get_block_t
*get_block
)
2508 struct inode
*inode
= mapping
->host
;
2509 const unsigned blkbits
= inode
->i_blkbits
;
2510 const unsigned blocksize
= 1 << blkbits
;
2511 struct buffer_head
*head
, *bh
;
2515 unsigned block_in_page
;
2516 unsigned block_start
, block_end
;
2517 sector_t block_in_file
;
2520 int is_mapped_to_disk
= 1;
2522 index
= pos
>> PAGE_CACHE_SHIFT
;
2523 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2526 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2532 if (page_has_buffers(page
)) {
2533 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2539 if (PageMappedToDisk(page
))
2543 * Allocate buffers so that we can keep track of state, and potentially
2544 * attach them to the page if an error occurs. In the common case of
2545 * no error, they will just be freed again without ever being attached
2546 * to the page (which is all OK, because we're under the page lock).
2548 * Be careful: the buffer linked list is a NULL terminated one, rather
2549 * than the circular one we're used to.
2551 head
= alloc_page_buffers(page
, blocksize
, 0);
2557 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2560 * We loop across all blocks in the page, whether or not they are
2561 * part of the affected region. This is so we can discover if the
2562 * page is fully mapped-to-disk.
2564 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2565 block_start
< PAGE_CACHE_SIZE
;
2566 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2569 block_end
= block_start
+ blocksize
;
2572 if (block_start
>= to
)
2574 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2578 if (!buffer_mapped(bh
))
2579 is_mapped_to_disk
= 0;
2581 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2582 if (PageUptodate(page
)) {
2583 set_buffer_uptodate(bh
);
2586 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2587 zero_user_segments(page
, block_start
, from
,
2591 if (buffer_uptodate(bh
))
2592 continue; /* reiserfs does this */
2593 if (block_start
< from
|| block_end
> to
) {
2595 bh
->b_end_io
= end_buffer_read_nobh
;
2596 submit_bh(READ
, bh
);
2603 * The page is locked, so these buffers are protected from
2604 * any VM or truncate activity. Hence we don't need to care
2605 * for the buffer_head refcounts.
2607 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2609 if (!buffer_uptodate(bh
))
2616 if (is_mapped_to_disk
)
2617 SetPageMappedToDisk(page
);
2619 *fsdata
= head
; /* to be released by nobh_write_end */
2626 * Error recovery is a bit difficult. We need to zero out blocks that
2627 * were newly allocated, and dirty them to ensure they get written out.
2628 * Buffers need to be attached to the page at this point, otherwise
2629 * the handling of potential IO errors during writeout would be hard
2630 * (could try doing synchronous writeout, but what if that fails too?)
2632 attach_nobh_buffers(page
, head
);
2633 page_zero_new_buffers(page
, from
, to
);
2637 page_cache_release(page
);
2642 EXPORT_SYMBOL(nobh_write_begin
);
2644 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2645 loff_t pos
, unsigned len
, unsigned copied
,
2646 struct page
*page
, void *fsdata
)
2648 struct inode
*inode
= page
->mapping
->host
;
2649 struct buffer_head
*head
= fsdata
;
2650 struct buffer_head
*bh
;
2651 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2653 if (unlikely(copied
< len
) && head
)
2654 attach_nobh_buffers(page
, head
);
2655 if (page_has_buffers(page
))
2656 return generic_write_end(file
, mapping
, pos
, len
,
2657 copied
, page
, fsdata
);
2659 SetPageUptodate(page
);
2660 set_page_dirty(page
);
2661 if (pos
+copied
> inode
->i_size
) {
2662 i_size_write(inode
, pos
+copied
);
2663 mark_inode_dirty(inode
);
2667 page_cache_release(page
);
2671 head
= head
->b_this_page
;
2672 free_buffer_head(bh
);
2677 EXPORT_SYMBOL(nobh_write_end
);
2680 * nobh_writepage() - based on block_full_write_page() except
2681 * that it tries to operate without attaching bufferheads to
2684 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2685 struct writeback_control
*wbc
)
2687 struct inode
* const inode
= page
->mapping
->host
;
2688 loff_t i_size
= i_size_read(inode
);
2689 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2693 /* Is the page fully inside i_size? */
2694 if (page
->index
< end_index
)
2697 /* Is the page fully outside i_size? (truncate in progress) */
2698 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2699 if (page
->index
>= end_index
+1 || !offset
) {
2701 * The page may have dirty, unmapped buffers. For example,
2702 * they may have been added in ext3_writepage(). Make them
2703 * freeable here, so the page does not leak.
2706 /* Not really sure about this - do we need this ? */
2707 if (page
->mapping
->a_ops
->invalidatepage
)
2708 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2711 return 0; /* don't care */
2715 * The page straddles i_size. It must be zeroed out on each and every
2716 * writepage invocation because it may be mmapped. "A file is mapped
2717 * in multiples of the page size. For a file that is not a multiple of
2718 * the page size, the remaining memory is zeroed when mapped, and
2719 * writes to that region are not written out to the file."
2721 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2723 ret
= mpage_writepage(page
, get_block
, wbc
);
2725 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2726 end_buffer_async_write
);
2729 EXPORT_SYMBOL(nobh_writepage
);
2731 int nobh_truncate_page(struct address_space
*mapping
,
2732 loff_t from
, get_block_t
*get_block
)
2734 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2735 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2738 unsigned length
, pos
;
2739 struct inode
*inode
= mapping
->host
;
2741 struct buffer_head map_bh
;
2744 blocksize
= i_blocksize(inode
);
2745 length
= offset
& (blocksize
- 1);
2747 /* Block boundary? Nothing to do */
2751 length
= blocksize
- length
;
2752 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2754 page
= grab_cache_page(mapping
, index
);
2759 if (page_has_buffers(page
)) {
2762 page_cache_release(page
);
2763 return block_truncate_page(mapping
, from
, get_block
);
2766 /* Find the buffer that contains "offset" */
2768 while (offset
>= pos
) {
2773 map_bh
.b_size
= blocksize
;
2775 err
= get_block(inode
, iblock
, &map_bh
, 0);
2778 /* unmapped? It's a hole - nothing to do */
2779 if (!buffer_mapped(&map_bh
))
2782 /* Ok, it's mapped. Make sure it's up-to-date */
2783 if (!PageUptodate(page
)) {
2784 err
= mapping
->a_ops
->readpage(NULL
, page
);
2786 page_cache_release(page
);
2790 if (!PageUptodate(page
)) {
2794 if (page_has_buffers(page
))
2797 zero_user(page
, offset
, length
);
2798 set_page_dirty(page
);
2803 page_cache_release(page
);
2807 EXPORT_SYMBOL(nobh_truncate_page
);
2809 int block_truncate_page(struct address_space
*mapping
,
2810 loff_t from
, get_block_t
*get_block
)
2812 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2813 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2816 unsigned length
, pos
;
2817 struct inode
*inode
= mapping
->host
;
2819 struct buffer_head
*bh
;
2822 blocksize
= i_blocksize(inode
);
2823 length
= offset
& (blocksize
- 1);
2825 /* Block boundary? Nothing to do */
2829 length
= blocksize
- length
;
2830 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2832 page
= grab_cache_page(mapping
, index
);
2837 if (!page_has_buffers(page
))
2838 create_empty_buffers(page
, blocksize
, 0);
2840 /* Find the buffer that contains "offset" */
2841 bh
= page_buffers(page
);
2843 while (offset
>= pos
) {
2844 bh
= bh
->b_this_page
;
2850 if (!buffer_mapped(bh
)) {
2851 WARN_ON(bh
->b_size
!= blocksize
);
2852 err
= get_block(inode
, iblock
, bh
, 0);
2855 /* unmapped? It's a hole - nothing to do */
2856 if (!buffer_mapped(bh
))
2860 /* Ok, it's mapped. Make sure it's up-to-date */
2861 if (PageUptodate(page
))
2862 set_buffer_uptodate(bh
);
2864 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2866 ll_rw_block(READ
, 1, &bh
);
2868 /* Uhhuh. Read error. Complain and punt. */
2869 if (!buffer_uptodate(bh
))
2873 zero_user(page
, offset
, length
);
2874 mark_buffer_dirty(bh
);
2879 page_cache_release(page
);
2883 EXPORT_SYMBOL(block_truncate_page
);
2886 * The generic ->writepage function for buffer-backed address_spaces
2888 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2889 struct writeback_control
*wbc
)
2891 struct inode
* const inode
= page
->mapping
->host
;
2892 loff_t i_size
= i_size_read(inode
);
2893 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2896 /* Is the page fully inside i_size? */
2897 if (page
->index
< end_index
)
2898 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2899 end_buffer_async_write
);
2901 /* Is the page fully outside i_size? (truncate in progress) */
2902 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2903 if (page
->index
>= end_index
+1 || !offset
) {
2905 * The page may have dirty, unmapped buffers. For example,
2906 * they may have been added in ext3_writepage(). Make them
2907 * freeable here, so the page does not leak.
2909 do_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
2911 return 0; /* don't care */
2915 * The page straddles i_size. It must be zeroed out on each and every
2916 * writepage invocation because it may be mmapped. "A file is mapped
2917 * in multiples of the page size. For a file that is not a multiple of
2918 * the page size, the remaining memory is zeroed when mapped, and
2919 * writes to that region are not written out to the file."
2921 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2922 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2923 end_buffer_async_write
);
2925 EXPORT_SYMBOL(block_write_full_page
);
2927 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2928 get_block_t
*get_block
)
2930 struct buffer_head tmp
;
2931 struct inode
*inode
= mapping
->host
;
2934 tmp
.b_size
= i_blocksize(inode
);
2935 get_block(inode
, block
, &tmp
, 0);
2936 return tmp
.b_blocknr
;
2938 EXPORT_SYMBOL(generic_block_bmap
);
2940 static void end_bio_bh_io_sync(struct bio
*bio
)
2942 struct buffer_head
*bh
= bio
->bi_private
;
2944 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2945 set_bit(BH_Quiet
, &bh
->b_state
);
2947 bh
->b_end_io(bh
, !bio
->bi_error
);
2952 * This allows us to do IO even on the odd last sectors
2953 * of a device, even if the block size is some multiple
2954 * of the physical sector size.
2956 * We'll just truncate the bio to the size of the device,
2957 * and clear the end of the buffer head manually.
2959 * Truly out-of-range accesses will turn into actual IO
2960 * errors, this only handles the "we need to be able to
2961 * do IO at the final sector" case.
2963 void guard_bio_eod(int rw
, struct bio
*bio
)
2966 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
2967 unsigned truncated_bytes
;
2969 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
2974 * If the *whole* IO is past the end of the device,
2975 * let it through, and the IO layer will turn it into
2978 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
2981 maxsector
-= bio
->bi_iter
.bi_sector
;
2982 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
2985 /* Uhhuh. We've got a bio that straddles the device size! */
2986 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
2988 /* Truncate the bio.. */
2989 bio
->bi_iter
.bi_size
-= truncated_bytes
;
2990 bvec
->bv_len
-= truncated_bytes
;
2992 /* ..and clear the end of the buffer for reads */
2993 if ((rw
& RW_MASK
) == READ
) {
2994 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
2999 static int submit_bh_wbc(int rw
, struct buffer_head
*bh
,
3000 unsigned long bio_flags
, struct writeback_control
*wbc
)
3004 BUG_ON(!buffer_locked(bh
));
3005 BUG_ON(!buffer_mapped(bh
));
3006 BUG_ON(!bh
->b_end_io
);
3007 BUG_ON(buffer_delay(bh
));
3008 BUG_ON(buffer_unwritten(bh
));
3011 * Only clear out a write error when rewriting
3013 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
3014 clear_buffer_write_io_error(bh
);
3017 * from here on down, it's all bio -- do the initial mapping,
3018 * submit_bio -> generic_make_request may further map this bio around
3020 bio
= bio_alloc(GFP_NOIO
, 1);
3023 wbc_init_bio(wbc
, bio
);
3024 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3027 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3028 bio
->bi_bdev
= bh
->b_bdev
;
3030 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3031 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3033 bio
->bi_end_io
= end_bio_bh_io_sync
;
3034 bio
->bi_private
= bh
;
3035 bio
->bi_flags
|= bio_flags
;
3037 /* Take care of bh's that straddle the end of the device */
3038 guard_bio_eod(rw
, bio
);
3040 if (buffer_meta(bh
))
3042 if (buffer_prio(bh
))
3045 submit_bio(rw
, bio
);
3049 int _submit_bh(int rw
, struct buffer_head
*bh
, unsigned long bio_flags
)
3051 return submit_bh_wbc(rw
, bh
, bio_flags
, NULL
);
3053 EXPORT_SYMBOL_GPL(_submit_bh
);
3055 int submit_bh(int rw
, struct buffer_head
*bh
)
3057 return submit_bh_wbc(rw
, bh
, 0, NULL
);
3059 EXPORT_SYMBOL(submit_bh
);
3062 * ll_rw_block: low-level access to block devices (DEPRECATED)
3063 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3064 * @nr: number of &struct buffer_heads in the array
3065 * @bhs: array of pointers to &struct buffer_head
3067 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3069 * %READA option is described in the documentation for generic_make_request()
3070 * which ll_rw_block() calls.
3072 * This function drops any buffer that it cannot get a lock on (with the
3073 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074 * request, and any buffer that appears to be up-to-date when doing read
3075 * request. Further it marks as clean buffers that are processed for
3076 * writing (the buffer cache won't assume that they are actually clean
3077 * until the buffer gets unlocked).
3079 * ll_rw_block sets b_end_io to simple completion handler that marks
3080 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3083 * All of the buffers must be for the same device, and must also be a
3084 * multiple of the current approved size for the device.
3086 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3090 for (i
= 0; i
< nr
; i
++) {
3091 struct buffer_head
*bh
= bhs
[i
];
3093 if (!trylock_buffer(bh
))
3096 if (test_clear_buffer_dirty(bh
)) {
3097 bh
->b_end_io
= end_buffer_write_sync
;
3099 submit_bh(WRITE
, bh
);
3103 if (!buffer_uptodate(bh
)) {
3104 bh
->b_end_io
= end_buffer_read_sync
;
3113 EXPORT_SYMBOL(ll_rw_block
);
3115 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3118 if (!test_clear_buffer_dirty(bh
)) {
3122 bh
->b_end_io
= end_buffer_write_sync
;
3126 EXPORT_SYMBOL(write_dirty_buffer
);
3129 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130 * and then start new I/O and then wait upon it. The caller must have a ref on
3133 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3137 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3139 if (test_clear_buffer_dirty(bh
)) {
3141 bh
->b_end_io
= end_buffer_write_sync
;
3142 ret
= submit_bh(rw
, bh
);
3144 if (!ret
&& !buffer_uptodate(bh
))
3151 EXPORT_SYMBOL(__sync_dirty_buffer
);
3153 int sync_dirty_buffer(struct buffer_head
*bh
)
3155 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3157 EXPORT_SYMBOL(sync_dirty_buffer
);
3160 * try_to_free_buffers() checks if all the buffers on this particular page
3161 * are unused, and releases them if so.
3163 * Exclusion against try_to_free_buffers may be obtained by either
3164 * locking the page or by holding its mapping's private_lock.
3166 * If the page is dirty but all the buffers are clean then we need to
3167 * be sure to mark the page clean as well. This is because the page
3168 * may be against a block device, and a later reattachment of buffers
3169 * to a dirty page will set *all* buffers dirty. Which would corrupt
3170 * filesystem data on the same device.
3172 * The same applies to regular filesystem pages: if all the buffers are
3173 * clean then we set the page clean and proceed. To do that, we require
3174 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3177 * try_to_free_buffers() is non-blocking.
3179 static inline int buffer_busy(struct buffer_head
*bh
)
3181 return atomic_read(&bh
->b_count
) |
3182 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3186 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3188 struct buffer_head
*head
= page_buffers(page
);
3189 struct buffer_head
*bh
;
3193 if (buffer_write_io_error(bh
) && page
->mapping
)
3194 set_bit(AS_EIO
, &page
->mapping
->flags
);
3195 if (buffer_busy(bh
))
3197 bh
= bh
->b_this_page
;
3198 } while (bh
!= head
);
3201 struct buffer_head
*next
= bh
->b_this_page
;
3203 if (bh
->b_assoc_map
)
3204 __remove_assoc_queue(bh
);
3206 } while (bh
!= head
);
3207 *buffers_to_free
= head
;
3208 __clear_page_buffers(page
);
3214 int try_to_free_buffers(struct page
*page
)
3216 struct address_space
* const mapping
= page
->mapping
;
3217 struct buffer_head
*buffers_to_free
= NULL
;
3220 BUG_ON(!PageLocked(page
));
3221 if (PageWriteback(page
))
3224 if (mapping
== NULL
) { /* can this still happen? */
3225 ret
= drop_buffers(page
, &buffers_to_free
);
3229 spin_lock(&mapping
->private_lock
);
3230 ret
= drop_buffers(page
, &buffers_to_free
);
3233 * If the filesystem writes its buffers by hand (eg ext3)
3234 * then we can have clean buffers against a dirty page. We
3235 * clean the page here; otherwise the VM will never notice
3236 * that the filesystem did any IO at all.
3238 * Also, during truncate, discard_buffer will have marked all
3239 * the page's buffers clean. We discover that here and clean
3242 * private_lock must be held over this entire operation in order
3243 * to synchronise against __set_page_dirty_buffers and prevent the
3244 * dirty bit from being lost.
3247 cancel_dirty_page(page
);
3248 spin_unlock(&mapping
->private_lock
);
3250 if (buffers_to_free
) {
3251 struct buffer_head
*bh
= buffers_to_free
;
3254 struct buffer_head
*next
= bh
->b_this_page
;
3255 free_buffer_head(bh
);
3257 } while (bh
!= buffers_to_free
);
3261 EXPORT_SYMBOL(try_to_free_buffers
);
3264 * There are no bdflush tunables left. But distributions are
3265 * still running obsolete flush daemons, so we terminate them here.
3267 * Use of bdflush() is deprecated and will be removed in a future kernel.
3268 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3270 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3272 static int msg_count
;
3274 if (!capable(CAP_SYS_ADMIN
))
3277 if (msg_count
< 5) {
3280 "warning: process `%s' used the obsolete bdflush"
3281 " system call\n", current
->comm
);
3282 printk(KERN_INFO
"Fix your initscripts?\n");
3291 * Buffer-head allocation
3293 static struct kmem_cache
*bh_cachep __read_mostly
;
3296 * Once the number of bh's in the machine exceeds this level, we start
3297 * stripping them in writeback.
3299 static unsigned long max_buffer_heads
;
3301 int buffer_heads_over_limit
;
3303 struct bh_accounting
{
3304 int nr
; /* Number of live bh's */
3305 int ratelimit
; /* Limit cacheline bouncing */
3308 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3310 static void recalc_bh_state(void)
3315 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3317 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3318 for_each_online_cpu(i
)
3319 tot
+= per_cpu(bh_accounting
, i
).nr
;
3320 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3323 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3325 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3327 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3329 __this_cpu_inc(bh_accounting
.nr
);
3335 EXPORT_SYMBOL(alloc_buffer_head
);
3337 void free_buffer_head(struct buffer_head
*bh
)
3339 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3340 kmem_cache_free(bh_cachep
, bh
);
3342 __this_cpu_dec(bh_accounting
.nr
);
3346 EXPORT_SYMBOL(free_buffer_head
);
3348 static void buffer_exit_cpu(int cpu
)
3351 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3353 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3357 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3358 per_cpu(bh_accounting
, cpu
).nr
= 0;
3361 static int buffer_cpu_notify(struct notifier_block
*self
,
3362 unsigned long action
, void *hcpu
)
3364 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3365 buffer_exit_cpu((unsigned long)hcpu
);
3370 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3371 * @bh: struct buffer_head
3373 * Return true if the buffer is up-to-date and false,
3374 * with the buffer locked, if not.
3376 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3378 if (!buffer_uptodate(bh
)) {
3380 if (!buffer_uptodate(bh
))
3386 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3389 * bh_submit_read - Submit a locked buffer for reading
3390 * @bh: struct buffer_head
3392 * Returns zero on success and -EIO on error.
3394 int bh_submit_read(struct buffer_head
*bh
)
3396 BUG_ON(!buffer_locked(bh
));
3398 if (buffer_uptodate(bh
)) {
3404 bh
->b_end_io
= end_buffer_read_sync
;
3405 submit_bh(READ
, bh
);
3407 if (buffer_uptodate(bh
))
3411 EXPORT_SYMBOL(bh_submit_read
);
3413 void __init
buffer_init(void)
3415 unsigned long nrpages
;
3417 bh_cachep
= kmem_cache_create("buffer_head",
3418 sizeof(struct buffer_head
), 0,
3419 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3424 * Limit the bh occupancy to 10% of ZONE_NORMAL
3426 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3427 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3428 hotcpu_notifier(buffer_cpu_notify
, 0);