ocfs2: fix locking for res->tracking and dlm->tracking_list
[linux/fpc-iii.git] / fs / dcache.c
blob141651b0c766036f35776be4f6d1b11b6a891777
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
43 #include "internal.h"
44 #include "mount.h"
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
89 EXPORT_SYMBOL(rename_lock);
91 static struct kmem_cache *dentry_cache __read_mostly;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return dentry_hashtable + hash_32(hash, d_hash_shift);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
119 static DEFINE_PER_CPU(long, nr_dentry);
120 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
136 static long get_nr_dentry(void)
138 int i;
139 long sum = 0;
140 for_each_possible_cpu(i)
141 sum += per_cpu(nr_dentry, i);
142 return sum < 0 ? 0 : sum;
145 static long get_nr_dentry_unused(void)
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry_unused, i);
151 return sum < 0 ? 0 : sum;
154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
155 size_t *lenp, loff_t *ppos)
157 dentry_stat.nr_dentry = get_nr_dentry();
158 dentry_stat.nr_unused = get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 #endif
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 #include <asm/word-at-a-time.h>
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 unsigned long a,b,mask;
183 for (;;) {
184 a = *(unsigned long *)cs;
185 b = load_unaligned_zeropad(ct);
186 if (tcount < sizeof(unsigned long))
187 break;
188 if (unlikely(a != b))
189 return 1;
190 cs += sizeof(unsigned long);
191 ct += sizeof(unsigned long);
192 tcount -= sizeof(unsigned long);
193 if (!tcount)
194 return 0;
196 mask = bytemask_from_count(tcount);
197 return unlikely(!!((a ^ b) & mask));
200 #else
202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 do {
205 if (*cs != *ct)
206 return 1;
207 cs++;
208 ct++;
209 tcount--;
210 } while (tcount);
211 return 0;
214 #endif
216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 const unsigned char *cs;
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 cs = ACCESS_ONCE(dentry->d_name.name);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs, ct, tcount);
240 struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
248 static inline struct external_name *external_name(struct dentry *dentry)
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
253 static void __d_free(struct rcu_head *head)
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
257 kmem_cache_free(dentry_cache, dentry);
260 static void __d_free_external(struct rcu_head *head)
262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
263 kfree(external_name(dentry));
264 kmem_cache_free(dentry_cache, dentry);
267 static inline int dname_external(const struct dentry *dentry)
269 return dentry->d_name.name != dentry->d_iname;
272 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
274 spin_lock(&dentry->d_lock);
275 if (unlikely(dname_external(dentry))) {
276 struct external_name *p = external_name(dentry);
277 atomic_inc(&p->u.count);
278 spin_unlock(&dentry->d_lock);
279 name->name = p->name;
280 } else {
281 memcpy(name->inline_name, dentry->d_iname,
282 dentry->d_name.len + 1);
283 spin_unlock(&dentry->d_lock);
284 name->name = name->inline_name;
287 EXPORT_SYMBOL(take_dentry_name_snapshot);
289 void release_dentry_name_snapshot(struct name_snapshot *name)
291 if (unlikely(name->name != name->inline_name)) {
292 struct external_name *p;
293 p = container_of(name->name, struct external_name, name[0]);
294 if (unlikely(atomic_dec_and_test(&p->u.count)))
295 kfree_rcu(p, u.head);
298 EXPORT_SYMBOL(release_dentry_name_snapshot);
300 static inline void __d_set_inode_and_type(struct dentry *dentry,
301 struct inode *inode,
302 unsigned type_flags)
304 unsigned flags;
306 dentry->d_inode = inode;
307 flags = READ_ONCE(dentry->d_flags);
308 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
309 flags |= type_flags;
310 WRITE_ONCE(dentry->d_flags, flags);
313 static inline void __d_clear_type_and_inode(struct dentry *dentry)
315 unsigned flags = READ_ONCE(dentry->d_flags);
317 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
318 WRITE_ONCE(dentry->d_flags, flags);
319 dentry->d_inode = NULL;
322 static void dentry_free(struct dentry *dentry)
324 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
325 if (unlikely(dname_external(dentry))) {
326 struct external_name *p = external_name(dentry);
327 if (likely(atomic_dec_and_test(&p->u.count))) {
328 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
329 return;
332 /* if dentry was never visible to RCU, immediate free is OK */
333 if (!(dentry->d_flags & DCACHE_RCUACCESS))
334 __d_free(&dentry->d_u.d_rcu);
335 else
336 call_rcu(&dentry->d_u.d_rcu, __d_free);
340 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
341 * @dentry: the target dentry
342 * After this call, in-progress rcu-walk path lookup will fail. This
343 * should be called after unhashing, and after changing d_inode (if
344 * the dentry has not already been unhashed).
346 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
348 lockdep_assert_held(&dentry->d_lock);
349 /* Go through am invalidation barrier */
350 write_seqcount_invalidate(&dentry->d_seq);
354 * Release the dentry's inode, using the filesystem
355 * d_iput() operation if defined. Dentry has no refcount
356 * and is unhashed.
358 static void dentry_iput(struct dentry * dentry)
359 __releases(dentry->d_lock)
360 __releases(dentry->d_inode->i_lock)
362 struct inode *inode = dentry->d_inode;
363 if (inode) {
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 spin_unlock(&dentry->d_lock);
367 spin_unlock(&inode->i_lock);
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374 } else {
375 spin_unlock(&dentry->d_lock);
380 * Release the dentry's inode, using the filesystem
381 * d_iput() operation if defined. dentry remains in-use.
383 static void dentry_unlink_inode(struct dentry * dentry)
384 __releases(dentry->d_lock)
385 __releases(dentry->d_inode->i_lock)
387 struct inode *inode = dentry->d_inode;
389 raw_write_seqcount_begin(&dentry->d_seq);
390 __d_clear_type_and_inode(dentry);
391 hlist_del_init(&dentry->d_u.d_alias);
392 raw_write_seqcount_end(&dentry->d_seq);
393 spin_unlock(&dentry->d_lock);
394 spin_unlock(&inode->i_lock);
395 if (!inode->i_nlink)
396 fsnotify_inoderemove(inode);
397 if (dentry->d_op && dentry->d_op->d_iput)
398 dentry->d_op->d_iput(dentry, inode);
399 else
400 iput(inode);
404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405 * is in use - which includes both the "real" per-superblock
406 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409 * on the shrink list (ie not on the superblock LRU list).
411 * The per-cpu "nr_dentry_unused" counters are updated with
412 * the DCACHE_LRU_LIST bit.
414 * These helper functions make sure we always follow the
415 * rules. d_lock must be held by the caller.
417 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
418 static void d_lru_add(struct dentry *dentry)
420 D_FLAG_VERIFY(dentry, 0);
421 dentry->d_flags |= DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
423 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
426 static void d_lru_del(struct dentry *dentry)
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
431 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
434 static void d_shrink_del(struct dentry *dentry)
436 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
437 list_del_init(&dentry->d_lru);
438 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
439 this_cpu_dec(nr_dentry_unused);
442 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
444 D_FLAG_VERIFY(dentry, 0);
445 list_add(&dentry->d_lru, list);
446 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
447 this_cpu_inc(nr_dentry_unused);
451 * These can only be called under the global LRU lock, ie during the
452 * callback for freeing the LRU list. "isolate" removes it from the
453 * LRU lists entirely, while shrink_move moves it to the indicated
454 * private list.
456 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
458 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
459 dentry->d_flags &= ~DCACHE_LRU_LIST;
460 this_cpu_dec(nr_dentry_unused);
461 list_lru_isolate(lru, &dentry->d_lru);
464 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
465 struct list_head *list)
467 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
468 dentry->d_flags |= DCACHE_SHRINK_LIST;
469 list_lru_isolate_move(lru, &dentry->d_lru, list);
473 * dentry_lru_(add|del)_list) must be called with d_lock held.
475 static void dentry_lru_add(struct dentry *dentry)
477 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
478 d_lru_add(dentry);
482 * d_drop - drop a dentry
483 * @dentry: dentry to drop
485 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
486 * be found through a VFS lookup any more. Note that this is different from
487 * deleting the dentry - d_delete will try to mark the dentry negative if
488 * possible, giving a successful _negative_ lookup, while d_drop will
489 * just make the cache lookup fail.
491 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
492 * reason (NFS timeouts or autofs deletes).
494 * __d_drop requires dentry->d_lock.
496 void __d_drop(struct dentry *dentry)
498 if (!d_unhashed(dentry)) {
499 struct hlist_bl_head *b;
501 * Hashed dentries are normally on the dentry hashtable,
502 * with the exception of those newly allocated by
503 * d_obtain_alias, which are always IS_ROOT:
505 if (unlikely(IS_ROOT(dentry)))
506 b = &dentry->d_sb->s_anon;
507 else
508 b = d_hash(dentry->d_parent, dentry->d_name.hash);
510 hlist_bl_lock(b);
511 __hlist_bl_del(&dentry->d_hash);
512 dentry->d_hash.pprev = NULL;
513 hlist_bl_unlock(b);
514 dentry_rcuwalk_invalidate(dentry);
517 EXPORT_SYMBOL(__d_drop);
519 void d_drop(struct dentry *dentry)
521 spin_lock(&dentry->d_lock);
522 __d_drop(dentry);
523 spin_unlock(&dentry->d_lock);
525 EXPORT_SYMBOL(d_drop);
527 static void __dentry_kill(struct dentry *dentry)
529 struct dentry *parent = NULL;
530 bool can_free = true;
531 if (!IS_ROOT(dentry))
532 parent = dentry->d_parent;
535 * The dentry is now unrecoverably dead to the world.
537 lockref_mark_dead(&dentry->d_lockref);
540 * inform the fs via d_prune that this dentry is about to be
541 * unhashed and destroyed.
543 if (dentry->d_flags & DCACHE_OP_PRUNE)
544 dentry->d_op->d_prune(dentry);
546 if (dentry->d_flags & DCACHE_LRU_LIST) {
547 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
548 d_lru_del(dentry);
550 /* if it was on the hash then remove it */
551 __d_drop(dentry);
552 __list_del_entry(&dentry->d_child);
554 * Inform d_walk() that we are no longer attached to the
555 * dentry tree
557 dentry->d_flags |= DCACHE_DENTRY_KILLED;
558 if (parent)
559 spin_unlock(&parent->d_lock);
560 dentry_iput(dentry);
562 * dentry_iput drops the locks, at which point nobody (except
563 * transient RCU lookups) can reach this dentry.
565 BUG_ON(dentry->d_lockref.count > 0);
566 this_cpu_dec(nr_dentry);
567 if (dentry->d_op && dentry->d_op->d_release)
568 dentry->d_op->d_release(dentry);
570 spin_lock(&dentry->d_lock);
571 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
572 dentry->d_flags |= DCACHE_MAY_FREE;
573 can_free = false;
575 spin_unlock(&dentry->d_lock);
576 if (likely(can_free))
577 dentry_free(dentry);
581 * Finish off a dentry we've decided to kill.
582 * dentry->d_lock must be held, returns with it unlocked.
583 * If ref is non-zero, then decrement the refcount too.
584 * Returns dentry requiring refcount drop, or NULL if we're done.
586 static struct dentry *dentry_kill(struct dentry *dentry)
587 __releases(dentry->d_lock)
589 struct inode *inode = dentry->d_inode;
590 struct dentry *parent = NULL;
592 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
593 goto failed;
595 if (!IS_ROOT(dentry)) {
596 parent = dentry->d_parent;
597 if (unlikely(!spin_trylock(&parent->d_lock))) {
598 if (inode)
599 spin_unlock(&inode->i_lock);
600 goto failed;
604 __dentry_kill(dentry);
605 return parent;
607 failed:
608 spin_unlock(&dentry->d_lock);
609 return dentry; /* try again with same dentry */
612 static inline struct dentry *lock_parent(struct dentry *dentry)
614 struct dentry *parent = dentry->d_parent;
615 if (IS_ROOT(dentry))
616 return NULL;
617 if (unlikely(dentry->d_lockref.count < 0))
618 return NULL;
619 if (likely(spin_trylock(&parent->d_lock)))
620 return parent;
621 rcu_read_lock();
622 spin_unlock(&dentry->d_lock);
623 again:
624 parent = ACCESS_ONCE(dentry->d_parent);
625 spin_lock(&parent->d_lock);
627 * We can't blindly lock dentry until we are sure
628 * that we won't violate the locking order.
629 * Any changes of dentry->d_parent must have
630 * been done with parent->d_lock held, so
631 * spin_lock() above is enough of a barrier
632 * for checking if it's still our child.
634 if (unlikely(parent != dentry->d_parent)) {
635 spin_unlock(&parent->d_lock);
636 goto again;
638 if (parent != dentry) {
639 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
640 if (unlikely(dentry->d_lockref.count < 0)) {
641 spin_unlock(&parent->d_lock);
642 parent = NULL;
644 } else {
645 parent = NULL;
647 rcu_read_unlock();
648 return parent;
652 * Try to do a lockless dput(), and return whether that was successful.
654 * If unsuccessful, we return false, having already taken the dentry lock.
656 * The caller needs to hold the RCU read lock, so that the dentry is
657 * guaranteed to stay around even if the refcount goes down to zero!
659 static inline bool fast_dput(struct dentry *dentry)
661 int ret;
662 unsigned int d_flags;
665 * If we have a d_op->d_delete() operation, we sould not
666 * let the dentry count go to zero, so use "put_or_lock".
668 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
669 return lockref_put_or_lock(&dentry->d_lockref);
672 * .. otherwise, we can try to just decrement the
673 * lockref optimistically.
675 ret = lockref_put_return(&dentry->d_lockref);
678 * If the lockref_put_return() failed due to the lock being held
679 * by somebody else, the fast path has failed. We will need to
680 * get the lock, and then check the count again.
682 if (unlikely(ret < 0)) {
683 spin_lock(&dentry->d_lock);
684 if (dentry->d_lockref.count > 1) {
685 dentry->d_lockref.count--;
686 spin_unlock(&dentry->d_lock);
687 return 1;
689 return 0;
693 * If we weren't the last ref, we're done.
695 if (ret)
696 return 1;
699 * Careful, careful. The reference count went down
700 * to zero, but we don't hold the dentry lock, so
701 * somebody else could get it again, and do another
702 * dput(), and we need to not race with that.
704 * However, there is a very special and common case
705 * where we don't care, because there is nothing to
706 * do: the dentry is still hashed, it does not have
707 * a 'delete' op, and it's referenced and already on
708 * the LRU list.
710 * NOTE! Since we aren't locked, these values are
711 * not "stable". However, it is sufficient that at
712 * some point after we dropped the reference the
713 * dentry was hashed and the flags had the proper
714 * value. Other dentry users may have re-gotten
715 * a reference to the dentry and change that, but
716 * our work is done - we can leave the dentry
717 * around with a zero refcount.
719 smp_rmb();
720 d_flags = ACCESS_ONCE(dentry->d_flags);
721 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
723 /* Nothing to do? Dropping the reference was all we needed? */
724 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
725 return 1;
728 * Not the fast normal case? Get the lock. We've already decremented
729 * the refcount, but we'll need to re-check the situation after
730 * getting the lock.
732 spin_lock(&dentry->d_lock);
735 * Did somebody else grab a reference to it in the meantime, and
736 * we're no longer the last user after all? Alternatively, somebody
737 * else could have killed it and marked it dead. Either way, we
738 * don't need to do anything else.
740 if (dentry->d_lockref.count) {
741 spin_unlock(&dentry->d_lock);
742 return 1;
746 * Re-get the reference we optimistically dropped. We hold the
747 * lock, and we just tested that it was zero, so we can just
748 * set it to 1.
750 dentry->d_lockref.count = 1;
751 return 0;
756 * This is dput
758 * This is complicated by the fact that we do not want to put
759 * dentries that are no longer on any hash chain on the unused
760 * list: we'd much rather just get rid of them immediately.
762 * However, that implies that we have to traverse the dentry
763 * tree upwards to the parents which might _also_ now be
764 * scheduled for deletion (it may have been only waiting for
765 * its last child to go away).
767 * This tail recursion is done by hand as we don't want to depend
768 * on the compiler to always get this right (gcc generally doesn't).
769 * Real recursion would eat up our stack space.
773 * dput - release a dentry
774 * @dentry: dentry to release
776 * Release a dentry. This will drop the usage count and if appropriate
777 * call the dentry unlink method as well as removing it from the queues and
778 * releasing its resources. If the parent dentries were scheduled for release
779 * they too may now get deleted.
781 void dput(struct dentry *dentry)
783 if (unlikely(!dentry))
784 return;
786 repeat:
787 might_sleep();
789 rcu_read_lock();
790 if (likely(fast_dput(dentry))) {
791 rcu_read_unlock();
792 return;
795 /* Slow case: now with the dentry lock held */
796 rcu_read_unlock();
798 /* Unreachable? Get rid of it */
799 if (unlikely(d_unhashed(dentry)))
800 goto kill_it;
802 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
803 goto kill_it;
805 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
806 if (dentry->d_op->d_delete(dentry))
807 goto kill_it;
810 if (!(dentry->d_flags & DCACHE_REFERENCED))
811 dentry->d_flags |= DCACHE_REFERENCED;
812 dentry_lru_add(dentry);
814 dentry->d_lockref.count--;
815 spin_unlock(&dentry->d_lock);
816 return;
818 kill_it:
819 dentry = dentry_kill(dentry);
820 if (dentry) {
821 cond_resched();
822 goto repeat;
825 EXPORT_SYMBOL(dput);
828 /* This must be called with d_lock held */
829 static inline void __dget_dlock(struct dentry *dentry)
831 dentry->d_lockref.count++;
834 static inline void __dget(struct dentry *dentry)
836 lockref_get(&dentry->d_lockref);
839 struct dentry *dget_parent(struct dentry *dentry)
841 int gotref;
842 struct dentry *ret;
845 * Do optimistic parent lookup without any
846 * locking.
848 rcu_read_lock();
849 ret = ACCESS_ONCE(dentry->d_parent);
850 gotref = lockref_get_not_zero(&ret->d_lockref);
851 rcu_read_unlock();
852 if (likely(gotref)) {
853 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
854 return ret;
855 dput(ret);
858 repeat:
860 * Don't need rcu_dereference because we re-check it was correct under
861 * the lock.
863 rcu_read_lock();
864 ret = dentry->d_parent;
865 spin_lock(&ret->d_lock);
866 if (unlikely(ret != dentry->d_parent)) {
867 spin_unlock(&ret->d_lock);
868 rcu_read_unlock();
869 goto repeat;
871 rcu_read_unlock();
872 BUG_ON(!ret->d_lockref.count);
873 ret->d_lockref.count++;
874 spin_unlock(&ret->d_lock);
875 return ret;
877 EXPORT_SYMBOL(dget_parent);
880 * d_find_alias - grab a hashed alias of inode
881 * @inode: inode in question
883 * If inode has a hashed alias, or is a directory and has any alias,
884 * acquire the reference to alias and return it. Otherwise return NULL.
885 * Notice that if inode is a directory there can be only one alias and
886 * it can be unhashed only if it has no children, or if it is the root
887 * of a filesystem, or if the directory was renamed and d_revalidate
888 * was the first vfs operation to notice.
890 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
891 * any other hashed alias over that one.
893 static struct dentry *__d_find_alias(struct inode *inode)
895 struct dentry *alias, *discon_alias;
897 again:
898 discon_alias = NULL;
899 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
900 spin_lock(&alias->d_lock);
901 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
902 if (IS_ROOT(alias) &&
903 (alias->d_flags & DCACHE_DISCONNECTED)) {
904 discon_alias = alias;
905 } else {
906 __dget_dlock(alias);
907 spin_unlock(&alias->d_lock);
908 return alias;
911 spin_unlock(&alias->d_lock);
913 if (discon_alias) {
914 alias = discon_alias;
915 spin_lock(&alias->d_lock);
916 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
917 __dget_dlock(alias);
918 spin_unlock(&alias->d_lock);
919 return alias;
921 spin_unlock(&alias->d_lock);
922 goto again;
924 return NULL;
927 struct dentry *d_find_alias(struct inode *inode)
929 struct dentry *de = NULL;
931 if (!hlist_empty(&inode->i_dentry)) {
932 spin_lock(&inode->i_lock);
933 de = __d_find_alias(inode);
934 spin_unlock(&inode->i_lock);
936 return de;
938 EXPORT_SYMBOL(d_find_alias);
941 * Try to kill dentries associated with this inode.
942 * WARNING: you must own a reference to inode.
944 void d_prune_aliases(struct inode *inode)
946 struct dentry *dentry;
947 restart:
948 spin_lock(&inode->i_lock);
949 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
950 spin_lock(&dentry->d_lock);
951 if (!dentry->d_lockref.count) {
952 struct dentry *parent = lock_parent(dentry);
953 if (likely(!dentry->d_lockref.count)) {
954 __dentry_kill(dentry);
955 dput(parent);
956 goto restart;
958 if (parent)
959 spin_unlock(&parent->d_lock);
961 spin_unlock(&dentry->d_lock);
963 spin_unlock(&inode->i_lock);
965 EXPORT_SYMBOL(d_prune_aliases);
967 static void shrink_dentry_list(struct list_head *list)
969 struct dentry *dentry, *parent;
971 while (!list_empty(list)) {
972 struct inode *inode;
973 dentry = list_entry(list->prev, struct dentry, d_lru);
974 spin_lock(&dentry->d_lock);
975 parent = lock_parent(dentry);
978 * The dispose list is isolated and dentries are not accounted
979 * to the LRU here, so we can simply remove it from the list
980 * here regardless of whether it is referenced or not.
982 d_shrink_del(dentry);
985 * We found an inuse dentry which was not removed from
986 * the LRU because of laziness during lookup. Do not free it.
988 if (dentry->d_lockref.count > 0) {
989 spin_unlock(&dentry->d_lock);
990 if (parent)
991 spin_unlock(&parent->d_lock);
992 continue;
996 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
997 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
998 spin_unlock(&dentry->d_lock);
999 if (parent)
1000 spin_unlock(&parent->d_lock);
1001 if (can_free)
1002 dentry_free(dentry);
1003 continue;
1006 inode = dentry->d_inode;
1007 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1008 d_shrink_add(dentry, list);
1009 spin_unlock(&dentry->d_lock);
1010 if (parent)
1011 spin_unlock(&parent->d_lock);
1012 continue;
1015 __dentry_kill(dentry);
1018 * We need to prune ancestors too. This is necessary to prevent
1019 * quadratic behavior of shrink_dcache_parent(), but is also
1020 * expected to be beneficial in reducing dentry cache
1021 * fragmentation.
1023 dentry = parent;
1024 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1025 parent = lock_parent(dentry);
1026 if (dentry->d_lockref.count != 1) {
1027 dentry->d_lockref.count--;
1028 spin_unlock(&dentry->d_lock);
1029 if (parent)
1030 spin_unlock(&parent->d_lock);
1031 break;
1033 inode = dentry->d_inode; /* can't be NULL */
1034 if (unlikely(!spin_trylock(&inode->i_lock))) {
1035 spin_unlock(&dentry->d_lock);
1036 if (parent)
1037 spin_unlock(&parent->d_lock);
1038 cpu_relax();
1039 continue;
1041 __dentry_kill(dentry);
1042 dentry = parent;
1047 static enum lru_status dentry_lru_isolate(struct list_head *item,
1048 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1050 struct list_head *freeable = arg;
1051 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1055 * we are inverting the lru lock/dentry->d_lock here,
1056 * so use a trylock. If we fail to get the lock, just skip
1057 * it
1059 if (!spin_trylock(&dentry->d_lock))
1060 return LRU_SKIP;
1063 * Referenced dentries are still in use. If they have active
1064 * counts, just remove them from the LRU. Otherwise give them
1065 * another pass through the LRU.
1067 if (dentry->d_lockref.count) {
1068 d_lru_isolate(lru, dentry);
1069 spin_unlock(&dentry->d_lock);
1070 return LRU_REMOVED;
1073 if (dentry->d_flags & DCACHE_REFERENCED) {
1074 dentry->d_flags &= ~DCACHE_REFERENCED;
1075 spin_unlock(&dentry->d_lock);
1078 * The list move itself will be made by the common LRU code. At
1079 * this point, we've dropped the dentry->d_lock but keep the
1080 * lru lock. This is safe to do, since every list movement is
1081 * protected by the lru lock even if both locks are held.
1083 * This is guaranteed by the fact that all LRU management
1084 * functions are intermediated by the LRU API calls like
1085 * list_lru_add and list_lru_del. List movement in this file
1086 * only ever occur through this functions or through callbacks
1087 * like this one, that are called from the LRU API.
1089 * The only exceptions to this are functions like
1090 * shrink_dentry_list, and code that first checks for the
1091 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1092 * operating only with stack provided lists after they are
1093 * properly isolated from the main list. It is thus, always a
1094 * local access.
1096 return LRU_ROTATE;
1099 d_lru_shrink_move(lru, dentry, freeable);
1100 spin_unlock(&dentry->d_lock);
1102 return LRU_REMOVED;
1106 * prune_dcache_sb - shrink the dcache
1107 * @sb: superblock
1108 * @sc: shrink control, passed to list_lru_shrink_walk()
1110 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1111 * is done when we need more memory and called from the superblock shrinker
1112 * function.
1114 * This function may fail to free any resources if all the dentries are in
1115 * use.
1117 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1119 LIST_HEAD(dispose);
1120 long freed;
1122 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1123 dentry_lru_isolate, &dispose);
1124 shrink_dentry_list(&dispose);
1125 return freed;
1128 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1129 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1131 struct list_head *freeable = arg;
1132 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1135 * we are inverting the lru lock/dentry->d_lock here,
1136 * so use a trylock. If we fail to get the lock, just skip
1137 * it
1139 if (!spin_trylock(&dentry->d_lock))
1140 return LRU_SKIP;
1142 d_lru_shrink_move(lru, dentry, freeable);
1143 spin_unlock(&dentry->d_lock);
1145 return LRU_REMOVED;
1150 * shrink_dcache_sb - shrink dcache for a superblock
1151 * @sb: superblock
1153 * Shrink the dcache for the specified super block. This is used to free
1154 * the dcache before unmounting a file system.
1156 void shrink_dcache_sb(struct super_block *sb)
1158 long freed;
1160 do {
1161 LIST_HEAD(dispose);
1163 freed = list_lru_walk(&sb->s_dentry_lru,
1164 dentry_lru_isolate_shrink, &dispose, 1024);
1166 this_cpu_sub(nr_dentry_unused, freed);
1167 shrink_dentry_list(&dispose);
1168 cond_resched();
1169 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1171 EXPORT_SYMBOL(shrink_dcache_sb);
1174 * enum d_walk_ret - action to talke during tree walk
1175 * @D_WALK_CONTINUE: contrinue walk
1176 * @D_WALK_QUIT: quit walk
1177 * @D_WALK_NORETRY: quit when retry is needed
1178 * @D_WALK_SKIP: skip this dentry and its children
1180 enum d_walk_ret {
1181 D_WALK_CONTINUE,
1182 D_WALK_QUIT,
1183 D_WALK_NORETRY,
1184 D_WALK_SKIP,
1188 * d_walk - walk the dentry tree
1189 * @parent: start of walk
1190 * @data: data passed to @enter() and @finish()
1191 * @enter: callback when first entering the dentry
1192 * @finish: callback when successfully finished the walk
1194 * The @enter() and @finish() callbacks are called with d_lock held.
1196 static void d_walk(struct dentry *parent, void *data,
1197 enum d_walk_ret (*enter)(void *, struct dentry *),
1198 void (*finish)(void *))
1200 struct dentry *this_parent;
1201 struct list_head *next;
1202 unsigned seq = 0;
1203 enum d_walk_ret ret;
1204 bool retry = true;
1206 again:
1207 read_seqbegin_or_lock(&rename_lock, &seq);
1208 this_parent = parent;
1209 spin_lock(&this_parent->d_lock);
1211 ret = enter(data, this_parent);
1212 switch (ret) {
1213 case D_WALK_CONTINUE:
1214 break;
1215 case D_WALK_QUIT:
1216 case D_WALK_SKIP:
1217 goto out_unlock;
1218 case D_WALK_NORETRY:
1219 retry = false;
1220 break;
1222 repeat:
1223 next = this_parent->d_subdirs.next;
1224 resume:
1225 while (next != &this_parent->d_subdirs) {
1226 struct list_head *tmp = next;
1227 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1228 next = tmp->next;
1230 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1232 ret = enter(data, dentry);
1233 switch (ret) {
1234 case D_WALK_CONTINUE:
1235 break;
1236 case D_WALK_QUIT:
1237 spin_unlock(&dentry->d_lock);
1238 goto out_unlock;
1239 case D_WALK_NORETRY:
1240 retry = false;
1241 break;
1242 case D_WALK_SKIP:
1243 spin_unlock(&dentry->d_lock);
1244 continue;
1247 if (!list_empty(&dentry->d_subdirs)) {
1248 spin_unlock(&this_parent->d_lock);
1249 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1250 this_parent = dentry;
1251 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1252 goto repeat;
1254 spin_unlock(&dentry->d_lock);
1257 * All done at this level ... ascend and resume the search.
1259 rcu_read_lock();
1260 ascend:
1261 if (this_parent != parent) {
1262 struct dentry *child = this_parent;
1263 this_parent = child->d_parent;
1265 spin_unlock(&child->d_lock);
1266 spin_lock(&this_parent->d_lock);
1268 /* might go back up the wrong parent if we have had a rename. */
1269 if (need_seqretry(&rename_lock, seq))
1270 goto rename_retry;
1271 /* go into the first sibling still alive */
1272 do {
1273 next = child->d_child.next;
1274 if (next == &this_parent->d_subdirs)
1275 goto ascend;
1276 child = list_entry(next, struct dentry, d_child);
1277 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1278 rcu_read_unlock();
1279 goto resume;
1281 if (need_seqretry(&rename_lock, seq))
1282 goto rename_retry;
1283 rcu_read_unlock();
1284 if (finish)
1285 finish(data);
1287 out_unlock:
1288 spin_unlock(&this_parent->d_lock);
1289 done_seqretry(&rename_lock, seq);
1290 return;
1292 rename_retry:
1293 spin_unlock(&this_parent->d_lock);
1294 rcu_read_unlock();
1295 BUG_ON(seq & 1);
1296 if (!retry)
1297 return;
1298 seq = 1;
1299 goto again;
1303 * Search for at least 1 mount point in the dentry's subdirs.
1304 * We descend to the next level whenever the d_subdirs
1305 * list is non-empty and continue searching.
1308 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1310 int *ret = data;
1311 if (d_mountpoint(dentry)) {
1312 *ret = 1;
1313 return D_WALK_QUIT;
1315 return D_WALK_CONTINUE;
1319 * have_submounts - check for mounts over a dentry
1320 * @parent: dentry to check.
1322 * Return true if the parent or its subdirectories contain
1323 * a mount point
1325 int have_submounts(struct dentry *parent)
1327 int ret = 0;
1329 d_walk(parent, &ret, check_mount, NULL);
1331 return ret;
1333 EXPORT_SYMBOL(have_submounts);
1336 * Called by mount code to set a mountpoint and check if the mountpoint is
1337 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1338 * subtree can become unreachable).
1340 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1341 * this reason take rename_lock and d_lock on dentry and ancestors.
1343 int d_set_mounted(struct dentry *dentry)
1345 struct dentry *p;
1346 int ret = -ENOENT;
1347 write_seqlock(&rename_lock);
1348 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1349 /* Need exclusion wrt. d_invalidate() */
1350 spin_lock(&p->d_lock);
1351 if (unlikely(d_unhashed(p))) {
1352 spin_unlock(&p->d_lock);
1353 goto out;
1355 spin_unlock(&p->d_lock);
1357 spin_lock(&dentry->d_lock);
1358 if (!d_unlinked(dentry)) {
1359 ret = -EBUSY;
1360 if (!d_mountpoint(dentry)) {
1361 dentry->d_flags |= DCACHE_MOUNTED;
1362 ret = 0;
1365 spin_unlock(&dentry->d_lock);
1366 out:
1367 write_sequnlock(&rename_lock);
1368 return ret;
1372 * Search the dentry child list of the specified parent,
1373 * and move any unused dentries to the end of the unused
1374 * list for prune_dcache(). We descend to the next level
1375 * whenever the d_subdirs list is non-empty and continue
1376 * searching.
1378 * It returns zero iff there are no unused children,
1379 * otherwise it returns the number of children moved to
1380 * the end of the unused list. This may not be the total
1381 * number of unused children, because select_parent can
1382 * drop the lock and return early due to latency
1383 * constraints.
1386 struct select_data {
1387 struct dentry *start;
1388 struct list_head dispose;
1389 int found;
1392 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1394 struct select_data *data = _data;
1395 enum d_walk_ret ret = D_WALK_CONTINUE;
1397 if (data->start == dentry)
1398 goto out;
1400 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1401 data->found++;
1402 } else {
1403 if (dentry->d_flags & DCACHE_LRU_LIST)
1404 d_lru_del(dentry);
1405 if (!dentry->d_lockref.count) {
1406 d_shrink_add(dentry, &data->dispose);
1407 data->found++;
1411 * We can return to the caller if we have found some (this
1412 * ensures forward progress). We'll be coming back to find
1413 * the rest.
1415 if (!list_empty(&data->dispose))
1416 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1417 out:
1418 return ret;
1422 * shrink_dcache_parent - prune dcache
1423 * @parent: parent of entries to prune
1425 * Prune the dcache to remove unused children of the parent dentry.
1427 void shrink_dcache_parent(struct dentry *parent)
1429 for (;;) {
1430 struct select_data data;
1432 INIT_LIST_HEAD(&data.dispose);
1433 data.start = parent;
1434 data.found = 0;
1436 d_walk(parent, &data, select_collect, NULL);
1437 if (!data.found)
1438 break;
1440 shrink_dentry_list(&data.dispose);
1441 cond_resched();
1444 EXPORT_SYMBOL(shrink_dcache_parent);
1446 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1448 /* it has busy descendents; complain about those instead */
1449 if (!list_empty(&dentry->d_subdirs))
1450 return D_WALK_CONTINUE;
1452 /* root with refcount 1 is fine */
1453 if (dentry == _data && dentry->d_lockref.count == 1)
1454 return D_WALK_CONTINUE;
1456 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1457 " still in use (%d) [unmount of %s %s]\n",
1458 dentry,
1459 dentry->d_inode ?
1460 dentry->d_inode->i_ino : 0UL,
1461 dentry,
1462 dentry->d_lockref.count,
1463 dentry->d_sb->s_type->name,
1464 dentry->d_sb->s_id);
1465 WARN_ON(1);
1466 return D_WALK_CONTINUE;
1469 static void do_one_tree(struct dentry *dentry)
1471 shrink_dcache_parent(dentry);
1472 d_walk(dentry, dentry, umount_check, NULL);
1473 d_drop(dentry);
1474 dput(dentry);
1478 * destroy the dentries attached to a superblock on unmounting
1480 void shrink_dcache_for_umount(struct super_block *sb)
1482 struct dentry *dentry;
1484 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1486 dentry = sb->s_root;
1487 sb->s_root = NULL;
1488 do_one_tree(dentry);
1490 while (!hlist_bl_empty(&sb->s_anon)) {
1491 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1492 do_one_tree(dentry);
1496 struct detach_data {
1497 struct select_data select;
1498 struct dentry *mountpoint;
1500 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1502 struct detach_data *data = _data;
1504 if (d_mountpoint(dentry)) {
1505 __dget_dlock(dentry);
1506 data->mountpoint = dentry;
1507 return D_WALK_QUIT;
1510 return select_collect(&data->select, dentry);
1513 static void check_and_drop(void *_data)
1515 struct detach_data *data = _data;
1517 if (!data->mountpoint && !data->select.found)
1518 __d_drop(data->select.start);
1522 * d_invalidate - detach submounts, prune dcache, and drop
1523 * @dentry: dentry to invalidate (aka detach, prune and drop)
1525 * no dcache lock.
1527 * The final d_drop is done as an atomic operation relative to
1528 * rename_lock ensuring there are no races with d_set_mounted. This
1529 * ensures there are no unhashed dentries on the path to a mountpoint.
1531 void d_invalidate(struct dentry *dentry)
1534 * If it's already been dropped, return OK.
1536 spin_lock(&dentry->d_lock);
1537 if (d_unhashed(dentry)) {
1538 spin_unlock(&dentry->d_lock);
1539 return;
1541 spin_unlock(&dentry->d_lock);
1543 /* Negative dentries can be dropped without further checks */
1544 if (!dentry->d_inode) {
1545 d_drop(dentry);
1546 return;
1549 for (;;) {
1550 struct detach_data data;
1552 data.mountpoint = NULL;
1553 INIT_LIST_HEAD(&data.select.dispose);
1554 data.select.start = dentry;
1555 data.select.found = 0;
1557 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1559 if (data.select.found)
1560 shrink_dentry_list(&data.select.dispose);
1562 if (data.mountpoint) {
1563 detach_mounts(data.mountpoint);
1564 dput(data.mountpoint);
1567 if (!data.mountpoint && !data.select.found)
1568 break;
1570 cond_resched();
1573 EXPORT_SYMBOL(d_invalidate);
1576 * __d_alloc - allocate a dcache entry
1577 * @sb: filesystem it will belong to
1578 * @name: qstr of the name
1580 * Allocates a dentry. It returns %NULL if there is insufficient memory
1581 * available. On a success the dentry is returned. The name passed in is
1582 * copied and the copy passed in may be reused after this call.
1585 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1587 struct dentry *dentry;
1588 char *dname;
1590 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1591 if (!dentry)
1592 return NULL;
1595 * We guarantee that the inline name is always NUL-terminated.
1596 * This way the memcpy() done by the name switching in rename
1597 * will still always have a NUL at the end, even if we might
1598 * be overwriting an internal NUL character
1600 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1601 if (name->len > DNAME_INLINE_LEN-1) {
1602 size_t size = offsetof(struct external_name, name[1]);
1603 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1604 if (!p) {
1605 kmem_cache_free(dentry_cache, dentry);
1606 return NULL;
1608 atomic_set(&p->u.count, 1);
1609 dname = p->name;
1610 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1611 kasan_unpoison_shadow(dname,
1612 round_up(name->len + 1, sizeof(unsigned long)));
1613 } else {
1614 dname = dentry->d_iname;
1617 dentry->d_name.len = name->len;
1618 dentry->d_name.hash = name->hash;
1619 memcpy(dname, name->name, name->len);
1620 dname[name->len] = 0;
1622 /* Make sure we always see the terminating NUL character */
1623 smp_wmb();
1624 dentry->d_name.name = dname;
1626 dentry->d_lockref.count = 1;
1627 dentry->d_flags = 0;
1628 spin_lock_init(&dentry->d_lock);
1629 seqcount_init(&dentry->d_seq);
1630 dentry->d_inode = NULL;
1631 dentry->d_parent = dentry;
1632 dentry->d_sb = sb;
1633 dentry->d_op = NULL;
1634 dentry->d_fsdata = NULL;
1635 INIT_HLIST_BL_NODE(&dentry->d_hash);
1636 INIT_LIST_HEAD(&dentry->d_lru);
1637 INIT_LIST_HEAD(&dentry->d_subdirs);
1638 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1639 INIT_LIST_HEAD(&dentry->d_child);
1640 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1642 this_cpu_inc(nr_dentry);
1644 return dentry;
1648 * d_alloc - allocate a dcache entry
1649 * @parent: parent of entry to allocate
1650 * @name: qstr of the name
1652 * Allocates a dentry. It returns %NULL if there is insufficient memory
1653 * available. On a success the dentry is returned. The name passed in is
1654 * copied and the copy passed in may be reused after this call.
1656 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1658 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1659 if (!dentry)
1660 return NULL;
1661 dentry->d_flags |= DCACHE_RCUACCESS;
1662 spin_lock(&parent->d_lock);
1664 * don't need child lock because it is not subject
1665 * to concurrency here
1667 __dget_dlock(parent);
1668 dentry->d_parent = parent;
1669 list_add(&dentry->d_child, &parent->d_subdirs);
1670 spin_unlock(&parent->d_lock);
1672 return dentry;
1674 EXPORT_SYMBOL(d_alloc);
1677 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1678 * @sb: the superblock
1679 * @name: qstr of the name
1681 * For a filesystem that just pins its dentries in memory and never
1682 * performs lookups at all, return an unhashed IS_ROOT dentry.
1684 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1686 return __d_alloc(sb, name);
1688 EXPORT_SYMBOL(d_alloc_pseudo);
1690 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1692 struct qstr q;
1694 q.name = name;
1695 q.len = strlen(name);
1696 q.hash = full_name_hash(q.name, q.len);
1697 return d_alloc(parent, &q);
1699 EXPORT_SYMBOL(d_alloc_name);
1701 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1703 WARN_ON_ONCE(dentry->d_op);
1704 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1705 DCACHE_OP_COMPARE |
1706 DCACHE_OP_REVALIDATE |
1707 DCACHE_OP_WEAK_REVALIDATE |
1708 DCACHE_OP_DELETE |
1709 DCACHE_OP_SELECT_INODE |
1710 DCACHE_OP_REAL));
1711 dentry->d_op = op;
1712 if (!op)
1713 return;
1714 if (op->d_hash)
1715 dentry->d_flags |= DCACHE_OP_HASH;
1716 if (op->d_compare)
1717 dentry->d_flags |= DCACHE_OP_COMPARE;
1718 if (op->d_revalidate)
1719 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1720 if (op->d_weak_revalidate)
1721 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1722 if (op->d_delete)
1723 dentry->d_flags |= DCACHE_OP_DELETE;
1724 if (op->d_prune)
1725 dentry->d_flags |= DCACHE_OP_PRUNE;
1726 if (op->d_select_inode)
1727 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1728 if (op->d_real)
1729 dentry->d_flags |= DCACHE_OP_REAL;
1732 EXPORT_SYMBOL(d_set_d_op);
1736 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1737 * @dentry - The dentry to mark
1739 * Mark a dentry as falling through to the lower layer (as set with
1740 * d_pin_lower()). This flag may be recorded on the medium.
1742 void d_set_fallthru(struct dentry *dentry)
1744 spin_lock(&dentry->d_lock);
1745 dentry->d_flags |= DCACHE_FALLTHRU;
1746 spin_unlock(&dentry->d_lock);
1748 EXPORT_SYMBOL(d_set_fallthru);
1750 static unsigned d_flags_for_inode(struct inode *inode)
1752 unsigned add_flags = DCACHE_REGULAR_TYPE;
1754 if (!inode)
1755 return DCACHE_MISS_TYPE;
1757 if (S_ISDIR(inode->i_mode)) {
1758 add_flags = DCACHE_DIRECTORY_TYPE;
1759 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1760 if (unlikely(!inode->i_op->lookup))
1761 add_flags = DCACHE_AUTODIR_TYPE;
1762 else
1763 inode->i_opflags |= IOP_LOOKUP;
1765 goto type_determined;
1768 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1769 if (unlikely(inode->i_op->follow_link)) {
1770 add_flags = DCACHE_SYMLINK_TYPE;
1771 goto type_determined;
1773 inode->i_opflags |= IOP_NOFOLLOW;
1776 if (unlikely(!S_ISREG(inode->i_mode)))
1777 add_flags = DCACHE_SPECIAL_TYPE;
1779 type_determined:
1780 if (unlikely(IS_AUTOMOUNT(inode)))
1781 add_flags |= DCACHE_NEED_AUTOMOUNT;
1782 return add_flags;
1785 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1787 unsigned add_flags = d_flags_for_inode(inode);
1789 spin_lock(&dentry->d_lock);
1790 if (inode)
1791 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1792 raw_write_seqcount_begin(&dentry->d_seq);
1793 __d_set_inode_and_type(dentry, inode, add_flags);
1794 raw_write_seqcount_end(&dentry->d_seq);
1795 spin_unlock(&dentry->d_lock);
1796 fsnotify_d_instantiate(dentry, inode);
1800 * d_instantiate - fill in inode information for a dentry
1801 * @entry: dentry to complete
1802 * @inode: inode to attach to this dentry
1804 * Fill in inode information in the entry.
1806 * This turns negative dentries into productive full members
1807 * of society.
1809 * NOTE! This assumes that the inode count has been incremented
1810 * (or otherwise set) by the caller to indicate that it is now
1811 * in use by the dcache.
1814 void d_instantiate(struct dentry *entry, struct inode * inode)
1816 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1817 if (inode)
1818 spin_lock(&inode->i_lock);
1819 __d_instantiate(entry, inode);
1820 if (inode)
1821 spin_unlock(&inode->i_lock);
1822 security_d_instantiate(entry, inode);
1824 EXPORT_SYMBOL(d_instantiate);
1827 * d_instantiate_unique - instantiate a non-aliased dentry
1828 * @entry: dentry to instantiate
1829 * @inode: inode to attach to this dentry
1831 * Fill in inode information in the entry. On success, it returns NULL.
1832 * If an unhashed alias of "entry" already exists, then we return the
1833 * aliased dentry instead and drop one reference to inode.
1835 * Note that in order to avoid conflicts with rename() etc, the caller
1836 * had better be holding the parent directory semaphore.
1838 * This also assumes that the inode count has been incremented
1839 * (or otherwise set) by the caller to indicate that it is now
1840 * in use by the dcache.
1842 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1843 struct inode *inode)
1845 struct dentry *alias;
1846 int len = entry->d_name.len;
1847 const char *name = entry->d_name.name;
1848 unsigned int hash = entry->d_name.hash;
1850 if (!inode) {
1851 __d_instantiate(entry, NULL);
1852 return NULL;
1855 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1857 * Don't need alias->d_lock here, because aliases with
1858 * d_parent == entry->d_parent are not subject to name or
1859 * parent changes, because the parent inode i_mutex is held.
1861 if (alias->d_name.hash != hash)
1862 continue;
1863 if (alias->d_parent != entry->d_parent)
1864 continue;
1865 if (alias->d_name.len != len)
1866 continue;
1867 if (dentry_cmp(alias, name, len))
1868 continue;
1869 __dget(alias);
1870 return alias;
1873 __d_instantiate(entry, inode);
1874 return NULL;
1877 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1879 struct dentry *result;
1881 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1883 if (inode)
1884 spin_lock(&inode->i_lock);
1885 result = __d_instantiate_unique(entry, inode);
1886 if (inode)
1887 spin_unlock(&inode->i_lock);
1889 if (!result) {
1890 security_d_instantiate(entry, inode);
1891 return NULL;
1894 BUG_ON(!d_unhashed(result));
1895 iput(inode);
1896 return result;
1899 EXPORT_SYMBOL(d_instantiate_unique);
1902 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1903 * with lockdep-related part of unlock_new_inode() done before
1904 * anything else. Use that instead of open-coding d_instantiate()/
1905 * unlock_new_inode() combinations.
1907 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1909 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1910 BUG_ON(!inode);
1911 lockdep_annotate_inode_mutex_key(inode);
1912 security_d_instantiate(entry, inode);
1913 spin_lock(&inode->i_lock);
1914 __d_instantiate(entry, inode);
1915 WARN_ON(!(inode->i_state & I_NEW));
1916 inode->i_state &= ~I_NEW;
1917 smp_mb();
1918 wake_up_bit(&inode->i_state, __I_NEW);
1919 spin_unlock(&inode->i_lock);
1921 EXPORT_SYMBOL(d_instantiate_new);
1924 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1925 * @entry: dentry to complete
1926 * @inode: inode to attach to this dentry
1928 * Fill in inode information in the entry. If a directory alias is found, then
1929 * return an error (and drop inode). Together with d_materialise_unique() this
1930 * guarantees that a directory inode may never have more than one alias.
1932 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1934 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1936 spin_lock(&inode->i_lock);
1937 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1938 spin_unlock(&inode->i_lock);
1939 iput(inode);
1940 return -EBUSY;
1942 __d_instantiate(entry, inode);
1943 spin_unlock(&inode->i_lock);
1944 security_d_instantiate(entry, inode);
1946 return 0;
1948 EXPORT_SYMBOL(d_instantiate_no_diralias);
1950 struct dentry *d_make_root(struct inode *root_inode)
1952 struct dentry *res = NULL;
1954 if (root_inode) {
1955 static const struct qstr name = QSTR_INIT("/", 1);
1957 res = __d_alloc(root_inode->i_sb, &name);
1958 if (res) {
1959 res->d_flags |= DCACHE_RCUACCESS;
1960 d_instantiate(res, root_inode);
1961 } else {
1962 iput(root_inode);
1965 return res;
1967 EXPORT_SYMBOL(d_make_root);
1969 static struct dentry * __d_find_any_alias(struct inode *inode)
1971 struct dentry *alias;
1973 if (hlist_empty(&inode->i_dentry))
1974 return NULL;
1975 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1976 __dget(alias);
1977 return alias;
1981 * d_find_any_alias - find any alias for a given inode
1982 * @inode: inode to find an alias for
1984 * If any aliases exist for the given inode, take and return a
1985 * reference for one of them. If no aliases exist, return %NULL.
1987 struct dentry *d_find_any_alias(struct inode *inode)
1989 struct dentry *de;
1991 spin_lock(&inode->i_lock);
1992 de = __d_find_any_alias(inode);
1993 spin_unlock(&inode->i_lock);
1994 return de;
1996 EXPORT_SYMBOL(d_find_any_alias);
1998 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
2000 static const struct qstr anonstring = QSTR_INIT("/", 1);
2001 struct dentry *tmp;
2002 struct dentry *res;
2003 unsigned add_flags;
2005 if (!inode)
2006 return ERR_PTR(-ESTALE);
2007 if (IS_ERR(inode))
2008 return ERR_CAST(inode);
2010 res = d_find_any_alias(inode);
2011 if (res)
2012 goto out_iput;
2014 tmp = __d_alloc(inode->i_sb, &anonstring);
2015 if (!tmp) {
2016 res = ERR_PTR(-ENOMEM);
2017 goto out_iput;
2020 spin_lock(&inode->i_lock);
2021 res = __d_find_any_alias(inode);
2022 if (res) {
2023 spin_unlock(&inode->i_lock);
2024 dput(tmp);
2025 goto out_iput;
2028 /* attach a disconnected dentry */
2029 add_flags = d_flags_for_inode(inode);
2031 if (disconnected)
2032 add_flags |= DCACHE_DISCONNECTED;
2034 spin_lock(&tmp->d_lock);
2035 __d_set_inode_and_type(tmp, inode, add_flags);
2036 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2037 hlist_bl_lock(&tmp->d_sb->s_anon);
2038 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2039 hlist_bl_unlock(&tmp->d_sb->s_anon);
2040 spin_unlock(&tmp->d_lock);
2041 spin_unlock(&inode->i_lock);
2042 security_d_instantiate(tmp, inode);
2044 return tmp;
2046 out_iput:
2047 if (res && !IS_ERR(res))
2048 security_d_instantiate(res, inode);
2049 iput(inode);
2050 return res;
2054 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2055 * @inode: inode to allocate the dentry for
2057 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2058 * similar open by handle operations. The returned dentry may be anonymous,
2059 * or may have a full name (if the inode was already in the cache).
2061 * When called on a directory inode, we must ensure that the inode only ever
2062 * has one dentry. If a dentry is found, that is returned instead of
2063 * allocating a new one.
2065 * On successful return, the reference to the inode has been transferred
2066 * to the dentry. In case of an error the reference on the inode is released.
2067 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2068 * be passed in and the error will be propagated to the return value,
2069 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2071 struct dentry *d_obtain_alias(struct inode *inode)
2073 return __d_obtain_alias(inode, 1);
2075 EXPORT_SYMBOL(d_obtain_alias);
2078 * d_obtain_root - find or allocate a dentry for a given inode
2079 * @inode: inode to allocate the dentry for
2081 * Obtain an IS_ROOT dentry for the root of a filesystem.
2083 * We must ensure that directory inodes only ever have one dentry. If a
2084 * dentry is found, that is returned instead of allocating a new one.
2086 * On successful return, the reference to the inode has been transferred
2087 * to the dentry. In case of an error the reference on the inode is
2088 * released. A %NULL or IS_ERR inode may be passed in and will be the
2089 * error will be propagate to the return value, with a %NULL @inode
2090 * replaced by ERR_PTR(-ESTALE).
2092 struct dentry *d_obtain_root(struct inode *inode)
2094 return __d_obtain_alias(inode, 0);
2096 EXPORT_SYMBOL(d_obtain_root);
2099 * d_add_ci - lookup or allocate new dentry with case-exact name
2100 * @inode: the inode case-insensitive lookup has found
2101 * @dentry: the negative dentry that was passed to the parent's lookup func
2102 * @name: the case-exact name to be associated with the returned dentry
2104 * This is to avoid filling the dcache with case-insensitive names to the
2105 * same inode, only the actual correct case is stored in the dcache for
2106 * case-insensitive filesystems.
2108 * For a case-insensitive lookup match and if the the case-exact dentry
2109 * already exists in in the dcache, use it and return it.
2111 * If no entry exists with the exact case name, allocate new dentry with
2112 * the exact case, and return the spliced entry.
2114 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2115 struct qstr *name)
2117 struct dentry *found;
2118 struct dentry *new;
2121 * First check if a dentry matching the name already exists,
2122 * if not go ahead and create it now.
2124 found = d_hash_and_lookup(dentry->d_parent, name);
2125 if (!found) {
2126 new = d_alloc(dentry->d_parent, name);
2127 if (!new) {
2128 found = ERR_PTR(-ENOMEM);
2129 } else {
2130 found = d_splice_alias(inode, new);
2131 if (found) {
2132 dput(new);
2133 return found;
2135 return new;
2138 iput(inode);
2139 return found;
2141 EXPORT_SYMBOL(d_add_ci);
2144 * Do the slow-case of the dentry name compare.
2146 * Unlike the dentry_cmp() function, we need to atomically
2147 * load the name and length information, so that the
2148 * filesystem can rely on them, and can use the 'name' and
2149 * 'len' information without worrying about walking off the
2150 * end of memory etc.
2152 * Thus the read_seqcount_retry() and the "duplicate" info
2153 * in arguments (the low-level filesystem should not look
2154 * at the dentry inode or name contents directly, since
2155 * rename can change them while we're in RCU mode).
2157 enum slow_d_compare {
2158 D_COMP_OK,
2159 D_COMP_NOMATCH,
2160 D_COMP_SEQRETRY,
2163 static noinline enum slow_d_compare slow_dentry_cmp(
2164 const struct dentry *parent,
2165 struct dentry *dentry,
2166 unsigned int seq,
2167 const struct qstr *name)
2169 int tlen = dentry->d_name.len;
2170 const char *tname = dentry->d_name.name;
2172 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2173 cpu_relax();
2174 return D_COMP_SEQRETRY;
2176 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2177 return D_COMP_NOMATCH;
2178 return D_COMP_OK;
2182 * __d_lookup_rcu - search for a dentry (racy, store-free)
2183 * @parent: parent dentry
2184 * @name: qstr of name we wish to find
2185 * @seqp: returns d_seq value at the point where the dentry was found
2186 * Returns: dentry, or NULL
2188 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2189 * resolution (store-free path walking) design described in
2190 * Documentation/filesystems/path-lookup.txt.
2192 * This is not to be used outside core vfs.
2194 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2195 * held, and rcu_read_lock held. The returned dentry must not be stored into
2196 * without taking d_lock and checking d_seq sequence count against @seq
2197 * returned here.
2199 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2200 * function.
2202 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2203 * the returned dentry, so long as its parent's seqlock is checked after the
2204 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2205 * is formed, giving integrity down the path walk.
2207 * NOTE! The caller *has* to check the resulting dentry against the sequence
2208 * number we've returned before using any of the resulting dentry state!
2210 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2211 const struct qstr *name,
2212 unsigned *seqp)
2214 u64 hashlen = name->hash_len;
2215 const unsigned char *str = name->name;
2216 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2217 struct hlist_bl_node *node;
2218 struct dentry *dentry;
2221 * Note: There is significant duplication with __d_lookup_rcu which is
2222 * required to prevent single threaded performance regressions
2223 * especially on architectures where smp_rmb (in seqcounts) are costly.
2224 * Keep the two functions in sync.
2228 * The hash list is protected using RCU.
2230 * Carefully use d_seq when comparing a candidate dentry, to avoid
2231 * races with d_move().
2233 * It is possible that concurrent renames can mess up our list
2234 * walk here and result in missing our dentry, resulting in the
2235 * false-negative result. d_lookup() protects against concurrent
2236 * renames using rename_lock seqlock.
2238 * See Documentation/filesystems/path-lookup.txt for more details.
2240 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2241 unsigned seq;
2243 seqretry:
2245 * The dentry sequence count protects us from concurrent
2246 * renames, and thus protects parent and name fields.
2248 * The caller must perform a seqcount check in order
2249 * to do anything useful with the returned dentry.
2251 * NOTE! We do a "raw" seqcount_begin here. That means that
2252 * we don't wait for the sequence count to stabilize if it
2253 * is in the middle of a sequence change. If we do the slow
2254 * dentry compare, we will do seqretries until it is stable,
2255 * and if we end up with a successful lookup, we actually
2256 * want to exit RCU lookup anyway.
2258 seq = raw_seqcount_begin(&dentry->d_seq);
2259 if (dentry->d_parent != parent)
2260 continue;
2261 if (d_unhashed(dentry))
2262 continue;
2264 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2265 if (dentry->d_name.hash != hashlen_hash(hashlen))
2266 continue;
2267 *seqp = seq;
2268 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2269 case D_COMP_OK:
2270 return dentry;
2271 case D_COMP_NOMATCH:
2272 continue;
2273 default:
2274 goto seqretry;
2278 if (dentry->d_name.hash_len != hashlen)
2279 continue;
2280 *seqp = seq;
2281 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2282 return dentry;
2284 return NULL;
2288 * d_lookup - search for a dentry
2289 * @parent: parent dentry
2290 * @name: qstr of name we wish to find
2291 * Returns: dentry, or NULL
2293 * d_lookup searches the children of the parent dentry for the name in
2294 * question. If the dentry is found its reference count is incremented and the
2295 * dentry is returned. The caller must use dput to free the entry when it has
2296 * finished using it. %NULL is returned if the dentry does not exist.
2298 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2300 struct dentry *dentry;
2301 unsigned seq;
2303 do {
2304 seq = read_seqbegin(&rename_lock);
2305 dentry = __d_lookup(parent, name);
2306 if (dentry)
2307 break;
2308 } while (read_seqretry(&rename_lock, seq));
2309 return dentry;
2311 EXPORT_SYMBOL(d_lookup);
2314 * __d_lookup - search for a dentry (racy)
2315 * @parent: parent dentry
2316 * @name: qstr of name we wish to find
2317 * Returns: dentry, or NULL
2319 * __d_lookup is like d_lookup, however it may (rarely) return a
2320 * false-negative result due to unrelated rename activity.
2322 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2323 * however it must be used carefully, eg. with a following d_lookup in
2324 * the case of failure.
2326 * __d_lookup callers must be commented.
2328 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2330 unsigned int len = name->len;
2331 unsigned int hash = name->hash;
2332 const unsigned char *str = name->name;
2333 struct hlist_bl_head *b = d_hash(parent, hash);
2334 struct hlist_bl_node *node;
2335 struct dentry *found = NULL;
2336 struct dentry *dentry;
2339 * Note: There is significant duplication with __d_lookup_rcu which is
2340 * required to prevent single threaded performance regressions
2341 * especially on architectures where smp_rmb (in seqcounts) are costly.
2342 * Keep the two functions in sync.
2346 * The hash list is protected using RCU.
2348 * Take d_lock when comparing a candidate dentry, to avoid races
2349 * with d_move().
2351 * It is possible that concurrent renames can mess up our list
2352 * walk here and result in missing our dentry, resulting in the
2353 * false-negative result. d_lookup() protects against concurrent
2354 * renames using rename_lock seqlock.
2356 * See Documentation/filesystems/path-lookup.txt for more details.
2358 rcu_read_lock();
2360 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2362 if (dentry->d_name.hash != hash)
2363 continue;
2365 spin_lock(&dentry->d_lock);
2366 if (dentry->d_parent != parent)
2367 goto next;
2368 if (d_unhashed(dentry))
2369 goto next;
2372 * It is safe to compare names since d_move() cannot
2373 * change the qstr (protected by d_lock).
2375 if (parent->d_flags & DCACHE_OP_COMPARE) {
2376 int tlen = dentry->d_name.len;
2377 const char *tname = dentry->d_name.name;
2378 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2379 goto next;
2380 } else {
2381 if (dentry->d_name.len != len)
2382 goto next;
2383 if (dentry_cmp(dentry, str, len))
2384 goto next;
2387 dentry->d_lockref.count++;
2388 found = dentry;
2389 spin_unlock(&dentry->d_lock);
2390 break;
2391 next:
2392 spin_unlock(&dentry->d_lock);
2394 rcu_read_unlock();
2396 return found;
2400 * d_hash_and_lookup - hash the qstr then search for a dentry
2401 * @dir: Directory to search in
2402 * @name: qstr of name we wish to find
2404 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2406 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2409 * Check for a fs-specific hash function. Note that we must
2410 * calculate the standard hash first, as the d_op->d_hash()
2411 * routine may choose to leave the hash value unchanged.
2413 name->hash = full_name_hash(name->name, name->len);
2414 if (dir->d_flags & DCACHE_OP_HASH) {
2415 int err = dir->d_op->d_hash(dir, name);
2416 if (unlikely(err < 0))
2417 return ERR_PTR(err);
2419 return d_lookup(dir, name);
2421 EXPORT_SYMBOL(d_hash_and_lookup);
2424 * When a file is deleted, we have two options:
2425 * - turn this dentry into a negative dentry
2426 * - unhash this dentry and free it.
2428 * Usually, we want to just turn this into
2429 * a negative dentry, but if anybody else is
2430 * currently using the dentry or the inode
2431 * we can't do that and we fall back on removing
2432 * it from the hash queues and waiting for
2433 * it to be deleted later when it has no users
2437 * d_delete - delete a dentry
2438 * @dentry: The dentry to delete
2440 * Turn the dentry into a negative dentry if possible, otherwise
2441 * remove it from the hash queues so it can be deleted later
2444 void d_delete(struct dentry * dentry)
2446 struct inode *inode;
2447 int isdir = 0;
2449 * Are we the only user?
2451 again:
2452 spin_lock(&dentry->d_lock);
2453 inode = dentry->d_inode;
2454 isdir = S_ISDIR(inode->i_mode);
2455 if (dentry->d_lockref.count == 1) {
2456 if (!spin_trylock(&inode->i_lock)) {
2457 spin_unlock(&dentry->d_lock);
2458 cpu_relax();
2459 goto again;
2461 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2462 dentry_unlink_inode(dentry);
2463 fsnotify_nameremove(dentry, isdir);
2464 return;
2467 if (!d_unhashed(dentry))
2468 __d_drop(dentry);
2470 spin_unlock(&dentry->d_lock);
2472 fsnotify_nameremove(dentry, isdir);
2474 EXPORT_SYMBOL(d_delete);
2476 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2478 BUG_ON(!d_unhashed(entry));
2479 hlist_bl_lock(b);
2480 hlist_bl_add_head_rcu(&entry->d_hash, b);
2481 hlist_bl_unlock(b);
2484 static void _d_rehash(struct dentry * entry)
2486 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2490 * d_rehash - add an entry back to the hash
2491 * @entry: dentry to add to the hash
2493 * Adds a dentry to the hash according to its name.
2496 void d_rehash(struct dentry * entry)
2498 spin_lock(&entry->d_lock);
2499 _d_rehash(entry);
2500 spin_unlock(&entry->d_lock);
2502 EXPORT_SYMBOL(d_rehash);
2505 * dentry_update_name_case - update case insensitive dentry with a new name
2506 * @dentry: dentry to be updated
2507 * @name: new name
2509 * Update a case insensitive dentry with new case of name.
2511 * dentry must have been returned by d_lookup with name @name. Old and new
2512 * name lengths must match (ie. no d_compare which allows mismatched name
2513 * lengths).
2515 * Parent inode i_mutex must be held over d_lookup and into this call (to
2516 * keep renames and concurrent inserts, and readdir(2) away).
2518 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2520 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2521 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2523 spin_lock(&dentry->d_lock);
2524 write_seqcount_begin(&dentry->d_seq);
2525 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2526 write_seqcount_end(&dentry->d_seq);
2527 spin_unlock(&dentry->d_lock);
2529 EXPORT_SYMBOL(dentry_update_name_case);
2531 static void swap_names(struct dentry *dentry, struct dentry *target)
2533 if (unlikely(dname_external(target))) {
2534 if (unlikely(dname_external(dentry))) {
2536 * Both external: swap the pointers
2538 swap(target->d_name.name, dentry->d_name.name);
2539 } else {
2541 * dentry:internal, target:external. Steal target's
2542 * storage and make target internal.
2544 memcpy(target->d_iname, dentry->d_name.name,
2545 dentry->d_name.len + 1);
2546 dentry->d_name.name = target->d_name.name;
2547 target->d_name.name = target->d_iname;
2549 } else {
2550 if (unlikely(dname_external(dentry))) {
2552 * dentry:external, target:internal. Give dentry's
2553 * storage to target and make dentry internal
2555 memcpy(dentry->d_iname, target->d_name.name,
2556 target->d_name.len + 1);
2557 target->d_name.name = dentry->d_name.name;
2558 dentry->d_name.name = dentry->d_iname;
2559 } else {
2561 * Both are internal.
2563 unsigned int i;
2564 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2565 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2566 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2567 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2568 swap(((long *) &dentry->d_iname)[i],
2569 ((long *) &target->d_iname)[i]);
2573 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2576 static void copy_name(struct dentry *dentry, struct dentry *target)
2578 struct external_name *old_name = NULL;
2579 if (unlikely(dname_external(dentry)))
2580 old_name = external_name(dentry);
2581 if (unlikely(dname_external(target))) {
2582 atomic_inc(&external_name(target)->u.count);
2583 dentry->d_name = target->d_name;
2584 } else {
2585 memcpy(dentry->d_iname, target->d_name.name,
2586 target->d_name.len + 1);
2587 dentry->d_name.name = dentry->d_iname;
2588 dentry->d_name.hash_len = target->d_name.hash_len;
2590 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2591 kfree_rcu(old_name, u.head);
2594 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2597 * XXXX: do we really need to take target->d_lock?
2599 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2600 spin_lock(&target->d_parent->d_lock);
2601 else {
2602 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2603 spin_lock(&dentry->d_parent->d_lock);
2604 spin_lock_nested(&target->d_parent->d_lock,
2605 DENTRY_D_LOCK_NESTED);
2606 } else {
2607 spin_lock(&target->d_parent->d_lock);
2608 spin_lock_nested(&dentry->d_parent->d_lock,
2609 DENTRY_D_LOCK_NESTED);
2612 if (target < dentry) {
2613 spin_lock_nested(&target->d_lock, 2);
2614 spin_lock_nested(&dentry->d_lock, 3);
2615 } else {
2616 spin_lock_nested(&dentry->d_lock, 2);
2617 spin_lock_nested(&target->d_lock, 3);
2621 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2623 if (target->d_parent != dentry->d_parent)
2624 spin_unlock(&dentry->d_parent->d_lock);
2625 if (target->d_parent != target)
2626 spin_unlock(&target->d_parent->d_lock);
2627 spin_unlock(&target->d_lock);
2628 spin_unlock(&dentry->d_lock);
2632 * When switching names, the actual string doesn't strictly have to
2633 * be preserved in the target - because we're dropping the target
2634 * anyway. As such, we can just do a simple memcpy() to copy over
2635 * the new name before we switch, unless we are going to rehash
2636 * it. Note that if we *do* unhash the target, we are not allowed
2637 * to rehash it without giving it a new name/hash key - whether
2638 * we swap or overwrite the names here, resulting name won't match
2639 * the reality in filesystem; it's only there for d_path() purposes.
2640 * Note that all of this is happening under rename_lock, so the
2641 * any hash lookup seeing it in the middle of manipulations will
2642 * be discarded anyway. So we do not care what happens to the hash
2643 * key in that case.
2646 * __d_move - move a dentry
2647 * @dentry: entry to move
2648 * @target: new dentry
2649 * @exchange: exchange the two dentries
2651 * Update the dcache to reflect the move of a file name. Negative
2652 * dcache entries should not be moved in this way. Caller must hold
2653 * rename_lock, the i_mutex of the source and target directories,
2654 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2656 static void __d_move(struct dentry *dentry, struct dentry *target,
2657 bool exchange)
2659 if (!dentry->d_inode)
2660 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2662 BUG_ON(d_ancestor(dentry, target));
2663 BUG_ON(d_ancestor(target, dentry));
2665 dentry_lock_for_move(dentry, target);
2667 write_seqcount_begin(&dentry->d_seq);
2668 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2670 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2673 * Move the dentry to the target hash queue. Don't bother checking
2674 * for the same hash queue because of how unlikely it is.
2676 __d_drop(dentry);
2677 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2680 * Unhash the target (d_delete() is not usable here). If exchanging
2681 * the two dentries, then rehash onto the other's hash queue.
2683 __d_drop(target);
2684 if (exchange) {
2685 __d_rehash(target,
2686 d_hash(dentry->d_parent, dentry->d_name.hash));
2689 /* Switch the names.. */
2690 if (exchange)
2691 swap_names(dentry, target);
2692 else
2693 copy_name(dentry, target);
2695 /* ... and switch them in the tree */
2696 if (IS_ROOT(dentry)) {
2697 /* splicing a tree */
2698 dentry->d_flags |= DCACHE_RCUACCESS;
2699 dentry->d_parent = target->d_parent;
2700 target->d_parent = target;
2701 list_del_init(&target->d_child);
2702 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2703 } else {
2704 /* swapping two dentries */
2705 swap(dentry->d_parent, target->d_parent);
2706 list_move(&target->d_child, &target->d_parent->d_subdirs);
2707 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2708 if (exchange)
2709 fsnotify_d_move(target);
2710 fsnotify_d_move(dentry);
2713 write_seqcount_end(&target->d_seq);
2714 write_seqcount_end(&dentry->d_seq);
2716 dentry_unlock_for_move(dentry, target);
2720 * d_move - move a dentry
2721 * @dentry: entry to move
2722 * @target: new dentry
2724 * Update the dcache to reflect the move of a file name. Negative
2725 * dcache entries should not be moved in this way. See the locking
2726 * requirements for __d_move.
2728 void d_move(struct dentry *dentry, struct dentry *target)
2730 write_seqlock(&rename_lock);
2731 __d_move(dentry, target, false);
2732 write_sequnlock(&rename_lock);
2734 EXPORT_SYMBOL(d_move);
2737 * d_exchange - exchange two dentries
2738 * @dentry1: first dentry
2739 * @dentry2: second dentry
2741 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2743 write_seqlock(&rename_lock);
2745 WARN_ON(!dentry1->d_inode);
2746 WARN_ON(!dentry2->d_inode);
2747 WARN_ON(IS_ROOT(dentry1));
2748 WARN_ON(IS_ROOT(dentry2));
2750 __d_move(dentry1, dentry2, true);
2752 write_sequnlock(&rename_lock);
2756 * d_ancestor - search for an ancestor
2757 * @p1: ancestor dentry
2758 * @p2: child dentry
2760 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2761 * an ancestor of p2, else NULL.
2763 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2765 struct dentry *p;
2767 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2768 if (p->d_parent == p1)
2769 return p;
2771 return NULL;
2775 * This helper attempts to cope with remotely renamed directories
2777 * It assumes that the caller is already holding
2778 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2780 * Note: If ever the locking in lock_rename() changes, then please
2781 * remember to update this too...
2783 static int __d_unalias(struct inode *inode,
2784 struct dentry *dentry, struct dentry *alias)
2786 struct mutex *m1 = NULL, *m2 = NULL;
2787 int ret = -ESTALE;
2789 /* If alias and dentry share a parent, then no extra locks required */
2790 if (alias->d_parent == dentry->d_parent)
2791 goto out_unalias;
2793 /* See lock_rename() */
2794 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2795 goto out_err;
2796 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2797 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2798 goto out_err;
2799 m2 = &alias->d_parent->d_inode->i_mutex;
2800 out_unalias:
2801 __d_move(alias, dentry, false);
2802 ret = 0;
2803 out_err:
2804 if (m2)
2805 mutex_unlock(m2);
2806 if (m1)
2807 mutex_unlock(m1);
2808 return ret;
2812 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2813 * @inode: the inode which may have a disconnected dentry
2814 * @dentry: a negative dentry which we want to point to the inode.
2816 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2817 * place of the given dentry and return it, else simply d_add the inode
2818 * to the dentry and return NULL.
2820 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2821 * we should error out: directories can't have multiple aliases.
2823 * This is needed in the lookup routine of any filesystem that is exportable
2824 * (via knfsd) so that we can build dcache paths to directories effectively.
2826 * If a dentry was found and moved, then it is returned. Otherwise NULL
2827 * is returned. This matches the expected return value of ->lookup.
2829 * Cluster filesystems may call this function with a negative, hashed dentry.
2830 * In that case, we know that the inode will be a regular file, and also this
2831 * will only occur during atomic_open. So we need to check for the dentry
2832 * being already hashed only in the final case.
2834 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2836 if (IS_ERR(inode))
2837 return ERR_CAST(inode);
2839 BUG_ON(!d_unhashed(dentry));
2841 if (!inode) {
2842 __d_instantiate(dentry, NULL);
2843 goto out;
2845 spin_lock(&inode->i_lock);
2846 if (S_ISDIR(inode->i_mode)) {
2847 struct dentry *new = __d_find_any_alias(inode);
2848 if (unlikely(new)) {
2849 /* The reference to new ensures it remains an alias */
2850 spin_unlock(&inode->i_lock);
2851 write_seqlock(&rename_lock);
2852 if (unlikely(d_ancestor(new, dentry))) {
2853 write_sequnlock(&rename_lock);
2854 dput(new);
2855 new = ERR_PTR(-ELOOP);
2856 pr_warn_ratelimited(
2857 "VFS: Lookup of '%s' in %s %s"
2858 " would have caused loop\n",
2859 dentry->d_name.name,
2860 inode->i_sb->s_type->name,
2861 inode->i_sb->s_id);
2862 } else if (!IS_ROOT(new)) {
2863 int err = __d_unalias(inode, dentry, new);
2864 write_sequnlock(&rename_lock);
2865 if (err) {
2866 dput(new);
2867 new = ERR_PTR(err);
2869 } else {
2870 __d_move(new, dentry, false);
2871 write_sequnlock(&rename_lock);
2872 security_d_instantiate(new, inode);
2874 iput(inode);
2875 return new;
2878 /* already taking inode->i_lock, so d_add() by hand */
2879 __d_instantiate(dentry, inode);
2880 spin_unlock(&inode->i_lock);
2881 out:
2882 security_d_instantiate(dentry, inode);
2883 d_rehash(dentry);
2884 return NULL;
2886 EXPORT_SYMBOL(d_splice_alias);
2888 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2890 *buflen -= namelen;
2891 if (*buflen < 0)
2892 return -ENAMETOOLONG;
2893 *buffer -= namelen;
2894 memcpy(*buffer, str, namelen);
2895 return 0;
2899 * prepend_name - prepend a pathname in front of current buffer pointer
2900 * @buffer: buffer pointer
2901 * @buflen: allocated length of the buffer
2902 * @name: name string and length qstr structure
2904 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2905 * make sure that either the old or the new name pointer and length are
2906 * fetched. However, there may be mismatch between length and pointer.
2907 * The length cannot be trusted, we need to copy it byte-by-byte until
2908 * the length is reached or a null byte is found. It also prepends "/" at
2909 * the beginning of the name. The sequence number check at the caller will
2910 * retry it again when a d_move() does happen. So any garbage in the buffer
2911 * due to mismatched pointer and length will be discarded.
2913 * Data dependency barrier is needed to make sure that we see that terminating
2914 * NUL. Alpha strikes again, film at 11...
2916 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2918 const char *dname = ACCESS_ONCE(name->name);
2919 u32 dlen = ACCESS_ONCE(name->len);
2920 char *p;
2922 smp_read_barrier_depends();
2924 *buflen -= dlen + 1;
2925 if (*buflen < 0)
2926 return -ENAMETOOLONG;
2927 p = *buffer -= dlen + 1;
2928 *p++ = '/';
2929 while (dlen--) {
2930 char c = *dname++;
2931 if (!c)
2932 break;
2933 *p++ = c;
2935 return 0;
2939 * prepend_path - Prepend path string to a buffer
2940 * @path: the dentry/vfsmount to report
2941 * @root: root vfsmnt/dentry
2942 * @buffer: pointer to the end of the buffer
2943 * @buflen: pointer to buffer length
2945 * The function will first try to write out the pathname without taking any
2946 * lock other than the RCU read lock to make sure that dentries won't go away.
2947 * It only checks the sequence number of the global rename_lock as any change
2948 * in the dentry's d_seq will be preceded by changes in the rename_lock
2949 * sequence number. If the sequence number had been changed, it will restart
2950 * the whole pathname back-tracing sequence again by taking the rename_lock.
2951 * In this case, there is no need to take the RCU read lock as the recursive
2952 * parent pointer references will keep the dentry chain alive as long as no
2953 * rename operation is performed.
2955 static int prepend_path(const struct path *path,
2956 const struct path *root,
2957 char **buffer, int *buflen)
2959 struct dentry *dentry;
2960 struct vfsmount *vfsmnt;
2961 struct mount *mnt;
2962 int error = 0;
2963 unsigned seq, m_seq = 0;
2964 char *bptr;
2965 int blen;
2967 rcu_read_lock();
2968 restart_mnt:
2969 read_seqbegin_or_lock(&mount_lock, &m_seq);
2970 seq = 0;
2971 rcu_read_lock();
2972 restart:
2973 bptr = *buffer;
2974 blen = *buflen;
2975 error = 0;
2976 dentry = path->dentry;
2977 vfsmnt = path->mnt;
2978 mnt = real_mount(vfsmnt);
2979 read_seqbegin_or_lock(&rename_lock, &seq);
2980 while (dentry != root->dentry || vfsmnt != root->mnt) {
2981 struct dentry * parent;
2983 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2984 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2985 /* Escaped? */
2986 if (dentry != vfsmnt->mnt_root) {
2987 bptr = *buffer;
2988 blen = *buflen;
2989 error = 3;
2990 break;
2992 /* Global root? */
2993 if (mnt != parent) {
2994 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2995 mnt = parent;
2996 vfsmnt = &mnt->mnt;
2997 continue;
2999 if (!error)
3000 error = is_mounted(vfsmnt) ? 1 : 2;
3001 break;
3003 parent = dentry->d_parent;
3004 prefetch(parent);
3005 error = prepend_name(&bptr, &blen, &dentry->d_name);
3006 if (error)
3007 break;
3009 dentry = parent;
3011 if (!(seq & 1))
3012 rcu_read_unlock();
3013 if (need_seqretry(&rename_lock, seq)) {
3014 seq = 1;
3015 goto restart;
3017 done_seqretry(&rename_lock, seq);
3019 if (!(m_seq & 1))
3020 rcu_read_unlock();
3021 if (need_seqretry(&mount_lock, m_seq)) {
3022 m_seq = 1;
3023 goto restart_mnt;
3025 done_seqretry(&mount_lock, m_seq);
3027 if (error >= 0 && bptr == *buffer) {
3028 if (--blen < 0)
3029 error = -ENAMETOOLONG;
3030 else
3031 *--bptr = '/';
3033 *buffer = bptr;
3034 *buflen = blen;
3035 return error;
3039 * __d_path - return the path of a dentry
3040 * @path: the dentry/vfsmount to report
3041 * @root: root vfsmnt/dentry
3042 * @buf: buffer to return value in
3043 * @buflen: buffer length
3045 * Convert a dentry into an ASCII path name.
3047 * Returns a pointer into the buffer or an error code if the
3048 * path was too long.
3050 * "buflen" should be positive.
3052 * If the path is not reachable from the supplied root, return %NULL.
3054 char *__d_path(const struct path *path,
3055 const struct path *root,
3056 char *buf, int buflen)
3058 char *res = buf + buflen;
3059 int error;
3061 prepend(&res, &buflen, "\0", 1);
3062 error = prepend_path(path, root, &res, &buflen);
3064 if (error < 0)
3065 return ERR_PTR(error);
3066 if (error > 0)
3067 return NULL;
3068 return res;
3071 char *d_absolute_path(const struct path *path,
3072 char *buf, int buflen)
3074 struct path root = {};
3075 char *res = buf + buflen;
3076 int error;
3078 prepend(&res, &buflen, "\0", 1);
3079 error = prepend_path(path, &root, &res, &buflen);
3081 if (error > 1)
3082 error = -EINVAL;
3083 if (error < 0)
3084 return ERR_PTR(error);
3085 return res;
3089 * same as __d_path but appends "(deleted)" for unlinked files.
3091 static int path_with_deleted(const struct path *path,
3092 const struct path *root,
3093 char **buf, int *buflen)
3095 prepend(buf, buflen, "\0", 1);
3096 if (d_unlinked(path->dentry)) {
3097 int error = prepend(buf, buflen, " (deleted)", 10);
3098 if (error)
3099 return error;
3102 return prepend_path(path, root, buf, buflen);
3105 static int prepend_unreachable(char **buffer, int *buflen)
3107 return prepend(buffer, buflen, "(unreachable)", 13);
3110 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3112 unsigned seq;
3114 do {
3115 seq = read_seqcount_begin(&fs->seq);
3116 *root = fs->root;
3117 } while (read_seqcount_retry(&fs->seq, seq));
3121 * d_path - return the path of a dentry
3122 * @path: path to report
3123 * @buf: buffer to return value in
3124 * @buflen: buffer length
3126 * Convert a dentry into an ASCII path name. If the entry has been deleted
3127 * the string " (deleted)" is appended. Note that this is ambiguous.
3129 * Returns a pointer into the buffer or an error code if the path was
3130 * too long. Note: Callers should use the returned pointer, not the passed
3131 * in buffer, to use the name! The implementation often starts at an offset
3132 * into the buffer, and may leave 0 bytes at the start.
3134 * "buflen" should be positive.
3136 char *d_path(const struct path *path, char *buf, int buflen)
3138 char *res = buf + buflen;
3139 struct path root;
3140 int error;
3143 * We have various synthetic filesystems that never get mounted. On
3144 * these filesystems dentries are never used for lookup purposes, and
3145 * thus don't need to be hashed. They also don't need a name until a
3146 * user wants to identify the object in /proc/pid/fd/. The little hack
3147 * below allows us to generate a name for these objects on demand:
3149 * Some pseudo inodes are mountable. When they are mounted
3150 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3151 * and instead have d_path return the mounted path.
3153 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3154 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3155 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3157 rcu_read_lock();
3158 get_fs_root_rcu(current->fs, &root);
3159 error = path_with_deleted(path, &root, &res, &buflen);
3160 rcu_read_unlock();
3162 if (error < 0)
3163 res = ERR_PTR(error);
3164 return res;
3166 EXPORT_SYMBOL(d_path);
3169 * Helper function for dentry_operations.d_dname() members
3171 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3172 const char *fmt, ...)
3174 va_list args;
3175 char temp[64];
3176 int sz;
3178 va_start(args, fmt);
3179 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3180 va_end(args);
3182 if (sz > sizeof(temp) || sz > buflen)
3183 return ERR_PTR(-ENAMETOOLONG);
3185 buffer += buflen - sz;
3186 return memcpy(buffer, temp, sz);
3189 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3191 char *end = buffer + buflen;
3192 /* these dentries are never renamed, so d_lock is not needed */
3193 if (prepend(&end, &buflen, " (deleted)", 11) ||
3194 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3195 prepend(&end, &buflen, "/", 1))
3196 end = ERR_PTR(-ENAMETOOLONG);
3197 return end;
3199 EXPORT_SYMBOL(simple_dname);
3202 * Write full pathname from the root of the filesystem into the buffer.
3204 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3206 struct dentry *dentry;
3207 char *end, *retval;
3208 int len, seq = 0;
3209 int error = 0;
3211 if (buflen < 2)
3212 goto Elong;
3214 rcu_read_lock();
3215 restart:
3216 dentry = d;
3217 end = buf + buflen;
3218 len = buflen;
3219 prepend(&end, &len, "\0", 1);
3220 /* Get '/' right */
3221 retval = end-1;
3222 *retval = '/';
3223 read_seqbegin_or_lock(&rename_lock, &seq);
3224 while (!IS_ROOT(dentry)) {
3225 struct dentry *parent = dentry->d_parent;
3227 prefetch(parent);
3228 error = prepend_name(&end, &len, &dentry->d_name);
3229 if (error)
3230 break;
3232 retval = end;
3233 dentry = parent;
3235 if (!(seq & 1))
3236 rcu_read_unlock();
3237 if (need_seqretry(&rename_lock, seq)) {
3238 seq = 1;
3239 goto restart;
3241 done_seqretry(&rename_lock, seq);
3242 if (error)
3243 goto Elong;
3244 return retval;
3245 Elong:
3246 return ERR_PTR(-ENAMETOOLONG);
3249 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3251 return __dentry_path(dentry, buf, buflen);
3253 EXPORT_SYMBOL(dentry_path_raw);
3255 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3257 char *p = NULL;
3258 char *retval;
3260 if (d_unlinked(dentry)) {
3261 p = buf + buflen;
3262 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3263 goto Elong;
3264 buflen++;
3266 retval = __dentry_path(dentry, buf, buflen);
3267 if (!IS_ERR(retval) && p)
3268 *p = '/'; /* restore '/' overriden with '\0' */
3269 return retval;
3270 Elong:
3271 return ERR_PTR(-ENAMETOOLONG);
3274 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3275 struct path *pwd)
3277 unsigned seq;
3279 do {
3280 seq = read_seqcount_begin(&fs->seq);
3281 *root = fs->root;
3282 *pwd = fs->pwd;
3283 } while (read_seqcount_retry(&fs->seq, seq));
3287 * NOTE! The user-level library version returns a
3288 * character pointer. The kernel system call just
3289 * returns the length of the buffer filled (which
3290 * includes the ending '\0' character), or a negative
3291 * error value. So libc would do something like
3293 * char *getcwd(char * buf, size_t size)
3295 * int retval;
3297 * retval = sys_getcwd(buf, size);
3298 * if (retval >= 0)
3299 * return buf;
3300 * errno = -retval;
3301 * return NULL;
3304 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3306 int error;
3307 struct path pwd, root;
3308 char *page = __getname();
3310 if (!page)
3311 return -ENOMEM;
3313 rcu_read_lock();
3314 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3316 error = -ENOENT;
3317 if (!d_unlinked(pwd.dentry)) {
3318 unsigned long len;
3319 char *cwd = page + PATH_MAX;
3320 int buflen = PATH_MAX;
3322 prepend(&cwd, &buflen, "\0", 1);
3323 error = prepend_path(&pwd, &root, &cwd, &buflen);
3324 rcu_read_unlock();
3326 if (error < 0)
3327 goto out;
3329 /* Unreachable from current root */
3330 if (error > 0) {
3331 error = prepend_unreachable(&cwd, &buflen);
3332 if (error)
3333 goto out;
3336 error = -ERANGE;
3337 len = PATH_MAX + page - cwd;
3338 if (len <= size) {
3339 error = len;
3340 if (copy_to_user(buf, cwd, len))
3341 error = -EFAULT;
3343 } else {
3344 rcu_read_unlock();
3347 out:
3348 __putname(page);
3349 return error;
3353 * Test whether new_dentry is a subdirectory of old_dentry.
3355 * Trivially implemented using the dcache structure
3359 * is_subdir - is new dentry a subdirectory of old_dentry
3360 * @new_dentry: new dentry
3361 * @old_dentry: old dentry
3363 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3364 * Returns 0 otherwise.
3365 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3368 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3370 int result;
3371 unsigned seq;
3373 if (new_dentry == old_dentry)
3374 return 1;
3376 do {
3377 /* for restarting inner loop in case of seq retry */
3378 seq = read_seqbegin(&rename_lock);
3380 * Need rcu_readlock to protect against the d_parent trashing
3381 * due to d_move
3383 rcu_read_lock();
3384 if (d_ancestor(old_dentry, new_dentry))
3385 result = 1;
3386 else
3387 result = 0;
3388 rcu_read_unlock();
3389 } while (read_seqretry(&rename_lock, seq));
3391 return result;
3394 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3396 struct dentry *root = data;
3397 if (dentry != root) {
3398 if (d_unhashed(dentry) || !dentry->d_inode)
3399 return D_WALK_SKIP;
3401 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3402 dentry->d_flags |= DCACHE_GENOCIDE;
3403 dentry->d_lockref.count--;
3406 return D_WALK_CONTINUE;
3409 void d_genocide(struct dentry *parent)
3411 d_walk(parent, parent, d_genocide_kill, NULL);
3414 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3416 inode_dec_link_count(inode);
3417 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3418 !hlist_unhashed(&dentry->d_u.d_alias) ||
3419 !d_unlinked(dentry));
3420 spin_lock(&dentry->d_parent->d_lock);
3421 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3422 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3423 (unsigned long long)inode->i_ino);
3424 spin_unlock(&dentry->d_lock);
3425 spin_unlock(&dentry->d_parent->d_lock);
3426 d_instantiate(dentry, inode);
3428 EXPORT_SYMBOL(d_tmpfile);
3430 static __initdata unsigned long dhash_entries;
3431 static int __init set_dhash_entries(char *str)
3433 if (!str)
3434 return 0;
3435 dhash_entries = simple_strtoul(str, &str, 0);
3436 return 1;
3438 __setup("dhash_entries=", set_dhash_entries);
3440 static void __init dcache_init_early(void)
3442 unsigned int loop;
3444 /* If hashes are distributed across NUMA nodes, defer
3445 * hash allocation until vmalloc space is available.
3447 if (hashdist)
3448 return;
3450 dentry_hashtable =
3451 alloc_large_system_hash("Dentry cache",
3452 sizeof(struct hlist_bl_head),
3453 dhash_entries,
3455 HASH_EARLY,
3456 &d_hash_shift,
3457 &d_hash_mask,
3461 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3462 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3465 static void __init dcache_init(void)
3467 unsigned int loop;
3470 * A constructor could be added for stable state like the lists,
3471 * but it is probably not worth it because of the cache nature
3472 * of the dcache.
3474 dentry_cache = KMEM_CACHE(dentry,
3475 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3477 /* Hash may have been set up in dcache_init_early */
3478 if (!hashdist)
3479 return;
3481 dentry_hashtable =
3482 alloc_large_system_hash("Dentry cache",
3483 sizeof(struct hlist_bl_head),
3484 dhash_entries,
3487 &d_hash_shift,
3488 &d_hash_mask,
3492 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3493 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3496 /* SLAB cache for __getname() consumers */
3497 struct kmem_cache *names_cachep __read_mostly;
3498 EXPORT_SYMBOL(names_cachep);
3500 EXPORT_SYMBOL(d_genocide);
3502 void __init vfs_caches_init_early(void)
3504 dcache_init_early();
3505 inode_init_early();
3508 void __init vfs_caches_init(void)
3510 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3511 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3513 dcache_init();
3514 inode_init();
3515 files_init();
3516 files_maxfiles_init();
3517 mnt_init();
3518 bdev_cache_init();
3519 chrdev_init();