ocfs2: fix locking for res->tracking and dlm->tracking_list
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob181db3c7f5d10859c93b8b8569a9d1395015d14e
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 return csum;
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83 struct ext4_inode_info *ei)
85 __u32 provided, calculated;
87 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88 cpu_to_le32(EXT4_OS_LINUX) ||
89 !ext4_has_metadata_csum(inode->i_sb))
90 return 1;
92 provided = le16_to_cpu(raw->i_checksum_lo);
93 calculated = ext4_inode_csum(inode, raw, ei);
94 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 else
98 calculated &= 0xFFFF;
100 return provided == calculated;
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104 struct ext4_inode_info *ei)
106 __u32 csum;
108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109 cpu_to_le32(EXT4_OS_LINUX) ||
110 !ext4_has_metadata_csum(inode->i_sb))
111 return;
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
123 trace_ext4_begin_ordered_truncate(inode, new_size);
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142 int pextents);
145 * Test whether an inode is a fast symlink.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 if (ext4_has_inline_data(inode))
153 return 0;
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 * Restart the transaction associated with *handle. This does a commit,
160 * so before we call here everything must be consistently dirtied against
161 * this transaction.
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 int nblocks)
166 int ret;
169 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
170 * moment, get_block can be called only for blocks inside i_size since
171 * page cache has been already dropped and writes are blocked by
172 * i_mutex. So we can safely drop the i_data_sem here.
174 BUG_ON(EXT4_JOURNAL(inode) == NULL);
175 jbd_debug(2, "restarting handle %p\n", handle);
176 up_write(&EXT4_I(inode)->i_data_sem);
177 ret = ext4_journal_restart(handle, nblocks);
178 down_write(&EXT4_I(inode)->i_data_sem);
179 ext4_discard_preallocations(inode);
181 return ret;
185 * Called at the last iput() if i_nlink is zero.
187 void ext4_evict_inode(struct inode *inode)
189 handle_t *handle;
190 int err;
192 trace_ext4_evict_inode(inode);
194 if (inode->i_nlink) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
224 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
225 goto no_delete;
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
236 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
242 sb_start_intwrite(inode->i_sb);
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
245 if (IS_ERR(handle)) {
246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
252 ext4_orphan_del(NULL, inode);
253 sb_end_intwrite(inode->i_sb);
254 goto no_delete;
257 if (IS_SYNC(inode))
258 ext4_handle_sync(handle);
259 inode->i_size = 0;
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
262 ext4_warning(inode->i_sb,
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
266 if (inode->i_blocks)
267 ext4_truncate(inode);
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
275 if (!ext4_handle_has_enough_credits(handle, 3)) {
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
280 ext4_warning(inode->i_sb,
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
284 ext4_orphan_del(NULL, inode);
285 sb_end_intwrite(inode->i_sb);
286 goto no_delete;
291 * Kill off the orphan record which ext4_truncate created.
292 * AKPM: I think this can be inside the above `if'.
293 * Note that ext4_orphan_del() has to be able to cope with the
294 * deletion of a non-existent orphan - this is because we don't
295 * know if ext4_truncate() actually created an orphan record.
296 * (Well, we could do this if we need to, but heck - it works)
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
308 if (ext4_mark_inode_dirty(handle, inode))
309 /* If that failed, just do the required in-core inode clear. */
310 ext4_clear_inode(inode);
311 else
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
314 sb_end_intwrite(inode->i_sb);
315 return;
316 no_delete:
317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 return &EXT4_I(inode)->i_reserved_quota;
325 #endif
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
331 void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 struct ext4_inode_info *ei = EXT4_I(inode);
337 spin_lock(&ei->i_block_reservation_lock);
338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 if (unlikely(used > ei->i_reserved_data_blocks)) {
340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 "with only %d reserved data blocks",
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357 else {
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
361 * not re-claim the quota for fallocated blocks.
363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
373 ext4_discard_preallocations(inode);
376 static int __check_block_validity(struct inode *inode, const char *func,
377 unsigned int line,
378 struct ext4_map_blocks *map)
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock %llu "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_pblk, map->m_len);
386 return -EFSCORRUPTED;
388 return 0;
391 #define check_block_validity(inode, map) \
392 __check_block_validity((inode), __func__, __LINE__, (map))
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
401 int retval;
403 map->m_flags = 0;
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412 down_read(&EXT4_I(inode)->i_data_sem);
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
424 * We don't check m_len because extent will be collpased in status
425 * tree. So the m_len might not equal.
427 if (es_map->m_lblk != map->m_lblk ||
428 es_map->m_flags != map->m_flags ||
429 es_map->m_pblk != map->m_pblk) {
430 printk("ES cache assertion failed for inode: %lu "
431 "es_cached ex [%d/%d/%llu/%x] != "
432 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
433 inode->i_ino, es_map->m_lblk, es_map->m_len,
434 es_map->m_pblk, es_map->m_flags, map->m_lblk,
435 map->m_len, map->m_pblk, map->m_flags,
436 retval, flags);
439 #endif /* ES_AGGRESSIVE_TEST */
442 * The ext4_map_blocks() function tries to look up the requested blocks,
443 * and returns if the blocks are already mapped.
445 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
446 * and store the allocated blocks in the result buffer head and mark it
447 * mapped.
449 * If file type is extents based, it will call ext4_ext_map_blocks(),
450 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
451 * based files
453 * On success, it returns the number of blocks being mapped or allocated.
454 * if create==0 and the blocks are pre-allocated and unwritten block,
455 * the result buffer head is unmapped. If the create ==1, it will make sure
456 * the buffer head is mapped.
458 * It returns 0 if plain look up failed (blocks have not been allocated), in
459 * that case, buffer head is unmapped
461 * It returns the error in case of allocation failure.
463 int ext4_map_blocks(handle_t *handle, struct inode *inode,
464 struct ext4_map_blocks *map, int flags)
466 struct extent_status es;
467 int retval;
468 int ret = 0;
469 #ifdef ES_AGGRESSIVE_TEST
470 struct ext4_map_blocks orig_map;
472 memcpy(&orig_map, map, sizeof(*map));
473 #endif
475 map->m_flags = 0;
476 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
477 "logical block %lu\n", inode->i_ino, flags, map->m_len,
478 (unsigned long) map->m_lblk);
481 * ext4_map_blocks returns an int, and m_len is an unsigned int
483 if (unlikely(map->m_len > INT_MAX))
484 map->m_len = INT_MAX;
486 /* We can handle the block number less than EXT_MAX_BLOCKS */
487 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
488 return -EFSCORRUPTED;
490 /* Lookup extent status tree firstly */
491 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
492 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
493 map->m_pblk = ext4_es_pblock(&es) +
494 map->m_lblk - es.es_lblk;
495 map->m_flags |= ext4_es_is_written(&es) ?
496 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
497 retval = es.es_len - (map->m_lblk - es.es_lblk);
498 if (retval > map->m_len)
499 retval = map->m_len;
500 map->m_len = retval;
501 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
502 retval = 0;
503 } else {
504 BUG_ON(1);
506 #ifdef ES_AGGRESSIVE_TEST
507 ext4_map_blocks_es_recheck(handle, inode, map,
508 &orig_map, flags);
509 #endif
510 goto found;
514 * Try to see if we can get the block without requesting a new
515 * file system block.
517 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
518 down_read(&EXT4_I(inode)->i_data_sem);
519 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520 retval = ext4_ext_map_blocks(handle, inode, map, flags &
521 EXT4_GET_BLOCKS_KEEP_SIZE);
522 } else {
523 retval = ext4_ind_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
526 if (retval > 0) {
527 unsigned int status;
529 if (unlikely(retval != map->m_len)) {
530 ext4_warning(inode->i_sb,
531 "ES len assertion failed for inode "
532 "%lu: retval %d != map->m_len %d",
533 inode->i_ino, retval, map->m_len);
534 WARN_ON(1);
537 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
538 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
539 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
540 !(status & EXTENT_STATUS_WRITTEN) &&
541 ext4_find_delalloc_range(inode, map->m_lblk,
542 map->m_lblk + map->m_len - 1))
543 status |= EXTENT_STATUS_DELAYED;
544 ret = ext4_es_insert_extent(inode, map->m_lblk,
545 map->m_len, map->m_pblk, status);
546 if (ret < 0)
547 retval = ret;
549 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
550 up_read((&EXT4_I(inode)->i_data_sem));
552 found:
553 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
554 ret = check_block_validity(inode, map);
555 if (ret != 0)
556 return ret;
559 /* If it is only a block(s) look up */
560 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
561 return retval;
564 * Returns if the blocks have already allocated
566 * Note that if blocks have been preallocated
567 * ext4_ext_get_block() returns the create = 0
568 * with buffer head unmapped.
570 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 * If we need to convert extent to unwritten
573 * we continue and do the actual work in
574 * ext4_ext_map_blocks()
576 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
577 return retval;
580 * Here we clear m_flags because after allocating an new extent,
581 * it will be set again.
583 map->m_flags &= ~EXT4_MAP_FLAGS;
586 * New blocks allocate and/or writing to unwritten extent
587 * will possibly result in updating i_data, so we take
588 * the write lock of i_data_sem, and call get_block()
589 * with create == 1 flag.
591 down_write(&EXT4_I(inode)->i_data_sem);
594 * We need to check for EXT4 here because migrate
595 * could have changed the inode type in between
597 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
598 retval = ext4_ext_map_blocks(handle, inode, map, flags);
599 } else {
600 retval = ext4_ind_map_blocks(handle, inode, map, flags);
602 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
604 * We allocated new blocks which will result in
605 * i_data's format changing. Force the migrate
606 * to fail by clearing migrate flags
608 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
612 * Update reserved blocks/metadata blocks after successful
613 * block allocation which had been deferred till now. We don't
614 * support fallocate for non extent files. So we can update
615 * reserve space here.
617 if ((retval > 0) &&
618 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
619 ext4_da_update_reserve_space(inode, retval, 1);
622 if (retval > 0) {
623 unsigned int status;
625 if (unlikely(retval != map->m_len)) {
626 ext4_warning(inode->i_sb,
627 "ES len assertion failed for inode "
628 "%lu: retval %d != map->m_len %d",
629 inode->i_ino, retval, map->m_len);
630 WARN_ON(1);
634 * If the extent has been zeroed out, we don't need to update
635 * extent status tree.
637 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
638 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
639 if (ext4_es_is_written(&es))
640 goto has_zeroout;
642 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
643 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
644 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
645 !(status & EXTENT_STATUS_WRITTEN) &&
646 ext4_find_delalloc_range(inode, map->m_lblk,
647 map->m_lblk + map->m_len - 1))
648 status |= EXTENT_STATUS_DELAYED;
649 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
650 map->m_pblk, status);
651 if (ret < 0)
652 retval = ret;
655 has_zeroout:
656 up_write((&EXT4_I(inode)->i_data_sem));
657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
658 ret = check_block_validity(inode, map);
659 if (ret != 0)
660 return ret;
663 * Inodes with freshly allocated blocks where contents will be
664 * visible after transaction commit must be on transaction's
665 * ordered data list.
667 if (map->m_flags & EXT4_MAP_NEW &&
668 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
669 !IS_NOQUOTA(inode) &&
670 ext4_should_order_data(inode)) {
671 ret = ext4_jbd2_file_inode(handle, inode);
672 if (ret)
673 return ret;
676 return retval;
680 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
681 * we have to be careful as someone else may be manipulating b_state as well.
683 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
685 unsigned long old_state;
686 unsigned long new_state;
688 flags &= EXT4_MAP_FLAGS;
690 /* Dummy buffer_head? Set non-atomically. */
691 if (!bh->b_page) {
692 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
693 return;
696 * Someone else may be modifying b_state. Be careful! This is ugly but
697 * once we get rid of using bh as a container for mapping information
698 * to pass to / from get_block functions, this can go away.
700 do {
701 old_state = READ_ONCE(bh->b_state);
702 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
703 } while (unlikely(
704 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
707 /* Maximum number of blocks we map for direct IO at once. */
708 #define DIO_MAX_BLOCKS 4096
710 static int _ext4_get_block(struct inode *inode, sector_t iblock,
711 struct buffer_head *bh, int flags)
713 handle_t *handle = ext4_journal_current_handle();
714 struct ext4_map_blocks map;
715 int ret = 0, started = 0;
716 int dio_credits;
718 if (ext4_has_inline_data(inode))
719 return -ERANGE;
721 map.m_lblk = iblock;
722 map.m_len = bh->b_size >> inode->i_blkbits;
724 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
725 /* Direct IO write... */
726 if (map.m_len > DIO_MAX_BLOCKS)
727 map.m_len = DIO_MAX_BLOCKS;
728 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
729 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
730 dio_credits);
731 if (IS_ERR(handle)) {
732 ret = PTR_ERR(handle);
733 return ret;
735 started = 1;
738 ret = ext4_map_blocks(handle, inode, &map, flags);
739 if (ret > 0) {
740 ext4_io_end_t *io_end = ext4_inode_aio(inode);
742 map_bh(bh, inode->i_sb, map.m_pblk);
743 ext4_update_bh_state(bh, map.m_flags);
744 if (IS_DAX(inode) && buffer_unwritten(bh)) {
746 * dgc: I suspect unwritten conversion on ext4+DAX is
747 * fundamentally broken here when there are concurrent
748 * read/write in progress on this inode.
750 WARN_ON_ONCE(io_end);
751 bh->b_assoc_map = inode->i_mapping;
752 bh->b_private = (void *)(unsigned long)iblock;
754 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755 set_buffer_defer_completion(bh);
756 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
757 ret = 0;
759 if (started)
760 ext4_journal_stop(handle);
761 return ret;
764 int ext4_get_block(struct inode *inode, sector_t iblock,
765 struct buffer_head *bh, int create)
767 return _ext4_get_block(inode, iblock, bh,
768 create ? EXT4_GET_BLOCKS_CREATE : 0);
772 * `handle' can be NULL if create is zero
774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
775 ext4_lblk_t block, int map_flags)
777 struct ext4_map_blocks map;
778 struct buffer_head *bh;
779 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
780 int err;
782 J_ASSERT(handle != NULL || create == 0);
784 map.m_lblk = block;
785 map.m_len = 1;
786 err = ext4_map_blocks(handle, inode, &map, map_flags);
788 if (err == 0)
789 return create ? ERR_PTR(-ENOSPC) : NULL;
790 if (err < 0)
791 return ERR_PTR(err);
793 bh = sb_getblk(inode->i_sb, map.m_pblk);
794 if (unlikely(!bh))
795 return ERR_PTR(-ENOMEM);
796 if (map.m_flags & EXT4_MAP_NEW) {
797 J_ASSERT(create != 0);
798 J_ASSERT(handle != NULL);
801 * Now that we do not always journal data, we should
802 * keep in mind whether this should always journal the
803 * new buffer as metadata. For now, regular file
804 * writes use ext4_get_block instead, so it's not a
805 * problem.
807 lock_buffer(bh);
808 BUFFER_TRACE(bh, "call get_create_access");
809 err = ext4_journal_get_create_access(handle, bh);
810 if (unlikely(err)) {
811 unlock_buffer(bh);
812 goto errout;
814 if (!buffer_uptodate(bh)) {
815 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816 set_buffer_uptodate(bh);
818 unlock_buffer(bh);
819 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820 err = ext4_handle_dirty_metadata(handle, inode, bh);
821 if (unlikely(err))
822 goto errout;
823 } else
824 BUFFER_TRACE(bh, "not a new buffer");
825 return bh;
826 errout:
827 brelse(bh);
828 return ERR_PTR(err);
831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
832 ext4_lblk_t block, int map_flags)
834 struct buffer_head *bh;
836 bh = ext4_getblk(handle, inode, block, map_flags);
837 if (IS_ERR(bh))
838 return bh;
839 if (!bh || buffer_uptodate(bh))
840 return bh;
841 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
842 wait_on_buffer(bh);
843 if (buffer_uptodate(bh))
844 return bh;
845 put_bh(bh);
846 return ERR_PTR(-EIO);
849 int ext4_walk_page_buffers(handle_t *handle,
850 struct buffer_head *head,
851 unsigned from,
852 unsigned to,
853 int *partial,
854 int (*fn)(handle_t *handle,
855 struct buffer_head *bh))
857 struct buffer_head *bh;
858 unsigned block_start, block_end;
859 unsigned blocksize = head->b_size;
860 int err, ret = 0;
861 struct buffer_head *next;
863 for (bh = head, block_start = 0;
864 ret == 0 && (bh != head || !block_start);
865 block_start = block_end, bh = next) {
866 next = bh->b_this_page;
867 block_end = block_start + blocksize;
868 if (block_end <= from || block_start >= to) {
869 if (partial && !buffer_uptodate(bh))
870 *partial = 1;
871 continue;
873 err = (*fn)(handle, bh);
874 if (!ret)
875 ret = err;
877 return ret;
881 * To preserve ordering, it is essential that the hole instantiation and
882 * the data write be encapsulated in a single transaction. We cannot
883 * close off a transaction and start a new one between the ext4_get_block()
884 * and the commit_write(). So doing the jbd2_journal_start at the start of
885 * prepare_write() is the right place.
887 * Also, this function can nest inside ext4_writepage(). In that case, we
888 * *know* that ext4_writepage() has generated enough buffer credits to do the
889 * whole page. So we won't block on the journal in that case, which is good,
890 * because the caller may be PF_MEMALLOC.
892 * By accident, ext4 can be reentered when a transaction is open via
893 * quota file writes. If we were to commit the transaction while thus
894 * reentered, there can be a deadlock - we would be holding a quota
895 * lock, and the commit would never complete if another thread had a
896 * transaction open and was blocking on the quota lock - a ranking
897 * violation.
899 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900 * will _not_ run commit under these circumstances because handle->h_ref
901 * is elevated. We'll still have enough credits for the tiny quotafile
902 * write.
904 int do_journal_get_write_access(handle_t *handle,
905 struct buffer_head *bh)
907 int dirty = buffer_dirty(bh);
908 int ret;
910 if (!buffer_mapped(bh) || buffer_freed(bh))
911 return 0;
913 * __block_write_begin() could have dirtied some buffers. Clean
914 * the dirty bit as jbd2_journal_get_write_access() could complain
915 * otherwise about fs integrity issues. Setting of the dirty bit
916 * by __block_write_begin() isn't a real problem here as we clear
917 * the bit before releasing a page lock and thus writeback cannot
918 * ever write the buffer.
920 if (dirty)
921 clear_buffer_dirty(bh);
922 BUFFER_TRACE(bh, "get write access");
923 ret = ext4_journal_get_write_access(handle, bh);
924 if (!ret && dirty)
925 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926 return ret;
929 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
930 struct buffer_head *bh_result, int create);
932 #ifdef CONFIG_EXT4_FS_ENCRYPTION
933 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
934 get_block_t *get_block)
936 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
937 unsigned to = from + len;
938 struct inode *inode = page->mapping->host;
939 unsigned block_start, block_end;
940 sector_t block;
941 int err = 0;
942 unsigned blocksize = inode->i_sb->s_blocksize;
943 unsigned bbits;
944 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
945 bool decrypt = false;
947 BUG_ON(!PageLocked(page));
948 BUG_ON(from > PAGE_CACHE_SIZE);
949 BUG_ON(to > PAGE_CACHE_SIZE);
950 BUG_ON(from > to);
952 if (!page_has_buffers(page))
953 create_empty_buffers(page, blocksize, 0);
954 head = page_buffers(page);
955 bbits = ilog2(blocksize);
956 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
958 for (bh = head, block_start = 0; bh != head || !block_start;
959 block++, block_start = block_end, bh = bh->b_this_page) {
960 block_end = block_start + blocksize;
961 if (block_end <= from || block_start >= to) {
962 if (PageUptodate(page)) {
963 if (!buffer_uptodate(bh))
964 set_buffer_uptodate(bh);
966 continue;
968 if (buffer_new(bh))
969 clear_buffer_new(bh);
970 if (!buffer_mapped(bh)) {
971 WARN_ON(bh->b_size != blocksize);
972 err = get_block(inode, block, bh, 1);
973 if (err)
974 break;
975 if (buffer_new(bh)) {
976 unmap_underlying_metadata(bh->b_bdev,
977 bh->b_blocknr);
978 if (PageUptodate(page)) {
979 clear_buffer_new(bh);
980 set_buffer_uptodate(bh);
981 mark_buffer_dirty(bh);
982 continue;
984 if (block_end > to || block_start < from)
985 zero_user_segments(page, to, block_end,
986 block_start, from);
987 continue;
990 if (PageUptodate(page)) {
991 if (!buffer_uptodate(bh))
992 set_buffer_uptodate(bh);
993 continue;
995 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
996 !buffer_unwritten(bh) &&
997 (block_start < from || block_end > to)) {
998 ll_rw_block(READ, 1, &bh);
999 *wait_bh++ = bh;
1000 decrypt = ext4_encrypted_inode(inode) &&
1001 S_ISREG(inode->i_mode);
1005 * If we issued read requests, let them complete.
1007 while (wait_bh > wait) {
1008 wait_on_buffer(*--wait_bh);
1009 if (!buffer_uptodate(*wait_bh))
1010 err = -EIO;
1012 if (unlikely(err))
1013 page_zero_new_buffers(page, from, to);
1014 else if (decrypt)
1015 err = ext4_decrypt(page);
1016 return err;
1018 #endif
1020 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1021 loff_t pos, unsigned len, unsigned flags,
1022 struct page **pagep, void **fsdata)
1024 struct inode *inode = mapping->host;
1025 int ret, needed_blocks;
1026 handle_t *handle;
1027 int retries = 0;
1028 struct page *page;
1029 pgoff_t index;
1030 unsigned from, to;
1032 trace_ext4_write_begin(inode, pos, len, flags);
1034 * Reserve one block more for addition to orphan list in case
1035 * we allocate blocks but write fails for some reason
1037 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1038 index = pos >> PAGE_CACHE_SHIFT;
1039 from = pos & (PAGE_CACHE_SIZE - 1);
1040 to = from + len;
1042 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1043 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1044 flags, pagep);
1045 if (ret < 0)
1046 return ret;
1047 if (ret == 1)
1048 return 0;
1052 * grab_cache_page_write_begin() can take a long time if the
1053 * system is thrashing due to memory pressure, or if the page
1054 * is being written back. So grab it first before we start
1055 * the transaction handle. This also allows us to allocate
1056 * the page (if needed) without using GFP_NOFS.
1058 retry_grab:
1059 page = grab_cache_page_write_begin(mapping, index, flags);
1060 if (!page)
1061 return -ENOMEM;
1062 unlock_page(page);
1064 retry_journal:
1065 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1066 if (IS_ERR(handle)) {
1067 page_cache_release(page);
1068 return PTR_ERR(handle);
1071 lock_page(page);
1072 if (page->mapping != mapping) {
1073 /* The page got truncated from under us */
1074 unlock_page(page);
1075 page_cache_release(page);
1076 ext4_journal_stop(handle);
1077 goto retry_grab;
1079 /* In case writeback began while the page was unlocked */
1080 wait_for_stable_page(page);
1082 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1083 if (ext4_should_dioread_nolock(inode))
1084 ret = ext4_block_write_begin(page, pos, len,
1085 ext4_get_block_write);
1086 else
1087 ret = ext4_block_write_begin(page, pos, len,
1088 ext4_get_block);
1089 #else
1090 if (ext4_should_dioread_nolock(inode))
1091 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1092 else
1093 ret = __block_write_begin(page, pos, len, ext4_get_block);
1094 #endif
1095 if (!ret && ext4_should_journal_data(inode)) {
1096 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1097 from, to, NULL,
1098 do_journal_get_write_access);
1101 if (ret) {
1102 unlock_page(page);
1104 * __block_write_begin may have instantiated a few blocks
1105 * outside i_size. Trim these off again. Don't need
1106 * i_size_read because we hold i_mutex.
1108 * Add inode to orphan list in case we crash before
1109 * truncate finishes
1111 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1112 ext4_orphan_add(handle, inode);
1114 ext4_journal_stop(handle);
1115 if (pos + len > inode->i_size) {
1116 ext4_truncate_failed_write(inode);
1118 * If truncate failed early the inode might
1119 * still be on the orphan list; we need to
1120 * make sure the inode is removed from the
1121 * orphan list in that case.
1123 if (inode->i_nlink)
1124 ext4_orphan_del(NULL, inode);
1127 if (ret == -ENOSPC &&
1128 ext4_should_retry_alloc(inode->i_sb, &retries))
1129 goto retry_journal;
1130 page_cache_release(page);
1131 return ret;
1133 *pagep = page;
1134 return ret;
1137 /* For write_end() in data=journal mode */
1138 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1140 int ret;
1141 if (!buffer_mapped(bh) || buffer_freed(bh))
1142 return 0;
1143 set_buffer_uptodate(bh);
1144 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1145 clear_buffer_meta(bh);
1146 clear_buffer_prio(bh);
1147 return ret;
1151 * We need to pick up the new inode size which generic_commit_write gave us
1152 * `file' can be NULL - eg, when called from page_symlink().
1154 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1155 * buffers are managed internally.
1157 static int ext4_write_end(struct file *file,
1158 struct address_space *mapping,
1159 loff_t pos, unsigned len, unsigned copied,
1160 struct page *page, void *fsdata)
1162 handle_t *handle = ext4_journal_current_handle();
1163 struct inode *inode = mapping->host;
1164 loff_t old_size = inode->i_size;
1165 int ret = 0, ret2;
1166 int i_size_changed = 0;
1167 int inline_data = ext4_has_inline_data(inode);
1169 trace_ext4_write_end(inode, pos, len, copied);
1170 if (inline_data) {
1171 ret = ext4_write_inline_data_end(inode, pos, len,
1172 copied, page);
1173 if (ret < 0) {
1174 unlock_page(page);
1175 put_page(page);
1176 goto errout;
1178 copied = ret;
1179 } else
1180 copied = block_write_end(file, mapping, pos,
1181 len, copied, page, fsdata);
1183 * it's important to update i_size while still holding page lock:
1184 * page writeout could otherwise come in and zero beyond i_size.
1186 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1187 unlock_page(page);
1188 page_cache_release(page);
1190 if (old_size < pos)
1191 pagecache_isize_extended(inode, old_size, pos);
1193 * Don't mark the inode dirty under page lock. First, it unnecessarily
1194 * makes the holding time of page lock longer. Second, it forces lock
1195 * ordering of page lock and transaction start for journaling
1196 * filesystems.
1198 if (i_size_changed || inline_data)
1199 ext4_mark_inode_dirty(handle, inode);
1201 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1202 /* if we have allocated more blocks and copied
1203 * less. We will have blocks allocated outside
1204 * inode->i_size. So truncate them
1206 ext4_orphan_add(handle, inode);
1207 errout:
1208 ret2 = ext4_journal_stop(handle);
1209 if (!ret)
1210 ret = ret2;
1212 if (pos + len > inode->i_size) {
1213 ext4_truncate_failed_write(inode);
1215 * If truncate failed early the inode might still be
1216 * on the orphan list; we need to make sure the inode
1217 * is removed from the orphan list in that case.
1219 if (inode->i_nlink)
1220 ext4_orphan_del(NULL, inode);
1223 return ret ? ret : copied;
1227 * This is a private version of page_zero_new_buffers() which doesn't
1228 * set the buffer to be dirty, since in data=journalled mode we need
1229 * to call ext4_handle_dirty_metadata() instead.
1231 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1232 struct page *page,
1233 unsigned from, unsigned to)
1235 unsigned int block_start = 0, block_end;
1236 struct buffer_head *head, *bh;
1238 bh = head = page_buffers(page);
1239 do {
1240 block_end = block_start + bh->b_size;
1241 if (buffer_new(bh)) {
1242 if (block_end > from && block_start < to) {
1243 if (!PageUptodate(page)) {
1244 unsigned start, size;
1246 start = max(from, block_start);
1247 size = min(to, block_end) - start;
1249 zero_user(page, start, size);
1250 write_end_fn(handle, bh);
1252 clear_buffer_new(bh);
1255 block_start = block_end;
1256 bh = bh->b_this_page;
1257 } while (bh != head);
1260 static int ext4_journalled_write_end(struct file *file,
1261 struct address_space *mapping,
1262 loff_t pos, unsigned len, unsigned copied,
1263 struct page *page, void *fsdata)
1265 handle_t *handle = ext4_journal_current_handle();
1266 struct inode *inode = mapping->host;
1267 loff_t old_size = inode->i_size;
1268 int ret = 0, ret2;
1269 int partial = 0;
1270 unsigned from, to;
1271 int size_changed = 0;
1272 int inline_data = ext4_has_inline_data(inode);
1274 trace_ext4_journalled_write_end(inode, pos, len, copied);
1275 from = pos & (PAGE_CACHE_SIZE - 1);
1276 to = from + len;
1278 BUG_ON(!ext4_handle_valid(handle));
1280 if (inline_data) {
1281 ret = ext4_write_inline_data_end(inode, pos, len,
1282 copied, page);
1283 if (ret < 0) {
1284 unlock_page(page);
1285 put_page(page);
1286 goto errout;
1288 copied = ret;
1289 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1290 copied = 0;
1291 ext4_journalled_zero_new_buffers(handle, page, from, to);
1292 } else {
1293 if (unlikely(copied < len))
1294 ext4_journalled_zero_new_buffers(handle, page,
1295 from + copied, to);
1296 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1297 from + copied, &partial,
1298 write_end_fn);
1299 if (!partial)
1300 SetPageUptodate(page);
1302 size_changed = ext4_update_inode_size(inode, pos + copied);
1303 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1304 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1305 unlock_page(page);
1306 page_cache_release(page);
1308 if (old_size < pos)
1309 pagecache_isize_extended(inode, old_size, pos);
1311 if (size_changed || inline_data) {
1312 ret2 = ext4_mark_inode_dirty(handle, inode);
1313 if (!ret)
1314 ret = ret2;
1317 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1318 /* if we have allocated more blocks and copied
1319 * less. We will have blocks allocated outside
1320 * inode->i_size. So truncate them
1322 ext4_orphan_add(handle, inode);
1324 errout:
1325 ret2 = ext4_journal_stop(handle);
1326 if (!ret)
1327 ret = ret2;
1328 if (pos + len > inode->i_size) {
1329 ext4_truncate_failed_write(inode);
1331 * If truncate failed early the inode might still be
1332 * on the orphan list; we need to make sure the inode
1333 * is removed from the orphan list in that case.
1335 if (inode->i_nlink)
1336 ext4_orphan_del(NULL, inode);
1339 return ret ? ret : copied;
1343 * Reserve space for a single cluster
1345 static int ext4_da_reserve_space(struct inode *inode)
1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 struct ext4_inode_info *ei = EXT4_I(inode);
1349 int ret;
1352 * We will charge metadata quota at writeout time; this saves
1353 * us from metadata over-estimation, though we may go over by
1354 * a small amount in the end. Here we just reserve for data.
1356 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1357 if (ret)
1358 return ret;
1360 spin_lock(&ei->i_block_reservation_lock);
1361 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1362 spin_unlock(&ei->i_block_reservation_lock);
1363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1364 return -ENOSPC;
1366 ei->i_reserved_data_blocks++;
1367 trace_ext4_da_reserve_space(inode);
1368 spin_unlock(&ei->i_block_reservation_lock);
1370 return 0; /* success */
1373 static void ext4_da_release_space(struct inode *inode, int to_free)
1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376 struct ext4_inode_info *ei = EXT4_I(inode);
1378 if (!to_free)
1379 return; /* Nothing to release, exit */
1381 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1383 trace_ext4_da_release_space(inode, to_free);
1384 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1386 * if there aren't enough reserved blocks, then the
1387 * counter is messed up somewhere. Since this
1388 * function is called from invalidate page, it's
1389 * harmless to return without any action.
1391 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1392 "ino %lu, to_free %d with only %d reserved "
1393 "data blocks", inode->i_ino, to_free,
1394 ei->i_reserved_data_blocks);
1395 WARN_ON(1);
1396 to_free = ei->i_reserved_data_blocks;
1398 ei->i_reserved_data_blocks -= to_free;
1400 /* update fs dirty data blocks counter */
1401 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1403 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1405 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1408 static void ext4_da_page_release_reservation(struct page *page,
1409 unsigned int offset,
1410 unsigned int length)
1412 int to_release = 0, contiguous_blks = 0;
1413 struct buffer_head *head, *bh;
1414 unsigned int curr_off = 0;
1415 struct inode *inode = page->mapping->host;
1416 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1417 unsigned int stop = offset + length;
1418 int num_clusters;
1419 ext4_fsblk_t lblk;
1421 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1423 head = page_buffers(page);
1424 bh = head;
1425 do {
1426 unsigned int next_off = curr_off + bh->b_size;
1428 if (next_off > stop)
1429 break;
1431 if ((offset <= curr_off) && (buffer_delay(bh))) {
1432 to_release++;
1433 contiguous_blks++;
1434 clear_buffer_delay(bh);
1435 } else if (contiguous_blks) {
1436 lblk = page->index <<
1437 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438 lblk += (curr_off >> inode->i_blkbits) -
1439 contiguous_blks;
1440 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1441 contiguous_blks = 0;
1443 curr_off = next_off;
1444 } while ((bh = bh->b_this_page) != head);
1446 if (contiguous_blks) {
1447 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1449 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1452 /* If we have released all the blocks belonging to a cluster, then we
1453 * need to release the reserved space for that cluster. */
1454 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1455 while (num_clusters > 0) {
1456 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1457 ((num_clusters - 1) << sbi->s_cluster_bits);
1458 if (sbi->s_cluster_ratio == 1 ||
1459 !ext4_find_delalloc_cluster(inode, lblk))
1460 ext4_da_release_space(inode, 1);
1462 num_clusters--;
1467 * Delayed allocation stuff
1470 struct mpage_da_data {
1471 struct inode *inode;
1472 struct writeback_control *wbc;
1474 pgoff_t first_page; /* The first page to write */
1475 pgoff_t next_page; /* Current page to examine */
1476 pgoff_t last_page; /* Last page to examine */
1478 * Extent to map - this can be after first_page because that can be
1479 * fully mapped. We somewhat abuse m_flags to store whether the extent
1480 * is delalloc or unwritten.
1482 struct ext4_map_blocks map;
1483 struct ext4_io_submit io_submit; /* IO submission data */
1486 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1487 bool invalidate)
1489 int nr_pages, i;
1490 pgoff_t index, end;
1491 struct pagevec pvec;
1492 struct inode *inode = mpd->inode;
1493 struct address_space *mapping = inode->i_mapping;
1495 /* This is necessary when next_page == 0. */
1496 if (mpd->first_page >= mpd->next_page)
1497 return;
1499 index = mpd->first_page;
1500 end = mpd->next_page - 1;
1501 if (invalidate) {
1502 ext4_lblk_t start, last;
1503 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1504 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1505 ext4_es_remove_extent(inode, start, last - start + 1);
1508 pagevec_init(&pvec, 0);
1509 while (index <= end) {
1510 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1511 if (nr_pages == 0)
1512 break;
1513 for (i = 0; i < nr_pages; i++) {
1514 struct page *page = pvec.pages[i];
1515 if (page->index > end)
1516 break;
1517 BUG_ON(!PageLocked(page));
1518 BUG_ON(PageWriteback(page));
1519 if (invalidate) {
1520 if (page_mapped(page))
1521 clear_page_dirty_for_io(page);
1522 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1523 ClearPageUptodate(page);
1525 unlock_page(page);
1527 index = pvec.pages[nr_pages - 1]->index + 1;
1528 pagevec_release(&pvec);
1532 static void ext4_print_free_blocks(struct inode *inode)
1534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535 struct super_block *sb = inode->i_sb;
1536 struct ext4_inode_info *ei = EXT4_I(inode);
1538 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1539 EXT4_C2B(EXT4_SB(inode->i_sb),
1540 ext4_count_free_clusters(sb)));
1541 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1542 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1543 (long long) EXT4_C2B(EXT4_SB(sb),
1544 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1545 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1546 (long long) EXT4_C2B(EXT4_SB(sb),
1547 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1548 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1549 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1550 ei->i_reserved_data_blocks);
1551 return;
1554 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1556 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1560 * This function is grabs code from the very beginning of
1561 * ext4_map_blocks, but assumes that the caller is from delayed write
1562 * time. This function looks up the requested blocks and sets the
1563 * buffer delay bit under the protection of i_data_sem.
1565 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1566 struct ext4_map_blocks *map,
1567 struct buffer_head *bh)
1569 struct extent_status es;
1570 int retval;
1571 sector_t invalid_block = ~((sector_t) 0xffff);
1572 #ifdef ES_AGGRESSIVE_TEST
1573 struct ext4_map_blocks orig_map;
1575 memcpy(&orig_map, map, sizeof(*map));
1576 #endif
1578 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1579 invalid_block = ~0;
1581 map->m_flags = 0;
1582 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1583 "logical block %lu\n", inode->i_ino, map->m_len,
1584 (unsigned long) map->m_lblk);
1586 /* Lookup extent status tree firstly */
1587 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1588 if (ext4_es_is_hole(&es)) {
1589 retval = 0;
1590 down_read(&EXT4_I(inode)->i_data_sem);
1591 goto add_delayed;
1595 * Delayed extent could be allocated by fallocate.
1596 * So we need to check it.
1598 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1599 map_bh(bh, inode->i_sb, invalid_block);
1600 set_buffer_new(bh);
1601 set_buffer_delay(bh);
1602 return 0;
1605 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1606 retval = es.es_len - (iblock - es.es_lblk);
1607 if (retval > map->m_len)
1608 retval = map->m_len;
1609 map->m_len = retval;
1610 if (ext4_es_is_written(&es))
1611 map->m_flags |= EXT4_MAP_MAPPED;
1612 else if (ext4_es_is_unwritten(&es))
1613 map->m_flags |= EXT4_MAP_UNWRITTEN;
1614 else
1615 BUG_ON(1);
1617 #ifdef ES_AGGRESSIVE_TEST
1618 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1619 #endif
1620 return retval;
1624 * Try to see if we can get the block without requesting a new
1625 * file system block.
1627 down_read(&EXT4_I(inode)->i_data_sem);
1628 if (ext4_has_inline_data(inode))
1629 retval = 0;
1630 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1631 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1632 else
1633 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1635 add_delayed:
1636 if (retval == 0) {
1637 int ret;
1639 * XXX: __block_prepare_write() unmaps passed block,
1640 * is it OK?
1643 * If the block was allocated from previously allocated cluster,
1644 * then we don't need to reserve it again. However we still need
1645 * to reserve metadata for every block we're going to write.
1647 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1648 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1649 ret = ext4_da_reserve_space(inode);
1650 if (ret) {
1651 /* not enough space to reserve */
1652 retval = ret;
1653 goto out_unlock;
1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 ~0, EXTENT_STATUS_DELAYED);
1659 if (ret) {
1660 retval = ret;
1661 goto out_unlock;
1664 map_bh(bh, inode->i_sb, invalid_block);
1665 set_buffer_new(bh);
1666 set_buffer_delay(bh);
1667 } else if (retval > 0) {
1668 int ret;
1669 unsigned int status;
1671 if (unlikely(retval != map->m_len)) {
1672 ext4_warning(inode->i_sb,
1673 "ES len assertion failed for inode "
1674 "%lu: retval %d != map->m_len %d",
1675 inode->i_ino, retval, map->m_len);
1676 WARN_ON(1);
1679 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1680 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1682 map->m_pblk, status);
1683 if (ret != 0)
1684 retval = ret;
1687 out_unlock:
1688 up_read((&EXT4_I(inode)->i_data_sem));
1690 return retval;
1694 * This is a special get_block_t callback which is used by
1695 * ext4_da_write_begin(). It will either return mapped block or
1696 * reserve space for a single block.
1698 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1699 * We also have b_blocknr = -1 and b_bdev initialized properly
1701 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1702 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1703 * initialized properly.
1705 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1706 struct buffer_head *bh, int create)
1708 struct ext4_map_blocks map;
1709 int ret = 0;
1711 BUG_ON(create == 0);
1712 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1714 map.m_lblk = iblock;
1715 map.m_len = 1;
1718 * first, we need to know whether the block is allocated already
1719 * preallocated blocks are unmapped but should treated
1720 * the same as allocated blocks.
1722 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1723 if (ret <= 0)
1724 return ret;
1726 map_bh(bh, inode->i_sb, map.m_pblk);
1727 ext4_update_bh_state(bh, map.m_flags);
1729 if (buffer_unwritten(bh)) {
1730 /* A delayed write to unwritten bh should be marked
1731 * new and mapped. Mapped ensures that we don't do
1732 * get_block multiple times when we write to the same
1733 * offset and new ensures that we do proper zero out
1734 * for partial write.
1736 set_buffer_new(bh);
1737 set_buffer_mapped(bh);
1739 return 0;
1742 static int bget_one(handle_t *handle, struct buffer_head *bh)
1744 get_bh(bh);
1745 return 0;
1748 static int bput_one(handle_t *handle, struct buffer_head *bh)
1750 put_bh(bh);
1751 return 0;
1754 static int __ext4_journalled_writepage(struct page *page,
1755 unsigned int len)
1757 struct address_space *mapping = page->mapping;
1758 struct inode *inode = mapping->host;
1759 struct buffer_head *page_bufs = NULL;
1760 handle_t *handle = NULL;
1761 int ret = 0, err = 0;
1762 int inline_data = ext4_has_inline_data(inode);
1763 struct buffer_head *inode_bh = NULL;
1765 ClearPageChecked(page);
1767 if (inline_data) {
1768 BUG_ON(page->index != 0);
1769 BUG_ON(len > ext4_get_max_inline_size(inode));
1770 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1771 if (inode_bh == NULL)
1772 goto out;
1773 } else {
1774 page_bufs = page_buffers(page);
1775 if (!page_bufs) {
1776 BUG();
1777 goto out;
1779 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1780 NULL, bget_one);
1783 * We need to release the page lock before we start the
1784 * journal, so grab a reference so the page won't disappear
1785 * out from under us.
1787 get_page(page);
1788 unlock_page(page);
1790 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1791 ext4_writepage_trans_blocks(inode));
1792 if (IS_ERR(handle)) {
1793 ret = PTR_ERR(handle);
1794 put_page(page);
1795 goto out_no_pagelock;
1797 BUG_ON(!ext4_handle_valid(handle));
1799 lock_page(page);
1800 put_page(page);
1801 if (page->mapping != mapping) {
1802 /* The page got truncated from under us */
1803 ext4_journal_stop(handle);
1804 ret = 0;
1805 goto out;
1808 if (inline_data) {
1809 ret = ext4_mark_inode_dirty(handle, inode);
1810 } else {
1811 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1812 do_journal_get_write_access);
1814 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1815 write_end_fn);
1817 if (ret == 0)
1818 ret = err;
1819 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1820 err = ext4_journal_stop(handle);
1821 if (!ret)
1822 ret = err;
1824 if (!ext4_has_inline_data(inode))
1825 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1826 NULL, bput_one);
1827 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1828 out:
1829 unlock_page(page);
1830 out_no_pagelock:
1831 brelse(inode_bh);
1832 return ret;
1836 * Note that we don't need to start a transaction unless we're journaling data
1837 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1838 * need to file the inode to the transaction's list in ordered mode because if
1839 * we are writing back data added by write(), the inode is already there and if
1840 * we are writing back data modified via mmap(), no one guarantees in which
1841 * transaction the data will hit the disk. In case we are journaling data, we
1842 * cannot start transaction directly because transaction start ranks above page
1843 * lock so we have to do some magic.
1845 * This function can get called via...
1846 * - ext4_writepages after taking page lock (have journal handle)
1847 * - journal_submit_inode_data_buffers (no journal handle)
1848 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1849 * - grab_page_cache when doing write_begin (have journal handle)
1851 * We don't do any block allocation in this function. If we have page with
1852 * multiple blocks we need to write those buffer_heads that are mapped. This
1853 * is important for mmaped based write. So if we do with blocksize 1K
1854 * truncate(f, 1024);
1855 * a = mmap(f, 0, 4096);
1856 * a[0] = 'a';
1857 * truncate(f, 4096);
1858 * we have in the page first buffer_head mapped via page_mkwrite call back
1859 * but other buffer_heads would be unmapped but dirty (dirty done via the
1860 * do_wp_page). So writepage should write the first block. If we modify
1861 * the mmap area beyond 1024 we will again get a page_fault and the
1862 * page_mkwrite callback will do the block allocation and mark the
1863 * buffer_heads mapped.
1865 * We redirty the page if we have any buffer_heads that is either delay or
1866 * unwritten in the page.
1868 * We can get recursively called as show below.
1870 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1871 * ext4_writepage()
1873 * But since we don't do any block allocation we should not deadlock.
1874 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1876 static int ext4_writepage(struct page *page,
1877 struct writeback_control *wbc)
1879 int ret = 0;
1880 loff_t size;
1881 unsigned int len;
1882 struct buffer_head *page_bufs = NULL;
1883 struct inode *inode = page->mapping->host;
1884 struct ext4_io_submit io_submit;
1885 bool keep_towrite = false;
1887 trace_ext4_writepage(page);
1888 size = i_size_read(inode);
1889 if (page->index == size >> PAGE_CACHE_SHIFT)
1890 len = size & ~PAGE_CACHE_MASK;
1891 else
1892 len = PAGE_CACHE_SIZE;
1894 page_bufs = page_buffers(page);
1896 * We cannot do block allocation or other extent handling in this
1897 * function. If there are buffers needing that, we have to redirty
1898 * the page. But we may reach here when we do a journal commit via
1899 * journal_submit_inode_data_buffers() and in that case we must write
1900 * allocated buffers to achieve data=ordered mode guarantees.
1902 * Also, if there is only one buffer per page (the fs block
1903 * size == the page size), if one buffer needs block
1904 * allocation or needs to modify the extent tree to clear the
1905 * unwritten flag, we know that the page can't be written at
1906 * all, so we might as well refuse the write immediately.
1907 * Unfortunately if the block size != page size, we can't as
1908 * easily detect this case using ext4_walk_page_buffers(), but
1909 * for the extremely common case, this is an optimization that
1910 * skips a useless round trip through ext4_bio_write_page().
1912 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1913 ext4_bh_delay_or_unwritten)) {
1914 redirty_page_for_writepage(wbc, page);
1915 if ((current->flags & PF_MEMALLOC) ||
1916 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1918 * For memory cleaning there's no point in writing only
1919 * some buffers. So just bail out. Warn if we came here
1920 * from direct reclaim.
1922 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1923 == PF_MEMALLOC);
1924 unlock_page(page);
1925 return 0;
1927 keep_towrite = true;
1930 if (PageChecked(page) && ext4_should_journal_data(inode))
1932 * It's mmapped pagecache. Add buffers and journal it. There
1933 * doesn't seem much point in redirtying the page here.
1935 return __ext4_journalled_writepage(page, len);
1937 ext4_io_submit_init(&io_submit, wbc);
1938 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1939 if (!io_submit.io_end) {
1940 redirty_page_for_writepage(wbc, page);
1941 unlock_page(page);
1942 return -ENOMEM;
1944 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1945 ext4_io_submit(&io_submit);
1946 /* Drop io_end reference we got from init */
1947 ext4_put_io_end_defer(io_submit.io_end);
1948 return ret;
1951 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1953 int len;
1954 loff_t size;
1955 int err;
1957 BUG_ON(page->index != mpd->first_page);
1958 clear_page_dirty_for_io(page);
1960 * We have to be very careful here! Nothing protects writeback path
1961 * against i_size changes and the page can be writeably mapped into
1962 * page tables. So an application can be growing i_size and writing
1963 * data through mmap while writeback runs. clear_page_dirty_for_io()
1964 * write-protects our page in page tables and the page cannot get
1965 * written to again until we release page lock. So only after
1966 * clear_page_dirty_for_io() we are safe to sample i_size for
1967 * ext4_bio_write_page() to zero-out tail of the written page. We rely
1968 * on the barrier provided by TestClearPageDirty in
1969 * clear_page_dirty_for_io() to make sure i_size is really sampled only
1970 * after page tables are updated.
1972 size = i_size_read(mpd->inode);
1973 if (page->index == size >> PAGE_SHIFT)
1974 len = size & ~PAGE_MASK;
1975 else
1976 len = PAGE_SIZE;
1977 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1978 if (!err)
1979 mpd->wbc->nr_to_write--;
1980 mpd->first_page++;
1982 return err;
1985 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1988 * mballoc gives us at most this number of blocks...
1989 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1990 * The rest of mballoc seems to handle chunks up to full group size.
1992 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1995 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1997 * @mpd - extent of blocks
1998 * @lblk - logical number of the block in the file
1999 * @bh - buffer head we want to add to the extent
2001 * The function is used to collect contig. blocks in the same state. If the
2002 * buffer doesn't require mapping for writeback and we haven't started the
2003 * extent of buffers to map yet, the function returns 'true' immediately - the
2004 * caller can write the buffer right away. Otherwise the function returns true
2005 * if the block has been added to the extent, false if the block couldn't be
2006 * added.
2008 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2009 struct buffer_head *bh)
2011 struct ext4_map_blocks *map = &mpd->map;
2013 /* Buffer that doesn't need mapping for writeback? */
2014 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2015 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2016 /* So far no extent to map => we write the buffer right away */
2017 if (map->m_len == 0)
2018 return true;
2019 return false;
2022 /* First block in the extent? */
2023 if (map->m_len == 0) {
2024 map->m_lblk = lblk;
2025 map->m_len = 1;
2026 map->m_flags = bh->b_state & BH_FLAGS;
2027 return true;
2030 /* Don't go larger than mballoc is willing to allocate */
2031 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2032 return false;
2034 /* Can we merge the block to our big extent? */
2035 if (lblk == map->m_lblk + map->m_len &&
2036 (bh->b_state & BH_FLAGS) == map->m_flags) {
2037 map->m_len++;
2038 return true;
2040 return false;
2044 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2046 * @mpd - extent of blocks for mapping
2047 * @head - the first buffer in the page
2048 * @bh - buffer we should start processing from
2049 * @lblk - logical number of the block in the file corresponding to @bh
2051 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2052 * the page for IO if all buffers in this page were mapped and there's no
2053 * accumulated extent of buffers to map or add buffers in the page to the
2054 * extent of buffers to map. The function returns 1 if the caller can continue
2055 * by processing the next page, 0 if it should stop adding buffers to the
2056 * extent to map because we cannot extend it anymore. It can also return value
2057 * < 0 in case of error during IO submission.
2059 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2060 struct buffer_head *head,
2061 struct buffer_head *bh,
2062 ext4_lblk_t lblk)
2064 struct inode *inode = mpd->inode;
2065 int err;
2066 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2067 >> inode->i_blkbits;
2069 do {
2070 BUG_ON(buffer_locked(bh));
2072 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2073 /* Found extent to map? */
2074 if (mpd->map.m_len)
2075 return 0;
2076 /* Everything mapped so far and we hit EOF */
2077 break;
2079 } while (lblk++, (bh = bh->b_this_page) != head);
2080 /* So far everything mapped? Submit the page for IO. */
2081 if (mpd->map.m_len == 0) {
2082 err = mpage_submit_page(mpd, head->b_page);
2083 if (err < 0)
2084 return err;
2086 return lblk < blocks;
2090 * mpage_map_buffers - update buffers corresponding to changed extent and
2091 * submit fully mapped pages for IO
2093 * @mpd - description of extent to map, on return next extent to map
2095 * Scan buffers corresponding to changed extent (we expect corresponding pages
2096 * to be already locked) and update buffer state according to new extent state.
2097 * We map delalloc buffers to their physical location, clear unwritten bits,
2098 * and mark buffers as uninit when we perform writes to unwritten extents
2099 * and do extent conversion after IO is finished. If the last page is not fully
2100 * mapped, we update @map to the next extent in the last page that needs
2101 * mapping. Otherwise we submit the page for IO.
2103 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2105 struct pagevec pvec;
2106 int nr_pages, i;
2107 struct inode *inode = mpd->inode;
2108 struct buffer_head *head, *bh;
2109 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2110 pgoff_t start, end;
2111 ext4_lblk_t lblk;
2112 sector_t pblock;
2113 int err;
2115 start = mpd->map.m_lblk >> bpp_bits;
2116 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2117 lblk = start << bpp_bits;
2118 pblock = mpd->map.m_pblk;
2120 pagevec_init(&pvec, 0);
2121 while (start <= end) {
2122 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2123 PAGEVEC_SIZE);
2124 if (nr_pages == 0)
2125 break;
2126 for (i = 0; i < nr_pages; i++) {
2127 struct page *page = pvec.pages[i];
2129 if (page->index > end)
2130 break;
2131 /* Up to 'end' pages must be contiguous */
2132 BUG_ON(page->index != start);
2133 bh = head = page_buffers(page);
2134 do {
2135 if (lblk < mpd->map.m_lblk)
2136 continue;
2137 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2139 * Buffer after end of mapped extent.
2140 * Find next buffer in the page to map.
2142 mpd->map.m_len = 0;
2143 mpd->map.m_flags = 0;
2145 * FIXME: If dioread_nolock supports
2146 * blocksize < pagesize, we need to make
2147 * sure we add size mapped so far to
2148 * io_end->size as the following call
2149 * can submit the page for IO.
2151 err = mpage_process_page_bufs(mpd, head,
2152 bh, lblk);
2153 pagevec_release(&pvec);
2154 if (err > 0)
2155 err = 0;
2156 return err;
2158 if (buffer_delay(bh)) {
2159 clear_buffer_delay(bh);
2160 bh->b_blocknr = pblock++;
2162 clear_buffer_unwritten(bh);
2163 } while (lblk++, (bh = bh->b_this_page) != head);
2166 * FIXME: This is going to break if dioread_nolock
2167 * supports blocksize < pagesize as we will try to
2168 * convert potentially unmapped parts of inode.
2170 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2171 /* Page fully mapped - let IO run! */
2172 err = mpage_submit_page(mpd, page);
2173 if (err < 0) {
2174 pagevec_release(&pvec);
2175 return err;
2177 start++;
2179 pagevec_release(&pvec);
2181 /* Extent fully mapped and matches with page boundary. We are done. */
2182 mpd->map.m_len = 0;
2183 mpd->map.m_flags = 0;
2184 return 0;
2187 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2189 struct inode *inode = mpd->inode;
2190 struct ext4_map_blocks *map = &mpd->map;
2191 int get_blocks_flags;
2192 int err, dioread_nolock;
2194 trace_ext4_da_write_pages_extent(inode, map);
2196 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2197 * to convert an unwritten extent to be initialized (in the case
2198 * where we have written into one or more preallocated blocks). It is
2199 * possible that we're going to need more metadata blocks than
2200 * previously reserved. However we must not fail because we're in
2201 * writeback and there is nothing we can do about it so it might result
2202 * in data loss. So use reserved blocks to allocate metadata if
2203 * possible.
2205 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2206 * the blocks in question are delalloc blocks. This indicates
2207 * that the blocks and quotas has already been checked when
2208 * the data was copied into the page cache.
2210 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2211 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2212 dioread_nolock = ext4_should_dioread_nolock(inode);
2213 if (dioread_nolock)
2214 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2215 if (map->m_flags & (1 << BH_Delay))
2216 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2218 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2219 if (err < 0)
2220 return err;
2221 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2222 if (!mpd->io_submit.io_end->handle &&
2223 ext4_handle_valid(handle)) {
2224 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2225 handle->h_rsv_handle = NULL;
2227 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2230 BUG_ON(map->m_len == 0);
2231 if (map->m_flags & EXT4_MAP_NEW) {
2232 struct block_device *bdev = inode->i_sb->s_bdev;
2233 int i;
2235 for (i = 0; i < map->m_len; i++)
2236 unmap_underlying_metadata(bdev, map->m_pblk + i);
2238 return 0;
2242 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2243 * mpd->len and submit pages underlying it for IO
2245 * @handle - handle for journal operations
2246 * @mpd - extent to map
2247 * @give_up_on_write - we set this to true iff there is a fatal error and there
2248 * is no hope of writing the data. The caller should discard
2249 * dirty pages to avoid infinite loops.
2251 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2252 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2253 * them to initialized or split the described range from larger unwritten
2254 * extent. Note that we need not map all the described range since allocation
2255 * can return less blocks or the range is covered by more unwritten extents. We
2256 * cannot map more because we are limited by reserved transaction credits. On
2257 * the other hand we always make sure that the last touched page is fully
2258 * mapped so that it can be written out (and thus forward progress is
2259 * guaranteed). After mapping we submit all mapped pages for IO.
2261 static int mpage_map_and_submit_extent(handle_t *handle,
2262 struct mpage_da_data *mpd,
2263 bool *give_up_on_write)
2265 struct inode *inode = mpd->inode;
2266 struct ext4_map_blocks *map = &mpd->map;
2267 int err;
2268 loff_t disksize;
2269 int progress = 0;
2271 mpd->io_submit.io_end->offset =
2272 ((loff_t)map->m_lblk) << inode->i_blkbits;
2273 do {
2274 err = mpage_map_one_extent(handle, mpd);
2275 if (err < 0) {
2276 struct super_block *sb = inode->i_sb;
2278 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2279 goto invalidate_dirty_pages;
2281 * Let the uper layers retry transient errors.
2282 * In the case of ENOSPC, if ext4_count_free_blocks()
2283 * is non-zero, a commit should free up blocks.
2285 if ((err == -ENOMEM) ||
2286 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2287 if (progress)
2288 goto update_disksize;
2289 return err;
2291 ext4_msg(sb, KERN_CRIT,
2292 "Delayed block allocation failed for "
2293 "inode %lu at logical offset %llu with"
2294 " max blocks %u with error %d",
2295 inode->i_ino,
2296 (unsigned long long)map->m_lblk,
2297 (unsigned)map->m_len, -err);
2298 ext4_msg(sb, KERN_CRIT,
2299 "This should not happen!! Data will "
2300 "be lost\n");
2301 if (err == -ENOSPC)
2302 ext4_print_free_blocks(inode);
2303 invalidate_dirty_pages:
2304 *give_up_on_write = true;
2305 return err;
2307 progress = 1;
2309 * Update buffer state, submit mapped pages, and get us new
2310 * extent to map
2312 err = mpage_map_and_submit_buffers(mpd);
2313 if (err < 0)
2314 goto update_disksize;
2315 } while (map->m_len);
2317 update_disksize:
2319 * Update on-disk size after IO is submitted. Races with
2320 * truncate are avoided by checking i_size under i_data_sem.
2322 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2323 if (disksize > EXT4_I(inode)->i_disksize) {
2324 int err2;
2325 loff_t i_size;
2327 down_write(&EXT4_I(inode)->i_data_sem);
2328 i_size = i_size_read(inode);
2329 if (disksize > i_size)
2330 disksize = i_size;
2331 if (disksize > EXT4_I(inode)->i_disksize)
2332 EXT4_I(inode)->i_disksize = disksize;
2333 err2 = ext4_mark_inode_dirty(handle, inode);
2334 up_write(&EXT4_I(inode)->i_data_sem);
2335 if (err2)
2336 ext4_error(inode->i_sb,
2337 "Failed to mark inode %lu dirty",
2338 inode->i_ino);
2339 if (!err)
2340 err = err2;
2342 return err;
2346 * Calculate the total number of credits to reserve for one writepages
2347 * iteration. This is called from ext4_writepages(). We map an extent of
2348 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2349 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2350 * bpp - 1 blocks in bpp different extents.
2352 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2354 int bpp = ext4_journal_blocks_per_page(inode);
2356 return ext4_meta_trans_blocks(inode,
2357 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2361 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2362 * and underlying extent to map
2364 * @mpd - where to look for pages
2366 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2367 * IO immediately. When we find a page which isn't mapped we start accumulating
2368 * extent of buffers underlying these pages that needs mapping (formed by
2369 * either delayed or unwritten buffers). We also lock the pages containing
2370 * these buffers. The extent found is returned in @mpd structure (starting at
2371 * mpd->lblk with length mpd->len blocks).
2373 * Note that this function can attach bios to one io_end structure which are
2374 * neither logically nor physically contiguous. Although it may seem as an
2375 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2376 * case as we need to track IO to all buffers underlying a page in one io_end.
2378 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2380 struct address_space *mapping = mpd->inode->i_mapping;
2381 struct pagevec pvec;
2382 unsigned int nr_pages;
2383 long left = mpd->wbc->nr_to_write;
2384 pgoff_t index = mpd->first_page;
2385 pgoff_t end = mpd->last_page;
2386 int tag;
2387 int i, err = 0;
2388 int blkbits = mpd->inode->i_blkbits;
2389 ext4_lblk_t lblk;
2390 struct buffer_head *head;
2392 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2393 tag = PAGECACHE_TAG_TOWRITE;
2394 else
2395 tag = PAGECACHE_TAG_DIRTY;
2397 pagevec_init(&pvec, 0);
2398 mpd->map.m_len = 0;
2399 mpd->next_page = index;
2400 while (index <= end) {
2401 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2402 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2403 if (nr_pages == 0)
2404 goto out;
2406 for (i = 0; i < nr_pages; i++) {
2407 struct page *page = pvec.pages[i];
2410 * At this point, the page may be truncated or
2411 * invalidated (changing page->mapping to NULL), or
2412 * even swizzled back from swapper_space to tmpfs file
2413 * mapping. However, page->index will not change
2414 * because we have a reference on the page.
2416 if (page->index > end)
2417 goto out;
2420 * Accumulated enough dirty pages? This doesn't apply
2421 * to WB_SYNC_ALL mode. For integrity sync we have to
2422 * keep going because someone may be concurrently
2423 * dirtying pages, and we might have synced a lot of
2424 * newly appeared dirty pages, but have not synced all
2425 * of the old dirty pages.
2427 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2428 goto out;
2430 /* If we can't merge this page, we are done. */
2431 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2432 goto out;
2434 lock_page(page);
2436 * If the page is no longer dirty, or its mapping no
2437 * longer corresponds to inode we are writing (which
2438 * means it has been truncated or invalidated), or the
2439 * page is already under writeback and we are not doing
2440 * a data integrity writeback, skip the page
2442 if (!PageDirty(page) ||
2443 (PageWriteback(page) &&
2444 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2445 unlikely(page->mapping != mapping)) {
2446 unlock_page(page);
2447 continue;
2450 wait_on_page_writeback(page);
2451 BUG_ON(PageWriteback(page));
2453 if (mpd->map.m_len == 0)
2454 mpd->first_page = page->index;
2455 mpd->next_page = page->index + 1;
2456 /* Add all dirty buffers to mpd */
2457 lblk = ((ext4_lblk_t)page->index) <<
2458 (PAGE_CACHE_SHIFT - blkbits);
2459 head = page_buffers(page);
2460 err = mpage_process_page_bufs(mpd, head, head, lblk);
2461 if (err <= 0)
2462 goto out;
2463 err = 0;
2464 left--;
2466 pagevec_release(&pvec);
2467 cond_resched();
2469 return 0;
2470 out:
2471 pagevec_release(&pvec);
2472 return err;
2475 static int __writepage(struct page *page, struct writeback_control *wbc,
2476 void *data)
2478 struct address_space *mapping = data;
2479 int ret = ext4_writepage(page, wbc);
2480 mapping_set_error(mapping, ret);
2481 return ret;
2484 static int ext4_writepages(struct address_space *mapping,
2485 struct writeback_control *wbc)
2487 pgoff_t writeback_index = 0;
2488 long nr_to_write = wbc->nr_to_write;
2489 int range_whole = 0;
2490 int cycled = 1;
2491 handle_t *handle = NULL;
2492 struct mpage_da_data mpd;
2493 struct inode *inode = mapping->host;
2494 int needed_blocks, rsv_blocks = 0, ret = 0;
2495 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2496 bool done;
2497 struct blk_plug plug;
2498 bool give_up_on_write = false;
2500 trace_ext4_writepages(inode, wbc);
2503 * No pages to write? This is mainly a kludge to avoid starting
2504 * a transaction for special inodes like journal inode on last iput()
2505 * because that could violate lock ordering on umount
2507 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2508 goto out_writepages;
2510 if (ext4_should_journal_data(inode)) {
2511 struct blk_plug plug;
2513 blk_start_plug(&plug);
2514 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2515 blk_finish_plug(&plug);
2516 goto out_writepages;
2520 * If the filesystem has aborted, it is read-only, so return
2521 * right away instead of dumping stack traces later on that
2522 * will obscure the real source of the problem. We test
2523 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2524 * the latter could be true if the filesystem is mounted
2525 * read-only, and in that case, ext4_writepages should
2526 * *never* be called, so if that ever happens, we would want
2527 * the stack trace.
2529 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2530 ret = -EROFS;
2531 goto out_writepages;
2534 if (ext4_should_dioread_nolock(inode)) {
2536 * We may need to convert up to one extent per block in
2537 * the page and we may dirty the inode.
2539 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2543 * If we have inline data and arrive here, it means that
2544 * we will soon create the block for the 1st page, so
2545 * we'd better clear the inline data here.
2547 if (ext4_has_inline_data(inode)) {
2548 /* Just inode will be modified... */
2549 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2550 if (IS_ERR(handle)) {
2551 ret = PTR_ERR(handle);
2552 goto out_writepages;
2554 BUG_ON(ext4_test_inode_state(inode,
2555 EXT4_STATE_MAY_INLINE_DATA));
2556 ext4_destroy_inline_data(handle, inode);
2557 ext4_journal_stop(handle);
2560 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2561 range_whole = 1;
2563 if (wbc->range_cyclic) {
2564 writeback_index = mapping->writeback_index;
2565 if (writeback_index)
2566 cycled = 0;
2567 mpd.first_page = writeback_index;
2568 mpd.last_page = -1;
2569 } else {
2570 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2571 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2574 mpd.inode = inode;
2575 mpd.wbc = wbc;
2576 ext4_io_submit_init(&mpd.io_submit, wbc);
2577 retry:
2578 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2579 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2580 done = false;
2581 blk_start_plug(&plug);
2582 while (!done && mpd.first_page <= mpd.last_page) {
2583 /* For each extent of pages we use new io_end */
2584 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2585 if (!mpd.io_submit.io_end) {
2586 ret = -ENOMEM;
2587 break;
2591 * We have two constraints: We find one extent to map and we
2592 * must always write out whole page (makes a difference when
2593 * blocksize < pagesize) so that we don't block on IO when we
2594 * try to write out the rest of the page. Journalled mode is
2595 * not supported by delalloc.
2597 BUG_ON(ext4_should_journal_data(inode));
2598 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2600 /* start a new transaction */
2601 handle = ext4_journal_start_with_reserve(inode,
2602 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2603 if (IS_ERR(handle)) {
2604 ret = PTR_ERR(handle);
2605 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2606 "%ld pages, ino %lu; err %d", __func__,
2607 wbc->nr_to_write, inode->i_ino, ret);
2608 /* Release allocated io_end */
2609 ext4_put_io_end(mpd.io_submit.io_end);
2610 break;
2613 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2614 ret = mpage_prepare_extent_to_map(&mpd);
2615 if (!ret) {
2616 if (mpd.map.m_len)
2617 ret = mpage_map_and_submit_extent(handle, &mpd,
2618 &give_up_on_write);
2619 else {
2621 * We scanned the whole range (or exhausted
2622 * nr_to_write), submitted what was mapped and
2623 * didn't find anything needing mapping. We are
2624 * done.
2626 done = true;
2630 * Caution: If the handle is synchronous,
2631 * ext4_journal_stop() can wait for transaction commit
2632 * to finish which may depend on writeback of pages to
2633 * complete or on page lock to be released. In that
2634 * case, we have to wait until after after we have
2635 * submitted all the IO, released page locks we hold,
2636 * and dropped io_end reference (for extent conversion
2637 * to be able to complete) before stopping the handle.
2639 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2640 ext4_journal_stop(handle);
2641 handle = NULL;
2643 /* Submit prepared bio */
2644 ext4_io_submit(&mpd.io_submit);
2645 /* Unlock pages we didn't use */
2646 mpage_release_unused_pages(&mpd, give_up_on_write);
2648 * Drop our io_end reference we got from init. We have
2649 * to be careful and use deferred io_end finishing if
2650 * we are still holding the transaction as we can
2651 * release the last reference to io_end which may end
2652 * up doing unwritten extent conversion.
2654 if (handle) {
2655 ext4_put_io_end_defer(mpd.io_submit.io_end);
2656 ext4_journal_stop(handle);
2657 } else
2658 ext4_put_io_end(mpd.io_submit.io_end);
2660 if (ret == -ENOSPC && sbi->s_journal) {
2662 * Commit the transaction which would
2663 * free blocks released in the transaction
2664 * and try again
2666 jbd2_journal_force_commit_nested(sbi->s_journal);
2667 ret = 0;
2668 continue;
2670 /* Fatal error - ENOMEM, EIO... */
2671 if (ret)
2672 break;
2674 blk_finish_plug(&plug);
2675 if (!ret && !cycled && wbc->nr_to_write > 0) {
2676 cycled = 1;
2677 mpd.last_page = writeback_index - 1;
2678 mpd.first_page = 0;
2679 goto retry;
2682 /* Update index */
2683 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2685 * Set the writeback_index so that range_cyclic
2686 * mode will write it back later
2688 mapping->writeback_index = mpd.first_page;
2690 out_writepages:
2691 trace_ext4_writepages_result(inode, wbc, ret,
2692 nr_to_write - wbc->nr_to_write);
2693 return ret;
2696 static int ext4_nonda_switch(struct super_block *sb)
2698 s64 free_clusters, dirty_clusters;
2699 struct ext4_sb_info *sbi = EXT4_SB(sb);
2702 * switch to non delalloc mode if we are running low
2703 * on free block. The free block accounting via percpu
2704 * counters can get slightly wrong with percpu_counter_batch getting
2705 * accumulated on each CPU without updating global counters
2706 * Delalloc need an accurate free block accounting. So switch
2707 * to non delalloc when we are near to error range.
2709 free_clusters =
2710 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2711 dirty_clusters =
2712 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2714 * Start pushing delalloc when 1/2 of free blocks are dirty.
2716 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2717 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2719 if (2 * free_clusters < 3 * dirty_clusters ||
2720 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2722 * free block count is less than 150% of dirty blocks
2723 * or free blocks is less than watermark
2725 return 1;
2727 return 0;
2730 /* We always reserve for an inode update; the superblock could be there too */
2731 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2733 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2734 return 1;
2736 if (pos + len <= 0x7fffffffULL)
2737 return 1;
2739 /* We might need to update the superblock to set LARGE_FILE */
2740 return 2;
2743 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2744 loff_t pos, unsigned len, unsigned flags,
2745 struct page **pagep, void **fsdata)
2747 int ret, retries = 0;
2748 struct page *page;
2749 pgoff_t index;
2750 struct inode *inode = mapping->host;
2751 handle_t *handle;
2753 index = pos >> PAGE_CACHE_SHIFT;
2755 if (ext4_nonda_switch(inode->i_sb)) {
2756 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2757 return ext4_write_begin(file, mapping, pos,
2758 len, flags, pagep, fsdata);
2760 *fsdata = (void *)0;
2761 trace_ext4_da_write_begin(inode, pos, len, flags);
2763 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2764 ret = ext4_da_write_inline_data_begin(mapping, inode,
2765 pos, len, flags,
2766 pagep, fsdata);
2767 if (ret < 0)
2768 return ret;
2769 if (ret == 1)
2770 return 0;
2774 * grab_cache_page_write_begin() can take a long time if the
2775 * system is thrashing due to memory pressure, or if the page
2776 * is being written back. So grab it first before we start
2777 * the transaction handle. This also allows us to allocate
2778 * the page (if needed) without using GFP_NOFS.
2780 retry_grab:
2781 page = grab_cache_page_write_begin(mapping, index, flags);
2782 if (!page)
2783 return -ENOMEM;
2784 unlock_page(page);
2787 * With delayed allocation, we don't log the i_disksize update
2788 * if there is delayed block allocation. But we still need
2789 * to journalling the i_disksize update if writes to the end
2790 * of file which has an already mapped buffer.
2792 retry_journal:
2793 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2794 ext4_da_write_credits(inode, pos, len));
2795 if (IS_ERR(handle)) {
2796 page_cache_release(page);
2797 return PTR_ERR(handle);
2800 lock_page(page);
2801 if (page->mapping != mapping) {
2802 /* The page got truncated from under us */
2803 unlock_page(page);
2804 page_cache_release(page);
2805 ext4_journal_stop(handle);
2806 goto retry_grab;
2808 /* In case writeback began while the page was unlocked */
2809 wait_for_stable_page(page);
2811 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2812 ret = ext4_block_write_begin(page, pos, len,
2813 ext4_da_get_block_prep);
2814 #else
2815 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2816 #endif
2817 if (ret < 0) {
2818 unlock_page(page);
2819 ext4_journal_stop(handle);
2821 * block_write_begin may have instantiated a few blocks
2822 * outside i_size. Trim these off again. Don't need
2823 * i_size_read because we hold i_mutex.
2825 if (pos + len > inode->i_size)
2826 ext4_truncate_failed_write(inode);
2828 if (ret == -ENOSPC &&
2829 ext4_should_retry_alloc(inode->i_sb, &retries))
2830 goto retry_journal;
2832 page_cache_release(page);
2833 return ret;
2836 *pagep = page;
2837 return ret;
2841 * Check if we should update i_disksize
2842 * when write to the end of file but not require block allocation
2844 static int ext4_da_should_update_i_disksize(struct page *page,
2845 unsigned long offset)
2847 struct buffer_head *bh;
2848 struct inode *inode = page->mapping->host;
2849 unsigned int idx;
2850 int i;
2852 bh = page_buffers(page);
2853 idx = offset >> inode->i_blkbits;
2855 for (i = 0; i < idx; i++)
2856 bh = bh->b_this_page;
2858 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2859 return 0;
2860 return 1;
2863 static int ext4_da_write_end(struct file *file,
2864 struct address_space *mapping,
2865 loff_t pos, unsigned len, unsigned copied,
2866 struct page *page, void *fsdata)
2868 struct inode *inode = mapping->host;
2869 int ret = 0, ret2;
2870 handle_t *handle = ext4_journal_current_handle();
2871 loff_t new_i_size;
2872 unsigned long start, end;
2873 int write_mode = (int)(unsigned long)fsdata;
2875 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2876 return ext4_write_end(file, mapping, pos,
2877 len, copied, page, fsdata);
2879 trace_ext4_da_write_end(inode, pos, len, copied);
2880 start = pos & (PAGE_CACHE_SIZE - 1);
2881 end = start + copied - 1;
2884 * generic_write_end() will run mark_inode_dirty() if i_size
2885 * changes. So let's piggyback the i_disksize mark_inode_dirty
2886 * into that.
2888 new_i_size = pos + copied;
2889 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2890 if (ext4_has_inline_data(inode) ||
2891 ext4_da_should_update_i_disksize(page, end)) {
2892 ext4_update_i_disksize(inode, new_i_size);
2893 /* We need to mark inode dirty even if
2894 * new_i_size is less that inode->i_size
2895 * bu greater than i_disksize.(hint delalloc)
2897 ext4_mark_inode_dirty(handle, inode);
2901 if (write_mode != CONVERT_INLINE_DATA &&
2902 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2903 ext4_has_inline_data(inode))
2904 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2905 page);
2906 else
2907 ret2 = generic_write_end(file, mapping, pos, len, copied,
2908 page, fsdata);
2910 copied = ret2;
2911 if (ret2 < 0)
2912 ret = ret2;
2913 ret2 = ext4_journal_stop(handle);
2914 if (!ret)
2915 ret = ret2;
2917 return ret ? ret : copied;
2920 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2921 unsigned int length)
2924 * Drop reserved blocks
2926 BUG_ON(!PageLocked(page));
2927 if (!page_has_buffers(page))
2928 goto out;
2930 ext4_da_page_release_reservation(page, offset, length);
2932 out:
2933 ext4_invalidatepage(page, offset, length);
2935 return;
2939 * Force all delayed allocation blocks to be allocated for a given inode.
2941 int ext4_alloc_da_blocks(struct inode *inode)
2943 trace_ext4_alloc_da_blocks(inode);
2945 if (!EXT4_I(inode)->i_reserved_data_blocks)
2946 return 0;
2949 * We do something simple for now. The filemap_flush() will
2950 * also start triggering a write of the data blocks, which is
2951 * not strictly speaking necessary (and for users of
2952 * laptop_mode, not even desirable). However, to do otherwise
2953 * would require replicating code paths in:
2955 * ext4_writepages() ->
2956 * write_cache_pages() ---> (via passed in callback function)
2957 * __mpage_da_writepage() -->
2958 * mpage_add_bh_to_extent()
2959 * mpage_da_map_blocks()
2961 * The problem is that write_cache_pages(), located in
2962 * mm/page-writeback.c, marks pages clean in preparation for
2963 * doing I/O, which is not desirable if we're not planning on
2964 * doing I/O at all.
2966 * We could call write_cache_pages(), and then redirty all of
2967 * the pages by calling redirty_page_for_writepage() but that
2968 * would be ugly in the extreme. So instead we would need to
2969 * replicate parts of the code in the above functions,
2970 * simplifying them because we wouldn't actually intend to
2971 * write out the pages, but rather only collect contiguous
2972 * logical block extents, call the multi-block allocator, and
2973 * then update the buffer heads with the block allocations.
2975 * For now, though, we'll cheat by calling filemap_flush(),
2976 * which will map the blocks, and start the I/O, but not
2977 * actually wait for the I/O to complete.
2979 return filemap_flush(inode->i_mapping);
2983 * bmap() is special. It gets used by applications such as lilo and by
2984 * the swapper to find the on-disk block of a specific piece of data.
2986 * Naturally, this is dangerous if the block concerned is still in the
2987 * journal. If somebody makes a swapfile on an ext4 data-journaling
2988 * filesystem and enables swap, then they may get a nasty shock when the
2989 * data getting swapped to that swapfile suddenly gets overwritten by
2990 * the original zero's written out previously to the journal and
2991 * awaiting writeback in the kernel's buffer cache.
2993 * So, if we see any bmap calls here on a modified, data-journaled file,
2994 * take extra steps to flush any blocks which might be in the cache.
2996 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2998 struct inode *inode = mapping->host;
2999 journal_t *journal;
3000 int err;
3003 * We can get here for an inline file via the FIBMAP ioctl
3005 if (ext4_has_inline_data(inode))
3006 return 0;
3008 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3009 test_opt(inode->i_sb, DELALLOC)) {
3011 * With delalloc we want to sync the file
3012 * so that we can make sure we allocate
3013 * blocks for file
3015 filemap_write_and_wait(mapping);
3018 if (EXT4_JOURNAL(inode) &&
3019 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3021 * This is a REALLY heavyweight approach, but the use of
3022 * bmap on dirty files is expected to be extremely rare:
3023 * only if we run lilo or swapon on a freshly made file
3024 * do we expect this to happen.
3026 * (bmap requires CAP_SYS_RAWIO so this does not
3027 * represent an unprivileged user DOS attack --- we'd be
3028 * in trouble if mortal users could trigger this path at
3029 * will.)
3031 * NB. EXT4_STATE_JDATA is not set on files other than
3032 * regular files. If somebody wants to bmap a directory
3033 * or symlink and gets confused because the buffer
3034 * hasn't yet been flushed to disk, they deserve
3035 * everything they get.
3038 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3039 journal = EXT4_JOURNAL(inode);
3040 jbd2_journal_lock_updates(journal);
3041 err = jbd2_journal_flush(journal);
3042 jbd2_journal_unlock_updates(journal);
3044 if (err)
3045 return 0;
3048 return generic_block_bmap(mapping, block, ext4_get_block);
3051 static int ext4_readpage(struct file *file, struct page *page)
3053 int ret = -EAGAIN;
3054 struct inode *inode = page->mapping->host;
3056 trace_ext4_readpage(page);
3058 if (ext4_has_inline_data(inode))
3059 ret = ext4_readpage_inline(inode, page);
3061 if (ret == -EAGAIN)
3062 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3064 return ret;
3067 static int
3068 ext4_readpages(struct file *file, struct address_space *mapping,
3069 struct list_head *pages, unsigned nr_pages)
3071 struct inode *inode = mapping->host;
3073 /* If the file has inline data, no need to do readpages. */
3074 if (ext4_has_inline_data(inode))
3075 return 0;
3077 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3080 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3081 unsigned int length)
3083 trace_ext4_invalidatepage(page, offset, length);
3085 /* No journalling happens on data buffers when this function is used */
3086 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3088 block_invalidatepage(page, offset, length);
3091 static int __ext4_journalled_invalidatepage(struct page *page,
3092 unsigned int offset,
3093 unsigned int length)
3095 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3097 trace_ext4_journalled_invalidatepage(page, offset, length);
3100 * If it's a full truncate we just forget about the pending dirtying
3102 if (offset == 0 && length == PAGE_CACHE_SIZE)
3103 ClearPageChecked(page);
3105 return jbd2_journal_invalidatepage(journal, page, offset, length);
3108 /* Wrapper for aops... */
3109 static void ext4_journalled_invalidatepage(struct page *page,
3110 unsigned int offset,
3111 unsigned int length)
3113 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3116 static int ext4_releasepage(struct page *page, gfp_t wait)
3118 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3120 trace_ext4_releasepage(page);
3122 /* Page has dirty journalled data -> cannot release */
3123 if (PageChecked(page))
3124 return 0;
3125 if (journal)
3126 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3127 else
3128 return try_to_free_buffers(page);
3132 * ext4_get_block used when preparing for a DIO write or buffer write.
3133 * We allocate an uinitialized extent if blocks haven't been allocated.
3134 * The extent will be converted to initialized after the IO is complete.
3136 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3137 struct buffer_head *bh_result, int create)
3139 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3140 inode->i_ino, create);
3141 return _ext4_get_block(inode, iblock, bh_result,
3142 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3145 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3146 struct buffer_head *bh_result, int create)
3148 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3149 inode->i_ino, create);
3150 return _ext4_get_block(inode, iblock, bh_result,
3151 EXT4_GET_BLOCKS_NO_LOCK);
3154 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3155 struct buffer_head *bh_result, int create)
3157 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3158 if (create)
3159 flags |= EXT4_GET_BLOCKS_CREATE;
3160 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3161 inode->i_ino, create);
3162 return _ext4_get_block(inode, iblock, bh_result, flags);
3165 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3166 ssize_t size, void *private)
3168 ext4_io_end_t *io_end = iocb->private;
3170 /* if not async direct IO just return */
3171 if (!io_end)
3172 return;
3174 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3175 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3176 iocb->private, io_end->inode->i_ino, iocb, offset,
3177 size);
3179 iocb->private = NULL;
3180 io_end->offset = offset;
3181 io_end->size = size;
3182 ext4_put_io_end(io_end);
3186 * For ext4 extent files, ext4 will do direct-io write to holes,
3187 * preallocated extents, and those write extend the file, no need to
3188 * fall back to buffered IO.
3190 * For holes, we fallocate those blocks, mark them as unwritten
3191 * If those blocks were preallocated, we mark sure they are split, but
3192 * still keep the range to write as unwritten.
3194 * The unwritten extents will be converted to written when DIO is completed.
3195 * For async direct IO, since the IO may still pending when return, we
3196 * set up an end_io call back function, which will do the conversion
3197 * when async direct IO completed.
3199 * If the O_DIRECT write will extend the file then add this inode to the
3200 * orphan list. So recovery will truncate it back to the original size
3201 * if the machine crashes during the write.
3204 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3205 loff_t offset)
3207 struct file *file = iocb->ki_filp;
3208 struct inode *inode = file->f_mapping->host;
3209 ssize_t ret;
3210 size_t count = iov_iter_count(iter);
3211 int overwrite = 0;
3212 get_block_t *get_block_func = NULL;
3213 int dio_flags = 0;
3214 loff_t final_size = offset + count;
3215 ext4_io_end_t *io_end = NULL;
3217 /* Use the old path for reads and writes beyond i_size. */
3218 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3219 return ext4_ind_direct_IO(iocb, iter, offset);
3221 BUG_ON(iocb->private == NULL);
3224 * Make all waiters for direct IO properly wait also for extent
3225 * conversion. This also disallows race between truncate() and
3226 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3228 if (iov_iter_rw(iter) == WRITE)
3229 inode_dio_begin(inode);
3231 /* If we do a overwrite dio, i_mutex locking can be released */
3232 overwrite = *((int *)iocb->private);
3234 if (overwrite) {
3235 down_read(&EXT4_I(inode)->i_data_sem);
3236 mutex_unlock(&inode->i_mutex);
3240 * We could direct write to holes and fallocate.
3242 * Allocated blocks to fill the hole are marked as
3243 * unwritten to prevent parallel buffered read to expose
3244 * the stale data before DIO complete the data IO.
3246 * As to previously fallocated extents, ext4 get_block will
3247 * just simply mark the buffer mapped but still keep the
3248 * extents unwritten.
3250 * For non AIO case, we will convert those unwritten extents
3251 * to written after return back from blockdev_direct_IO.
3253 * For async DIO, the conversion needs to be deferred when the
3254 * IO is completed. The ext4 end_io callback function will be
3255 * called to take care of the conversion work. Here for async
3256 * case, we allocate an io_end structure to hook to the iocb.
3258 iocb->private = NULL;
3259 if (overwrite) {
3260 get_block_func = ext4_get_block_write_nolock;
3261 } else {
3262 ext4_inode_aio_set(inode, NULL);
3263 if (!is_sync_kiocb(iocb)) {
3264 io_end = ext4_init_io_end(inode, GFP_NOFS);
3265 if (!io_end) {
3266 ret = -ENOMEM;
3267 goto retake_lock;
3270 * Grab reference for DIO. Will be dropped in
3271 * ext4_end_io_dio()
3273 iocb->private = ext4_get_io_end(io_end);
3275 * we save the io structure for current async direct
3276 * IO, so that later ext4_map_blocks() could flag the
3277 * io structure whether there is a unwritten extents
3278 * needs to be converted when IO is completed.
3280 ext4_inode_aio_set(inode, io_end);
3282 get_block_func = ext4_get_block_write;
3283 dio_flags = DIO_LOCKING;
3285 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3286 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3287 #endif
3288 if (IS_DAX(inode))
3289 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3290 ext4_end_io_dio, dio_flags);
3291 else
3292 ret = __blockdev_direct_IO(iocb, inode,
3293 inode->i_sb->s_bdev, iter, offset,
3294 get_block_func,
3295 ext4_end_io_dio, NULL, dio_flags);
3298 * Put our reference to io_end. This can free the io_end structure e.g.
3299 * in sync IO case or in case of error. It can even perform extent
3300 * conversion if all bios we submitted finished before we got here.
3301 * Note that in that case iocb->private can be already set to NULL
3302 * here.
3304 if (io_end) {
3305 ext4_inode_aio_set(inode, NULL);
3306 ext4_put_io_end(io_end);
3308 * When no IO was submitted ext4_end_io_dio() was not
3309 * called so we have to put iocb's reference.
3311 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3312 WARN_ON(iocb->private != io_end);
3313 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3314 ext4_put_io_end(io_end);
3315 iocb->private = NULL;
3318 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3319 EXT4_STATE_DIO_UNWRITTEN)) {
3320 int err;
3322 * for non AIO case, since the IO is already
3323 * completed, we could do the conversion right here
3325 err = ext4_convert_unwritten_extents(NULL, inode,
3326 offset, ret);
3327 if (err < 0)
3328 ret = err;
3329 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3332 retake_lock:
3333 if (iov_iter_rw(iter) == WRITE)
3334 inode_dio_end(inode);
3335 /* take i_mutex locking again if we do a ovewrite dio */
3336 if (overwrite) {
3337 up_read(&EXT4_I(inode)->i_data_sem);
3338 mutex_lock(&inode->i_mutex);
3341 return ret;
3344 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3345 loff_t offset)
3347 struct file *file = iocb->ki_filp;
3348 struct inode *inode = file->f_mapping->host;
3349 size_t count = iov_iter_count(iter);
3350 ssize_t ret;
3352 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3353 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3354 return 0;
3355 #endif
3358 * If we are doing data journalling we don't support O_DIRECT
3360 if (ext4_should_journal_data(inode))
3361 return 0;
3363 /* Let buffer I/O handle the inline data case. */
3364 if (ext4_has_inline_data(inode))
3365 return 0;
3367 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3368 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3369 ret = ext4_ext_direct_IO(iocb, iter, offset);
3370 else
3371 ret = ext4_ind_direct_IO(iocb, iter, offset);
3372 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3373 return ret;
3377 * Pages can be marked dirty completely asynchronously from ext4's journalling
3378 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3379 * much here because ->set_page_dirty is called under VFS locks. The page is
3380 * not necessarily locked.
3382 * We cannot just dirty the page and leave attached buffers clean, because the
3383 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3384 * or jbddirty because all the journalling code will explode.
3386 * So what we do is to mark the page "pending dirty" and next time writepage
3387 * is called, propagate that into the buffers appropriately.
3389 static int ext4_journalled_set_page_dirty(struct page *page)
3391 SetPageChecked(page);
3392 return __set_page_dirty_nobuffers(page);
3395 static const struct address_space_operations ext4_aops = {
3396 .readpage = ext4_readpage,
3397 .readpages = ext4_readpages,
3398 .writepage = ext4_writepage,
3399 .writepages = ext4_writepages,
3400 .write_begin = ext4_write_begin,
3401 .write_end = ext4_write_end,
3402 .bmap = ext4_bmap,
3403 .invalidatepage = ext4_invalidatepage,
3404 .releasepage = ext4_releasepage,
3405 .direct_IO = ext4_direct_IO,
3406 .migratepage = buffer_migrate_page,
3407 .is_partially_uptodate = block_is_partially_uptodate,
3408 .error_remove_page = generic_error_remove_page,
3411 static const struct address_space_operations ext4_journalled_aops = {
3412 .readpage = ext4_readpage,
3413 .readpages = ext4_readpages,
3414 .writepage = ext4_writepage,
3415 .writepages = ext4_writepages,
3416 .write_begin = ext4_write_begin,
3417 .write_end = ext4_journalled_write_end,
3418 .set_page_dirty = ext4_journalled_set_page_dirty,
3419 .bmap = ext4_bmap,
3420 .invalidatepage = ext4_journalled_invalidatepage,
3421 .releasepage = ext4_releasepage,
3422 .direct_IO = ext4_direct_IO,
3423 .is_partially_uptodate = block_is_partially_uptodate,
3424 .error_remove_page = generic_error_remove_page,
3427 static const struct address_space_operations ext4_da_aops = {
3428 .readpage = ext4_readpage,
3429 .readpages = ext4_readpages,
3430 .writepage = ext4_writepage,
3431 .writepages = ext4_writepages,
3432 .write_begin = ext4_da_write_begin,
3433 .write_end = ext4_da_write_end,
3434 .bmap = ext4_bmap,
3435 .invalidatepage = ext4_da_invalidatepage,
3436 .releasepage = ext4_releasepage,
3437 .direct_IO = ext4_direct_IO,
3438 .migratepage = buffer_migrate_page,
3439 .is_partially_uptodate = block_is_partially_uptodate,
3440 .error_remove_page = generic_error_remove_page,
3443 void ext4_set_aops(struct inode *inode)
3445 switch (ext4_inode_journal_mode(inode)) {
3446 case EXT4_INODE_ORDERED_DATA_MODE:
3447 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3448 break;
3449 case EXT4_INODE_WRITEBACK_DATA_MODE:
3450 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3451 break;
3452 case EXT4_INODE_JOURNAL_DATA_MODE:
3453 inode->i_mapping->a_ops = &ext4_journalled_aops;
3454 return;
3455 default:
3456 BUG();
3458 if (test_opt(inode->i_sb, DELALLOC))
3459 inode->i_mapping->a_ops = &ext4_da_aops;
3460 else
3461 inode->i_mapping->a_ops = &ext4_aops;
3464 static int __ext4_block_zero_page_range(handle_t *handle,
3465 struct address_space *mapping, loff_t from, loff_t length)
3467 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3468 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3469 unsigned blocksize, pos;
3470 ext4_lblk_t iblock;
3471 struct inode *inode = mapping->host;
3472 struct buffer_head *bh;
3473 struct page *page;
3474 int err = 0;
3476 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3477 mapping_gfp_constraint(mapping, ~__GFP_FS));
3478 if (!page)
3479 return -ENOMEM;
3481 blocksize = inode->i_sb->s_blocksize;
3483 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3485 if (!page_has_buffers(page))
3486 create_empty_buffers(page, blocksize, 0);
3488 /* Find the buffer that contains "offset" */
3489 bh = page_buffers(page);
3490 pos = blocksize;
3491 while (offset >= pos) {
3492 bh = bh->b_this_page;
3493 iblock++;
3494 pos += blocksize;
3496 if (buffer_freed(bh)) {
3497 BUFFER_TRACE(bh, "freed: skip");
3498 goto unlock;
3500 if (!buffer_mapped(bh)) {
3501 BUFFER_TRACE(bh, "unmapped");
3502 ext4_get_block(inode, iblock, bh, 0);
3503 /* unmapped? It's a hole - nothing to do */
3504 if (!buffer_mapped(bh)) {
3505 BUFFER_TRACE(bh, "still unmapped");
3506 goto unlock;
3510 /* Ok, it's mapped. Make sure it's up-to-date */
3511 if (PageUptodate(page))
3512 set_buffer_uptodate(bh);
3514 if (!buffer_uptodate(bh)) {
3515 err = -EIO;
3516 ll_rw_block(READ, 1, &bh);
3517 wait_on_buffer(bh);
3518 /* Uhhuh. Read error. Complain and punt. */
3519 if (!buffer_uptodate(bh))
3520 goto unlock;
3521 if (S_ISREG(inode->i_mode) &&
3522 ext4_encrypted_inode(inode)) {
3523 /* We expect the key to be set. */
3524 BUG_ON(!ext4_has_encryption_key(inode));
3525 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3526 WARN_ON_ONCE(ext4_decrypt(page));
3529 if (ext4_should_journal_data(inode)) {
3530 BUFFER_TRACE(bh, "get write access");
3531 err = ext4_journal_get_write_access(handle, bh);
3532 if (err)
3533 goto unlock;
3535 zero_user(page, offset, length);
3536 BUFFER_TRACE(bh, "zeroed end of block");
3538 if (ext4_should_journal_data(inode)) {
3539 err = ext4_handle_dirty_metadata(handle, inode, bh);
3540 } else {
3541 err = 0;
3542 mark_buffer_dirty(bh);
3543 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3544 err = ext4_jbd2_file_inode(handle, inode);
3547 unlock:
3548 unlock_page(page);
3549 page_cache_release(page);
3550 return err;
3554 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3555 * starting from file offset 'from'. The range to be zero'd must
3556 * be contained with in one block. If the specified range exceeds
3557 * the end of the block it will be shortened to end of the block
3558 * that cooresponds to 'from'
3560 static int ext4_block_zero_page_range(handle_t *handle,
3561 struct address_space *mapping, loff_t from, loff_t length)
3563 struct inode *inode = mapping->host;
3564 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3565 unsigned blocksize = inode->i_sb->s_blocksize;
3566 unsigned max = blocksize - (offset & (blocksize - 1));
3569 * correct length if it does not fall between
3570 * 'from' and the end of the block
3572 if (length > max || length < 0)
3573 length = max;
3575 if (IS_DAX(inode))
3576 return dax_zero_page_range(inode, from, length, ext4_get_block);
3577 return __ext4_block_zero_page_range(handle, mapping, from, length);
3581 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3582 * up to the end of the block which corresponds to `from'.
3583 * This required during truncate. We need to physically zero the tail end
3584 * of that block so it doesn't yield old data if the file is later grown.
3586 static int ext4_block_truncate_page(handle_t *handle,
3587 struct address_space *mapping, loff_t from)
3589 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3590 unsigned length;
3591 unsigned blocksize;
3592 struct inode *inode = mapping->host;
3594 /* If we are processing an encrypted inode during orphan list handling */
3595 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3596 return 0;
3598 blocksize = inode->i_sb->s_blocksize;
3599 length = blocksize - (offset & (blocksize - 1));
3601 return ext4_block_zero_page_range(handle, mapping, from, length);
3604 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3605 loff_t lstart, loff_t length)
3607 struct super_block *sb = inode->i_sb;
3608 struct address_space *mapping = inode->i_mapping;
3609 unsigned partial_start, partial_end;
3610 ext4_fsblk_t start, end;
3611 loff_t byte_end = (lstart + length - 1);
3612 int err = 0;
3614 partial_start = lstart & (sb->s_blocksize - 1);
3615 partial_end = byte_end & (sb->s_blocksize - 1);
3617 start = lstart >> sb->s_blocksize_bits;
3618 end = byte_end >> sb->s_blocksize_bits;
3620 /* Handle partial zero within the single block */
3621 if (start == end &&
3622 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3623 err = ext4_block_zero_page_range(handle, mapping,
3624 lstart, length);
3625 return err;
3627 /* Handle partial zero out on the start of the range */
3628 if (partial_start) {
3629 err = ext4_block_zero_page_range(handle, mapping,
3630 lstart, sb->s_blocksize);
3631 if (err)
3632 return err;
3634 /* Handle partial zero out on the end of the range */
3635 if (partial_end != sb->s_blocksize - 1)
3636 err = ext4_block_zero_page_range(handle, mapping,
3637 byte_end - partial_end,
3638 partial_end + 1);
3639 return err;
3642 int ext4_can_truncate(struct inode *inode)
3644 if (S_ISREG(inode->i_mode))
3645 return 1;
3646 if (S_ISDIR(inode->i_mode))
3647 return 1;
3648 if (S_ISLNK(inode->i_mode))
3649 return !ext4_inode_is_fast_symlink(inode);
3650 return 0;
3654 * We have to make sure i_disksize gets properly updated before we truncate
3655 * page cache due to hole punching or zero range. Otherwise i_disksize update
3656 * can get lost as it may have been postponed to submission of writeback but
3657 * that will never happen after we truncate page cache.
3659 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3660 loff_t len)
3662 handle_t *handle;
3663 loff_t size = i_size_read(inode);
3665 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3666 if (offset > size || offset + len < size)
3667 return 0;
3669 if (EXT4_I(inode)->i_disksize >= size)
3670 return 0;
3672 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3673 if (IS_ERR(handle))
3674 return PTR_ERR(handle);
3675 ext4_update_i_disksize(inode, size);
3676 ext4_mark_inode_dirty(handle, inode);
3677 ext4_journal_stop(handle);
3679 return 0;
3683 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3684 * associated with the given offset and length
3686 * @inode: File inode
3687 * @offset: The offset where the hole will begin
3688 * @len: The length of the hole
3690 * Returns: 0 on success or negative on failure
3693 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3695 struct super_block *sb = inode->i_sb;
3696 ext4_lblk_t first_block, stop_block;
3697 struct address_space *mapping = inode->i_mapping;
3698 loff_t first_block_offset, last_block_offset;
3699 handle_t *handle;
3700 unsigned int credits;
3701 int ret = 0;
3703 if (!S_ISREG(inode->i_mode))
3704 return -EOPNOTSUPP;
3706 trace_ext4_punch_hole(inode, offset, length, 0);
3709 * Write out all dirty pages to avoid race conditions
3710 * Then release them.
3712 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3713 ret = filemap_write_and_wait_range(mapping, offset,
3714 offset + length - 1);
3715 if (ret)
3716 return ret;
3719 mutex_lock(&inode->i_mutex);
3721 /* No need to punch hole beyond i_size */
3722 if (offset >= inode->i_size)
3723 goto out_mutex;
3726 * If the hole extends beyond i_size, set the hole
3727 * to end after the page that contains i_size
3729 if (offset + length > inode->i_size) {
3730 length = inode->i_size +
3731 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3732 offset;
3735 if (offset & (sb->s_blocksize - 1) ||
3736 (offset + length) & (sb->s_blocksize - 1)) {
3738 * Attach jinode to inode for jbd2 if we do any zeroing of
3739 * partial block
3741 ret = ext4_inode_attach_jinode(inode);
3742 if (ret < 0)
3743 goto out_mutex;
3747 /* Wait all existing dio workers, newcomers will block on i_mutex */
3748 ext4_inode_block_unlocked_dio(inode);
3749 inode_dio_wait(inode);
3752 * Prevent page faults from reinstantiating pages we have released from
3753 * page cache.
3755 down_write(&EXT4_I(inode)->i_mmap_sem);
3756 first_block_offset = round_up(offset, sb->s_blocksize);
3757 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3759 /* Now release the pages and zero block aligned part of pages*/
3760 if (last_block_offset > first_block_offset) {
3761 ret = ext4_update_disksize_before_punch(inode, offset, length);
3762 if (ret)
3763 goto out_dio;
3764 truncate_pagecache_range(inode, first_block_offset,
3765 last_block_offset);
3768 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3769 credits = ext4_writepage_trans_blocks(inode);
3770 else
3771 credits = ext4_blocks_for_truncate(inode);
3772 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3773 if (IS_ERR(handle)) {
3774 ret = PTR_ERR(handle);
3775 ext4_std_error(sb, ret);
3776 goto out_dio;
3779 ret = ext4_zero_partial_blocks(handle, inode, offset,
3780 length);
3781 if (ret)
3782 goto out_stop;
3784 first_block = (offset + sb->s_blocksize - 1) >>
3785 EXT4_BLOCK_SIZE_BITS(sb);
3786 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3788 /* If there are blocks to remove, do it */
3789 if (stop_block > first_block) {
3791 down_write(&EXT4_I(inode)->i_data_sem);
3792 ext4_discard_preallocations(inode);
3794 ret = ext4_es_remove_extent(inode, first_block,
3795 stop_block - first_block);
3796 if (ret) {
3797 up_write(&EXT4_I(inode)->i_data_sem);
3798 goto out_stop;
3801 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3802 ret = ext4_ext_remove_space(inode, first_block,
3803 stop_block - 1);
3804 else
3805 ret = ext4_ind_remove_space(handle, inode, first_block,
3806 stop_block);
3808 up_write(&EXT4_I(inode)->i_data_sem);
3810 if (IS_SYNC(inode))
3811 ext4_handle_sync(handle);
3813 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3814 ext4_mark_inode_dirty(handle, inode);
3815 if (ret >= 0)
3816 ext4_update_inode_fsync_trans(handle, inode, 1);
3817 out_stop:
3818 ext4_journal_stop(handle);
3819 out_dio:
3820 up_write(&EXT4_I(inode)->i_mmap_sem);
3821 ext4_inode_resume_unlocked_dio(inode);
3822 out_mutex:
3823 mutex_unlock(&inode->i_mutex);
3824 return ret;
3827 int ext4_inode_attach_jinode(struct inode *inode)
3829 struct ext4_inode_info *ei = EXT4_I(inode);
3830 struct jbd2_inode *jinode;
3832 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3833 return 0;
3835 jinode = jbd2_alloc_inode(GFP_KERNEL);
3836 spin_lock(&inode->i_lock);
3837 if (!ei->jinode) {
3838 if (!jinode) {
3839 spin_unlock(&inode->i_lock);
3840 return -ENOMEM;
3842 ei->jinode = jinode;
3843 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3844 jinode = NULL;
3846 spin_unlock(&inode->i_lock);
3847 if (unlikely(jinode != NULL))
3848 jbd2_free_inode(jinode);
3849 return 0;
3853 * ext4_truncate()
3855 * We block out ext4_get_block() block instantiations across the entire
3856 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3857 * simultaneously on behalf of the same inode.
3859 * As we work through the truncate and commit bits of it to the journal there
3860 * is one core, guiding principle: the file's tree must always be consistent on
3861 * disk. We must be able to restart the truncate after a crash.
3863 * The file's tree may be transiently inconsistent in memory (although it
3864 * probably isn't), but whenever we close off and commit a journal transaction,
3865 * the contents of (the filesystem + the journal) must be consistent and
3866 * restartable. It's pretty simple, really: bottom up, right to left (although
3867 * left-to-right works OK too).
3869 * Note that at recovery time, journal replay occurs *before* the restart of
3870 * truncate against the orphan inode list.
3872 * The committed inode has the new, desired i_size (which is the same as
3873 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3874 * that this inode's truncate did not complete and it will again call
3875 * ext4_truncate() to have another go. So there will be instantiated blocks
3876 * to the right of the truncation point in a crashed ext4 filesystem. But
3877 * that's fine - as long as they are linked from the inode, the post-crash
3878 * ext4_truncate() run will find them and release them.
3880 void ext4_truncate(struct inode *inode)
3882 struct ext4_inode_info *ei = EXT4_I(inode);
3883 unsigned int credits;
3884 handle_t *handle;
3885 struct address_space *mapping = inode->i_mapping;
3888 * There is a possibility that we're either freeing the inode
3889 * or it's a completely new inode. In those cases we might not
3890 * have i_mutex locked because it's not necessary.
3892 if (!(inode->i_state & (I_NEW|I_FREEING)))
3893 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3894 trace_ext4_truncate_enter(inode);
3896 if (!ext4_can_truncate(inode))
3897 return;
3899 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3901 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3902 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3904 if (ext4_has_inline_data(inode)) {
3905 int has_inline = 1;
3907 ext4_inline_data_truncate(inode, &has_inline);
3908 if (has_inline)
3909 return;
3912 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3913 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3914 if (ext4_inode_attach_jinode(inode) < 0)
3915 return;
3918 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3919 credits = ext4_writepage_trans_blocks(inode);
3920 else
3921 credits = ext4_blocks_for_truncate(inode);
3923 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3924 if (IS_ERR(handle)) {
3925 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3926 return;
3929 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3930 ext4_block_truncate_page(handle, mapping, inode->i_size);
3933 * We add the inode to the orphan list, so that if this
3934 * truncate spans multiple transactions, and we crash, we will
3935 * resume the truncate when the filesystem recovers. It also
3936 * marks the inode dirty, to catch the new size.
3938 * Implication: the file must always be in a sane, consistent
3939 * truncatable state while each transaction commits.
3941 if (ext4_orphan_add(handle, inode))
3942 goto out_stop;
3944 down_write(&EXT4_I(inode)->i_data_sem);
3946 ext4_discard_preallocations(inode);
3948 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3949 ext4_ext_truncate(handle, inode);
3950 else
3951 ext4_ind_truncate(handle, inode);
3953 up_write(&ei->i_data_sem);
3955 if (IS_SYNC(inode))
3956 ext4_handle_sync(handle);
3958 out_stop:
3960 * If this was a simple ftruncate() and the file will remain alive,
3961 * then we need to clear up the orphan record which we created above.
3962 * However, if this was a real unlink then we were called by
3963 * ext4_evict_inode(), and we allow that function to clean up the
3964 * orphan info for us.
3966 if (inode->i_nlink)
3967 ext4_orphan_del(handle, inode);
3969 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3970 ext4_mark_inode_dirty(handle, inode);
3971 ext4_journal_stop(handle);
3973 trace_ext4_truncate_exit(inode);
3977 * ext4_get_inode_loc returns with an extra refcount against the inode's
3978 * underlying buffer_head on success. If 'in_mem' is true, we have all
3979 * data in memory that is needed to recreate the on-disk version of this
3980 * inode.
3982 static int __ext4_get_inode_loc(struct inode *inode,
3983 struct ext4_iloc *iloc, int in_mem)
3985 struct ext4_group_desc *gdp;
3986 struct buffer_head *bh;
3987 struct super_block *sb = inode->i_sb;
3988 ext4_fsblk_t block;
3989 int inodes_per_block, inode_offset;
3991 iloc->bh = NULL;
3992 if (inode->i_ino < EXT4_ROOT_INO ||
3993 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
3994 return -EFSCORRUPTED;
3996 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3997 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3998 if (!gdp)
3999 return -EIO;
4002 * Figure out the offset within the block group inode table
4004 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4005 inode_offset = ((inode->i_ino - 1) %
4006 EXT4_INODES_PER_GROUP(sb));
4007 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4008 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4010 bh = sb_getblk(sb, block);
4011 if (unlikely(!bh))
4012 return -ENOMEM;
4013 if (!buffer_uptodate(bh)) {
4014 lock_buffer(bh);
4017 * If the buffer has the write error flag, we have failed
4018 * to write out another inode in the same block. In this
4019 * case, we don't have to read the block because we may
4020 * read the old inode data successfully.
4022 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4023 set_buffer_uptodate(bh);
4025 if (buffer_uptodate(bh)) {
4026 /* someone brought it uptodate while we waited */
4027 unlock_buffer(bh);
4028 goto has_buffer;
4032 * If we have all information of the inode in memory and this
4033 * is the only valid inode in the block, we need not read the
4034 * block.
4036 if (in_mem) {
4037 struct buffer_head *bitmap_bh;
4038 int i, start;
4040 start = inode_offset & ~(inodes_per_block - 1);
4042 /* Is the inode bitmap in cache? */
4043 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4044 if (unlikely(!bitmap_bh))
4045 goto make_io;
4048 * If the inode bitmap isn't in cache then the
4049 * optimisation may end up performing two reads instead
4050 * of one, so skip it.
4052 if (!buffer_uptodate(bitmap_bh)) {
4053 brelse(bitmap_bh);
4054 goto make_io;
4056 for (i = start; i < start + inodes_per_block; i++) {
4057 if (i == inode_offset)
4058 continue;
4059 if (ext4_test_bit(i, bitmap_bh->b_data))
4060 break;
4062 brelse(bitmap_bh);
4063 if (i == start + inodes_per_block) {
4064 /* all other inodes are free, so skip I/O */
4065 memset(bh->b_data, 0, bh->b_size);
4066 set_buffer_uptodate(bh);
4067 unlock_buffer(bh);
4068 goto has_buffer;
4072 make_io:
4074 * If we need to do any I/O, try to pre-readahead extra
4075 * blocks from the inode table.
4077 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4078 ext4_fsblk_t b, end, table;
4079 unsigned num;
4080 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4082 table = ext4_inode_table(sb, gdp);
4083 /* s_inode_readahead_blks is always a power of 2 */
4084 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4085 if (table > b)
4086 b = table;
4087 end = b + ra_blks;
4088 num = EXT4_INODES_PER_GROUP(sb);
4089 if (ext4_has_group_desc_csum(sb))
4090 num -= ext4_itable_unused_count(sb, gdp);
4091 table += num / inodes_per_block;
4092 if (end > table)
4093 end = table;
4094 while (b <= end)
4095 sb_breadahead(sb, b++);
4099 * There are other valid inodes in the buffer, this inode
4100 * has in-inode xattrs, or we don't have this inode in memory.
4101 * Read the block from disk.
4103 trace_ext4_load_inode(inode);
4104 get_bh(bh);
4105 bh->b_end_io = end_buffer_read_sync;
4106 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4107 wait_on_buffer(bh);
4108 if (!buffer_uptodate(bh)) {
4109 EXT4_ERROR_INODE_BLOCK(inode, block,
4110 "unable to read itable block");
4111 brelse(bh);
4112 return -EIO;
4115 has_buffer:
4116 iloc->bh = bh;
4117 return 0;
4120 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4122 /* We have all inode data except xattrs in memory here. */
4123 return __ext4_get_inode_loc(inode, iloc,
4124 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4127 void ext4_set_inode_flags(struct inode *inode)
4129 unsigned int flags = EXT4_I(inode)->i_flags;
4130 unsigned int new_fl = 0;
4132 if (flags & EXT4_SYNC_FL)
4133 new_fl |= S_SYNC;
4134 if (flags & EXT4_APPEND_FL)
4135 new_fl |= S_APPEND;
4136 if (flags & EXT4_IMMUTABLE_FL)
4137 new_fl |= S_IMMUTABLE;
4138 if (flags & EXT4_NOATIME_FL)
4139 new_fl |= S_NOATIME;
4140 if (flags & EXT4_DIRSYNC_FL)
4141 new_fl |= S_DIRSYNC;
4142 if (test_opt(inode->i_sb, DAX))
4143 new_fl |= S_DAX;
4144 inode_set_flags(inode, new_fl,
4145 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4148 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4149 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4151 unsigned int vfs_fl;
4152 unsigned long old_fl, new_fl;
4154 do {
4155 vfs_fl = ei->vfs_inode.i_flags;
4156 old_fl = ei->i_flags;
4157 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4158 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4159 EXT4_DIRSYNC_FL);
4160 if (vfs_fl & S_SYNC)
4161 new_fl |= EXT4_SYNC_FL;
4162 if (vfs_fl & S_APPEND)
4163 new_fl |= EXT4_APPEND_FL;
4164 if (vfs_fl & S_IMMUTABLE)
4165 new_fl |= EXT4_IMMUTABLE_FL;
4166 if (vfs_fl & S_NOATIME)
4167 new_fl |= EXT4_NOATIME_FL;
4168 if (vfs_fl & S_DIRSYNC)
4169 new_fl |= EXT4_DIRSYNC_FL;
4170 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4173 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4174 struct ext4_inode_info *ei)
4176 blkcnt_t i_blocks ;
4177 struct inode *inode = &(ei->vfs_inode);
4178 struct super_block *sb = inode->i_sb;
4180 if (ext4_has_feature_huge_file(sb)) {
4181 /* we are using combined 48 bit field */
4182 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4183 le32_to_cpu(raw_inode->i_blocks_lo);
4184 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4185 /* i_blocks represent file system block size */
4186 return i_blocks << (inode->i_blkbits - 9);
4187 } else {
4188 return i_blocks;
4190 } else {
4191 return le32_to_cpu(raw_inode->i_blocks_lo);
4195 static inline void ext4_iget_extra_inode(struct inode *inode,
4196 struct ext4_inode *raw_inode,
4197 struct ext4_inode_info *ei)
4199 __le32 *magic = (void *)raw_inode +
4200 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4201 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4202 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4203 ext4_find_inline_data_nolock(inode);
4204 } else
4205 EXT4_I(inode)->i_inline_off = 0;
4208 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4210 struct ext4_iloc iloc;
4211 struct ext4_inode *raw_inode;
4212 struct ext4_inode_info *ei;
4213 struct inode *inode;
4214 journal_t *journal = EXT4_SB(sb)->s_journal;
4215 long ret;
4216 loff_t size;
4217 int block;
4218 uid_t i_uid;
4219 gid_t i_gid;
4221 inode = iget_locked(sb, ino);
4222 if (!inode)
4223 return ERR_PTR(-ENOMEM);
4224 if (!(inode->i_state & I_NEW))
4225 return inode;
4227 ei = EXT4_I(inode);
4228 iloc.bh = NULL;
4230 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4231 if (ret < 0)
4232 goto bad_inode;
4233 raw_inode = ext4_raw_inode(&iloc);
4235 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4236 EXT4_ERROR_INODE(inode, "root inode unallocated");
4237 ret = -EFSCORRUPTED;
4238 goto bad_inode;
4241 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4242 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4243 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4244 EXT4_INODE_SIZE(inode->i_sb)) {
4245 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4246 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4247 EXT4_INODE_SIZE(inode->i_sb));
4248 ret = -EFSCORRUPTED;
4249 goto bad_inode;
4251 } else
4252 ei->i_extra_isize = 0;
4254 /* Precompute checksum seed for inode metadata */
4255 if (ext4_has_metadata_csum(sb)) {
4256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4257 __u32 csum;
4258 __le32 inum = cpu_to_le32(inode->i_ino);
4259 __le32 gen = raw_inode->i_generation;
4260 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4261 sizeof(inum));
4262 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4263 sizeof(gen));
4266 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4267 EXT4_ERROR_INODE(inode, "checksum invalid");
4268 ret = -EFSBADCRC;
4269 goto bad_inode;
4272 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4273 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4274 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4275 if (!(test_opt(inode->i_sb, NO_UID32))) {
4276 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4277 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4279 i_uid_write(inode, i_uid);
4280 i_gid_write(inode, i_gid);
4281 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4283 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4284 ei->i_inline_off = 0;
4285 ei->i_dir_start_lookup = 0;
4286 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4287 /* We now have enough fields to check if the inode was active or not.
4288 * This is needed because nfsd might try to access dead inodes
4289 * the test is that same one that e2fsck uses
4290 * NeilBrown 1999oct15
4292 if (inode->i_nlink == 0) {
4293 if ((inode->i_mode == 0 ||
4294 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4295 ino != EXT4_BOOT_LOADER_INO) {
4296 /* this inode is deleted */
4297 ret = -ESTALE;
4298 goto bad_inode;
4300 /* The only unlinked inodes we let through here have
4301 * valid i_mode and are being read by the orphan
4302 * recovery code: that's fine, we're about to complete
4303 * the process of deleting those.
4304 * OR it is the EXT4_BOOT_LOADER_INO which is
4305 * not initialized on a new filesystem. */
4307 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4308 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4309 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4310 if (ext4_has_feature_64bit(sb))
4311 ei->i_file_acl |=
4312 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4313 inode->i_size = ext4_isize(raw_inode);
4314 if ((size = i_size_read(inode)) < 0) {
4315 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4316 ret = -EFSCORRUPTED;
4317 goto bad_inode;
4319 ei->i_disksize = inode->i_size;
4320 #ifdef CONFIG_QUOTA
4321 ei->i_reserved_quota = 0;
4322 #endif
4323 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4324 ei->i_block_group = iloc.block_group;
4325 ei->i_last_alloc_group = ~0;
4327 * NOTE! The in-memory inode i_data array is in little-endian order
4328 * even on big-endian machines: we do NOT byteswap the block numbers!
4330 for (block = 0; block < EXT4_N_BLOCKS; block++)
4331 ei->i_data[block] = raw_inode->i_block[block];
4332 INIT_LIST_HEAD(&ei->i_orphan);
4335 * Set transaction id's of transactions that have to be committed
4336 * to finish f[data]sync. We set them to currently running transaction
4337 * as we cannot be sure that the inode or some of its metadata isn't
4338 * part of the transaction - the inode could have been reclaimed and
4339 * now it is reread from disk.
4341 if (journal) {
4342 transaction_t *transaction;
4343 tid_t tid;
4345 read_lock(&journal->j_state_lock);
4346 if (journal->j_running_transaction)
4347 transaction = journal->j_running_transaction;
4348 else
4349 transaction = journal->j_committing_transaction;
4350 if (transaction)
4351 tid = transaction->t_tid;
4352 else
4353 tid = journal->j_commit_sequence;
4354 read_unlock(&journal->j_state_lock);
4355 ei->i_sync_tid = tid;
4356 ei->i_datasync_tid = tid;
4359 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4360 if (ei->i_extra_isize == 0) {
4361 /* The extra space is currently unused. Use it. */
4362 ei->i_extra_isize = sizeof(struct ext4_inode) -
4363 EXT4_GOOD_OLD_INODE_SIZE;
4364 } else {
4365 ext4_iget_extra_inode(inode, raw_inode, ei);
4369 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4370 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4371 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4372 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4374 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4375 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4376 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4377 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378 inode->i_version |=
4379 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4383 ret = 0;
4384 if (ei->i_file_acl &&
4385 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4386 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4387 ei->i_file_acl);
4388 ret = -EFSCORRUPTED;
4389 goto bad_inode;
4390 } else if (!ext4_has_inline_data(inode)) {
4391 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4392 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4393 (S_ISLNK(inode->i_mode) &&
4394 !ext4_inode_is_fast_symlink(inode))))
4395 /* Validate extent which is part of inode */
4396 ret = ext4_ext_check_inode(inode);
4397 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4398 (S_ISLNK(inode->i_mode) &&
4399 !ext4_inode_is_fast_symlink(inode))) {
4400 /* Validate block references which are part of inode */
4401 ret = ext4_ind_check_inode(inode);
4404 if (ret)
4405 goto bad_inode;
4407 if (S_ISREG(inode->i_mode)) {
4408 inode->i_op = &ext4_file_inode_operations;
4409 inode->i_fop = &ext4_file_operations;
4410 ext4_set_aops(inode);
4411 } else if (S_ISDIR(inode->i_mode)) {
4412 inode->i_op = &ext4_dir_inode_operations;
4413 inode->i_fop = &ext4_dir_operations;
4414 } else if (S_ISLNK(inode->i_mode)) {
4415 if (ext4_encrypted_inode(inode)) {
4416 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4417 ext4_set_aops(inode);
4418 } else if (ext4_inode_is_fast_symlink(inode)) {
4419 inode->i_link = (char *)ei->i_data;
4420 inode->i_op = &ext4_fast_symlink_inode_operations;
4421 nd_terminate_link(ei->i_data, inode->i_size,
4422 sizeof(ei->i_data) - 1);
4423 } else {
4424 inode->i_op = &ext4_symlink_inode_operations;
4425 ext4_set_aops(inode);
4427 inode_nohighmem(inode);
4428 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4429 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4430 inode->i_op = &ext4_special_inode_operations;
4431 if (raw_inode->i_block[0])
4432 init_special_inode(inode, inode->i_mode,
4433 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4434 else
4435 init_special_inode(inode, inode->i_mode,
4436 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4437 } else if (ino == EXT4_BOOT_LOADER_INO) {
4438 make_bad_inode(inode);
4439 } else {
4440 ret = -EFSCORRUPTED;
4441 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4442 goto bad_inode;
4444 brelse(iloc.bh);
4445 ext4_set_inode_flags(inode);
4446 unlock_new_inode(inode);
4447 return inode;
4449 bad_inode:
4450 brelse(iloc.bh);
4451 iget_failed(inode);
4452 return ERR_PTR(ret);
4455 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4457 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4458 return ERR_PTR(-EFSCORRUPTED);
4459 return ext4_iget(sb, ino);
4462 static int ext4_inode_blocks_set(handle_t *handle,
4463 struct ext4_inode *raw_inode,
4464 struct ext4_inode_info *ei)
4466 struct inode *inode = &(ei->vfs_inode);
4467 u64 i_blocks = inode->i_blocks;
4468 struct super_block *sb = inode->i_sb;
4470 if (i_blocks <= ~0U) {
4472 * i_blocks can be represented in a 32 bit variable
4473 * as multiple of 512 bytes
4475 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4476 raw_inode->i_blocks_high = 0;
4477 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4478 return 0;
4480 if (!ext4_has_feature_huge_file(sb))
4481 return -EFBIG;
4483 if (i_blocks <= 0xffffffffffffULL) {
4485 * i_blocks can be represented in a 48 bit variable
4486 * as multiple of 512 bytes
4488 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4489 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4490 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4491 } else {
4492 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4493 /* i_block is stored in file system block size */
4494 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4495 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4496 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4498 return 0;
4501 struct other_inode {
4502 unsigned long orig_ino;
4503 struct ext4_inode *raw_inode;
4506 static int other_inode_match(struct inode * inode, unsigned long ino,
4507 void *data)
4509 struct other_inode *oi = (struct other_inode *) data;
4511 if ((inode->i_ino != ino) ||
4512 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4513 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4514 ((inode->i_state & I_DIRTY_TIME) == 0))
4515 return 0;
4516 spin_lock(&inode->i_lock);
4517 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4518 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4519 (inode->i_state & I_DIRTY_TIME)) {
4520 struct ext4_inode_info *ei = EXT4_I(inode);
4522 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4523 spin_unlock(&inode->i_lock);
4525 spin_lock(&ei->i_raw_lock);
4526 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4527 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4528 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4529 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4530 spin_unlock(&ei->i_raw_lock);
4531 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4532 return -1;
4534 spin_unlock(&inode->i_lock);
4535 return -1;
4539 * Opportunistically update the other time fields for other inodes in
4540 * the same inode table block.
4542 static void ext4_update_other_inodes_time(struct super_block *sb,
4543 unsigned long orig_ino, char *buf)
4545 struct other_inode oi;
4546 unsigned long ino;
4547 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4548 int inode_size = EXT4_INODE_SIZE(sb);
4550 oi.orig_ino = orig_ino;
4552 * Calculate the first inode in the inode table block. Inode
4553 * numbers are one-based. That is, the first inode in a block
4554 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4556 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4557 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4558 if (ino == orig_ino)
4559 continue;
4560 oi.raw_inode = (struct ext4_inode *) buf;
4561 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4566 * Post the struct inode info into an on-disk inode location in the
4567 * buffer-cache. This gobbles the caller's reference to the
4568 * buffer_head in the inode location struct.
4570 * The caller must have write access to iloc->bh.
4572 static int ext4_do_update_inode(handle_t *handle,
4573 struct inode *inode,
4574 struct ext4_iloc *iloc)
4576 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4577 struct ext4_inode_info *ei = EXT4_I(inode);
4578 struct buffer_head *bh = iloc->bh;
4579 struct super_block *sb = inode->i_sb;
4580 int err = 0, rc, block;
4581 int need_datasync = 0, set_large_file = 0;
4582 uid_t i_uid;
4583 gid_t i_gid;
4585 spin_lock(&ei->i_raw_lock);
4587 /* For fields not tracked in the in-memory inode,
4588 * initialise them to zero for new inodes. */
4589 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4590 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4592 ext4_get_inode_flags(ei);
4593 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4594 i_uid = i_uid_read(inode);
4595 i_gid = i_gid_read(inode);
4596 if (!(test_opt(inode->i_sb, NO_UID32))) {
4597 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4598 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4600 * Fix up interoperability with old kernels. Otherwise, old inodes get
4601 * re-used with the upper 16 bits of the uid/gid intact
4603 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4604 raw_inode->i_uid_high = 0;
4605 raw_inode->i_gid_high = 0;
4606 } else {
4607 raw_inode->i_uid_high =
4608 cpu_to_le16(high_16_bits(i_uid));
4609 raw_inode->i_gid_high =
4610 cpu_to_le16(high_16_bits(i_gid));
4612 } else {
4613 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4614 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4615 raw_inode->i_uid_high = 0;
4616 raw_inode->i_gid_high = 0;
4618 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4620 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4621 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4622 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4623 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4625 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4626 if (err) {
4627 spin_unlock(&ei->i_raw_lock);
4628 goto out_brelse;
4630 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4631 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4632 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4633 raw_inode->i_file_acl_high =
4634 cpu_to_le16(ei->i_file_acl >> 32);
4635 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4636 if (ei->i_disksize != ext4_isize(raw_inode)) {
4637 ext4_isize_set(raw_inode, ei->i_disksize);
4638 need_datasync = 1;
4640 if (ei->i_disksize > 0x7fffffffULL) {
4641 if (!ext4_has_feature_large_file(sb) ||
4642 EXT4_SB(sb)->s_es->s_rev_level ==
4643 cpu_to_le32(EXT4_GOOD_OLD_REV))
4644 set_large_file = 1;
4646 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4647 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4648 if (old_valid_dev(inode->i_rdev)) {
4649 raw_inode->i_block[0] =
4650 cpu_to_le32(old_encode_dev(inode->i_rdev));
4651 raw_inode->i_block[1] = 0;
4652 } else {
4653 raw_inode->i_block[0] = 0;
4654 raw_inode->i_block[1] =
4655 cpu_to_le32(new_encode_dev(inode->i_rdev));
4656 raw_inode->i_block[2] = 0;
4658 } else if (!ext4_has_inline_data(inode)) {
4659 for (block = 0; block < EXT4_N_BLOCKS; block++)
4660 raw_inode->i_block[block] = ei->i_data[block];
4663 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4664 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4665 if (ei->i_extra_isize) {
4666 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4667 raw_inode->i_version_hi =
4668 cpu_to_le32(inode->i_version >> 32);
4669 raw_inode->i_extra_isize =
4670 cpu_to_le16(ei->i_extra_isize);
4673 ext4_inode_csum_set(inode, raw_inode, ei);
4674 spin_unlock(&ei->i_raw_lock);
4675 if (inode->i_sb->s_flags & MS_LAZYTIME)
4676 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4677 bh->b_data);
4679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4680 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4681 if (!err)
4682 err = rc;
4683 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4684 if (set_large_file) {
4685 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4686 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4687 if (err)
4688 goto out_brelse;
4689 ext4_update_dynamic_rev(sb);
4690 ext4_set_feature_large_file(sb);
4691 ext4_handle_sync(handle);
4692 err = ext4_handle_dirty_super(handle, sb);
4694 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4695 out_brelse:
4696 brelse(bh);
4697 ext4_std_error(inode->i_sb, err);
4698 return err;
4702 * ext4_write_inode()
4704 * We are called from a few places:
4706 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4707 * Here, there will be no transaction running. We wait for any running
4708 * transaction to commit.
4710 * - Within flush work (sys_sync(), kupdate and such).
4711 * We wait on commit, if told to.
4713 * - Within iput_final() -> write_inode_now()
4714 * We wait on commit, if told to.
4716 * In all cases it is actually safe for us to return without doing anything,
4717 * because the inode has been copied into a raw inode buffer in
4718 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4719 * writeback.
4721 * Note that we are absolutely dependent upon all inode dirtiers doing the
4722 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4723 * which we are interested.
4725 * It would be a bug for them to not do this. The code:
4727 * mark_inode_dirty(inode)
4728 * stuff();
4729 * inode->i_size = expr;
4731 * is in error because write_inode() could occur while `stuff()' is running,
4732 * and the new i_size will be lost. Plus the inode will no longer be on the
4733 * superblock's dirty inode list.
4735 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4737 int err;
4739 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4740 return 0;
4742 if (EXT4_SB(inode->i_sb)->s_journal) {
4743 if (ext4_journal_current_handle()) {
4744 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4745 dump_stack();
4746 return -EIO;
4750 * No need to force transaction in WB_SYNC_NONE mode. Also
4751 * ext4_sync_fs() will force the commit after everything is
4752 * written.
4754 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4755 return 0;
4757 err = ext4_force_commit(inode->i_sb);
4758 } else {
4759 struct ext4_iloc iloc;
4761 err = __ext4_get_inode_loc(inode, &iloc, 0);
4762 if (err)
4763 return err;
4765 * sync(2) will flush the whole buffer cache. No need to do
4766 * it here separately for each inode.
4768 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4769 sync_dirty_buffer(iloc.bh);
4770 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4771 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4772 "IO error syncing inode");
4773 err = -EIO;
4775 brelse(iloc.bh);
4777 return err;
4781 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4782 * buffers that are attached to a page stradding i_size and are undergoing
4783 * commit. In that case we have to wait for commit to finish and try again.
4785 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4787 struct page *page;
4788 unsigned offset;
4789 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4790 tid_t commit_tid = 0;
4791 int ret;
4793 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4795 * All buffers in the last page remain valid? Then there's nothing to
4796 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4797 * blocksize case
4799 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4800 return;
4801 while (1) {
4802 page = find_lock_page(inode->i_mapping,
4803 inode->i_size >> PAGE_CACHE_SHIFT);
4804 if (!page)
4805 return;
4806 ret = __ext4_journalled_invalidatepage(page, offset,
4807 PAGE_CACHE_SIZE - offset);
4808 unlock_page(page);
4809 page_cache_release(page);
4810 if (ret != -EBUSY)
4811 return;
4812 commit_tid = 0;
4813 read_lock(&journal->j_state_lock);
4814 if (journal->j_committing_transaction)
4815 commit_tid = journal->j_committing_transaction->t_tid;
4816 read_unlock(&journal->j_state_lock);
4817 if (commit_tid)
4818 jbd2_log_wait_commit(journal, commit_tid);
4823 * ext4_setattr()
4825 * Called from notify_change.
4827 * We want to trap VFS attempts to truncate the file as soon as
4828 * possible. In particular, we want to make sure that when the VFS
4829 * shrinks i_size, we put the inode on the orphan list and modify
4830 * i_disksize immediately, so that during the subsequent flushing of
4831 * dirty pages and freeing of disk blocks, we can guarantee that any
4832 * commit will leave the blocks being flushed in an unused state on
4833 * disk. (On recovery, the inode will get truncated and the blocks will
4834 * be freed, so we have a strong guarantee that no future commit will
4835 * leave these blocks visible to the user.)
4837 * Another thing we have to assure is that if we are in ordered mode
4838 * and inode is still attached to the committing transaction, we must
4839 * we start writeout of all the dirty pages which are being truncated.
4840 * This way we are sure that all the data written in the previous
4841 * transaction are already on disk (truncate waits for pages under
4842 * writeback).
4844 * Called with inode->i_mutex down.
4846 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4848 struct inode *inode = d_inode(dentry);
4849 int error, rc = 0;
4850 int orphan = 0;
4851 const unsigned int ia_valid = attr->ia_valid;
4853 error = inode_change_ok(inode, attr);
4854 if (error)
4855 return error;
4857 if (is_quota_modification(inode, attr)) {
4858 error = dquot_initialize(inode);
4859 if (error)
4860 return error;
4862 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4863 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4864 handle_t *handle;
4866 /* (user+group)*(old+new) structure, inode write (sb,
4867 * inode block, ? - but truncate inode update has it) */
4868 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4869 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4870 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4871 if (IS_ERR(handle)) {
4872 error = PTR_ERR(handle);
4873 goto err_out;
4875 error = dquot_transfer(inode, attr);
4876 if (error) {
4877 ext4_journal_stop(handle);
4878 return error;
4880 /* Update corresponding info in inode so that everything is in
4881 * one transaction */
4882 if (attr->ia_valid & ATTR_UID)
4883 inode->i_uid = attr->ia_uid;
4884 if (attr->ia_valid & ATTR_GID)
4885 inode->i_gid = attr->ia_gid;
4886 error = ext4_mark_inode_dirty(handle, inode);
4887 ext4_journal_stop(handle);
4890 if (attr->ia_valid & ATTR_SIZE) {
4891 handle_t *handle;
4892 loff_t oldsize = inode->i_size;
4893 int shrink = (attr->ia_size <= inode->i_size);
4895 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4896 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4898 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4899 return -EFBIG;
4901 if (!S_ISREG(inode->i_mode))
4902 return -EINVAL;
4904 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4905 inode_inc_iversion(inode);
4907 if (ext4_should_order_data(inode) &&
4908 (attr->ia_size < inode->i_size)) {
4909 error = ext4_begin_ordered_truncate(inode,
4910 attr->ia_size);
4911 if (error)
4912 goto err_out;
4914 if (attr->ia_size != inode->i_size) {
4915 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4916 if (IS_ERR(handle)) {
4917 error = PTR_ERR(handle);
4918 goto err_out;
4920 if (ext4_handle_valid(handle) && shrink) {
4921 error = ext4_orphan_add(handle, inode);
4922 orphan = 1;
4925 * Update c/mtime on truncate up, ext4_truncate() will
4926 * update c/mtime in shrink case below
4928 if (!shrink) {
4929 inode->i_mtime = ext4_current_time(inode);
4930 inode->i_ctime = inode->i_mtime;
4932 down_write(&EXT4_I(inode)->i_data_sem);
4933 EXT4_I(inode)->i_disksize = attr->ia_size;
4934 rc = ext4_mark_inode_dirty(handle, inode);
4935 if (!error)
4936 error = rc;
4938 * We have to update i_size under i_data_sem together
4939 * with i_disksize to avoid races with writeback code
4940 * running ext4_wb_update_i_disksize().
4942 if (!error)
4943 i_size_write(inode, attr->ia_size);
4944 up_write(&EXT4_I(inode)->i_data_sem);
4945 ext4_journal_stop(handle);
4946 if (error) {
4947 if (orphan)
4948 ext4_orphan_del(NULL, inode);
4949 goto err_out;
4952 if (!shrink)
4953 pagecache_isize_extended(inode, oldsize, inode->i_size);
4956 * Blocks are going to be removed from the inode. Wait
4957 * for dio in flight. Temporarily disable
4958 * dioread_nolock to prevent livelock.
4960 if (orphan) {
4961 if (!ext4_should_journal_data(inode)) {
4962 ext4_inode_block_unlocked_dio(inode);
4963 inode_dio_wait(inode);
4964 ext4_inode_resume_unlocked_dio(inode);
4965 } else
4966 ext4_wait_for_tail_page_commit(inode);
4968 down_write(&EXT4_I(inode)->i_mmap_sem);
4970 * Truncate pagecache after we've waited for commit
4971 * in data=journal mode to make pages freeable.
4973 truncate_pagecache(inode, inode->i_size);
4974 if (shrink)
4975 ext4_truncate(inode);
4976 up_write(&EXT4_I(inode)->i_mmap_sem);
4979 if (!rc) {
4980 setattr_copy(inode, attr);
4981 mark_inode_dirty(inode);
4985 * If the call to ext4_truncate failed to get a transaction handle at
4986 * all, we need to clean up the in-core orphan list manually.
4988 if (orphan && inode->i_nlink)
4989 ext4_orphan_del(NULL, inode);
4991 if (!rc && (ia_valid & ATTR_MODE))
4992 rc = posix_acl_chmod(inode, inode->i_mode);
4994 err_out:
4995 ext4_std_error(inode->i_sb, error);
4996 if (!error)
4997 error = rc;
4998 return error;
5001 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5002 struct kstat *stat)
5004 struct inode *inode;
5005 unsigned long long delalloc_blocks;
5007 inode = d_inode(dentry);
5008 generic_fillattr(inode, stat);
5011 * If there is inline data in the inode, the inode will normally not
5012 * have data blocks allocated (it may have an external xattr block).
5013 * Report at least one sector for such files, so tools like tar, rsync,
5014 * others doen't incorrectly think the file is completely sparse.
5016 if (unlikely(ext4_has_inline_data(inode)))
5017 stat->blocks += (stat->size + 511) >> 9;
5020 * We can't update i_blocks if the block allocation is delayed
5021 * otherwise in the case of system crash before the real block
5022 * allocation is done, we will have i_blocks inconsistent with
5023 * on-disk file blocks.
5024 * We always keep i_blocks updated together with real
5025 * allocation. But to not confuse with user, stat
5026 * will return the blocks that include the delayed allocation
5027 * blocks for this file.
5029 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5030 EXT4_I(inode)->i_reserved_data_blocks);
5031 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5032 return 0;
5035 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5036 int pextents)
5038 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5039 return ext4_ind_trans_blocks(inode, lblocks);
5040 return ext4_ext_index_trans_blocks(inode, pextents);
5044 * Account for index blocks, block groups bitmaps and block group
5045 * descriptor blocks if modify datablocks and index blocks
5046 * worse case, the indexs blocks spread over different block groups
5048 * If datablocks are discontiguous, they are possible to spread over
5049 * different block groups too. If they are contiguous, with flexbg,
5050 * they could still across block group boundary.
5052 * Also account for superblock, inode, quota and xattr blocks
5054 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5055 int pextents)
5057 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5058 int gdpblocks;
5059 int idxblocks;
5060 int ret = 0;
5063 * How many index blocks need to touch to map @lblocks logical blocks
5064 * to @pextents physical extents?
5066 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5068 ret = idxblocks;
5071 * Now let's see how many group bitmaps and group descriptors need
5072 * to account
5074 groups = idxblocks + pextents;
5075 gdpblocks = groups;
5076 if (groups > ngroups)
5077 groups = ngroups;
5078 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5079 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5081 /* bitmaps and block group descriptor blocks */
5082 ret += groups + gdpblocks;
5084 /* Blocks for super block, inode, quota and xattr blocks */
5085 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5087 return ret;
5091 * Calculate the total number of credits to reserve to fit
5092 * the modification of a single pages into a single transaction,
5093 * which may include multiple chunks of block allocations.
5095 * This could be called via ext4_write_begin()
5097 * We need to consider the worse case, when
5098 * one new block per extent.
5100 int ext4_writepage_trans_blocks(struct inode *inode)
5102 int bpp = ext4_journal_blocks_per_page(inode);
5103 int ret;
5105 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5107 /* Account for data blocks for journalled mode */
5108 if (ext4_should_journal_data(inode))
5109 ret += bpp;
5110 return ret;
5114 * Calculate the journal credits for a chunk of data modification.
5116 * This is called from DIO, fallocate or whoever calling
5117 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5119 * journal buffers for data blocks are not included here, as DIO
5120 * and fallocate do no need to journal data buffers.
5122 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5124 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5128 * The caller must have previously called ext4_reserve_inode_write().
5129 * Give this, we know that the caller already has write access to iloc->bh.
5131 int ext4_mark_iloc_dirty(handle_t *handle,
5132 struct inode *inode, struct ext4_iloc *iloc)
5134 int err = 0;
5136 if (IS_I_VERSION(inode))
5137 inode_inc_iversion(inode);
5139 /* the do_update_inode consumes one bh->b_count */
5140 get_bh(iloc->bh);
5142 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5143 err = ext4_do_update_inode(handle, inode, iloc);
5144 put_bh(iloc->bh);
5145 return err;
5149 * On success, We end up with an outstanding reference count against
5150 * iloc->bh. This _must_ be cleaned up later.
5154 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5155 struct ext4_iloc *iloc)
5157 int err;
5159 err = ext4_get_inode_loc(inode, iloc);
5160 if (!err) {
5161 BUFFER_TRACE(iloc->bh, "get_write_access");
5162 err = ext4_journal_get_write_access(handle, iloc->bh);
5163 if (err) {
5164 brelse(iloc->bh);
5165 iloc->bh = NULL;
5168 ext4_std_error(inode->i_sb, err);
5169 return err;
5173 * Expand an inode by new_extra_isize bytes.
5174 * Returns 0 on success or negative error number on failure.
5176 static int ext4_expand_extra_isize(struct inode *inode,
5177 unsigned int new_extra_isize,
5178 struct ext4_iloc iloc,
5179 handle_t *handle)
5181 struct ext4_inode *raw_inode;
5182 struct ext4_xattr_ibody_header *header;
5184 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5185 return 0;
5187 raw_inode = ext4_raw_inode(&iloc);
5189 header = IHDR(inode, raw_inode);
5191 /* No extended attributes present */
5192 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5193 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5194 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5195 EXT4_I(inode)->i_extra_isize, 0,
5196 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5197 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5198 return 0;
5201 /* try to expand with EAs present */
5202 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5203 raw_inode, handle);
5207 * What we do here is to mark the in-core inode as clean with respect to inode
5208 * dirtiness (it may still be data-dirty).
5209 * This means that the in-core inode may be reaped by prune_icache
5210 * without having to perform any I/O. This is a very good thing,
5211 * because *any* task may call prune_icache - even ones which
5212 * have a transaction open against a different journal.
5214 * Is this cheating? Not really. Sure, we haven't written the
5215 * inode out, but prune_icache isn't a user-visible syncing function.
5216 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5217 * we start and wait on commits.
5219 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5221 struct ext4_iloc iloc;
5222 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5223 static unsigned int mnt_count;
5224 int err, ret;
5226 might_sleep();
5227 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5228 err = ext4_reserve_inode_write(handle, inode, &iloc);
5229 if (err)
5230 return err;
5231 if (ext4_handle_valid(handle) &&
5232 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5233 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5235 * We need extra buffer credits since we may write into EA block
5236 * with this same handle. If journal_extend fails, then it will
5237 * only result in a minor loss of functionality for that inode.
5238 * If this is felt to be critical, then e2fsck should be run to
5239 * force a large enough s_min_extra_isize.
5241 if ((jbd2_journal_extend(handle,
5242 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5243 ret = ext4_expand_extra_isize(inode,
5244 sbi->s_want_extra_isize,
5245 iloc, handle);
5246 if (ret) {
5247 if (mnt_count !=
5248 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5249 ext4_warning(inode->i_sb,
5250 "Unable to expand inode %lu. Delete"
5251 " some EAs or run e2fsck.",
5252 inode->i_ino);
5253 mnt_count =
5254 le16_to_cpu(sbi->s_es->s_mnt_count);
5259 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5263 * ext4_dirty_inode() is called from __mark_inode_dirty()
5265 * We're really interested in the case where a file is being extended.
5266 * i_size has been changed by generic_commit_write() and we thus need
5267 * to include the updated inode in the current transaction.
5269 * Also, dquot_alloc_block() will always dirty the inode when blocks
5270 * are allocated to the file.
5272 * If the inode is marked synchronous, we don't honour that here - doing
5273 * so would cause a commit on atime updates, which we don't bother doing.
5274 * We handle synchronous inodes at the highest possible level.
5276 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5277 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5278 * to copy into the on-disk inode structure are the timestamp files.
5280 void ext4_dirty_inode(struct inode *inode, int flags)
5282 handle_t *handle;
5284 if (flags == I_DIRTY_TIME)
5285 return;
5286 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5287 if (IS_ERR(handle))
5288 goto out;
5290 ext4_mark_inode_dirty(handle, inode);
5292 ext4_journal_stop(handle);
5293 out:
5294 return;
5297 #if 0
5299 * Bind an inode's backing buffer_head into this transaction, to prevent
5300 * it from being flushed to disk early. Unlike
5301 * ext4_reserve_inode_write, this leaves behind no bh reference and
5302 * returns no iloc structure, so the caller needs to repeat the iloc
5303 * lookup to mark the inode dirty later.
5305 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5307 struct ext4_iloc iloc;
5309 int err = 0;
5310 if (handle) {
5311 err = ext4_get_inode_loc(inode, &iloc);
5312 if (!err) {
5313 BUFFER_TRACE(iloc.bh, "get_write_access");
5314 err = jbd2_journal_get_write_access(handle, iloc.bh);
5315 if (!err)
5316 err = ext4_handle_dirty_metadata(handle,
5317 NULL,
5318 iloc.bh);
5319 brelse(iloc.bh);
5322 ext4_std_error(inode->i_sb, err);
5323 return err;
5325 #endif
5327 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5329 journal_t *journal;
5330 handle_t *handle;
5331 int err;
5334 * We have to be very careful here: changing a data block's
5335 * journaling status dynamically is dangerous. If we write a
5336 * data block to the journal, change the status and then delete
5337 * that block, we risk forgetting to revoke the old log record
5338 * from the journal and so a subsequent replay can corrupt data.
5339 * So, first we make sure that the journal is empty and that
5340 * nobody is changing anything.
5343 journal = EXT4_JOURNAL(inode);
5344 if (!journal)
5345 return 0;
5346 if (is_journal_aborted(journal))
5347 return -EROFS;
5348 /* We have to allocate physical blocks for delalloc blocks
5349 * before flushing journal. otherwise delalloc blocks can not
5350 * be allocated any more. even more truncate on delalloc blocks
5351 * could trigger BUG by flushing delalloc blocks in journal.
5352 * There is no delalloc block in non-journal data mode.
5354 if (val && test_opt(inode->i_sb, DELALLOC)) {
5355 err = ext4_alloc_da_blocks(inode);
5356 if (err < 0)
5357 return err;
5360 /* Wait for all existing dio workers */
5361 ext4_inode_block_unlocked_dio(inode);
5362 inode_dio_wait(inode);
5364 jbd2_journal_lock_updates(journal);
5367 * OK, there are no updates running now, and all cached data is
5368 * synced to disk. We are now in a completely consistent state
5369 * which doesn't have anything in the journal, and we know that
5370 * no filesystem updates are running, so it is safe to modify
5371 * the inode's in-core data-journaling state flag now.
5374 if (val)
5375 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5376 else {
5377 err = jbd2_journal_flush(journal);
5378 if (err < 0) {
5379 jbd2_journal_unlock_updates(journal);
5380 ext4_inode_resume_unlocked_dio(inode);
5381 return err;
5383 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5385 ext4_set_aops(inode);
5387 jbd2_journal_unlock_updates(journal);
5388 ext4_inode_resume_unlocked_dio(inode);
5390 /* Finally we can mark the inode as dirty. */
5392 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5393 if (IS_ERR(handle))
5394 return PTR_ERR(handle);
5396 err = ext4_mark_inode_dirty(handle, inode);
5397 ext4_handle_sync(handle);
5398 ext4_journal_stop(handle);
5399 ext4_std_error(inode->i_sb, err);
5401 return err;
5404 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5406 return !buffer_mapped(bh);
5409 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5411 struct page *page = vmf->page;
5412 loff_t size;
5413 unsigned long len;
5414 int ret;
5415 struct file *file = vma->vm_file;
5416 struct inode *inode = file_inode(file);
5417 struct address_space *mapping = inode->i_mapping;
5418 handle_t *handle;
5419 get_block_t *get_block;
5420 int retries = 0;
5422 sb_start_pagefault(inode->i_sb);
5423 file_update_time(vma->vm_file);
5425 down_read(&EXT4_I(inode)->i_mmap_sem);
5427 ret = ext4_convert_inline_data(inode);
5428 if (ret)
5429 goto out_ret;
5431 /* Delalloc case is easy... */
5432 if (test_opt(inode->i_sb, DELALLOC) &&
5433 !ext4_should_journal_data(inode) &&
5434 !ext4_nonda_switch(inode->i_sb)) {
5435 do {
5436 ret = block_page_mkwrite(vma, vmf,
5437 ext4_da_get_block_prep);
5438 } while (ret == -ENOSPC &&
5439 ext4_should_retry_alloc(inode->i_sb, &retries));
5440 goto out_ret;
5443 lock_page(page);
5444 size = i_size_read(inode);
5445 /* Page got truncated from under us? */
5446 if (page->mapping != mapping || page_offset(page) > size) {
5447 unlock_page(page);
5448 ret = VM_FAULT_NOPAGE;
5449 goto out;
5452 if (page->index == size >> PAGE_CACHE_SHIFT)
5453 len = size & ~PAGE_CACHE_MASK;
5454 else
5455 len = PAGE_CACHE_SIZE;
5457 * Return if we have all the buffers mapped. This avoids the need to do
5458 * journal_start/journal_stop which can block and take a long time
5460 if (page_has_buffers(page)) {
5461 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5462 0, len, NULL,
5463 ext4_bh_unmapped)) {
5464 /* Wait so that we don't change page under IO */
5465 wait_for_stable_page(page);
5466 ret = VM_FAULT_LOCKED;
5467 goto out;
5470 unlock_page(page);
5471 /* OK, we need to fill the hole... */
5472 if (ext4_should_dioread_nolock(inode))
5473 get_block = ext4_get_block_write;
5474 else
5475 get_block = ext4_get_block;
5476 retry_alloc:
5477 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5478 ext4_writepage_trans_blocks(inode));
5479 if (IS_ERR(handle)) {
5480 ret = VM_FAULT_SIGBUS;
5481 goto out;
5483 ret = block_page_mkwrite(vma, vmf, get_block);
5484 if (!ret && ext4_should_journal_data(inode)) {
5485 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5486 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5487 unlock_page(page);
5488 ret = VM_FAULT_SIGBUS;
5489 ext4_journal_stop(handle);
5490 goto out;
5492 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5494 ext4_journal_stop(handle);
5495 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5496 goto retry_alloc;
5497 out_ret:
5498 ret = block_page_mkwrite_return(ret);
5499 out:
5500 up_read(&EXT4_I(inode)->i_mmap_sem);
5501 sb_end_pagefault(inode->i_sb);
5502 return ret;
5505 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5507 struct inode *inode = file_inode(vma->vm_file);
5508 int err;
5510 down_read(&EXT4_I(inode)->i_mmap_sem);
5511 err = filemap_fault(vma, vmf);
5512 up_read(&EXT4_I(inode)->i_mmap_sem);
5514 return err;