4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19 #include <linux/blkdev.h>
25 #include <trace/events/f2fs.h>
27 static int gc_thread_func(void *data
)
29 struct f2fs_sb_info
*sbi
= data
;
30 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
31 wait_queue_head_t
*wq
= &sbi
->gc_thread
->gc_wait_queue_head
;
34 wait_ms
= gc_th
->min_sleep_time
;
40 wait_event_interruptible_timeout(*wq
,
41 kthread_should_stop(),
42 msecs_to_jiffies(wait_ms
));
43 if (kthread_should_stop())
46 if (sbi
->sb
->s_writers
.frozen
>= SB_FREEZE_WRITE
) {
47 increase_sleep_time(gc_th
, &wait_ms
);
52 * [GC triggering condition]
53 * 0. GC is not conducted currently.
54 * 1. There are enough dirty segments.
55 * 2. IO subsystem is idle by checking the # of writeback pages.
56 * 3. IO subsystem is idle by checking the # of requests in
57 * bdev's request list.
59 * Note) We have to avoid triggering GCs frequently.
60 * Because it is possible that some segments can be
61 * invalidated soon after by user update or deletion.
62 * So, I'd like to wait some time to collect dirty segments.
64 if (!mutex_trylock(&sbi
->gc_mutex
))
68 increase_sleep_time(gc_th
, &wait_ms
);
69 mutex_unlock(&sbi
->gc_mutex
);
73 if (has_enough_invalid_blocks(sbi
))
74 decrease_sleep_time(gc_th
, &wait_ms
);
76 increase_sleep_time(gc_th
, &wait_ms
);
78 stat_inc_bggc_count(sbi
);
80 /* if return value is not zero, no victim was selected */
81 if (f2fs_gc(sbi
, test_opt(sbi
, FORCE_FG_GC
)))
82 wait_ms
= gc_th
->no_gc_sleep_time
;
84 trace_f2fs_background_gc(sbi
->sb
, wait_ms
,
85 prefree_segments(sbi
), free_segments(sbi
));
87 /* balancing f2fs's metadata periodically */
88 f2fs_balance_fs_bg(sbi
);
90 } while (!kthread_should_stop());
94 int start_gc_thread(struct f2fs_sb_info
*sbi
)
96 struct f2fs_gc_kthread
*gc_th
;
97 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
100 gc_th
= kmalloc(sizeof(struct f2fs_gc_kthread
), GFP_KERNEL
);
106 gc_th
->min_sleep_time
= DEF_GC_THREAD_MIN_SLEEP_TIME
;
107 gc_th
->max_sleep_time
= DEF_GC_THREAD_MAX_SLEEP_TIME
;
108 gc_th
->no_gc_sleep_time
= DEF_GC_THREAD_NOGC_SLEEP_TIME
;
112 sbi
->gc_thread
= gc_th
;
113 init_waitqueue_head(&sbi
->gc_thread
->gc_wait_queue_head
);
114 sbi
->gc_thread
->f2fs_gc_task
= kthread_run(gc_thread_func
, sbi
,
115 "f2fs_gc-%u:%u", MAJOR(dev
), MINOR(dev
));
116 if (IS_ERR(gc_th
->f2fs_gc_task
)) {
117 err
= PTR_ERR(gc_th
->f2fs_gc_task
);
119 sbi
->gc_thread
= NULL
;
125 void stop_gc_thread(struct f2fs_sb_info
*sbi
)
127 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
130 kthread_stop(gc_th
->f2fs_gc_task
);
132 sbi
->gc_thread
= NULL
;
135 static int select_gc_type(struct f2fs_gc_kthread
*gc_th
, int gc_type
)
137 int gc_mode
= (gc_type
== BG_GC
) ? GC_CB
: GC_GREEDY
;
139 if (gc_th
&& gc_th
->gc_idle
) {
140 if (gc_th
->gc_idle
== 1)
142 else if (gc_th
->gc_idle
== 2)
148 static void select_policy(struct f2fs_sb_info
*sbi
, int gc_type
,
149 int type
, struct victim_sel_policy
*p
)
151 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
153 if (p
->alloc_mode
== SSR
) {
154 p
->gc_mode
= GC_GREEDY
;
155 p
->dirty_segmap
= dirty_i
->dirty_segmap
[type
];
156 p
->max_search
= dirty_i
->nr_dirty
[type
];
159 p
->gc_mode
= select_gc_type(sbi
->gc_thread
, gc_type
);
160 p
->dirty_segmap
= dirty_i
->dirty_segmap
[DIRTY
];
161 p
->max_search
= dirty_i
->nr_dirty
[DIRTY
];
162 p
->ofs_unit
= sbi
->segs_per_sec
;
165 if (p
->max_search
> sbi
->max_victim_search
)
166 p
->max_search
= sbi
->max_victim_search
;
168 p
->offset
= sbi
->last_victim
[p
->gc_mode
];
171 static unsigned int get_max_cost(struct f2fs_sb_info
*sbi
,
172 struct victim_sel_policy
*p
)
174 /* SSR allocates in a segment unit */
175 if (p
->alloc_mode
== SSR
)
176 return 1 << sbi
->log_blocks_per_seg
;
177 if (p
->gc_mode
== GC_GREEDY
)
178 return (1 << sbi
->log_blocks_per_seg
) * p
->ofs_unit
;
179 else if (p
->gc_mode
== GC_CB
)
181 else /* No other gc_mode */
185 static unsigned int check_bg_victims(struct f2fs_sb_info
*sbi
)
187 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
191 * If the gc_type is FG_GC, we can select victim segments
192 * selected by background GC before.
193 * Those segments guarantee they have small valid blocks.
195 for_each_set_bit(secno
, dirty_i
->victim_secmap
, MAIN_SECS(sbi
)) {
196 if (sec_usage_check(sbi
, secno
))
198 clear_bit(secno
, dirty_i
->victim_secmap
);
199 return secno
* sbi
->segs_per_sec
;
204 static unsigned int get_cb_cost(struct f2fs_sb_info
*sbi
, unsigned int segno
)
206 struct sit_info
*sit_i
= SIT_I(sbi
);
207 unsigned int secno
= GET_SECNO(sbi
, segno
);
208 unsigned int start
= secno
* sbi
->segs_per_sec
;
209 unsigned long long mtime
= 0;
210 unsigned int vblocks
;
211 unsigned char age
= 0;
215 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
216 mtime
+= get_seg_entry(sbi
, start
+ i
)->mtime
;
217 vblocks
= get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
);
219 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
220 vblocks
= div_u64(vblocks
, sbi
->segs_per_sec
);
222 u
= (vblocks
* 100) >> sbi
->log_blocks_per_seg
;
224 /* Handle if the system time has changed by the user */
225 if (mtime
< sit_i
->min_mtime
)
226 sit_i
->min_mtime
= mtime
;
227 if (mtime
> sit_i
->max_mtime
)
228 sit_i
->max_mtime
= mtime
;
229 if (sit_i
->max_mtime
!= sit_i
->min_mtime
)
230 age
= 100 - div64_u64(100 * (mtime
- sit_i
->min_mtime
),
231 sit_i
->max_mtime
- sit_i
->min_mtime
);
233 return UINT_MAX
- ((100 * (100 - u
) * age
) / (100 + u
));
236 static inline unsigned int get_gc_cost(struct f2fs_sb_info
*sbi
,
237 unsigned int segno
, struct victim_sel_policy
*p
)
239 if (p
->alloc_mode
== SSR
)
240 return get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
242 /* alloc_mode == LFS */
243 if (p
->gc_mode
== GC_GREEDY
)
244 return get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
);
246 return get_cb_cost(sbi
, segno
);
250 * This function is called from two paths.
251 * One is garbage collection and the other is SSR segment selection.
252 * When it is called during GC, it just gets a victim segment
253 * and it does not remove it from dirty seglist.
254 * When it is called from SSR segment selection, it finds a segment
255 * which has minimum valid blocks and removes it from dirty seglist.
257 static int get_victim_by_default(struct f2fs_sb_info
*sbi
,
258 unsigned int *result
, int gc_type
, int type
, char alloc_mode
)
260 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
261 struct victim_sel_policy p
;
262 unsigned int secno
, max_cost
;
263 unsigned int last_segment
= MAIN_SEGS(sbi
);
266 mutex_lock(&dirty_i
->seglist_lock
);
268 p
.alloc_mode
= alloc_mode
;
269 select_policy(sbi
, gc_type
, type
, &p
);
271 p
.min_segno
= NULL_SEGNO
;
272 p
.min_cost
= max_cost
= get_max_cost(sbi
, &p
);
274 if (p
.max_search
== 0)
277 if (p
.alloc_mode
== LFS
&& gc_type
== FG_GC
) {
278 p
.min_segno
= check_bg_victims(sbi
);
279 if (p
.min_segno
!= NULL_SEGNO
)
287 segno
= find_next_bit(p
.dirty_segmap
, last_segment
, p
.offset
);
288 if (segno
>= last_segment
) {
289 if (sbi
->last_victim
[p
.gc_mode
]) {
290 last_segment
= sbi
->last_victim
[p
.gc_mode
];
291 sbi
->last_victim
[p
.gc_mode
] = 0;
298 p
.offset
= segno
+ p
.ofs_unit
;
300 p
.offset
-= segno
% p
.ofs_unit
;
302 secno
= GET_SECNO(sbi
, segno
);
304 if (sec_usage_check(sbi
, secno
))
306 if (gc_type
== BG_GC
&& test_bit(secno
, dirty_i
->victim_secmap
))
309 cost
= get_gc_cost(sbi
, segno
, &p
);
311 if (p
.min_cost
> cost
) {
314 } else if (unlikely(cost
== max_cost
)) {
318 if (nsearched
++ >= p
.max_search
) {
319 sbi
->last_victim
[p
.gc_mode
] = segno
;
323 if (p
.min_segno
!= NULL_SEGNO
) {
325 if (p
.alloc_mode
== LFS
) {
326 secno
= GET_SECNO(sbi
, p
.min_segno
);
327 if (gc_type
== FG_GC
)
328 sbi
->cur_victim_sec
= secno
;
330 set_bit(secno
, dirty_i
->victim_secmap
);
332 *result
= (p
.min_segno
/ p
.ofs_unit
) * p
.ofs_unit
;
334 trace_f2fs_get_victim(sbi
->sb
, type
, gc_type
, &p
,
336 prefree_segments(sbi
), free_segments(sbi
));
339 mutex_unlock(&dirty_i
->seglist_lock
);
341 return (p
.min_segno
== NULL_SEGNO
) ? 0 : 1;
344 static const struct victim_selection default_v_ops
= {
345 .get_victim
= get_victim_by_default
,
348 static struct inode
*find_gc_inode(struct gc_inode_list
*gc_list
, nid_t ino
)
350 struct inode_entry
*ie
;
352 ie
= radix_tree_lookup(&gc_list
->iroot
, ino
);
358 static void add_gc_inode(struct gc_inode_list
*gc_list
, struct inode
*inode
)
360 struct inode_entry
*new_ie
;
362 if (inode
== find_gc_inode(gc_list
, inode
->i_ino
)) {
366 new_ie
= f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
367 new_ie
->inode
= inode
;
369 f2fs_radix_tree_insert(&gc_list
->iroot
, inode
->i_ino
, new_ie
);
370 list_add_tail(&new_ie
->list
, &gc_list
->ilist
);
373 static void put_gc_inode(struct gc_inode_list
*gc_list
)
375 struct inode_entry
*ie
, *next_ie
;
376 list_for_each_entry_safe(ie
, next_ie
, &gc_list
->ilist
, list
) {
377 radix_tree_delete(&gc_list
->iroot
, ie
->inode
->i_ino
);
380 kmem_cache_free(inode_entry_slab
, ie
);
384 static int check_valid_map(struct f2fs_sb_info
*sbi
,
385 unsigned int segno
, int offset
)
387 struct sit_info
*sit_i
= SIT_I(sbi
);
388 struct seg_entry
*sentry
;
391 mutex_lock(&sit_i
->sentry_lock
);
392 sentry
= get_seg_entry(sbi
, segno
);
393 ret
= f2fs_test_bit(offset
, sentry
->cur_valid_map
);
394 mutex_unlock(&sit_i
->sentry_lock
);
399 * This function compares node address got in summary with that in NAT.
400 * On validity, copy that node with cold status, otherwise (invalid node)
403 static int gc_node_segment(struct f2fs_sb_info
*sbi
,
404 struct f2fs_summary
*sum
, unsigned int segno
, int gc_type
)
407 struct f2fs_summary
*entry
;
411 start_addr
= START_BLOCK(sbi
, segno
);
416 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
417 nid_t nid
= le32_to_cpu(entry
->nid
);
418 struct page
*node_page
;
421 /* stop BG_GC if there is not enough free sections. */
422 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0))
425 if (check_valid_map(sbi
, segno
, off
) == 0)
429 ra_node_page(sbi
, nid
);
432 node_page
= get_node_page(sbi
, nid
);
433 if (IS_ERR(node_page
))
436 /* block may become invalid during get_node_page */
437 if (check_valid_map(sbi
, segno
, off
) == 0) {
438 f2fs_put_page(node_page
, 1);
442 get_node_info(sbi
, nid
, &ni
);
443 if (ni
.blk_addr
!= start_addr
+ off
) {
444 f2fs_put_page(node_page
, 1);
448 /* set page dirty and write it */
449 if (gc_type
== FG_GC
) {
450 f2fs_wait_on_page_writeback(node_page
, NODE
);
451 set_page_dirty(node_page
);
453 if (!PageWriteback(node_page
))
454 set_page_dirty(node_page
);
456 f2fs_put_page(node_page
, 1);
457 stat_inc_node_blk_count(sbi
, 1, gc_type
);
465 if (gc_type
== FG_GC
) {
466 struct writeback_control wbc
= {
467 .sync_mode
= WB_SYNC_ALL
,
468 .nr_to_write
= LONG_MAX
,
471 sync_node_pages(sbi
, 0, &wbc
);
473 /* return 1 only if FG_GC succefully reclaimed one */
474 if (get_valid_blocks(sbi
, segno
, 1) == 0)
481 * Calculate start block index indicating the given node offset.
482 * Be careful, caller should give this node offset only indicating direct node
483 * blocks. If any node offsets, which point the other types of node blocks such
484 * as indirect or double indirect node blocks, are given, it must be a caller's
487 block_t
start_bidx_of_node(unsigned int node_ofs
, struct f2fs_inode_info
*fi
)
489 unsigned int indirect_blks
= 2 * NIDS_PER_BLOCK
+ 4;
497 } else if (node_ofs
<= indirect_blks
) {
498 int dec
= (node_ofs
- 4) / (NIDS_PER_BLOCK
+ 1);
499 bidx
= node_ofs
- 2 - dec
;
501 int dec
= (node_ofs
- indirect_blks
- 3) / (NIDS_PER_BLOCK
+ 1);
502 bidx
= node_ofs
- 5 - dec
;
504 return bidx
* ADDRS_PER_BLOCK
+ ADDRS_PER_INODE(fi
);
507 static bool is_alive(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
508 struct node_info
*dni
, block_t blkaddr
, unsigned int *nofs
)
510 struct page
*node_page
;
512 unsigned int ofs_in_node
;
513 block_t source_blkaddr
;
515 nid
= le32_to_cpu(sum
->nid
);
516 ofs_in_node
= le16_to_cpu(sum
->ofs_in_node
);
518 node_page
= get_node_page(sbi
, nid
);
519 if (IS_ERR(node_page
))
522 get_node_info(sbi
, nid
, dni
);
524 if (sum
->version
!= dni
->version
) {
525 f2fs_msg(sbi
->sb
, KERN_WARNING
,
526 "%s: valid data with mismatched node version.",
528 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
531 *nofs
= ofs_of_node(node_page
);
532 source_blkaddr
= datablock_addr(node_page
, ofs_in_node
);
533 f2fs_put_page(node_page
, 1);
535 if (source_blkaddr
!= blkaddr
)
540 static void move_encrypted_block(struct inode
*inode
, block_t bidx
)
542 struct f2fs_io_info fio
= {
543 .sbi
= F2FS_I_SB(inode
),
546 .encrypted_page
= NULL
,
548 struct dnode_of_data dn
;
549 struct f2fs_summary sum
;
554 /* do not read out */
555 page
= f2fs_grab_cache_page(inode
->i_mapping
, bidx
, false);
559 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
560 err
= get_dnode_of_data(&dn
, bidx
, LOOKUP_NODE
);
564 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
565 ClearPageUptodate(page
);
570 * don't cache encrypted data into meta inode until previous dirty
571 * data were writebacked to avoid racing between GC and flush.
573 f2fs_wait_on_page_writeback(page
, DATA
);
575 get_node_info(fio
.sbi
, dn
.nid
, &ni
);
576 set_summary(&sum
, dn
.nid
, dn
.ofs_in_node
, ni
.version
);
580 fio
.blk_addr
= dn
.data_blkaddr
;
582 fio
.encrypted_page
= pagecache_get_page(META_MAPPING(fio
.sbi
),
586 if (!fio
.encrypted_page
)
589 err
= f2fs_submit_page_bio(&fio
);
594 lock_page(fio
.encrypted_page
);
596 if (unlikely(!PageUptodate(fio
.encrypted_page
)))
598 if (unlikely(fio
.encrypted_page
->mapping
!= META_MAPPING(fio
.sbi
)))
601 set_page_dirty(fio
.encrypted_page
);
602 f2fs_wait_on_page_writeback(fio
.encrypted_page
, DATA
);
603 if (clear_page_dirty_for_io(fio
.encrypted_page
))
604 dec_page_count(fio
.sbi
, F2FS_DIRTY_META
);
606 set_page_writeback(fio
.encrypted_page
);
608 /* allocate block address */
609 f2fs_wait_on_page_writeback(dn
.node_page
, NODE
);
610 allocate_data_block(fio
.sbi
, NULL
, fio
.blk_addr
,
611 &fio
.blk_addr
, &sum
, CURSEG_COLD_DATA
);
613 f2fs_submit_page_mbio(&fio
);
615 dn
.data_blkaddr
= fio
.blk_addr
;
616 set_data_blkaddr(&dn
);
617 f2fs_update_extent_cache(&dn
);
618 set_inode_flag(F2FS_I(inode
), FI_APPEND_WRITE
);
619 if (page
->index
== 0)
620 set_inode_flag(F2FS_I(inode
), FI_FIRST_BLOCK_WRITTEN
);
622 f2fs_put_page(fio
.encrypted_page
, 1);
626 f2fs_put_page(page
, 1);
629 static void move_data_page(struct inode
*inode
, block_t bidx
, int gc_type
)
633 page
= get_lock_data_page(inode
, bidx
, true);
637 if (gc_type
== BG_GC
) {
638 if (PageWriteback(page
))
640 set_page_dirty(page
);
643 struct f2fs_io_info fio
= {
644 .sbi
= F2FS_I_SB(inode
),
648 .encrypted_page
= NULL
,
650 set_page_dirty(page
);
651 f2fs_wait_on_page_writeback(page
, DATA
);
652 if (clear_page_dirty_for_io(page
))
653 inode_dec_dirty_pages(inode
);
655 do_write_data_page(&fio
);
656 clear_cold_data(page
);
659 f2fs_put_page(page
, 1);
663 * This function tries to get parent node of victim data block, and identifies
664 * data block validity. If the block is valid, copy that with cold status and
665 * modify parent node.
666 * If the parent node is not valid or the data block address is different,
667 * the victim data block is ignored.
669 static int gc_data_segment(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
670 struct gc_inode_list
*gc_list
, unsigned int segno
, int gc_type
)
672 struct super_block
*sb
= sbi
->sb
;
673 struct f2fs_summary
*entry
;
678 start_addr
= START_BLOCK(sbi
, segno
);
683 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
684 struct page
*data_page
;
686 struct node_info dni
; /* dnode info for the data */
687 unsigned int ofs_in_node
, nofs
;
690 /* stop BG_GC if there is not enough free sections. */
691 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0))
694 if (check_valid_map(sbi
, segno
, off
) == 0)
698 ra_node_page(sbi
, le32_to_cpu(entry
->nid
));
702 /* Get an inode by ino with checking validity */
703 if (!is_alive(sbi
, entry
, &dni
, start_addr
+ off
, &nofs
))
707 ra_node_page(sbi
, dni
.ino
);
711 ofs_in_node
= le16_to_cpu(entry
->ofs_in_node
);
714 inode
= f2fs_iget(sb
, dni
.ino
);
715 if (IS_ERR(inode
) || is_bad_inode(inode
))
718 /* if encrypted inode, let's go phase 3 */
719 if (f2fs_encrypted_inode(inode
) &&
720 S_ISREG(inode
->i_mode
)) {
721 add_gc_inode(gc_list
, inode
);
725 start_bidx
= start_bidx_of_node(nofs
, F2FS_I(inode
));
726 data_page
= get_read_data_page(inode
,
727 start_bidx
+ ofs_in_node
, READA
, true);
728 if (IS_ERR(data_page
)) {
733 f2fs_put_page(data_page
, 0);
734 add_gc_inode(gc_list
, inode
);
739 inode
= find_gc_inode(gc_list
, dni
.ino
);
741 start_bidx
= start_bidx_of_node(nofs
, F2FS_I(inode
))
743 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
744 move_encrypted_block(inode
, start_bidx
);
746 move_data_page(inode
, start_bidx
, gc_type
);
747 stat_inc_data_blk_count(sbi
, 1, gc_type
);
754 if (gc_type
== FG_GC
) {
755 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
757 /* return 1 only if FG_GC succefully reclaimed one */
758 if (get_valid_blocks(sbi
, segno
, 1) == 0)
764 static int __get_victim(struct f2fs_sb_info
*sbi
, unsigned int *victim
,
767 struct sit_info
*sit_i
= SIT_I(sbi
);
770 mutex_lock(&sit_i
->sentry_lock
);
771 ret
= DIRTY_I(sbi
)->v_ops
->get_victim(sbi
, victim
, gc_type
,
773 mutex_unlock(&sit_i
->sentry_lock
);
777 static int do_garbage_collect(struct f2fs_sb_info
*sbi
, unsigned int segno
,
778 struct gc_inode_list
*gc_list
, int gc_type
)
780 struct page
*sum_page
;
781 struct f2fs_summary_block
*sum
;
782 struct blk_plug plug
;
785 /* read segment summary of victim */
786 sum_page
= get_sum_page(sbi
, segno
);
788 blk_start_plug(&plug
);
790 sum
= page_address(sum_page
);
793 * this is to avoid deadlock:
794 * - lock_page(sum_page) - f2fs_replace_block
795 * - check_valid_map() - mutex_lock(sentry_lock)
796 * - mutex_lock(sentry_lock) - change_curseg()
797 * - lock_page(sum_page)
799 unlock_page(sum_page
);
801 switch (GET_SUM_TYPE((&sum
->footer
))) {
803 nfree
= gc_node_segment(sbi
, sum
->entries
, segno
, gc_type
);
806 nfree
= gc_data_segment(sbi
, sum
->entries
, gc_list
,
810 blk_finish_plug(&plug
);
812 stat_inc_seg_count(sbi
, GET_SUM_TYPE((&sum
->footer
)), gc_type
);
813 stat_inc_call_count(sbi
->stat_info
);
815 f2fs_put_page(sum_page
, 0);
819 int f2fs_gc(struct f2fs_sb_info
*sbi
, bool sync
)
821 unsigned int segno
, i
;
822 int gc_type
= sync
? FG_GC
: BG_GC
;
825 struct cp_control cpc
;
826 struct gc_inode_list gc_list
= {
827 .ilist
= LIST_HEAD_INIT(gc_list
.ilist
),
828 .iroot
= RADIX_TREE_INIT(GFP_NOFS
),
831 cpc
.reason
= __get_cp_reason(sbi
);
835 if (unlikely(!(sbi
->sb
->s_flags
& MS_ACTIVE
)))
837 if (unlikely(f2fs_cp_error(sbi
)))
840 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, sec_freed
)) {
842 if (__get_victim(sbi
, &segno
, gc_type
) || prefree_segments(sbi
))
843 write_checkpoint(sbi
, &cpc
);
846 if (segno
== NULL_SEGNO
&& !__get_victim(sbi
, &segno
, gc_type
))
850 /* readahead multi ssa blocks those have contiguous address */
851 if (sbi
->segs_per_sec
> 1)
852 ra_meta_pages(sbi
, GET_SUM_BLOCK(sbi
, segno
), sbi
->segs_per_sec
,
855 for (i
= 0; i
< sbi
->segs_per_sec
; i
++) {
857 * for FG_GC case, halt gcing left segments once failed one
858 * of segments in selected section to avoid long latency.
860 if (!do_garbage_collect(sbi
, segno
+ i
, &gc_list
, gc_type
) &&
865 if (i
== sbi
->segs_per_sec
&& gc_type
== FG_GC
)
868 if (gc_type
== FG_GC
)
869 sbi
->cur_victim_sec
= NULL_SEGNO
;
872 if (has_not_enough_free_secs(sbi
, sec_freed
))
875 if (gc_type
== FG_GC
)
876 write_checkpoint(sbi
, &cpc
);
879 mutex_unlock(&sbi
->gc_mutex
);
881 put_gc_inode(&gc_list
);
884 ret
= sec_freed
? 0 : -EAGAIN
;
888 void build_gc_manager(struct f2fs_sb_info
*sbi
)
890 DIRTY_I(sbi
)->v_ops
= &default_v_ops
;