1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
55 #include "buffer_head_io.h"
57 enum ocfs2_contig_type
{
64 static enum ocfs2_contig_type
65 ocfs2_extent_rec_contig(struct super_block
*sb
,
66 struct ocfs2_extent_rec
*ext
,
67 struct ocfs2_extent_rec
*insert_rec
);
69 * Operations for a specific extent tree type.
71 * To implement an on-disk btree (extent tree) type in ocfs2, add
72 * an ocfs2_extent_tree_operations structure and the matching
73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74 * for the allocation portion of the extent tree.
76 struct ocfs2_extent_tree_operations
{
78 * last_eb_blk is the block number of the right most leaf extent
79 * block. Most on-disk structures containing an extent tree store
80 * this value for fast access. The ->eo_set_last_eb_blk() and
81 * ->eo_get_last_eb_blk() operations access this value. They are
84 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
86 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
89 * The on-disk structure usually keeps track of how many total
90 * clusters are stored in this extent tree. This function updates
91 * that value. new_clusters is the delta, and must be
92 * added to the total. Required.
94 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
98 * If this extent tree is supported by an extent map, insert
99 * a record into the map.
101 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
102 struct ocfs2_extent_rec
*rec
);
105 * If this extent tree is supported by an extent map, truncate the
108 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
112 * If ->eo_insert_check() exists, it is called before rec is
113 * inserted into the extent tree. It is optional.
115 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
116 struct ocfs2_extent_rec
*rec
);
117 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
120 * --------------------------------------------------------------
121 * The remaining are internal to ocfs2_extent_tree and don't have
126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
129 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 * it exists. If it does not, et->et_max_leaf_clusters is set
134 * to 0 (unlimited). Optional.
136 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 * are contiguous or not. Optional. Don't need to set it if use
141 * ocfs2_extent_rec as the tree leaf.
143 enum ocfs2_contig_type
144 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
145 struct ocfs2_extent_rec
*ext
,
146 struct ocfs2_extent_rec
*insert_rec
);
151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
154 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
160 struct ocfs2_extent_rec
*rec
);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
164 struct ocfs2_extent_rec
*rec
);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
168 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
169 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
170 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
171 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
172 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
173 .eo_insert_check
= ocfs2_dinode_insert_check
,
174 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
175 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
181 struct ocfs2_dinode
*di
= et
->et_object
;
183 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
184 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
187 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
189 struct ocfs2_dinode
*di
= et
->et_object
;
191 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
192 return le64_to_cpu(di
->i_last_eb_blk
);
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
198 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
199 struct ocfs2_dinode
*di
= et
->et_object
;
201 le32_add_cpu(&di
->i_clusters
, clusters
);
202 spin_lock(&oi
->ip_lock
);
203 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
204 spin_unlock(&oi
->ip_lock
);
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
208 struct ocfs2_extent_rec
*rec
)
210 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
212 ocfs2_extent_map_insert_rec(inode
, rec
);
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
218 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
220 ocfs2_extent_map_trunc(inode
, clusters
);
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
224 struct ocfs2_extent_rec
*rec
)
226 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
227 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
229 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
231 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
232 "Device %s, asking for sparse allocation: inode %llu, "
233 "cpos %u, clusters %u\n",
235 (unsigned long long)oi
->ip_blkno
,
236 rec
->e_cpos
, oi
->ip_clusters
);
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
243 struct ocfs2_dinode
*di
= et
->et_object
;
245 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
246 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
253 struct ocfs2_dinode
*di
= et
->et_object
;
255 et
->et_root_el
= &di
->id2
.i_list
;
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
261 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
263 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
269 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
271 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
274 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
276 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
278 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
284 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
286 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
290 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
291 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
292 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
293 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
298 struct ocfs2_xattr_block
*xb
= et
->et_object
;
300 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
305 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
306 et
->et_max_leaf_clusters
=
307 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
313 struct ocfs2_xattr_block
*xb
= et
->et_object
;
314 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
316 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
319 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
321 struct ocfs2_xattr_block
*xb
= et
->et_object
;
322 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
324 return le64_to_cpu(xt
->xt_last_eb_blk
);
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
330 struct ocfs2_xattr_block
*xb
= et
->et_object
;
332 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
336 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
337 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
338 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
339 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
340 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
346 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
348 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
351 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
353 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
355 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
361 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
363 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
368 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
377 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
379 et
->et_root_el
= &dx_root
->dr_list
;
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
383 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
384 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
385 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
386 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
387 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
392 struct ocfs2_refcount_block
*rb
= et
->et_object
;
394 et
->et_root_el
= &rb
->rf_list
;
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
400 struct ocfs2_refcount_block
*rb
= et
->et_object
;
402 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
405 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
407 struct ocfs2_refcount_block
*rb
= et
->et_object
;
409 return le64_to_cpu(rb
->rf_last_eb_blk
);
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
415 struct ocfs2_refcount_block
*rb
= et
->et_object
;
417 le32_add_cpu(&rb
->rf_clusters
, clusters
);
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
422 struct ocfs2_extent_rec
*ext
,
423 struct ocfs2_extent_rec
*insert_rec
)
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
429 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
430 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
431 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
432 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
433 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
437 struct ocfs2_caching_info
*ci
,
438 struct buffer_head
*bh
,
439 ocfs2_journal_access_func access
,
441 struct ocfs2_extent_tree_operations
*ops
)
446 et
->et_root_journal_access
= access
;
448 obj
= (void *)bh
->b_data
;
451 et
->et_ops
->eo_fill_root_el(et
);
452 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
453 et
->et_max_leaf_clusters
= 0;
455 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
459 struct ocfs2_caching_info
*ci
,
460 struct buffer_head
*bh
)
462 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
463 NULL
, &ocfs2_dinode_et_ops
);
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
467 struct ocfs2_caching_info
*ci
,
468 struct buffer_head
*bh
)
470 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
471 NULL
, &ocfs2_xattr_tree_et_ops
);
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
475 struct ocfs2_caching_info
*ci
,
476 struct ocfs2_xattr_value_buf
*vb
)
478 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
479 &ocfs2_xattr_value_et_ops
);
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
483 struct ocfs2_caching_info
*ci
,
484 struct buffer_head
*bh
)
486 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
487 NULL
, &ocfs2_dx_root_et_ops
);
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
491 struct ocfs2_caching_info
*ci
,
492 struct buffer_head
*bh
)
494 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
495 NULL
, &ocfs2_refcount_tree_et_ops
);
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
501 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
504 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
506 return et
->et_ops
->eo_get_last_eb_blk(et
);
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
512 et
->et_ops
->eo_update_clusters(et
, clusters
);
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
516 struct ocfs2_extent_rec
*rec
)
518 if (et
->et_ops
->eo_extent_map_insert
)
519 et
->et_ops
->eo_extent_map_insert(et
, rec
);
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
525 if (et
->et_ops
->eo_extent_map_truncate
)
526 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
529 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
530 struct ocfs2_extent_tree
*et
,
533 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
537 static inline enum ocfs2_contig_type
538 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
539 struct ocfs2_extent_rec
*rec
,
540 struct ocfs2_extent_rec
*insert_rec
)
542 if (et
->et_ops
->eo_extent_contig
)
543 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
545 return ocfs2_extent_rec_contig(
546 ocfs2_metadata_cache_get_super(et
->et_ci
),
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
551 struct ocfs2_extent_rec
*rec
)
555 if (et
->et_ops
->eo_insert_check
)
556 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
564 if (et
->et_ops
->eo_sanity_check
)
565 ret
= et
->et_ops
->eo_sanity_check(et
);
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
570 struct ocfs2_extent_block
*eb
);
571 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
572 struct ocfs2_extent_tree
*et
,
573 struct ocfs2_path
*path
,
574 struct ocfs2_extent_rec
*insert_rec
);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
580 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
582 int i
, start
= 0, depth
= 0;
583 struct ocfs2_path_item
*node
;
588 for(i
= start
; i
< path_num_items(path
); i
++) {
589 node
= &path
->p_node
[i
];
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
602 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
604 path_root_access(path
) = NULL
;
606 path
->p_tree_depth
= depth
;
609 void ocfs2_free_path(struct ocfs2_path
*path
)
612 ocfs2_reinit_path(path
, 0);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
624 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
628 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
629 BUG_ON(path_root_el(dest
) != path_root_el(src
));
630 BUG_ON(path_root_access(dest
) != path_root_access(src
));
632 ocfs2_reinit_path(dest
, 1);
634 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
635 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
636 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
638 if (dest
->p_node
[i
].bh
)
639 get_bh(dest
->p_node
[i
].bh
);
644 * Make the *dest path the same as src and re-initialize src path to
647 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
651 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
652 BUG_ON(path_root_access(dest
) != path_root_access(src
));
654 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
655 brelse(dest
->p_node
[i
].bh
);
657 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
658 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
660 src
->p_node
[i
].bh
= NULL
;
661 src
->p_node
[i
].el
= NULL
;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
671 struct buffer_head
*eb_bh
)
673 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
683 path
->p_node
[index
].bh
= eb_bh
;
684 path
->p_node
[index
].el
= &eb
->h_list
;
687 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
688 struct ocfs2_extent_list
*root_el
,
689 ocfs2_journal_access_func access
)
691 struct ocfs2_path
*path
;
693 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
695 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
697 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
699 path_root_bh(path
) = root_bh
;
700 path_root_el(path
) = root_el
;
701 path_root_access(path
) = access
;
707 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
709 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
710 path_root_access(path
));
713 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
715 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
716 et
->et_root_journal_access
);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t
*handle
,
727 struct ocfs2_caching_info
*ci
,
728 struct ocfs2_path
*path
,
731 ocfs2_journal_access_func access
= path_root_access(path
);
734 access
= ocfs2_journal_access
;
737 access
= ocfs2_journal_access_eb
;
739 return access(handle
, ci
, path
->p_node
[idx
].bh
,
740 OCFS2_JOURNAL_ACCESS_WRITE
);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
748 struct ocfs2_path
*path
)
755 for(i
= 0; i
< path_num_items(path
); i
++) {
756 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
777 struct ocfs2_extent_rec
*rec
;
778 u32 rec_end
, rec_start
, clusters
;
780 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
781 rec
= &el
->l_recs
[i
];
783 rec_start
= le32_to_cpu(rec
->e_cpos
);
784 clusters
= ocfs2_rec_clusters(el
, rec
);
786 rec_end
= rec_start
+ clusters
;
788 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block
*sb
,
802 struct ocfs2_extent_rec
*ext
,
805 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
807 blk_end
+= ocfs2_clusters_to_blocks(sb
,
808 le16_to_cpu(ext
->e_leaf_clusters
));
810 return blkno
== blk_end
;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
814 struct ocfs2_extent_rec
*right
)
818 left_range
= le32_to_cpu(left
->e_cpos
) +
819 le16_to_cpu(left
->e_leaf_clusters
);
821 return (left_range
== le32_to_cpu(right
->e_cpos
));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block
*sb
,
826 struct ocfs2_extent_rec
*ext
,
827 struct ocfs2_extent_rec
*insert_rec
)
829 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
836 if (ext
->e_flags
!= insert_rec
->e_flags
)
839 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
840 ocfs2_block_extent_contig(sb
, ext
, blkno
))
843 blkno
= le64_to_cpu(ext
->e_blkno
);
844 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
845 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
852 * NOTE: We can have pretty much any combination of contiguousness and
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type
{
863 enum ocfs2_split_type
{
869 struct ocfs2_insert_type
{
870 enum ocfs2_split_type ins_split
;
871 enum ocfs2_append_type ins_appending
;
872 enum ocfs2_contig_type ins_contig
;
873 int ins_contig_index
;
877 struct ocfs2_merge_ctxt
{
878 enum ocfs2_contig_type c_contig_type
;
879 int c_has_empty_extent
;
880 int c_split_covers_rec
;
883 static int ocfs2_validate_extent_block(struct super_block
*sb
,
884 struct buffer_head
*bh
)
887 struct ocfs2_extent_block
*eb
=
888 (struct ocfs2_extent_block
*)bh
->b_data
;
890 trace_ocfs2_validate_extent_block((unsigned long long)bh
->b_blocknr
);
892 BUG_ON(!buffer_uptodate(bh
));
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
899 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
901 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh
->b_blocknr
);
907 * Errors after here are fatal.
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
912 "Extent block #%llu has bad signature %.*s\n",
913 (unsigned long long)bh
->b_blocknr
, 7,
918 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
920 "Extent block #%llu has an invalid h_blkno of %llu\n",
921 (unsigned long long)bh
->b_blocknr
,
922 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
926 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
928 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
929 (unsigned long long)bh
->b_blocknr
,
930 le32_to_cpu(eb
->h_fs_generation
));
937 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
938 struct buffer_head
**bh
)
941 struct buffer_head
*tmp
= *bh
;
943 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
944 ocfs2_validate_extent_block
);
946 /* If ocfs2_read_block() got us a new bh, pass it up. */
955 * How many free extents have we got before we need more meta data?
957 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
958 struct ocfs2_extent_tree
*et
)
961 struct ocfs2_extent_list
*el
= NULL
;
962 struct ocfs2_extent_block
*eb
;
963 struct buffer_head
*eb_bh
= NULL
;
967 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
970 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
976 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
980 BUG_ON(el
->l_tree_depth
!= 0);
982 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
986 trace_ocfs2_num_free_extents(retval
);
990 /* expects array to already be allocated
992 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
996 struct ocfs2_extent_tree
*et
,
998 struct ocfs2_alloc_context
*meta_ac
,
999 struct buffer_head
*bhs
[])
1001 int count
, status
, i
;
1002 u16 suballoc_bit_start
;
1004 u64 suballoc_loc
, first_blkno
;
1005 struct ocfs2_super
*osb
=
1006 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1007 struct ocfs2_extent_block
*eb
;
1010 while (count
< wanted
) {
1011 status
= ocfs2_claim_metadata(handle
,
1015 &suballoc_bit_start
,
1023 for(i
= count
; i
< (num_got
+ count
); i
++) {
1024 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1025 if (bhs
[i
] == NULL
) {
1030 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1032 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1034 OCFS2_JOURNAL_ACCESS_CREATE
);
1040 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1041 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1042 /* Ok, setup the minimal stuff here. */
1043 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1044 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1045 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1046 eb
->h_suballoc_slot
=
1047 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1048 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1049 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1050 eb
->h_list
.l_count
=
1051 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1053 suballoc_bit_start
++;
1056 /* We'll also be dirtied by the caller, so
1057 * this isn't absolutely necessary. */
1058 ocfs2_journal_dirty(handle
, bhs
[i
]);
1067 for(i
= 0; i
< wanted
; i
++) {
1077 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1079 * Returns the sum of the rightmost extent rec logical offset and
1082 * ocfs2_add_branch() uses this to determine what logical cluster
1083 * value should be populated into the leftmost new branch records.
1085 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1086 * value for the new topmost tree record.
1088 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1092 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1094 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1095 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1099 * Change range of the branches in the right most path according to the leaf
1100 * extent block's rightmost record.
1102 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1103 struct ocfs2_extent_tree
*et
)
1106 struct ocfs2_path
*path
= NULL
;
1107 struct ocfs2_extent_list
*el
;
1108 struct ocfs2_extent_rec
*rec
;
1110 path
= ocfs2_new_path_from_et(et
);
1116 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1122 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1128 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1134 el
= path_leaf_el(path
);
1135 rec
= &el
->l_recs
[le16_to_cpu(el
->l_next_free_rec
) - 1];
1137 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1140 ocfs2_free_path(path
);
1145 * Add an entire tree branch to our inode. eb_bh is the extent block
1146 * to start at, if we don't want to start the branch at the root
1149 * last_eb_bh is required as we have to update it's next_leaf pointer
1150 * for the new last extent block.
1152 * the new branch will be 'empty' in the sense that every block will
1153 * contain a single record with cluster count == 0.
1155 static int ocfs2_add_branch(handle_t
*handle
,
1156 struct ocfs2_extent_tree
*et
,
1157 struct buffer_head
*eb_bh
,
1158 struct buffer_head
**last_eb_bh
,
1159 struct ocfs2_alloc_context
*meta_ac
)
1161 int status
, new_blocks
, i
;
1162 u64 next_blkno
, new_last_eb_blk
;
1163 struct buffer_head
*bh
;
1164 struct buffer_head
**new_eb_bhs
= NULL
;
1165 struct ocfs2_extent_block
*eb
;
1166 struct ocfs2_extent_list
*eb_el
;
1167 struct ocfs2_extent_list
*el
;
1168 u32 new_cpos
, root_end
;
1170 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1173 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1176 el
= et
->et_root_el
;
1178 /* we never add a branch to a leaf. */
1179 BUG_ON(!el
->l_tree_depth
);
1181 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1183 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1184 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1185 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1188 * If there is a gap before the root end and the real end
1189 * of the righmost leaf block, we need to remove the gap
1190 * between new_cpos and root_end first so that the tree
1191 * is consistent after we add a new branch(it will start
1194 if (root_end
> new_cpos
) {
1195 trace_ocfs2_adjust_rightmost_branch(
1196 (unsigned long long)
1197 ocfs2_metadata_cache_owner(et
->et_ci
),
1198 root_end
, new_cpos
);
1200 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1207 /* allocate the number of new eb blocks we need */
1208 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1216 status
= ocfs2_create_new_meta_bhs(handle
, et
, new_blocks
,
1217 meta_ac
, new_eb_bhs
);
1223 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1224 * linked with the rest of the tree.
1225 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1227 * when we leave the loop, new_last_eb_blk will point to the
1228 * newest leaf, and next_blkno will point to the topmost extent
1230 next_blkno
= new_last_eb_blk
= 0;
1231 for(i
= 0; i
< new_blocks
; i
++) {
1233 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1234 /* ocfs2_create_new_meta_bhs() should create it right! */
1235 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1236 eb_el
= &eb
->h_list
;
1238 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1239 OCFS2_JOURNAL_ACCESS_CREATE
);
1245 eb
->h_next_leaf_blk
= 0;
1246 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1247 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1249 * This actually counts as an empty extent as
1252 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1253 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1255 * eb_el isn't always an interior node, but even leaf
1256 * nodes want a zero'd flags and reserved field so
1257 * this gets the whole 32 bits regardless of use.
1259 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1260 if (!eb_el
->l_tree_depth
)
1261 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1263 ocfs2_journal_dirty(handle
, bh
);
1264 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1267 /* This is a bit hairy. We want to update up to three blocks
1268 * here without leaving any of them in an inconsistent state
1269 * in case of error. We don't have to worry about
1270 * journal_dirty erroring as it won't unless we've aborted the
1271 * handle (in which case we would never be here) so reserving
1272 * the write with journal_access is all we need to do. */
1273 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1274 OCFS2_JOURNAL_ACCESS_WRITE
);
1279 status
= ocfs2_et_root_journal_access(handle
, et
,
1280 OCFS2_JOURNAL_ACCESS_WRITE
);
1286 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1287 OCFS2_JOURNAL_ACCESS_WRITE
);
1294 /* Link the new branch into the rest of the tree (el will
1295 * either be on the root_bh, or the extent block passed in. */
1296 i
= le16_to_cpu(el
->l_next_free_rec
);
1297 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1298 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1299 el
->l_recs
[i
].e_int_clusters
= 0;
1300 le16_add_cpu(&el
->l_next_free_rec
, 1);
1302 /* fe needs a new last extent block pointer, as does the
1303 * next_leaf on the previously last-extent-block. */
1304 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1306 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1307 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1309 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1310 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1312 ocfs2_journal_dirty(handle
, eb_bh
);
1315 * Some callers want to track the rightmost leaf so pass it
1318 brelse(*last_eb_bh
);
1319 get_bh(new_eb_bhs
[0]);
1320 *last_eb_bh
= new_eb_bhs
[0];
1325 for (i
= 0; i
< new_blocks
; i
++)
1326 brelse(new_eb_bhs
[i
]);
1334 * adds another level to the allocation tree.
1335 * returns back the new extent block so you can add a branch to it
1338 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1339 struct ocfs2_extent_tree
*et
,
1340 struct ocfs2_alloc_context
*meta_ac
,
1341 struct buffer_head
**ret_new_eb_bh
)
1345 struct buffer_head
*new_eb_bh
= NULL
;
1346 struct ocfs2_extent_block
*eb
;
1347 struct ocfs2_extent_list
*root_el
;
1348 struct ocfs2_extent_list
*eb_el
;
1350 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1357 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1358 /* ocfs2_create_new_meta_bhs() should create it right! */
1359 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1361 eb_el
= &eb
->h_list
;
1362 root_el
= et
->et_root_el
;
1364 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1365 OCFS2_JOURNAL_ACCESS_CREATE
);
1371 /* copy the root extent list data into the new extent block */
1372 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1373 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1374 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1375 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1377 ocfs2_journal_dirty(handle
, new_eb_bh
);
1379 status
= ocfs2_et_root_journal_access(handle
, et
,
1380 OCFS2_JOURNAL_ACCESS_WRITE
);
1386 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1388 /* update root_bh now */
1389 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1390 root_el
->l_recs
[0].e_cpos
= 0;
1391 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1392 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1393 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1394 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1395 root_el
->l_next_free_rec
= cpu_to_le16(1);
1397 /* If this is our 1st tree depth shift, then last_eb_blk
1398 * becomes the allocated extent block */
1399 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1400 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1402 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1404 *ret_new_eb_bh
= new_eb_bh
;
1414 * Should only be called when there is no space left in any of the
1415 * leaf nodes. What we want to do is find the lowest tree depth
1416 * non-leaf extent block with room for new records. There are three
1417 * valid results of this search:
1419 * 1) a lowest extent block is found, then we pass it back in
1420 * *lowest_eb_bh and return '0'
1422 * 2) the search fails to find anything, but the root_el has room. We
1423 * pass NULL back in *lowest_eb_bh, but still return '0'
1425 * 3) the search fails to find anything AND the root_el is full, in
1426 * which case we return > 0
1428 * return status < 0 indicates an error.
1430 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1431 struct buffer_head
**target_bh
)
1435 struct ocfs2_extent_block
*eb
;
1436 struct ocfs2_extent_list
*el
;
1437 struct buffer_head
*bh
= NULL
;
1438 struct buffer_head
*lowest_bh
= NULL
;
1442 el
= et
->et_root_el
;
1444 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1445 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1446 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1447 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1448 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1452 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1453 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1455 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1456 "Owner %llu has extent list where extent # %d has no physical block start\n",
1457 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1465 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1471 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1474 if (le16_to_cpu(el
->l_next_free_rec
) <
1475 le16_to_cpu(el
->l_count
)) {
1482 /* If we didn't find one and the fe doesn't have any room,
1483 * then return '1' */
1484 el
= et
->et_root_el
;
1485 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1488 *target_bh
= lowest_bh
;
1496 * Grow a b-tree so that it has more records.
1498 * We might shift the tree depth in which case existing paths should
1499 * be considered invalid.
1501 * Tree depth after the grow is returned via *final_depth.
1503 * *last_eb_bh will be updated by ocfs2_add_branch().
1505 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1506 int *final_depth
, struct buffer_head
**last_eb_bh
,
1507 struct ocfs2_alloc_context
*meta_ac
)
1510 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1511 int depth
= le16_to_cpu(el
->l_tree_depth
);
1512 struct buffer_head
*bh
= NULL
;
1514 BUG_ON(meta_ac
== NULL
);
1516 shift
= ocfs2_find_branch_target(et
, &bh
);
1523 /* We traveled all the way to the bottom of the allocation tree
1524 * and didn't find room for any more extents - we need to add
1525 * another tree level */
1528 trace_ocfs2_grow_tree(
1529 (unsigned long long)
1530 ocfs2_metadata_cache_owner(et
->et_ci
),
1533 /* ocfs2_shift_tree_depth will return us a buffer with
1534 * the new extent block (so we can pass that to
1535 * ocfs2_add_branch). */
1536 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1544 * Special case: we have room now if we shifted from
1545 * tree_depth 0, so no more work needs to be done.
1547 * We won't be calling add_branch, so pass
1548 * back *last_eb_bh as the new leaf. At depth
1549 * zero, it should always be null so there's
1550 * no reason to brelse.
1552 BUG_ON(*last_eb_bh
);
1559 /* call ocfs2_add_branch to add the final part of the tree with
1561 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1570 *final_depth
= depth
;
1576 * This function will discard the rightmost extent record.
1578 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1580 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1581 int count
= le16_to_cpu(el
->l_count
);
1582 unsigned int num_bytes
;
1585 /* This will cause us to go off the end of our extent list. */
1586 BUG_ON(next_free
>= count
);
1588 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1590 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1593 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1594 struct ocfs2_extent_rec
*insert_rec
)
1596 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1597 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1598 struct ocfs2_extent_rec
*rec
;
1600 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1601 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1605 /* The tree code before us didn't allow enough room in the leaf. */
1606 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1609 * The easiest way to approach this is to just remove the
1610 * empty extent and temporarily decrement next_free.
1614 * If next_free was 1 (only an empty extent), this
1615 * loop won't execute, which is fine. We still want
1616 * the decrement above to happen.
1618 for(i
= 0; i
< (next_free
- 1); i
++)
1619 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1625 * Figure out what the new record index should be.
1627 for(i
= 0; i
< next_free
; i
++) {
1628 rec
= &el
->l_recs
[i
];
1630 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1635 trace_ocfs2_rotate_leaf(insert_cpos
, insert_index
,
1636 has_empty
, next_free
,
1637 le16_to_cpu(el
->l_count
));
1639 BUG_ON(insert_index
< 0);
1640 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1641 BUG_ON(insert_index
> next_free
);
1644 * No need to memmove if we're just adding to the tail.
1646 if (insert_index
!= next_free
) {
1647 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1649 num_bytes
= next_free
- insert_index
;
1650 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1651 memmove(&el
->l_recs
[insert_index
+ 1],
1652 &el
->l_recs
[insert_index
],
1657 * Either we had an empty extent, and need to re-increment or
1658 * there was no empty extent on a non full rightmost leaf node,
1659 * in which case we still need to increment.
1662 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1664 * Make sure none of the math above just messed up our tree.
1666 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1668 el
->l_recs
[insert_index
] = *insert_rec
;
1672 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1674 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1676 BUG_ON(num_recs
== 0);
1678 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1680 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1681 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1682 memset(&el
->l_recs
[num_recs
], 0,
1683 sizeof(struct ocfs2_extent_rec
));
1684 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1689 * Create an empty extent record .
1691 * l_next_free_rec may be updated.
1693 * If an empty extent already exists do nothing.
1695 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1697 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1699 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1704 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1707 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1708 "Asked to create an empty extent in a full list:\n"
1709 "count = %u, tree depth = %u",
1710 le16_to_cpu(el
->l_count
),
1711 le16_to_cpu(el
->l_tree_depth
));
1713 ocfs2_shift_records_right(el
);
1716 le16_add_cpu(&el
->l_next_free_rec
, 1);
1717 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1721 * For a rotation which involves two leaf nodes, the "root node" is
1722 * the lowest level tree node which contains a path to both leafs. This
1723 * resulting set of information can be used to form a complete "subtree"
1725 * This function is passed two full paths from the dinode down to a
1726 * pair of adjacent leaves. It's task is to figure out which path
1727 * index contains the subtree root - this can be the root index itself
1728 * in a worst-case rotation.
1730 * The array index of the subtree root is passed back.
1732 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1733 struct ocfs2_path
*left
,
1734 struct ocfs2_path
*right
)
1739 * Check that the caller passed in two paths from the same tree.
1741 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1747 * The caller didn't pass two adjacent paths.
1749 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1750 "Owner %llu, left depth %u, right depth %u\n"
1751 "left leaf blk %llu, right leaf blk %llu\n",
1752 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1753 left
->p_tree_depth
, right
->p_tree_depth
,
1754 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1755 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1756 } while (left
->p_node
[i
].bh
->b_blocknr
==
1757 right
->p_node
[i
].bh
->b_blocknr
);
1762 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1765 * Traverse a btree path in search of cpos, starting at root_el.
1767 * This code can be called with a cpos larger than the tree, in which
1768 * case it will return the rightmost path.
1770 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1771 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1772 path_insert_t
*func
, void *data
)
1777 struct buffer_head
*bh
= NULL
;
1778 struct ocfs2_extent_block
*eb
;
1779 struct ocfs2_extent_list
*el
;
1780 struct ocfs2_extent_rec
*rec
;
1783 while (el
->l_tree_depth
) {
1784 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1785 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1786 "Owner %llu has empty extent list at depth %u\n",
1787 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1788 le16_to_cpu(el
->l_tree_depth
));
1794 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1795 rec
= &el
->l_recs
[i
];
1798 * In the case that cpos is off the allocation
1799 * tree, this should just wind up returning the
1802 range
= le32_to_cpu(rec
->e_cpos
) +
1803 ocfs2_rec_clusters(el
, rec
);
1804 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1808 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1810 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1811 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1812 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1813 le16_to_cpu(el
->l_tree_depth
), i
);
1820 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1826 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1829 if (le16_to_cpu(el
->l_next_free_rec
) >
1830 le16_to_cpu(el
->l_count
)) {
1831 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1832 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1833 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1834 (unsigned long long)bh
->b_blocknr
,
1835 le16_to_cpu(el
->l_next_free_rec
),
1836 le16_to_cpu(el
->l_count
));
1847 * Catch any trailing bh that the loop didn't handle.
1855 * Given an initialized path (that is, it has a valid root extent
1856 * list), this function will traverse the btree in search of the path
1857 * which would contain cpos.
1859 * The path traveled is recorded in the path structure.
1861 * Note that this will not do any comparisons on leaf node extent
1862 * records, so it will work fine in the case that we just added a tree
1865 struct find_path_data
{
1867 struct ocfs2_path
*path
;
1869 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1871 struct find_path_data
*fp
= data
;
1874 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1877 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1878 struct ocfs2_path
*path
, u32 cpos
)
1880 struct find_path_data data
;
1884 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1885 find_path_ins
, &data
);
1888 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1890 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1891 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1892 struct buffer_head
**ret
= data
;
1894 /* We want to retain only the leaf block. */
1895 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1901 * Find the leaf block in the tree which would contain cpos. No
1902 * checking of the actual leaf is done.
1904 * Some paths want to call this instead of allocating a path structure
1905 * and calling ocfs2_find_path().
1907 * This function doesn't handle non btree extent lists.
1909 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1910 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1911 struct buffer_head
**leaf_bh
)
1914 struct buffer_head
*bh
= NULL
;
1916 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1928 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1930 * Basically, we've moved stuff around at the bottom of the tree and
1931 * we need to fix up the extent records above the changes to reflect
1934 * left_rec: the record on the left.
1935 * left_child_el: is the child list pointed to by left_rec
1936 * right_rec: the record to the right of left_rec
1937 * right_child_el: is the child list pointed to by right_rec
1939 * By definition, this only works on interior nodes.
1941 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1942 struct ocfs2_extent_list
*left_child_el
,
1943 struct ocfs2_extent_rec
*right_rec
,
1944 struct ocfs2_extent_list
*right_child_el
)
1946 u32 left_clusters
, right_end
;
1949 * Interior nodes never have holes. Their cpos is the cpos of
1950 * the leftmost record in their child list. Their cluster
1951 * count covers the full theoretical range of their child list
1952 * - the range between their cpos and the cpos of the record
1953 * immediately to their right.
1955 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1956 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1957 BUG_ON(right_child_el
->l_tree_depth
);
1958 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1959 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1961 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1962 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1965 * Calculate the rightmost cluster count boundary before
1966 * moving cpos - we will need to adjust clusters after
1967 * updating e_cpos to keep the same highest cluster count.
1969 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1970 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1972 right_rec
->e_cpos
= left_rec
->e_cpos
;
1973 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1975 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1976 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1980 * Adjust the adjacent root node records involved in a
1981 * rotation. left_el_blkno is passed in as a key so that we can easily
1982 * find it's index in the root list.
1984 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
1985 struct ocfs2_extent_list
*left_el
,
1986 struct ocfs2_extent_list
*right_el
,
1991 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
1992 le16_to_cpu(left_el
->l_tree_depth
));
1994 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
1995 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2000 * The path walking code should have never returned a root and
2001 * two paths which are not adjacent.
2003 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2005 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
2006 &root_el
->l_recs
[i
+ 1], right_el
);
2010 * We've changed a leaf block (in right_path) and need to reflect that
2011 * change back up the subtree.
2013 * This happens in multiple places:
2014 * - When we've moved an extent record from the left path leaf to the right
2015 * path leaf to make room for an empty extent in the left path leaf.
2016 * - When our insert into the right path leaf is at the leftmost edge
2017 * and requires an update of the path immediately to it's left. This
2018 * can occur at the end of some types of rotation and appending inserts.
2019 * - When we've adjusted the last extent record in the left path leaf and the
2020 * 1st extent record in the right path leaf during cross extent block merge.
2022 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2023 struct ocfs2_path
*left_path
,
2024 struct ocfs2_path
*right_path
,
2028 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2029 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2030 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2033 * Update the counts and position values within all the
2034 * interior nodes to reflect the leaf rotation we just did.
2036 * The root node is handled below the loop.
2038 * We begin the loop with right_el and left_el pointing to the
2039 * leaf lists and work our way up.
2041 * NOTE: within this loop, left_el and right_el always refer
2042 * to the *child* lists.
2044 left_el
= path_leaf_el(left_path
);
2045 right_el
= path_leaf_el(right_path
);
2046 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2047 trace_ocfs2_complete_edge_insert(i
);
2050 * One nice property of knowing that all of these
2051 * nodes are below the root is that we only deal with
2052 * the leftmost right node record and the rightmost
2055 el
= left_path
->p_node
[i
].el
;
2056 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2057 left_rec
= &el
->l_recs
[idx
];
2059 el
= right_path
->p_node
[i
].el
;
2060 right_rec
= &el
->l_recs
[0];
2062 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
2065 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2066 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2069 * Setup our list pointers now so that the current
2070 * parents become children in the next iteration.
2072 left_el
= left_path
->p_node
[i
].el
;
2073 right_el
= right_path
->p_node
[i
].el
;
2077 * At the root node, adjust the two adjacent records which
2078 * begin our path to the leaves.
2081 el
= left_path
->p_node
[subtree_index
].el
;
2082 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2083 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2085 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2086 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2088 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2090 ocfs2_journal_dirty(handle
, root_bh
);
2093 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2094 struct ocfs2_extent_tree
*et
,
2095 struct ocfs2_path
*left_path
,
2096 struct ocfs2_path
*right_path
,
2100 struct buffer_head
*right_leaf_bh
;
2101 struct buffer_head
*left_leaf_bh
= NULL
;
2102 struct buffer_head
*root_bh
;
2103 struct ocfs2_extent_list
*right_el
, *left_el
;
2104 struct ocfs2_extent_rec move_rec
;
2106 left_leaf_bh
= path_leaf_bh(left_path
);
2107 left_el
= path_leaf_el(left_path
);
2109 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2110 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2111 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2112 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2113 (unsigned long long)left_leaf_bh
->b_blocknr
,
2114 le16_to_cpu(left_el
->l_next_free_rec
));
2119 * This extent block may already have an empty record, so we
2120 * return early if so.
2122 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2125 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2126 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2128 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2135 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2136 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2143 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2151 right_leaf_bh
= path_leaf_bh(right_path
);
2152 right_el
= path_leaf_el(right_path
);
2154 /* This is a code error, not a disk corruption. */
2155 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2156 "because rightmost leaf block %llu is empty\n",
2157 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2158 (unsigned long long)right_leaf_bh
->b_blocknr
);
2160 ocfs2_create_empty_extent(right_el
);
2162 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2164 /* Do the copy now. */
2165 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2166 move_rec
= left_el
->l_recs
[i
];
2167 right_el
->l_recs
[0] = move_rec
;
2170 * Clear out the record we just copied and shift everything
2171 * over, leaving an empty extent in the left leaf.
2173 * We temporarily subtract from next_free_rec so that the
2174 * shift will lose the tail record (which is now defunct).
2176 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2177 ocfs2_shift_records_right(left_el
);
2178 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2179 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2181 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2183 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2191 * Given a full path, determine what cpos value would return us a path
2192 * containing the leaf immediately to the left of the current one.
2194 * Will return zero if the path passed in is already the leftmost path.
2196 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2197 struct ocfs2_path
*path
, u32
*cpos
)
2201 struct ocfs2_extent_list
*el
;
2203 BUG_ON(path
->p_tree_depth
== 0);
2207 blkno
= path_leaf_bh(path
)->b_blocknr
;
2209 /* Start at the tree node just above the leaf and work our way up. */
2210 i
= path
->p_tree_depth
- 1;
2212 el
= path
->p_node
[i
].el
;
2215 * Find the extent record just before the one in our
2218 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2219 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2223 * We've determined that the
2224 * path specified is already
2225 * the leftmost one - return a
2231 * The leftmost record points to our
2232 * leaf - we need to travel up the
2238 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2239 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2240 &el
->l_recs
[j
- 1]);
2247 * If we got here, we never found a valid node where
2248 * the tree indicated one should be.
2250 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2251 (unsigned long long)blkno
);
2256 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2265 * Extend the transaction by enough credits to complete the rotation,
2266 * and still leave at least the original number of credits allocated
2267 * to this transaction.
2269 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2271 struct ocfs2_path
*path
)
2274 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2276 if (handle
->h_buffer_credits
< credits
)
2277 ret
= ocfs2_extend_trans(handle
,
2278 credits
- handle
->h_buffer_credits
);
2284 * Trap the case where we're inserting into the theoretical range past
2285 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2286 * whose cpos is less than ours into the right leaf.
2288 * It's only necessary to look at the rightmost record of the left
2289 * leaf because the logic that calls us should ensure that the
2290 * theoretical ranges in the path components above the leaves are
2293 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2296 struct ocfs2_extent_list
*left_el
;
2297 struct ocfs2_extent_rec
*rec
;
2300 left_el
= path_leaf_el(left_path
);
2301 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2302 rec
= &left_el
->l_recs
[next_free
- 1];
2304 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2309 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2311 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2313 struct ocfs2_extent_rec
*rec
;
2318 rec
= &el
->l_recs
[0];
2319 if (ocfs2_is_empty_extent(rec
)) {
2323 rec
= &el
->l_recs
[1];
2326 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2327 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2333 * Rotate all the records in a btree right one record, starting at insert_cpos.
2335 * The path to the rightmost leaf should be passed in.
2337 * The array is assumed to be large enough to hold an entire path (tree depth).
2339 * Upon successful return from this function:
2341 * - The 'right_path' array will contain a path to the leaf block
2342 * whose range contains e_cpos.
2343 * - That leaf block will have a single empty extent in list index 0.
2344 * - In the case that the rotation requires a post-insert update,
2345 * *ret_left_path will contain a valid path which can be passed to
2346 * ocfs2_insert_path().
2348 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2349 struct ocfs2_extent_tree
*et
,
2350 enum ocfs2_split_type split
,
2352 struct ocfs2_path
*right_path
,
2353 struct ocfs2_path
**ret_left_path
)
2355 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2357 struct ocfs2_path
*left_path
= NULL
;
2358 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2360 *ret_left_path
= NULL
;
2362 left_path
= ocfs2_new_path_from_path(right_path
);
2369 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2375 trace_ocfs2_rotate_tree_right(
2376 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2380 * What we want to do here is:
2382 * 1) Start with the rightmost path.
2384 * 2) Determine a path to the leaf block directly to the left
2387 * 3) Determine the 'subtree root' - the lowest level tree node
2388 * which contains a path to both leaves.
2390 * 4) Rotate the subtree.
2392 * 5) Find the next subtree by considering the left path to be
2393 * the new right path.
2395 * The check at the top of this while loop also accepts
2396 * insert_cpos == cpos because cpos is only a _theoretical_
2397 * value to get us the left path - insert_cpos might very well
2398 * be filling that hole.
2400 * Stop at a cpos of '0' because we either started at the
2401 * leftmost branch (i.e., a tree with one branch and a
2402 * rotation inside of it), or we've gone as far as we can in
2403 * rotating subtrees.
2405 while (cpos
&& insert_cpos
<= cpos
) {
2406 trace_ocfs2_rotate_tree_right(
2407 (unsigned long long)
2408 ocfs2_metadata_cache_owner(et
->et_ci
),
2411 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2417 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2418 path_leaf_bh(right_path
),
2419 "Owner %llu: error during insert of %u "
2420 "(left path cpos %u) results in two identical "
2421 "paths ending at %llu\n",
2422 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2424 (unsigned long long)
2425 path_leaf_bh(left_path
)->b_blocknr
);
2427 if (split
== SPLIT_NONE
&&
2428 ocfs2_rotate_requires_path_adjustment(left_path
,
2432 * We've rotated the tree as much as we
2433 * should. The rest is up to
2434 * ocfs2_insert_path() to complete, after the
2435 * record insertion. We indicate this
2436 * situation by returning the left path.
2438 * The reason we don't adjust the records here
2439 * before the record insert is that an error
2440 * later might break the rule where a parent
2441 * record e_cpos will reflect the actual
2442 * e_cpos of the 1st nonempty record of the
2445 *ret_left_path
= left_path
;
2449 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2451 trace_ocfs2_rotate_subtree(start
,
2452 (unsigned long long)
2453 right_path
->p_node
[start
].bh
->b_blocknr
,
2454 right_path
->p_tree_depth
);
2456 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2457 orig_credits
, right_path
);
2463 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2470 if (split
!= SPLIT_NONE
&&
2471 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2474 * A rotate moves the rightmost left leaf
2475 * record over to the leftmost right leaf
2476 * slot. If we're doing an extent split
2477 * instead of a real insert, then we have to
2478 * check that the extent to be split wasn't
2479 * just moved over. If it was, then we can
2480 * exit here, passing left_path back -
2481 * ocfs2_split_extent() is smart enough to
2482 * search both leaves.
2484 *ret_left_path
= left_path
;
2489 * There is no need to re-read the next right path
2490 * as we know that it'll be our current left
2491 * path. Optimize by copying values instead.
2493 ocfs2_mv_path(right_path
, left_path
);
2495 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2503 ocfs2_free_path(left_path
);
2509 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2510 struct ocfs2_extent_tree
*et
,
2511 int subtree_index
, struct ocfs2_path
*path
)
2514 struct ocfs2_extent_rec
*rec
;
2515 struct ocfs2_extent_list
*el
;
2516 struct ocfs2_extent_block
*eb
;
2520 * In normal tree rotation process, we will never touch the
2521 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2522 * doesn't reserve the credits for them either.
2524 * But we do have a special case here which will update the rightmost
2525 * records for all the bh in the path.
2526 * So we have to allocate extra credits and access them.
2528 ret
= ocfs2_extend_trans(handle
, subtree_index
);
2534 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2540 /* Path should always be rightmost. */
2541 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2542 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2545 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2546 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2547 rec
= &el
->l_recs
[idx
];
2548 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2550 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2551 el
= path
->p_node
[i
].el
;
2552 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2553 rec
= &el
->l_recs
[idx
];
2555 rec
->e_int_clusters
= cpu_to_le32(range
);
2556 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2558 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2564 static void ocfs2_unlink_path(handle_t
*handle
,
2565 struct ocfs2_extent_tree
*et
,
2566 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2567 struct ocfs2_path
*path
, int unlink_start
)
2570 struct ocfs2_extent_block
*eb
;
2571 struct ocfs2_extent_list
*el
;
2572 struct buffer_head
*bh
;
2574 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2575 bh
= path
->p_node
[i
].bh
;
2577 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2579 * Not all nodes might have had their final count
2580 * decremented by the caller - handle this here.
2583 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2585 "Inode %llu, attempted to remove extent block "
2586 "%llu with %u records\n",
2587 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2588 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2589 le16_to_cpu(el
->l_next_free_rec
));
2591 ocfs2_journal_dirty(handle
, bh
);
2592 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2596 el
->l_next_free_rec
= 0;
2597 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2599 ocfs2_journal_dirty(handle
, bh
);
2601 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2605 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2609 static void ocfs2_unlink_subtree(handle_t
*handle
,
2610 struct ocfs2_extent_tree
*et
,
2611 struct ocfs2_path
*left_path
,
2612 struct ocfs2_path
*right_path
,
2614 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2617 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2618 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2619 struct ocfs2_extent_list
*el
;
2620 struct ocfs2_extent_block
*eb
;
2622 el
= path_leaf_el(left_path
);
2624 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2626 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2627 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2630 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2632 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2633 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2635 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2636 eb
->h_next_leaf_blk
= 0;
2638 ocfs2_journal_dirty(handle
, root_bh
);
2639 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2641 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2645 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2646 struct ocfs2_extent_tree
*et
,
2647 struct ocfs2_path
*left_path
,
2648 struct ocfs2_path
*right_path
,
2650 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2653 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2654 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2655 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2656 struct ocfs2_extent_block
*eb
;
2660 right_leaf_el
= path_leaf_el(right_path
);
2661 left_leaf_el
= path_leaf_el(left_path
);
2662 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2663 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2665 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2668 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2669 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2671 * It's legal for us to proceed if the right leaf is
2672 * the rightmost one and it has an empty extent. There
2673 * are two cases to handle - whether the leaf will be
2674 * empty after removal or not. If the leaf isn't empty
2675 * then just remove the empty extent up front. The
2676 * next block will handle empty leaves by flagging
2679 * Non rightmost leaves will throw -EAGAIN and the
2680 * caller can manually move the subtree and retry.
2683 if (eb
->h_next_leaf_blk
!= 0ULL)
2686 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2687 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2688 path_leaf_bh(right_path
),
2689 OCFS2_JOURNAL_ACCESS_WRITE
);
2695 ocfs2_remove_empty_extent(right_leaf_el
);
2697 right_has_empty
= 1;
2700 if (eb
->h_next_leaf_blk
== 0ULL &&
2701 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2703 * We have to update i_last_eb_blk during the meta
2706 ret
= ocfs2_et_root_journal_access(handle
, et
,
2707 OCFS2_JOURNAL_ACCESS_WRITE
);
2713 del_right_subtree
= 1;
2717 * Getting here with an empty extent in the right path implies
2718 * that it's the rightmost path and will be deleted.
2720 BUG_ON(right_has_empty
&& !del_right_subtree
);
2722 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2729 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2730 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2737 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2745 if (!right_has_empty
) {
2747 * Only do this if we're moving a real
2748 * record. Otherwise, the action is delayed until
2749 * after removal of the right path in which case we
2750 * can do a simple shift to remove the empty extent.
2752 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2753 memset(&right_leaf_el
->l_recs
[0], 0,
2754 sizeof(struct ocfs2_extent_rec
));
2756 if (eb
->h_next_leaf_blk
== 0ULL) {
2758 * Move recs over to get rid of empty extent, decrease
2759 * next_free. This is allowed to remove the last
2760 * extent in our leaf (setting l_next_free_rec to
2761 * zero) - the delete code below won't care.
2763 ocfs2_remove_empty_extent(right_leaf_el
);
2766 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2767 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2769 if (del_right_subtree
) {
2770 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2771 subtree_index
, dealloc
);
2772 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
2779 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2780 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2783 * Removal of the extent in the left leaf was skipped
2784 * above so we could delete the right path
2787 if (right_has_empty
)
2788 ocfs2_remove_empty_extent(left_leaf_el
);
2790 ocfs2_journal_dirty(handle
, et_root_bh
);
2794 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2802 * Given a full path, determine what cpos value would return us a path
2803 * containing the leaf immediately to the right of the current one.
2805 * Will return zero if the path passed in is already the rightmost path.
2807 * This looks similar, but is subtly different to
2808 * ocfs2_find_cpos_for_left_leaf().
2810 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2811 struct ocfs2_path
*path
, u32
*cpos
)
2815 struct ocfs2_extent_list
*el
;
2819 if (path
->p_tree_depth
== 0)
2822 blkno
= path_leaf_bh(path
)->b_blocknr
;
2824 /* Start at the tree node just above the leaf and work our way up. */
2825 i
= path
->p_tree_depth
- 1;
2829 el
= path
->p_node
[i
].el
;
2832 * Find the extent record just after the one in our
2835 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2836 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2837 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2838 if (j
== (next_free
- 1)) {
2841 * We've determined that the
2842 * path specified is already
2843 * the rightmost one - return a
2849 * The rightmost record points to our
2850 * leaf - we need to travel up the
2856 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2862 * If we got here, we never found a valid node where
2863 * the tree indicated one should be.
2865 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2866 (unsigned long long)blkno
);
2871 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2879 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2880 struct ocfs2_extent_tree
*et
,
2881 struct ocfs2_path
*path
)
2884 struct buffer_head
*bh
= path_leaf_bh(path
);
2885 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2887 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2890 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2891 path_num_items(path
) - 1);
2897 ocfs2_remove_empty_extent(el
);
2898 ocfs2_journal_dirty(handle
, bh
);
2904 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2905 struct ocfs2_extent_tree
*et
,
2907 struct ocfs2_path
*path
,
2908 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2909 struct ocfs2_path
**empty_extent_path
)
2911 int ret
, subtree_root
, deleted
;
2913 struct ocfs2_path
*left_path
= NULL
;
2914 struct ocfs2_path
*right_path
= NULL
;
2915 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2917 if (!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])))
2920 *empty_extent_path
= NULL
;
2922 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2928 left_path
= ocfs2_new_path_from_path(path
);
2935 ocfs2_cp_path(left_path
, path
);
2937 right_path
= ocfs2_new_path_from_path(path
);
2944 while (right_cpos
) {
2945 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2951 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2954 trace_ocfs2_rotate_subtree(subtree_root
,
2955 (unsigned long long)
2956 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2957 right_path
->p_tree_depth
);
2959 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2960 orig_credits
, left_path
);
2967 * Caller might still want to make changes to the
2968 * tree root, so re-add it to the journal here.
2970 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2977 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2978 right_path
, subtree_root
,
2980 if (ret
== -EAGAIN
) {
2982 * The rotation has to temporarily stop due to
2983 * the right subtree having an empty
2984 * extent. Pass it back to the caller for a
2987 *empty_extent_path
= right_path
;
2997 * The subtree rotate might have removed records on
2998 * the rightmost edge. If so, then rotation is
3004 ocfs2_mv_path(left_path
, right_path
);
3006 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3015 ocfs2_free_path(right_path
);
3016 ocfs2_free_path(left_path
);
3021 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3022 struct ocfs2_extent_tree
*et
,
3023 struct ocfs2_path
*path
,
3024 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3026 int ret
, subtree_index
;
3028 struct ocfs2_path
*left_path
= NULL
;
3029 struct ocfs2_extent_block
*eb
;
3030 struct ocfs2_extent_list
*el
;
3033 ret
= ocfs2_et_sanity_check(et
);
3037 * There's two ways we handle this depending on
3038 * whether path is the only existing one.
3040 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3041 handle
->h_buffer_credits
,
3048 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3054 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3063 * We have a path to the left of this one - it needs
3066 left_path
= ocfs2_new_path_from_path(path
);
3073 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3079 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3085 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3087 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3088 subtree_index
, dealloc
);
3089 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
3096 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3097 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3100 * 'path' is also the leftmost path which
3101 * means it must be the only one. This gets
3102 * handled differently because we want to
3103 * revert the root back to having extents
3106 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3108 el
= et
->et_root_el
;
3109 el
->l_tree_depth
= 0;
3110 el
->l_next_free_rec
= 0;
3111 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3113 ocfs2_et_set_last_eb_blk(et
, 0);
3116 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3119 ocfs2_free_path(left_path
);
3123 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super
*osb
,
3124 struct ocfs2_extent_tree
*et
,
3125 struct ocfs2_path
*path
,
3126 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3130 int credits
= path
->p_tree_depth
* 2 + 1;
3132 handle
= ocfs2_start_trans(osb
, credits
);
3133 if (IS_ERR(handle
)) {
3134 ret
= PTR_ERR(handle
);
3139 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
, dealloc
);
3143 ocfs2_commit_trans(osb
, handle
);
3148 * Left rotation of btree records.
3150 * In many ways, this is (unsurprisingly) the opposite of right
3151 * rotation. We start at some non-rightmost path containing an empty
3152 * extent in the leaf block. The code works its way to the rightmost
3153 * path by rotating records to the left in every subtree.
3155 * This is used by any code which reduces the number of extent records
3156 * in a leaf. After removal, an empty record should be placed in the
3157 * leftmost list position.
3159 * This won't handle a length update of the rightmost path records if
3160 * the rightmost tree leaf record is removed so the caller is
3161 * responsible for detecting and correcting that.
3163 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3164 struct ocfs2_extent_tree
*et
,
3165 struct ocfs2_path
*path
,
3166 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3168 int ret
, orig_credits
= handle
->h_buffer_credits
;
3169 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3170 struct ocfs2_extent_block
*eb
;
3171 struct ocfs2_extent_list
*el
;
3173 el
= path_leaf_el(path
);
3174 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3177 if (path
->p_tree_depth
== 0) {
3178 rightmost_no_delete
:
3180 * Inline extents. This is trivially handled, so do
3183 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3190 * Handle rightmost branch now. There's several cases:
3191 * 1) simple rotation leaving records in there. That's trivial.
3192 * 2) rotation requiring a branch delete - there's no more
3193 * records left. Two cases of this:
3194 * a) There are branches to the left.
3195 * b) This is also the leftmost (the only) branch.
3197 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3198 * 2a) we need the left branch so that we can update it with the unlink
3199 * 2b) we need to bring the root back to inline extents.
3202 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3204 if (eb
->h_next_leaf_blk
== 0) {
3206 * This gets a bit tricky if we're going to delete the
3207 * rightmost path. Get the other cases out of the way
3210 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3211 goto rightmost_no_delete
;
3213 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3215 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3216 "Owner %llu has empty extent block at %llu\n",
3217 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3218 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3223 * XXX: The caller can not trust "path" any more after
3224 * this as it will have been deleted. What do we do?
3226 * In theory the rotate-for-merge code will never get
3227 * here because it'll always ask for a rotate in a
3231 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3239 * Now we can loop, remembering the path we get from -EAGAIN
3240 * and restarting from there.
3243 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3244 dealloc
, &restart_path
);
3245 if (ret
&& ret
!= -EAGAIN
) {
3250 while (ret
== -EAGAIN
) {
3251 tmp_path
= restart_path
;
3252 restart_path
= NULL
;
3254 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3257 if (ret
&& ret
!= -EAGAIN
) {
3262 ocfs2_free_path(tmp_path
);
3270 ocfs2_free_path(tmp_path
);
3271 ocfs2_free_path(restart_path
);
3275 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3278 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3281 if (rec
->e_leaf_clusters
== 0) {
3283 * We consumed all of the merged-from record. An empty
3284 * extent cannot exist anywhere but the 1st array
3285 * position, so move things over if the merged-from
3286 * record doesn't occupy that position.
3288 * This creates a new empty extent so the caller
3289 * should be smart enough to have removed any existing
3293 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3294 size
= index
* sizeof(struct ocfs2_extent_rec
);
3295 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3299 * Always memset - the caller doesn't check whether it
3300 * created an empty extent, so there could be junk in
3303 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3307 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3308 struct ocfs2_path
*left_path
,
3309 struct ocfs2_path
**ret_right_path
)
3313 struct ocfs2_path
*right_path
= NULL
;
3314 struct ocfs2_extent_list
*left_el
;
3316 *ret_right_path
= NULL
;
3318 /* This function shouldn't be called for non-trees. */
3319 BUG_ON(left_path
->p_tree_depth
== 0);
3321 left_el
= path_leaf_el(left_path
);
3322 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3324 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3325 left_path
, &right_cpos
);
3331 /* This function shouldn't be called for the rightmost leaf. */
3332 BUG_ON(right_cpos
== 0);
3334 right_path
= ocfs2_new_path_from_path(left_path
);
3341 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3347 *ret_right_path
= right_path
;
3350 ocfs2_free_path(right_path
);
3355 * Remove split_rec clusters from the record at index and merge them
3356 * onto the beginning of the record "next" to it.
3357 * For index < l_count - 1, the next means the extent rec at index + 1.
3358 * For index == l_count - 1, the "next" means the 1st extent rec of the
3359 * next extent block.
3361 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3363 struct ocfs2_extent_tree
*et
,
3364 struct ocfs2_extent_rec
*split_rec
,
3367 int ret
, next_free
, i
;
3368 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3369 struct ocfs2_extent_rec
*left_rec
;
3370 struct ocfs2_extent_rec
*right_rec
;
3371 struct ocfs2_extent_list
*right_el
;
3372 struct ocfs2_path
*right_path
= NULL
;
3373 int subtree_index
= 0;
3374 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3375 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3376 struct buffer_head
*root_bh
= NULL
;
3378 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3379 left_rec
= &el
->l_recs
[index
];
3381 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3382 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3383 /* we meet with a cross extent block merge. */
3384 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3390 right_el
= path_leaf_el(right_path
);
3391 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3392 BUG_ON(next_free
<= 0);
3393 right_rec
= &right_el
->l_recs
[0];
3394 if (ocfs2_is_empty_extent(right_rec
)) {
3395 BUG_ON(next_free
<= 1);
3396 right_rec
= &right_el
->l_recs
[1];
3399 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3400 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3401 le32_to_cpu(right_rec
->e_cpos
));
3403 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3406 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3407 handle
->h_buffer_credits
,
3414 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3415 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3417 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3424 for (i
= subtree_index
+ 1;
3425 i
< path_num_items(right_path
); i
++) {
3426 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3433 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3442 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3443 right_rec
= &el
->l_recs
[index
+ 1];
3446 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3447 path_num_items(left_path
) - 1);
3453 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3455 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3456 le64_add_cpu(&right_rec
->e_blkno
,
3457 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3459 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3461 ocfs2_cleanup_merge(el
, index
);
3463 ocfs2_journal_dirty(handle
, bh
);
3465 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3466 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3470 ocfs2_free_path(right_path
);
3474 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3475 struct ocfs2_path
*right_path
,
3476 struct ocfs2_path
**ret_left_path
)
3480 struct ocfs2_path
*left_path
= NULL
;
3482 *ret_left_path
= NULL
;
3484 /* This function shouldn't be called for non-trees. */
3485 BUG_ON(right_path
->p_tree_depth
== 0);
3487 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3488 right_path
, &left_cpos
);
3494 /* This function shouldn't be called for the leftmost leaf. */
3495 BUG_ON(left_cpos
== 0);
3497 left_path
= ocfs2_new_path_from_path(right_path
);
3504 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3510 *ret_left_path
= left_path
;
3513 ocfs2_free_path(left_path
);
3518 * Remove split_rec clusters from the record at index and merge them
3519 * onto the tail of the record "before" it.
3520 * For index > 0, the "before" means the extent rec at index - 1.
3522 * For index == 0, the "before" means the last record of the previous
3523 * extent block. And there is also a situation that we may need to
3524 * remove the rightmost leaf extent block in the right_path and change
3525 * the right path to indicate the new rightmost path.
3527 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3529 struct ocfs2_extent_tree
*et
,
3530 struct ocfs2_extent_rec
*split_rec
,
3531 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3534 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3535 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3536 struct ocfs2_extent_rec
*left_rec
;
3537 struct ocfs2_extent_rec
*right_rec
;
3538 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3539 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3540 struct buffer_head
*root_bh
= NULL
;
3541 struct ocfs2_path
*left_path
= NULL
;
3542 struct ocfs2_extent_list
*left_el
;
3546 right_rec
= &el
->l_recs
[index
];
3548 /* we meet with a cross extent block merge. */
3549 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3555 left_el
= path_leaf_el(left_path
);
3556 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3557 le16_to_cpu(left_el
->l_count
));
3559 left_rec
= &left_el
->l_recs
[
3560 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3561 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3562 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3563 le32_to_cpu(split_rec
->e_cpos
));
3565 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3568 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3569 handle
->h_buffer_credits
,
3576 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3577 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3579 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3586 for (i
= subtree_index
+ 1;
3587 i
< path_num_items(right_path
); i
++) {
3588 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3595 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3603 left_rec
= &el
->l_recs
[index
- 1];
3604 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3605 has_empty_extent
= 1;
3608 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3609 path_num_items(right_path
) - 1);
3615 if (has_empty_extent
&& index
== 1) {
3617 * The easy case - we can just plop the record right in.
3619 *left_rec
= *split_rec
;
3621 has_empty_extent
= 0;
3623 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3625 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3626 le64_add_cpu(&right_rec
->e_blkno
,
3627 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3629 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3631 ocfs2_cleanup_merge(el
, index
);
3633 ocfs2_journal_dirty(handle
, bh
);
3635 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3638 * In the situation that the right_rec is empty and the extent
3639 * block is empty also, ocfs2_complete_edge_insert can't handle
3640 * it and we need to delete the right extent block.
3642 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3643 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3645 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3653 /* Now the rightmost extent block has been deleted.
3654 * So we use the new rightmost path.
3656 ocfs2_mv_path(right_path
, left_path
);
3659 ocfs2_complete_edge_insert(handle
, left_path
,
3660 right_path
, subtree_index
);
3663 ocfs2_free_path(left_path
);
3667 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3668 struct ocfs2_extent_tree
*et
,
3669 struct ocfs2_path
*path
,
3671 struct ocfs2_extent_rec
*split_rec
,
3672 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3673 struct ocfs2_merge_ctxt
*ctxt
)
3676 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3677 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3679 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3681 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3683 * The merge code will need to create an empty
3684 * extent to take the place of the newly
3685 * emptied slot. Remove any pre-existing empty
3686 * extents - having more than one in a leaf is
3689 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3695 rec
= &el
->l_recs
[split_index
];
3698 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3700 * Left-right contig implies this.
3702 BUG_ON(!ctxt
->c_split_covers_rec
);
3705 * Since the leftright insert always covers the entire
3706 * extent, this call will delete the insert record
3707 * entirely, resulting in an empty extent record added to
3710 * Since the adding of an empty extent shifts
3711 * everything back to the right, there's no need to
3712 * update split_index here.
3714 * When the split_index is zero, we need to merge it to the
3715 * prevoius extent block. It is more efficient and easier
3716 * if we do merge_right first and merge_left later.
3718 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3726 * We can only get this from logic error above.
3728 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3730 /* The merge left us with an empty extent, remove it. */
3731 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3737 rec
= &el
->l_recs
[split_index
];
3740 * Note that we don't pass split_rec here on purpose -
3741 * we've merged it into the rec already.
3743 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3744 dealloc
, split_index
);
3751 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3753 * Error from this last rotate is not critical, so
3754 * print but don't bubble it up.
3761 * Merge a record to the left or right.
3763 * 'contig_type' is relative to the existing record,
3764 * so for example, if we're "right contig", it's to
3765 * the record on the left (hence the left merge).
3767 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3768 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3776 ret
= ocfs2_merge_rec_right(path
, handle
,
3785 if (ctxt
->c_split_covers_rec
) {
3787 * The merge may have left an empty extent in
3788 * our leaf. Try to rotate it away.
3790 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3802 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3803 enum ocfs2_split_type split
,
3804 struct ocfs2_extent_rec
*rec
,
3805 struct ocfs2_extent_rec
*split_rec
)
3809 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3810 le16_to_cpu(split_rec
->e_leaf_clusters
));
3812 if (split
== SPLIT_LEFT
) {
3814 * Region is on the left edge of the existing
3817 le32_add_cpu(&rec
->e_cpos
,
3818 le16_to_cpu(split_rec
->e_leaf_clusters
));
3819 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3820 le16_add_cpu(&rec
->e_leaf_clusters
,
3821 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3824 * Region is on the right edge of the existing
3827 le16_add_cpu(&rec
->e_leaf_clusters
,
3828 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3833 * Do the final bits of extent record insertion at the target leaf
3834 * list. If this leaf is part of an allocation tree, it is assumed
3835 * that the tree above has been prepared.
3837 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3838 struct ocfs2_extent_rec
*insert_rec
,
3839 struct ocfs2_extent_list
*el
,
3840 struct ocfs2_insert_type
*insert
)
3842 int i
= insert
->ins_contig_index
;
3844 struct ocfs2_extent_rec
*rec
;
3846 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3848 if (insert
->ins_split
!= SPLIT_NONE
) {
3849 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3851 rec
= &el
->l_recs
[i
];
3852 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3853 insert
->ins_split
, rec
,
3859 * Contiguous insert - either left or right.
3861 if (insert
->ins_contig
!= CONTIG_NONE
) {
3862 rec
= &el
->l_recs
[i
];
3863 if (insert
->ins_contig
== CONTIG_LEFT
) {
3864 rec
->e_blkno
= insert_rec
->e_blkno
;
3865 rec
->e_cpos
= insert_rec
->e_cpos
;
3867 le16_add_cpu(&rec
->e_leaf_clusters
,
3868 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3873 * Handle insert into an empty leaf.
3875 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3876 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3877 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3878 el
->l_recs
[0] = *insert_rec
;
3879 el
->l_next_free_rec
= cpu_to_le16(1);
3886 if (insert
->ins_appending
== APPEND_TAIL
) {
3887 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3888 rec
= &el
->l_recs
[i
];
3889 range
= le32_to_cpu(rec
->e_cpos
)
3890 + le16_to_cpu(rec
->e_leaf_clusters
);
3891 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3893 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3894 le16_to_cpu(el
->l_count
),
3895 "owner %llu, depth %u, count %u, next free %u, "
3896 "rec.cpos %u, rec.clusters %u, "
3897 "insert.cpos %u, insert.clusters %u\n",
3898 ocfs2_metadata_cache_owner(et
->et_ci
),
3899 le16_to_cpu(el
->l_tree_depth
),
3900 le16_to_cpu(el
->l_count
),
3901 le16_to_cpu(el
->l_next_free_rec
),
3902 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3903 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3904 le32_to_cpu(insert_rec
->e_cpos
),
3905 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3907 el
->l_recs
[i
] = *insert_rec
;
3908 le16_add_cpu(&el
->l_next_free_rec
, 1);
3914 * Ok, we have to rotate.
3916 * At this point, it is safe to assume that inserting into an
3917 * empty leaf and appending to a leaf have both been handled
3920 * This leaf needs to have space, either by the empty 1st
3921 * extent record, or by virtue of an l_next_rec < l_count.
3923 ocfs2_rotate_leaf(el
, insert_rec
);
3926 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3927 struct ocfs2_extent_tree
*et
,
3928 struct ocfs2_path
*path
,
3929 struct ocfs2_extent_rec
*insert_rec
)
3931 int ret
, i
, next_free
;
3932 struct buffer_head
*bh
;
3933 struct ocfs2_extent_list
*el
;
3934 struct ocfs2_extent_rec
*rec
;
3937 * Update everything except the leaf block.
3939 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3940 bh
= path
->p_node
[i
].bh
;
3941 el
= path
->p_node
[i
].el
;
3943 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3944 if (next_free
== 0) {
3945 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3946 "Owner %llu has a bad extent list\n",
3947 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3952 rec
= &el
->l_recs
[next_free
- 1];
3954 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3955 le32_add_cpu(&rec
->e_int_clusters
,
3956 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3957 le32_add_cpu(&rec
->e_int_clusters
,
3958 -le32_to_cpu(rec
->e_cpos
));
3960 ocfs2_journal_dirty(handle
, bh
);
3964 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3965 struct ocfs2_extent_tree
*et
,
3966 struct ocfs2_extent_rec
*insert_rec
,
3967 struct ocfs2_path
*right_path
,
3968 struct ocfs2_path
**ret_left_path
)
3971 struct ocfs2_extent_list
*el
;
3972 struct ocfs2_path
*left_path
= NULL
;
3974 *ret_left_path
= NULL
;
3977 * This shouldn't happen for non-trees. The extent rec cluster
3978 * count manipulation below only works for interior nodes.
3980 BUG_ON(right_path
->p_tree_depth
== 0);
3983 * If our appending insert is at the leftmost edge of a leaf,
3984 * then we might need to update the rightmost records of the
3987 el
= path_leaf_el(right_path
);
3988 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3989 if (next_free
== 0 ||
3990 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3993 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3994 right_path
, &left_cpos
);
4000 trace_ocfs2_append_rec_to_path(
4001 (unsigned long long)
4002 ocfs2_metadata_cache_owner(et
->et_ci
),
4003 le32_to_cpu(insert_rec
->e_cpos
),
4007 * No need to worry if the append is already in the
4011 left_path
= ocfs2_new_path_from_path(right_path
);
4018 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4026 * ocfs2_insert_path() will pass the left_path to the
4032 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4038 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4040 *ret_left_path
= left_path
;
4044 ocfs2_free_path(left_path
);
4049 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4050 struct ocfs2_path
*left_path
,
4051 struct ocfs2_path
*right_path
,
4052 struct ocfs2_extent_rec
*split_rec
,
4053 enum ocfs2_split_type split
)
4056 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4057 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4058 struct ocfs2_extent_rec
*rec
, *tmprec
;
4060 right_el
= path_leaf_el(right_path
);
4062 left_el
= path_leaf_el(left_path
);
4065 insert_el
= right_el
;
4066 index
= ocfs2_search_extent_list(el
, cpos
);
4068 if (index
== 0 && left_path
) {
4069 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4072 * This typically means that the record
4073 * started in the left path but moved to the
4074 * right as a result of rotation. We either
4075 * move the existing record to the left, or we
4076 * do the later insert there.
4078 * In this case, the left path should always
4079 * exist as the rotate code will have passed
4080 * it back for a post-insert update.
4083 if (split
== SPLIT_LEFT
) {
4085 * It's a left split. Since we know
4086 * that the rotate code gave us an
4087 * empty extent in the left path, we
4088 * can just do the insert there.
4090 insert_el
= left_el
;
4093 * Right split - we have to move the
4094 * existing record over to the left
4095 * leaf. The insert will be into the
4096 * newly created empty extent in the
4099 tmprec
= &right_el
->l_recs
[index
];
4100 ocfs2_rotate_leaf(left_el
, tmprec
);
4103 memset(tmprec
, 0, sizeof(*tmprec
));
4104 index
= ocfs2_search_extent_list(left_el
, cpos
);
4105 BUG_ON(index
== -1);
4110 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4112 * Left path is easy - we can just allow the insert to
4116 insert_el
= left_el
;
4117 index
= ocfs2_search_extent_list(el
, cpos
);
4118 BUG_ON(index
== -1);
4121 rec
= &el
->l_recs
[index
];
4122 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4123 split
, rec
, split_rec
);
4124 ocfs2_rotate_leaf(insert_el
, split_rec
);
4128 * This function only does inserts on an allocation b-tree. For tree
4129 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4131 * right_path is the path we want to do the actual insert
4132 * in. left_path should only be passed in if we need to update that
4133 * portion of the tree after an edge insert.
4135 static int ocfs2_insert_path(handle_t
*handle
,
4136 struct ocfs2_extent_tree
*et
,
4137 struct ocfs2_path
*left_path
,
4138 struct ocfs2_path
*right_path
,
4139 struct ocfs2_extent_rec
*insert_rec
,
4140 struct ocfs2_insert_type
*insert
)
4142 int ret
, subtree_index
;
4143 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4147 * There's a chance that left_path got passed back to
4148 * us without being accounted for in the
4149 * journal. Extend our transaction here to be sure we
4150 * can change those blocks.
4152 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4158 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4166 * Pass both paths to the journal. The majority of inserts
4167 * will be touching all components anyway.
4169 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4175 if (insert
->ins_split
!= SPLIT_NONE
) {
4177 * We could call ocfs2_insert_at_leaf() for some types
4178 * of splits, but it's easier to just let one separate
4179 * function sort it all out.
4181 ocfs2_split_record(et
, left_path
, right_path
,
4182 insert_rec
, insert
->ins_split
);
4185 * Split might have modified either leaf and we don't
4186 * have a guarantee that the later edge insert will
4187 * dirty this for us.
4190 ocfs2_journal_dirty(handle
,
4191 path_leaf_bh(left_path
));
4193 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4196 ocfs2_journal_dirty(handle
, leaf_bh
);
4200 * The rotate code has indicated that we need to fix
4201 * up portions of the tree after the insert.
4203 * XXX: Should we extend the transaction here?
4205 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4207 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4216 static int ocfs2_do_insert_extent(handle_t
*handle
,
4217 struct ocfs2_extent_tree
*et
,
4218 struct ocfs2_extent_rec
*insert_rec
,
4219 struct ocfs2_insert_type
*type
)
4221 int ret
, rotate
= 0;
4223 struct ocfs2_path
*right_path
= NULL
;
4224 struct ocfs2_path
*left_path
= NULL
;
4225 struct ocfs2_extent_list
*el
;
4227 el
= et
->et_root_el
;
4229 ret
= ocfs2_et_root_journal_access(handle
, et
,
4230 OCFS2_JOURNAL_ACCESS_WRITE
);
4236 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4237 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4238 goto out_update_clusters
;
4241 right_path
= ocfs2_new_path_from_et(et
);
4249 * Determine the path to start with. Rotations need the
4250 * rightmost path, everything else can go directly to the
4253 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4254 if (type
->ins_appending
== APPEND_NONE
&&
4255 type
->ins_contig
== CONTIG_NONE
) {
4260 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4267 * Rotations and appends need special treatment - they modify
4268 * parts of the tree's above them.
4270 * Both might pass back a path immediate to the left of the
4271 * one being inserted to. This will be cause
4272 * ocfs2_insert_path() to modify the rightmost records of
4273 * left_path to account for an edge insert.
4275 * XXX: When modifying this code, keep in mind that an insert
4276 * can wind up skipping both of these two special cases...
4279 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4280 le32_to_cpu(insert_rec
->e_cpos
),
4281 right_path
, &left_path
);
4288 * ocfs2_rotate_tree_right() might have extended the
4289 * transaction without re-journaling our tree root.
4291 ret
= ocfs2_et_root_journal_access(handle
, et
,
4292 OCFS2_JOURNAL_ACCESS_WRITE
);
4297 } else if (type
->ins_appending
== APPEND_TAIL
4298 && type
->ins_contig
!= CONTIG_LEFT
) {
4299 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4300 right_path
, &left_path
);
4307 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4314 out_update_clusters
:
4315 if (type
->ins_split
== SPLIT_NONE
)
4316 ocfs2_et_update_clusters(et
,
4317 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4319 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4322 ocfs2_free_path(left_path
);
4323 ocfs2_free_path(right_path
);
4328 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4329 struct ocfs2_path
*path
,
4330 struct ocfs2_extent_list
*el
, int index
,
4331 struct ocfs2_extent_rec
*split_rec
,
4332 struct ocfs2_merge_ctxt
*ctxt
)
4335 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4336 u32 left_cpos
, right_cpos
;
4337 struct ocfs2_extent_rec
*rec
= NULL
;
4338 struct ocfs2_extent_list
*new_el
;
4339 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4340 struct buffer_head
*bh
;
4341 struct ocfs2_extent_block
*eb
;
4342 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4345 rec
= &el
->l_recs
[index
- 1];
4346 } else if (path
->p_tree_depth
> 0) {
4347 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4351 if (left_cpos
!= 0) {
4352 left_path
= ocfs2_new_path_from_path(path
);
4359 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4362 goto free_left_path
;
4364 new_el
= path_leaf_el(left_path
);
4366 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4367 le16_to_cpu(new_el
->l_count
)) {
4368 bh
= path_leaf_bh(left_path
);
4369 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4371 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4372 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4373 le16_to_cpu(new_el
->l_next_free_rec
),
4374 le16_to_cpu(new_el
->l_count
));
4376 goto free_left_path
;
4378 rec
= &new_el
->l_recs
[
4379 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4384 * We're careful to check for an empty extent record here -
4385 * the merge code will know what to do if it sees one.
4388 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4389 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4392 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4397 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4398 rec
= &el
->l_recs
[index
+ 1];
4399 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4400 path
->p_tree_depth
> 0) {
4401 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4403 goto free_left_path
;
4405 if (right_cpos
== 0)
4406 goto free_left_path
;
4408 right_path
= ocfs2_new_path_from_path(path
);
4412 goto free_left_path
;
4415 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4417 goto free_right_path
;
4419 new_el
= path_leaf_el(right_path
);
4420 rec
= &new_el
->l_recs
[0];
4421 if (ocfs2_is_empty_extent(rec
)) {
4422 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4423 bh
= path_leaf_bh(right_path
);
4424 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4426 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4427 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4428 le16_to_cpu(new_el
->l_next_free_rec
));
4430 goto free_right_path
;
4432 rec
= &new_el
->l_recs
[1];
4437 enum ocfs2_contig_type contig_type
;
4439 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4441 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4442 ret
= CONTIG_LEFTRIGHT
;
4443 else if (ret
== CONTIG_NONE
)
4448 ocfs2_free_path(right_path
);
4450 ocfs2_free_path(left_path
);
4453 ctxt
->c_contig_type
= ret
;
4458 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4459 struct ocfs2_insert_type
*insert
,
4460 struct ocfs2_extent_list
*el
,
4461 struct ocfs2_extent_rec
*insert_rec
)
4464 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4466 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4468 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4469 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4471 if (contig_type
!= CONTIG_NONE
) {
4472 insert
->ins_contig_index
= i
;
4476 insert
->ins_contig
= contig_type
;
4478 if (insert
->ins_contig
!= CONTIG_NONE
) {
4479 struct ocfs2_extent_rec
*rec
=
4480 &el
->l_recs
[insert
->ins_contig_index
];
4481 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4482 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4485 * Caller might want us to limit the size of extents, don't
4486 * calculate contiguousness if we might exceed that limit.
4488 if (et
->et_max_leaf_clusters
&&
4489 (len
> et
->et_max_leaf_clusters
))
4490 insert
->ins_contig
= CONTIG_NONE
;
4495 * This should only be called against the righmost leaf extent list.
4497 * ocfs2_figure_appending_type() will figure out whether we'll have to
4498 * insert at the tail of the rightmost leaf.
4500 * This should also work against the root extent list for tree's with 0
4501 * depth. If we consider the root extent list to be the rightmost leaf node
4502 * then the logic here makes sense.
4504 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4505 struct ocfs2_extent_list
*el
,
4506 struct ocfs2_extent_rec
*insert_rec
)
4509 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4510 struct ocfs2_extent_rec
*rec
;
4512 insert
->ins_appending
= APPEND_NONE
;
4514 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4516 if (!el
->l_next_free_rec
)
4517 goto set_tail_append
;
4519 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4520 /* Were all records empty? */
4521 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4522 goto set_tail_append
;
4525 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4526 rec
= &el
->l_recs
[i
];
4529 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4530 goto set_tail_append
;
4535 insert
->ins_appending
= APPEND_TAIL
;
4539 * Helper function called at the beginning of an insert.
4541 * This computes a few things that are commonly used in the process of
4542 * inserting into the btree:
4543 * - Whether the new extent is contiguous with an existing one.
4544 * - The current tree depth.
4545 * - Whether the insert is an appending one.
4546 * - The total # of free records in the tree.
4548 * All of the information is stored on the ocfs2_insert_type
4551 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4552 struct buffer_head
**last_eb_bh
,
4553 struct ocfs2_extent_rec
*insert_rec
,
4555 struct ocfs2_insert_type
*insert
)
4558 struct ocfs2_extent_block
*eb
;
4559 struct ocfs2_extent_list
*el
;
4560 struct ocfs2_path
*path
= NULL
;
4561 struct buffer_head
*bh
= NULL
;
4563 insert
->ins_split
= SPLIT_NONE
;
4565 el
= et
->et_root_el
;
4566 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4568 if (el
->l_tree_depth
) {
4570 * If we have tree depth, we read in the
4571 * rightmost extent block ahead of time as
4572 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4573 * may want it later.
4575 ret
= ocfs2_read_extent_block(et
->et_ci
,
4576 ocfs2_et_get_last_eb_blk(et
),
4582 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4587 * Unless we have a contiguous insert, we'll need to know if
4588 * there is room left in our allocation tree for another
4591 * XXX: This test is simplistic, we can search for empty
4592 * extent records too.
4594 *free_records
= le16_to_cpu(el
->l_count
) -
4595 le16_to_cpu(el
->l_next_free_rec
);
4597 if (!insert
->ins_tree_depth
) {
4598 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4599 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4603 path
= ocfs2_new_path_from_et(et
);
4611 * In the case that we're inserting past what the tree
4612 * currently accounts for, ocfs2_find_path() will return for
4613 * us the rightmost tree path. This is accounted for below in
4614 * the appending code.
4616 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4622 el
= path_leaf_el(path
);
4625 * Now that we have the path, there's two things we want to determine:
4626 * 1) Contiguousness (also set contig_index if this is so)
4628 * 2) Are we doing an append? We can trivially break this up
4629 * into two types of appends: simple record append, or a
4630 * rotate inside the tail leaf.
4632 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4635 * The insert code isn't quite ready to deal with all cases of
4636 * left contiguousness. Specifically, if it's an insert into
4637 * the 1st record in a leaf, it will require the adjustment of
4638 * cluster count on the last record of the path directly to it's
4639 * left. For now, just catch that case and fool the layers
4640 * above us. This works just fine for tree_depth == 0, which
4641 * is why we allow that above.
4643 if (insert
->ins_contig
== CONTIG_LEFT
&&
4644 insert
->ins_contig_index
== 0)
4645 insert
->ins_contig
= CONTIG_NONE
;
4648 * Ok, so we can simply compare against last_eb to figure out
4649 * whether the path doesn't exist. This will only happen in
4650 * the case that we're doing a tail append, so maybe we can
4651 * take advantage of that information somehow.
4653 if (ocfs2_et_get_last_eb_blk(et
) ==
4654 path_leaf_bh(path
)->b_blocknr
) {
4656 * Ok, ocfs2_find_path() returned us the rightmost
4657 * tree path. This might be an appending insert. There are
4659 * 1) We're doing a true append at the tail:
4660 * -This might even be off the end of the leaf
4661 * 2) We're "appending" by rotating in the tail
4663 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4667 ocfs2_free_path(path
);
4677 * Insert an extent into a btree.
4679 * The caller needs to update the owning btree's cluster count.
4681 int ocfs2_insert_extent(handle_t
*handle
,
4682 struct ocfs2_extent_tree
*et
,
4687 struct ocfs2_alloc_context
*meta_ac
)
4690 int uninitialized_var(free_records
);
4691 struct buffer_head
*last_eb_bh
= NULL
;
4692 struct ocfs2_insert_type insert
= {0, };
4693 struct ocfs2_extent_rec rec
;
4695 trace_ocfs2_insert_extent_start(
4696 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4697 cpos
, new_clusters
);
4699 memset(&rec
, 0, sizeof(rec
));
4700 rec
.e_cpos
= cpu_to_le32(cpos
);
4701 rec
.e_blkno
= cpu_to_le64(start_blk
);
4702 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4703 rec
.e_flags
= flags
;
4704 status
= ocfs2_et_insert_check(et
, &rec
);
4710 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4711 &free_records
, &insert
);
4717 trace_ocfs2_insert_extent(insert
.ins_appending
, insert
.ins_contig
,
4718 insert
.ins_contig_index
, free_records
,
4719 insert
.ins_tree_depth
);
4721 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4722 status
= ocfs2_grow_tree(handle
, et
,
4723 &insert
.ins_tree_depth
, &last_eb_bh
,
4731 /* Finally, we can add clusters. This might rotate the tree for us. */
4732 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4736 ocfs2_et_extent_map_insert(et
, &rec
);
4745 * Allcate and add clusters into the extent b-tree.
4746 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4747 * The extent b-tree's root is specified by et, and
4748 * it is not limited to the file storage. Any extent tree can use this
4749 * function if it implements the proper ocfs2_extent_tree.
4751 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4752 struct ocfs2_extent_tree
*et
,
4753 u32
*logical_offset
,
4754 u32 clusters_to_add
,
4756 struct ocfs2_alloc_context
*data_ac
,
4757 struct ocfs2_alloc_context
*meta_ac
,
4758 enum ocfs2_alloc_restarted
*reason_ret
)
4760 int status
= 0, err
= 0;
4763 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4764 u32 bit_off
, num_bits
;
4767 struct ocfs2_super
*osb
=
4768 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4770 BUG_ON(!clusters_to_add
);
4773 flags
= OCFS2_EXT_UNWRITTEN
;
4775 free_extents
= ocfs2_num_free_extents(osb
, et
);
4776 if (free_extents
< 0) {
4777 status
= free_extents
;
4782 /* there are two cases which could cause us to EAGAIN in the
4783 * we-need-more-metadata case:
4784 * 1) we haven't reserved *any*
4785 * 2) we are so fragmented, we've needed to add metadata too
4787 if (!free_extents
&& !meta_ac
) {
4790 reason
= RESTART_META
;
4792 } else if ((!free_extents
)
4793 && (ocfs2_alloc_context_bits_left(meta_ac
)
4794 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4797 reason
= RESTART_META
;
4801 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4802 clusters_to_add
, &bit_off
, &num_bits
);
4804 if (status
!= -ENOSPC
)
4809 BUG_ON(num_bits
> clusters_to_add
);
4811 /* reserve our write early -- insert_extent may update the tree root */
4812 status
= ocfs2_et_root_journal_access(handle
, et
,
4813 OCFS2_JOURNAL_ACCESS_WRITE
);
4820 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4821 trace_ocfs2_add_clusters_in_btree(
4822 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4824 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4825 num_bits
, flags
, meta_ac
);
4832 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4834 clusters_to_add
-= num_bits
;
4835 *logical_offset
+= num_bits
;
4837 if (clusters_to_add
) {
4838 err
= clusters_to_add
;
4840 reason
= RESTART_TRANS
;
4845 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
4846 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
4849 ocfs2_free_clusters(handle
,
4852 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
4858 *reason_ret
= reason
;
4859 trace_ocfs2_add_clusters_in_btree_ret(status
, reason
, err
);
4863 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4864 struct ocfs2_extent_rec
*split_rec
,
4866 struct ocfs2_extent_rec
*rec
)
4868 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4869 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4871 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4873 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4874 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4876 split_rec
->e_blkno
= rec
->e_blkno
;
4877 le64_add_cpu(&split_rec
->e_blkno
,
4878 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4880 split_rec
->e_flags
= rec
->e_flags
;
4883 static int ocfs2_split_and_insert(handle_t
*handle
,
4884 struct ocfs2_extent_tree
*et
,
4885 struct ocfs2_path
*path
,
4886 struct buffer_head
**last_eb_bh
,
4888 struct ocfs2_extent_rec
*orig_split_rec
,
4889 struct ocfs2_alloc_context
*meta_ac
)
4892 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4893 struct ocfs2_extent_rec tmprec
;
4894 struct ocfs2_extent_list
*rightmost_el
;
4895 struct ocfs2_extent_rec rec
;
4896 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4897 struct ocfs2_insert_type insert
;
4898 struct ocfs2_extent_block
*eb
;
4902 * Store a copy of the record on the stack - it might move
4903 * around as the tree is manipulated below.
4905 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4907 rightmost_el
= et
->et_root_el
;
4909 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4911 BUG_ON(!(*last_eb_bh
));
4912 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4913 rightmost_el
= &eb
->h_list
;
4916 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4917 le16_to_cpu(rightmost_el
->l_count
)) {
4918 ret
= ocfs2_grow_tree(handle
, et
,
4919 &depth
, last_eb_bh
, meta_ac
);
4926 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4927 insert
.ins_appending
= APPEND_NONE
;
4928 insert
.ins_contig
= CONTIG_NONE
;
4929 insert
.ins_tree_depth
= depth
;
4931 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4932 le16_to_cpu(split_rec
.e_leaf_clusters
);
4933 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4934 le16_to_cpu(rec
.e_leaf_clusters
);
4936 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4937 insert
.ins_split
= SPLIT_LEFT
;
4938 } else if (insert_range
== rec_range
) {
4939 insert
.ins_split
= SPLIT_RIGHT
;
4942 * Left/right split. We fake this as a right split
4943 * first and then make a second pass as a left split.
4945 insert
.ins_split
= SPLIT_RIGHT
;
4947 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4948 &tmprec
, insert_range
, &rec
);
4952 BUG_ON(do_leftright
);
4956 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4962 if (do_leftright
== 1) {
4964 struct ocfs2_extent_list
*el
;
4967 split_rec
= *orig_split_rec
;
4969 ocfs2_reinit_path(path
, 1);
4971 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4972 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4978 el
= path_leaf_el(path
);
4979 split_index
= ocfs2_search_extent_list(el
, cpos
);
4980 if (split_index
== -1) {
4981 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
4982 "Owner %llu has an extent at cpos %u which can no longer be found\n",
4983 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4995 static int ocfs2_replace_extent_rec(handle_t
*handle
,
4996 struct ocfs2_extent_tree
*et
,
4997 struct ocfs2_path
*path
,
4998 struct ocfs2_extent_list
*el
,
5000 struct ocfs2_extent_rec
*split_rec
)
5004 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
5005 path_num_items(path
) - 1);
5011 el
->l_recs
[split_index
] = *split_rec
;
5013 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5019 * Split part or all of the extent record at split_index in the leaf
5020 * pointed to by path. Merge with the contiguous extent record if needed.
5022 * Care is taken to handle contiguousness so as to not grow the tree.
5024 * meta_ac is not strictly necessary - we only truly need it if growth
5025 * of the tree is required. All other cases will degrade into a less
5026 * optimal tree layout.
5028 * last_eb_bh should be the rightmost leaf block for any extent
5029 * btree. Since a split may grow the tree or a merge might shrink it,
5030 * the caller cannot trust the contents of that buffer after this call.
5032 * This code is optimized for readability - several passes might be
5033 * made over certain portions of the tree. All of those blocks will
5034 * have been brought into cache (and pinned via the journal), so the
5035 * extra overhead is not expressed in terms of disk reads.
5037 int ocfs2_split_extent(handle_t
*handle
,
5038 struct ocfs2_extent_tree
*et
,
5039 struct ocfs2_path
*path
,
5041 struct ocfs2_extent_rec
*split_rec
,
5042 struct ocfs2_alloc_context
*meta_ac
,
5043 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5046 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5047 struct buffer_head
*last_eb_bh
= NULL
;
5048 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5049 struct ocfs2_merge_ctxt ctxt
;
5050 struct ocfs2_extent_list
*rightmost_el
;
5052 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5053 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5054 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5060 ret
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5070 * The core merge / split code wants to know how much room is
5071 * left in this allocation tree, so we pass the
5072 * rightmost extent list.
5074 if (path
->p_tree_depth
) {
5075 struct ocfs2_extent_block
*eb
;
5077 ret
= ocfs2_read_extent_block(et
->et_ci
,
5078 ocfs2_et_get_last_eb_blk(et
),
5085 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5086 rightmost_el
= &eb
->h_list
;
5088 rightmost_el
= path_root_el(path
);
5090 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5091 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5092 ctxt
.c_split_covers_rec
= 1;
5094 ctxt
.c_split_covers_rec
= 0;
5096 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5098 trace_ocfs2_split_extent(split_index
, ctxt
.c_contig_type
,
5099 ctxt
.c_has_empty_extent
,
5100 ctxt
.c_split_covers_rec
);
5102 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5103 if (ctxt
.c_split_covers_rec
)
5104 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5105 split_index
, split_rec
);
5107 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5108 &last_eb_bh
, split_index
,
5109 split_rec
, meta_ac
);
5113 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5114 split_index
, split_rec
,
5126 * Change the flags of the already-existing extent at cpos for len clusters.
5128 * new_flags: the flags we want to set.
5129 * clear_flags: the flags we want to clear.
5130 * phys: the new physical offset we want this new extent starts from.
5132 * If the existing extent is larger than the request, initiate a
5133 * split. An attempt will be made at merging with adjacent extents.
5135 * The caller is responsible for passing down meta_ac if we'll need it.
5137 int ocfs2_change_extent_flag(handle_t
*handle
,
5138 struct ocfs2_extent_tree
*et
,
5139 u32 cpos
, u32 len
, u32 phys
,
5140 struct ocfs2_alloc_context
*meta_ac
,
5141 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5142 int new_flags
, int clear_flags
)
5145 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5146 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5147 struct ocfs2_extent_rec split_rec
;
5148 struct ocfs2_path
*left_path
= NULL
;
5149 struct ocfs2_extent_list
*el
;
5150 struct ocfs2_extent_rec
*rec
;
5152 left_path
= ocfs2_new_path_from_et(et
);
5159 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5164 el
= path_leaf_el(left_path
);
5166 index
= ocfs2_search_extent_list(el
, cpos
);
5169 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5170 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5177 rec
= &el
->l_recs
[index
];
5178 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5179 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5180 "extent that already had them",
5181 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5186 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5187 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5188 "extent that didn't have them",
5189 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5194 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5195 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5196 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5197 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5198 split_rec
.e_flags
= rec
->e_flags
;
5200 split_rec
.e_flags
|= new_flags
;
5202 split_rec
.e_flags
&= ~clear_flags
;
5204 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5205 index
, &split_rec
, meta_ac
,
5211 ocfs2_free_path(left_path
);
5217 * Mark the already-existing extent at cpos as written for len clusters.
5218 * This removes the unwritten extent flag.
5220 * If the existing extent is larger than the request, initiate a
5221 * split. An attempt will be made at merging with adjacent extents.
5223 * The caller is responsible for passing down meta_ac if we'll need it.
5225 int ocfs2_mark_extent_written(struct inode
*inode
,
5226 struct ocfs2_extent_tree
*et
,
5227 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5228 struct ocfs2_alloc_context
*meta_ac
,
5229 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5233 trace_ocfs2_mark_extent_written(
5234 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5237 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5238 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5239 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5245 * XXX: This should be fixed up so that we just re-insert the
5246 * next extent records.
5248 ocfs2_et_extent_map_truncate(et
, 0);
5250 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5251 len
, phys
, meta_ac
, dealloc
,
5252 0, OCFS2_EXT_UNWRITTEN
);
5260 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5261 struct ocfs2_path
*path
,
5262 int index
, u32 new_range
,
5263 struct ocfs2_alloc_context
*meta_ac
)
5265 int ret
, depth
, credits
;
5266 struct buffer_head
*last_eb_bh
= NULL
;
5267 struct ocfs2_extent_block
*eb
;
5268 struct ocfs2_extent_list
*rightmost_el
, *el
;
5269 struct ocfs2_extent_rec split_rec
;
5270 struct ocfs2_extent_rec
*rec
;
5271 struct ocfs2_insert_type insert
;
5274 * Setup the record to split before we grow the tree.
5276 el
= path_leaf_el(path
);
5277 rec
= &el
->l_recs
[index
];
5278 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5279 &split_rec
, new_range
, rec
);
5281 depth
= path
->p_tree_depth
;
5283 ret
= ocfs2_read_extent_block(et
->et_ci
,
5284 ocfs2_et_get_last_eb_blk(et
),
5291 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5292 rightmost_el
= &eb
->h_list
;
5294 rightmost_el
= path_leaf_el(path
);
5296 credits
= path
->p_tree_depth
+
5297 ocfs2_extend_meta_needed(et
->et_root_el
);
5298 ret
= ocfs2_extend_trans(handle
, credits
);
5304 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5305 le16_to_cpu(rightmost_el
->l_count
)) {
5306 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5314 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5315 insert
.ins_appending
= APPEND_NONE
;
5316 insert
.ins_contig
= CONTIG_NONE
;
5317 insert
.ins_split
= SPLIT_RIGHT
;
5318 insert
.ins_tree_depth
= depth
;
5320 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5329 static int ocfs2_truncate_rec(handle_t
*handle
,
5330 struct ocfs2_extent_tree
*et
,
5331 struct ocfs2_path
*path
, int index
,
5332 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5336 u32 left_cpos
, rec_range
, trunc_range
;
5337 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
5338 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5339 struct ocfs2_path
*left_path
= NULL
;
5340 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5341 struct ocfs2_extent_rec
*rec
;
5342 struct ocfs2_extent_block
*eb
;
5344 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5345 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5354 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5355 path
->p_tree_depth
) {
5357 * Check whether this is the rightmost tree record. If
5358 * we remove all of this record or part of its right
5359 * edge then an update of the record lengths above it
5362 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5363 if (eb
->h_next_leaf_blk
== 0)
5364 is_rightmost_tree_rec
= 1;
5367 rec
= &el
->l_recs
[index
];
5368 if (index
== 0 && path
->p_tree_depth
&&
5369 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5371 * Changing the leftmost offset (via partial or whole
5372 * record truncate) of an interior (or rightmost) path
5373 * means we have to update the subtree that is formed
5374 * by this leaf and the one to it's left.
5376 * There are two cases we can skip:
5377 * 1) Path is the leftmost one in our btree.
5378 * 2) The leaf is rightmost and will be empty after
5379 * we remove the extent record - the rotate code
5380 * knows how to update the newly formed edge.
5383 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5389 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5390 left_path
= ocfs2_new_path_from_path(path
);
5397 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5406 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5407 handle
->h_buffer_credits
,
5414 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5420 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5426 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5427 trunc_range
= cpos
+ len
;
5429 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5432 memset(rec
, 0, sizeof(*rec
));
5433 ocfs2_cleanup_merge(el
, index
);
5436 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5437 if (is_rightmost_tree_rec
&& next_free
> 1) {
5439 * We skip the edge update if this path will
5440 * be deleted by the rotate code.
5442 rec
= &el
->l_recs
[next_free
- 1];
5443 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5446 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5447 /* Remove leftmost portion of the record. */
5448 le32_add_cpu(&rec
->e_cpos
, len
);
5449 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5450 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5451 } else if (rec_range
== trunc_range
) {
5452 /* Remove rightmost portion of the record */
5453 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5454 if (is_rightmost_tree_rec
)
5455 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5457 /* Caller should have trapped this. */
5458 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5460 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5461 le32_to_cpu(rec
->e_cpos
),
5462 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5469 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5470 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5474 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5476 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5483 ocfs2_free_path(left_path
);
5487 int ocfs2_remove_extent(handle_t
*handle
,
5488 struct ocfs2_extent_tree
*et
,
5490 struct ocfs2_alloc_context
*meta_ac
,
5491 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5494 u32 rec_range
, trunc_range
;
5495 struct ocfs2_extent_rec
*rec
;
5496 struct ocfs2_extent_list
*el
;
5497 struct ocfs2_path
*path
= NULL
;
5500 * XXX: Why are we truncating to 0 instead of wherever this
5503 ocfs2_et_extent_map_truncate(et
, 0);
5505 path
= ocfs2_new_path_from_et(et
);
5512 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5518 el
= path_leaf_el(path
);
5519 index
= ocfs2_search_extent_list(el
, cpos
);
5521 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5522 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5523 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5530 * We have 3 cases of extent removal:
5531 * 1) Range covers the entire extent rec
5532 * 2) Range begins or ends on one edge of the extent rec
5533 * 3) Range is in the middle of the extent rec (no shared edges)
5535 * For case 1 we remove the extent rec and left rotate to
5538 * For case 2 we just shrink the existing extent rec, with a
5539 * tree update if the shrinking edge is also the edge of an
5542 * For case 3 we do a right split to turn the extent rec into
5543 * something case 2 can handle.
5545 rec
= &el
->l_recs
[index
];
5546 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5547 trunc_range
= cpos
+ len
;
5549 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5551 trace_ocfs2_remove_extent(
5552 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5553 cpos
, len
, index
, le32_to_cpu(rec
->e_cpos
),
5554 ocfs2_rec_clusters(el
, rec
));
5556 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5557 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5564 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5565 trunc_range
, meta_ac
);
5572 * The split could have manipulated the tree enough to
5573 * move the record location, so we have to look for it again.
5575 ocfs2_reinit_path(path
, 1);
5577 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5583 el
= path_leaf_el(path
);
5584 index
= ocfs2_search_extent_list(el
, cpos
);
5586 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5587 "Owner %llu: split at cpos %u lost record\n",
5588 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5595 * Double check our values here. If anything is fishy,
5596 * it's easier to catch it at the top level.
5598 rec
= &el
->l_recs
[index
];
5599 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5600 ocfs2_rec_clusters(el
, rec
);
5601 if (rec_range
!= trunc_range
) {
5602 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5603 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5604 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5605 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5606 ocfs2_rec_clusters(el
, rec
));
5611 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5620 ocfs2_free_path(path
);
5625 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5626 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5627 * number to reserve some extra blocks, and it only handles meta
5630 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5631 * and punching holes.
5633 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5634 struct ocfs2_extent_tree
*et
,
5635 u32 extents_to_split
,
5636 struct ocfs2_alloc_context
**ac
,
5639 int ret
= 0, num_free_extents
;
5640 unsigned int max_recs_needed
= 2 * extents_to_split
;
5641 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5645 num_free_extents
= ocfs2_num_free_extents(osb
, et
);
5646 if (num_free_extents
< 0) {
5647 ret
= num_free_extents
;
5652 if (!num_free_extents
||
5653 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5654 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5657 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5668 ocfs2_free_alloc_context(*ac
);
5676 int ocfs2_remove_btree_range(struct inode
*inode
,
5677 struct ocfs2_extent_tree
*et
,
5678 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5679 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5680 u64 refcount_loc
, bool refcount_tree_locked
)
5682 int ret
, credits
= 0, extra_blocks
= 0;
5683 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5684 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5685 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5687 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5688 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5690 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5691 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
&
5692 OCFS2_HAS_REFCOUNT_FL
));
5694 if (!refcount_tree_locked
) {
5695 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5703 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5715 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5722 mutex_lock(&tl_inode
->i_mutex
);
5724 if (ocfs2_truncate_log_needs_flush(osb
)) {
5725 ret
= __ocfs2_flush_truncate_log(osb
);
5732 handle
= ocfs2_start_trans(osb
,
5733 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5734 if (IS_ERR(handle
)) {
5735 ret
= PTR_ERR(handle
);
5740 ret
= ocfs2_et_root_journal_access(handle
, et
,
5741 OCFS2_JOURNAL_ACCESS_WRITE
);
5747 dquot_free_space_nodirty(inode
,
5748 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5750 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5756 ocfs2_et_update_clusters(et
, -len
);
5757 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
5759 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5762 if (flags
& OCFS2_EXT_REFCOUNTED
)
5763 ret
= ocfs2_decrease_refcount(inode
, handle
,
5764 ocfs2_blocks_to_clusters(osb
->sb
,
5769 ret
= ocfs2_truncate_log_append(osb
, handle
,
5777 ocfs2_commit_trans(osb
, handle
);
5779 mutex_unlock(&tl_inode
->i_mutex
);
5782 ocfs2_free_alloc_context(meta_ac
);
5785 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5790 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5792 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5793 struct ocfs2_dinode
*di
;
5794 struct ocfs2_truncate_log
*tl
;
5796 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5797 tl
= &di
->id2
.i_dealloc
;
5799 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5800 "slot %d, invalid truncate log parameters: used = "
5801 "%u, count = %u\n", osb
->slot_num
,
5802 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5803 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5806 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5807 unsigned int new_start
)
5809 unsigned int tail_index
;
5810 unsigned int current_tail
;
5812 /* No records, nothing to coalesce */
5813 if (!le16_to_cpu(tl
->tl_used
))
5816 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5817 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5818 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5820 return current_tail
== new_start
;
5823 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5826 unsigned int num_clusters
)
5829 unsigned int start_cluster
, tl_count
;
5830 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5831 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5832 struct ocfs2_dinode
*di
;
5833 struct ocfs2_truncate_log
*tl
;
5835 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5837 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5839 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5841 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5842 * by the underlying call to ocfs2_read_inode_block(), so any
5843 * corruption is a code bug */
5844 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5846 tl
= &di
->id2
.i_dealloc
;
5847 tl_count
= le16_to_cpu(tl
->tl_count
);
5848 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5850 "Truncate record count on #%llu invalid "
5851 "wanted %u, actual %u\n",
5852 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5853 ocfs2_truncate_recs_per_inode(osb
->sb
),
5854 le16_to_cpu(tl
->tl_count
));
5856 /* Caller should have known to flush before calling us. */
5857 index
= le16_to_cpu(tl
->tl_used
);
5858 if (index
>= tl_count
) {
5864 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5865 OCFS2_JOURNAL_ACCESS_WRITE
);
5871 trace_ocfs2_truncate_log_append(
5872 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
,
5873 start_cluster
, num_clusters
);
5874 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5876 * Move index back to the record we are coalescing with.
5877 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5881 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5882 trace_ocfs2_truncate_log_append(
5883 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5884 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5887 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5888 tl
->tl_used
= cpu_to_le16(index
+ 1);
5890 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5892 ocfs2_journal_dirty(handle
, tl_bh
);
5894 osb
->truncated_clusters
+= num_clusters
;
5899 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5901 struct inode
*data_alloc_inode
,
5902 struct buffer_head
*data_alloc_bh
)
5906 unsigned int num_clusters
;
5908 struct ocfs2_truncate_rec rec
;
5909 struct ocfs2_dinode
*di
;
5910 struct ocfs2_truncate_log
*tl
;
5911 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5912 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5914 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5915 tl
= &di
->id2
.i_dealloc
;
5916 i
= le16_to_cpu(tl
->tl_used
) - 1;
5918 /* Caller has given us at least enough credits to
5919 * update the truncate log dinode */
5920 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5921 OCFS2_JOURNAL_ACCESS_WRITE
);
5927 tl
->tl_used
= cpu_to_le16(i
);
5929 ocfs2_journal_dirty(handle
, tl_bh
);
5931 /* TODO: Perhaps we can calculate the bulk of the
5932 * credits up front rather than extending like
5934 status
= ocfs2_extend_trans(handle
,
5935 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5941 rec
= tl
->tl_recs
[i
];
5942 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5943 le32_to_cpu(rec
.t_start
));
5944 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5946 /* if start_blk is not set, we ignore the record as
5949 trace_ocfs2_replay_truncate_records(
5950 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5951 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5953 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5954 data_alloc_bh
, start_blk
,
5964 osb
->truncated_clusters
= 0;
5970 /* Expects you to already be holding tl_inode->i_mutex */
5971 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5974 unsigned int num_to_flush
;
5976 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5977 struct inode
*data_alloc_inode
= NULL
;
5978 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5979 struct buffer_head
*data_alloc_bh
= NULL
;
5980 struct ocfs2_dinode
*di
;
5981 struct ocfs2_truncate_log
*tl
;
5983 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5985 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5987 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5988 * by the underlying call to ocfs2_read_inode_block(), so any
5989 * corruption is a code bug */
5990 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5992 tl
= &di
->id2
.i_dealloc
;
5993 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5994 trace_ocfs2_flush_truncate_log(
5995 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5997 if (!num_to_flush
) {
6002 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
6003 GLOBAL_BITMAP_SYSTEM_INODE
,
6004 OCFS2_INVALID_SLOT
);
6005 if (!data_alloc_inode
) {
6007 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
6011 mutex_lock(&data_alloc_inode
->i_mutex
);
6013 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
6019 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6020 if (IS_ERR(handle
)) {
6021 status
= PTR_ERR(handle
);
6026 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
6031 ocfs2_commit_trans(osb
, handle
);
6034 brelse(data_alloc_bh
);
6035 ocfs2_inode_unlock(data_alloc_inode
, 1);
6038 mutex_unlock(&data_alloc_inode
->i_mutex
);
6039 iput(data_alloc_inode
);
6045 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6048 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6050 mutex_lock(&tl_inode
->i_mutex
);
6051 status
= __ocfs2_flush_truncate_log(osb
);
6052 mutex_unlock(&tl_inode
->i_mutex
);
6057 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6060 struct ocfs2_super
*osb
=
6061 container_of(work
, struct ocfs2_super
,
6062 osb_truncate_log_wq
.work
);
6064 status
= ocfs2_flush_truncate_log(osb
);
6068 ocfs2_init_steal_slots(osb
);
6071 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6072 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6075 if (osb
->osb_tl_inode
&&
6076 atomic_read(&osb
->osb_tl_disable
) == 0) {
6077 /* We want to push off log flushes while truncates are
6080 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6082 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6083 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6087 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6089 struct inode
**tl_inode
,
6090 struct buffer_head
**tl_bh
)
6093 struct inode
*inode
= NULL
;
6094 struct buffer_head
*bh
= NULL
;
6096 inode
= ocfs2_get_system_file_inode(osb
,
6097 TRUNCATE_LOG_SYSTEM_INODE
,
6101 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6105 status
= ocfs2_read_inode_block(inode
, &bh
);
6118 /* called during the 1st stage of node recovery. we stamp a clean
6119 * truncate log and pass back a copy for processing later. if the
6120 * truncate log does not require processing, a *tl_copy is set to
6122 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6124 struct ocfs2_dinode
**tl_copy
)
6127 struct inode
*tl_inode
= NULL
;
6128 struct buffer_head
*tl_bh
= NULL
;
6129 struct ocfs2_dinode
*di
;
6130 struct ocfs2_truncate_log
*tl
;
6134 trace_ocfs2_begin_truncate_log_recovery(slot_num
);
6136 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6142 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6144 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6145 * validated by the underlying call to ocfs2_read_inode_block(),
6146 * so any corruption is a code bug */
6147 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6149 tl
= &di
->id2
.i_dealloc
;
6150 if (le16_to_cpu(tl
->tl_used
)) {
6151 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl
->tl_used
));
6153 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
6160 /* Assuming the write-out below goes well, this copy
6161 * will be passed back to recovery for processing. */
6162 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
6164 /* All we need to do to clear the truncate log is set
6168 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6169 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6190 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6191 struct ocfs2_dinode
*tl_copy
)
6195 unsigned int clusters
, num_recs
, start_cluster
;
6198 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6199 struct ocfs2_truncate_log
*tl
;
6201 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6202 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6206 tl
= &tl_copy
->id2
.i_dealloc
;
6207 num_recs
= le16_to_cpu(tl
->tl_used
);
6208 trace_ocfs2_complete_truncate_log_recovery(
6209 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
),
6212 mutex_lock(&tl_inode
->i_mutex
);
6213 for(i
= 0; i
< num_recs
; i
++) {
6214 if (ocfs2_truncate_log_needs_flush(osb
)) {
6215 status
= __ocfs2_flush_truncate_log(osb
);
6222 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6223 if (IS_ERR(handle
)) {
6224 status
= PTR_ERR(handle
);
6229 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6230 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6231 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6233 status
= ocfs2_truncate_log_append(osb
, handle
,
6234 start_blk
, clusters
);
6235 ocfs2_commit_trans(osb
, handle
);
6243 mutex_unlock(&tl_inode
->i_mutex
);
6248 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6251 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6253 atomic_set(&osb
->osb_tl_disable
, 1);
6256 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6257 flush_workqueue(ocfs2_wq
);
6259 status
= ocfs2_flush_truncate_log(osb
);
6263 brelse(osb
->osb_tl_bh
);
6264 iput(osb
->osb_tl_inode
);
6268 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6271 struct inode
*tl_inode
= NULL
;
6272 struct buffer_head
*tl_bh
= NULL
;
6274 status
= ocfs2_get_truncate_log_info(osb
,
6281 /* ocfs2_truncate_log_shutdown keys on the existence of
6282 * osb->osb_tl_inode so we don't set any of the osb variables
6283 * until we're sure all is well. */
6284 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6285 ocfs2_truncate_log_worker
);
6286 atomic_set(&osb
->osb_tl_disable
, 0);
6287 osb
->osb_tl_bh
= tl_bh
;
6288 osb
->osb_tl_inode
= tl_inode
;
6294 * Delayed de-allocation of suballocator blocks.
6296 * Some sets of block de-allocations might involve multiple suballocator inodes.
6298 * The locking for this can get extremely complicated, especially when
6299 * the suballocator inodes to delete from aren't known until deep
6300 * within an unrelated codepath.
6302 * ocfs2_extent_block structures are a good example of this - an inode
6303 * btree could have been grown by any number of nodes each allocating
6304 * out of their own suballoc inode.
6306 * These structures allow the delay of block de-allocation until a
6307 * later time, when locking of multiple cluster inodes won't cause
6312 * Describe a single bit freed from a suballocator. For the block
6313 * suballocators, it represents one block. For the global cluster
6314 * allocator, it represents some clusters and free_bit indicates
6317 struct ocfs2_cached_block_free
{
6318 struct ocfs2_cached_block_free
*free_next
;
6321 unsigned int free_bit
;
6324 struct ocfs2_per_slot_free_list
{
6325 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6328 struct ocfs2_cached_block_free
*f_first
;
6331 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6334 struct ocfs2_cached_block_free
*head
)
6339 struct inode
*inode
;
6340 struct buffer_head
*di_bh
= NULL
;
6341 struct ocfs2_cached_block_free
*tmp
;
6343 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6350 mutex_lock(&inode
->i_mutex
);
6352 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6358 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6359 if (IS_ERR(handle
)) {
6360 ret
= PTR_ERR(handle
);
6367 bg_blkno
= head
->free_bg
;
6369 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6371 trace_ocfs2_free_cached_blocks(
6372 (unsigned long long)head
->free_blk
, head
->free_bit
);
6374 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6375 head
->free_bit
, bg_blkno
, 1);
6381 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
6388 head
= head
->free_next
;
6393 ocfs2_commit_trans(osb
, handle
);
6396 ocfs2_inode_unlock(inode
, 1);
6399 mutex_unlock(&inode
->i_mutex
);
6403 /* Premature exit may have left some dangling items. */
6405 head
= head
->free_next
;
6412 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6413 u64 blkno
, unsigned int bit
)
6416 struct ocfs2_cached_block_free
*item
;
6418 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6425 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno
, bit
);
6427 item
->free_blk
= blkno
;
6428 item
->free_bit
= bit
;
6429 item
->free_next
= ctxt
->c_global_allocator
;
6431 ctxt
->c_global_allocator
= item
;
6435 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6436 struct ocfs2_cached_block_free
*head
)
6438 struct ocfs2_cached_block_free
*tmp
;
6439 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6443 mutex_lock(&tl_inode
->i_mutex
);
6446 if (ocfs2_truncate_log_needs_flush(osb
)) {
6447 ret
= __ocfs2_flush_truncate_log(osb
);
6454 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6455 if (IS_ERR(handle
)) {
6456 ret
= PTR_ERR(handle
);
6461 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6464 ocfs2_commit_trans(osb
, handle
);
6466 head
= head
->free_next
;
6475 mutex_unlock(&tl_inode
->i_mutex
);
6478 /* Premature exit may have left some dangling items. */
6480 head
= head
->free_next
;
6487 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6488 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6491 struct ocfs2_per_slot_free_list
*fl
;
6496 while (ctxt
->c_first_suballocator
) {
6497 fl
= ctxt
->c_first_suballocator
;
6500 trace_ocfs2_run_deallocs(fl
->f_inode_type
,
6502 ret2
= ocfs2_free_cached_blocks(osb
,
6512 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6516 if (ctxt
->c_global_allocator
) {
6517 ret2
= ocfs2_free_cached_clusters(osb
,
6518 ctxt
->c_global_allocator
);
6524 ctxt
->c_global_allocator
= NULL
;
6530 static struct ocfs2_per_slot_free_list
*
6531 ocfs2_find_per_slot_free_list(int type
,
6533 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6535 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6538 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6541 fl
= fl
->f_next_suballocator
;
6544 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6546 fl
->f_inode_type
= type
;
6549 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6551 ctxt
->c_first_suballocator
= fl
;
6556 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6557 int type
, int slot
, u64 suballoc
,
6558 u64 blkno
, unsigned int bit
)
6561 struct ocfs2_per_slot_free_list
*fl
;
6562 struct ocfs2_cached_block_free
*item
;
6564 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6571 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6578 trace_ocfs2_cache_block_dealloc(type
, slot
,
6579 (unsigned long long)suballoc
,
6580 (unsigned long long)blkno
, bit
);
6582 item
->free_bg
= suballoc
;
6583 item
->free_blk
= blkno
;
6584 item
->free_bit
= bit
;
6585 item
->free_next
= fl
->f_first
;
6594 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6595 struct ocfs2_extent_block
*eb
)
6597 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6598 le16_to_cpu(eb
->h_suballoc_slot
),
6599 le64_to_cpu(eb
->h_suballoc_loc
),
6600 le64_to_cpu(eb
->h_blkno
),
6601 le16_to_cpu(eb
->h_suballoc_bit
));
6604 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6606 set_buffer_uptodate(bh
);
6607 mark_buffer_dirty(bh
);
6611 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6612 unsigned int from
, unsigned int to
,
6613 struct page
*page
, int zero
, u64
*phys
)
6615 int ret
, partial
= 0;
6617 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6622 zero_user_segment(page
, from
, to
);
6625 * Need to set the buffers we zero'd into uptodate
6626 * here if they aren't - ocfs2_map_page_blocks()
6627 * might've skipped some
6629 ret
= walk_page_buffers(handle
, page_buffers(page
),
6634 else if (ocfs2_should_order_data(inode
)) {
6635 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6641 SetPageUptodate(page
);
6643 flush_dcache_page(page
);
6646 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6647 loff_t end
, struct page
**pages
,
6648 int numpages
, u64 phys
, handle_t
*handle
)
6652 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6653 struct super_block
*sb
= inode
->i_sb
;
6655 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6660 to
= PAGE_CACHE_SIZE
;
6661 for(i
= 0; i
< numpages
; i
++) {
6664 from
= start
& (PAGE_CACHE_SIZE
- 1);
6665 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6666 to
= end
& (PAGE_CACHE_SIZE
- 1);
6668 BUG_ON(from
> PAGE_CACHE_SIZE
);
6669 BUG_ON(to
> PAGE_CACHE_SIZE
);
6671 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6674 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6678 ocfs2_unlock_and_free_pages(pages
, numpages
);
6681 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6682 struct page
**pages
, int *num
)
6684 int numpages
, ret
= 0;
6685 struct address_space
*mapping
= inode
->i_mapping
;
6686 unsigned long index
;
6687 loff_t last_page_bytes
;
6689 BUG_ON(start
> end
);
6692 last_page_bytes
= PAGE_ALIGN(end
);
6693 index
= start
>> PAGE_CACHE_SHIFT
;
6695 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6696 if (!pages
[numpages
]) {
6704 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6709 ocfs2_unlock_and_free_pages(pages
, numpages
);
6718 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6719 struct page
**pages
, int *num
)
6721 struct super_block
*sb
= inode
->i_sb
;
6723 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6724 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6726 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6730 * Zero the area past i_size but still within an allocated
6731 * cluster. This avoids exposing nonzero data on subsequent file
6734 * We need to call this before i_size is updated on the inode because
6735 * otherwise block_write_full_page() will skip writeout of pages past
6736 * i_size. The new_i_size parameter is passed for this reason.
6738 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6739 u64 range_start
, u64 range_end
)
6741 int ret
= 0, numpages
;
6742 struct page
**pages
= NULL
;
6744 unsigned int ext_flags
;
6745 struct super_block
*sb
= inode
->i_sb
;
6748 * File systems which don't support sparse files zero on every
6751 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6754 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6755 sizeof(struct page
*), GFP_NOFS
);
6756 if (pages
== NULL
) {
6762 if (range_start
== range_end
)
6765 ret
= ocfs2_extent_map_get_blocks(inode
,
6766 range_start
>> sb
->s_blocksize_bits
,
6767 &phys
, NULL
, &ext_flags
);
6774 * Tail is a hole, or is marked unwritten. In either case, we
6775 * can count on read and write to return/push zero's.
6777 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6780 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6787 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6788 numpages
, phys
, handle
);
6791 * Initiate writeout of the pages we zero'd here. We don't
6792 * wait on them - the truncate_inode_pages() call later will
6795 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
6806 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6807 struct ocfs2_dinode
*di
)
6809 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6810 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6812 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6813 memset(&di
->id2
, 0, blocksize
-
6814 offsetof(struct ocfs2_dinode
, id2
) -
6817 memset(&di
->id2
, 0, blocksize
-
6818 offsetof(struct ocfs2_dinode
, id2
));
6821 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6822 struct ocfs2_dinode
*di
)
6824 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6825 di
->id2
.i_list
.l_tree_depth
= 0;
6826 di
->id2
.i_list
.l_next_free_rec
= 0;
6827 di
->id2
.i_list
.l_count
= cpu_to_le16(
6828 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6831 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6833 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6834 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6836 spin_lock(&oi
->ip_lock
);
6837 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6838 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6839 spin_unlock(&oi
->ip_lock
);
6842 * We clear the entire i_data structure here so that all
6843 * fields can be properly initialized.
6845 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6847 idata
->id_count
= cpu_to_le16(
6848 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6851 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6852 struct buffer_head
*di_bh
)
6854 int ret
, i
, has_data
, num_pages
= 0;
6858 u64
uninitialized_var(block
);
6859 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6860 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6861 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6862 struct ocfs2_alloc_context
*data_ac
= NULL
;
6863 struct page
**pages
= NULL
;
6864 loff_t end
= osb
->s_clustersize
;
6865 struct ocfs2_extent_tree et
;
6868 has_data
= i_size_read(inode
) ? 1 : 0;
6871 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6872 sizeof(struct page
*), GFP_NOFS
);
6873 if (pages
== NULL
) {
6879 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6886 handle
= ocfs2_start_trans(osb
,
6887 ocfs2_inline_to_extents_credits(osb
->sb
));
6888 if (IS_ERR(handle
)) {
6889 ret
= PTR_ERR(handle
);
6894 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
6895 OCFS2_JOURNAL_ACCESS_WRITE
);
6902 unsigned int page_end
;
6905 ret
= dquot_alloc_space_nodirty(inode
,
6906 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6911 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
6913 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
6921 * Save two copies, one for insert, and one that can
6922 * be changed by ocfs2_map_and_dirty_page() below.
6924 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6927 * Non sparse file systems zero on extend, so no need
6930 if (!ocfs2_sparse_alloc(osb
) &&
6931 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6932 end
= PAGE_CACHE_SIZE
;
6934 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6942 * This should populate the 1st page for us and mark
6945 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6952 page_end
= PAGE_CACHE_SIZE
;
6953 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6954 page_end
= osb
->s_clustersize
;
6956 for (i
= 0; i
< num_pages
; i
++)
6957 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6958 pages
[i
], i
> 0, &phys
);
6961 spin_lock(&oi
->ip_lock
);
6962 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6963 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6964 spin_unlock(&oi
->ip_lock
);
6966 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
6967 ocfs2_dinode_new_extent_list(inode
, di
);
6969 ocfs2_journal_dirty(handle
, di_bh
);
6973 * An error at this point should be extremely rare. If
6974 * this proves to be false, we could always re-build
6975 * the in-inode data from our pages.
6977 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
6978 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
6985 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6990 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6993 if (ret
< 0 && did_quota
)
6994 dquot_free_space_nodirty(inode
,
6995 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6998 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
6999 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
7002 ocfs2_free_clusters(handle
,
7005 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
7009 ocfs2_commit_trans(osb
, handle
);
7013 ocfs2_free_alloc_context(data_ac
);
7020 * It is expected, that by the time you call this function,
7021 * inode->i_size and fe->i_size have been adjusted.
7023 * WARNING: This will kfree the truncate context
7025 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
7026 struct inode
*inode
,
7027 struct buffer_head
*di_bh
)
7029 int status
= 0, i
, flags
= 0;
7030 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
7032 struct ocfs2_extent_list
*el
;
7033 struct ocfs2_extent_rec
*rec
;
7034 struct ocfs2_path
*path
= NULL
;
7035 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7036 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7037 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7038 struct ocfs2_extent_tree et
;
7039 struct ocfs2_cached_dealloc_ctxt dealloc
;
7040 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
7042 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7043 ocfs2_init_dealloc_ctxt(&dealloc
);
7045 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7046 i_size_read(inode
));
7048 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7049 ocfs2_journal_access_di
);
7056 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7060 * Check that we still have allocation to delete.
7062 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7068 * Truncate always works against the rightmost tree branch.
7070 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7076 trace_ocfs2_commit_truncate(
7077 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7079 OCFS2_I(inode
)->ip_clusters
,
7080 path
->p_tree_depth
);
7083 * By now, el will point to the extent list on the bottom most
7084 * portion of this tree. Only the tail record is considered in
7087 * We handle the following cases, in order:
7088 * - empty extent: delete the remaining branch
7089 * - remove the entire record
7090 * - remove a partial record
7091 * - no record needs to be removed (truncate has completed)
7093 el
= path_leaf_el(path
);
7094 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7095 ocfs2_error(inode
->i_sb
,
7096 "Inode %llu has empty extent block at %llu\n",
7097 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7098 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7103 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7104 rec
= &el
->l_recs
[i
];
7105 flags
= rec
->e_flags
;
7106 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7108 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7110 * Lower levels depend on this never happening, but it's best
7111 * to check it up here before changing the tree.
7113 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7114 mlog(ML_ERROR
, "Inode %lu has an empty "
7115 "extent record, depth %u\n", inode
->i_ino
,
7116 le16_to_cpu(root_el
->l_tree_depth
));
7117 status
= ocfs2_remove_rightmost_empty_extent(osb
,
7118 &et
, path
, &dealloc
);
7124 ocfs2_reinit_path(path
, 1);
7127 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7131 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7133 * Truncate entire record.
7135 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7136 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7137 blkno
= le64_to_cpu(rec
->e_blkno
);
7138 } else if (range
> new_highest_cpos
) {
7140 * Partial truncate. it also should be
7141 * the last truncate we're doing.
7143 trunc_cpos
= new_highest_cpos
;
7144 trunc_len
= range
- new_highest_cpos
;
7145 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7146 blkno
= le64_to_cpu(rec
->e_blkno
) +
7147 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7150 * Truncate completed, leave happily.
7156 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7158 if ((flags
& OCFS2_EXT_REFCOUNTED
) && trunc_len
&& !ref_tree
) {
7159 status
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
7167 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7168 phys_cpos
, trunc_len
, flags
, &dealloc
,
7169 refcount_loc
, true);
7175 ocfs2_reinit_path(path
, 1);
7178 * The check above will catch the case where we've truncated
7179 * away all allocation.
7185 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
7187 ocfs2_schedule_truncate_log_flush(osb
, 1);
7189 ocfs2_run_deallocs(osb
, &dealloc
);
7191 ocfs2_free_path(path
);
7197 * 'start' is inclusive, 'end' is not.
7199 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7200 unsigned int start
, unsigned int end
, int trunc
)
7203 unsigned int numbytes
;
7205 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7206 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7207 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7209 if (end
> i_size_read(inode
))
7210 end
= i_size_read(inode
);
7212 BUG_ON(start
> end
);
7214 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7215 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7216 !ocfs2_supports_inline_data(osb
)) {
7217 ocfs2_error(inode
->i_sb
,
7218 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7219 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7220 le16_to_cpu(di
->i_dyn_features
),
7221 OCFS2_I(inode
)->ip_dyn_features
,
7222 osb
->s_feature_incompat
);
7227 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7228 if (IS_ERR(handle
)) {
7229 ret
= PTR_ERR(handle
);
7234 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7235 OCFS2_JOURNAL_ACCESS_WRITE
);
7241 numbytes
= end
- start
;
7242 memset(idata
->id_data
+ start
, 0, numbytes
);
7245 * No need to worry about the data page here - it's been
7246 * truncated already and inline data doesn't need it for
7247 * pushing zero's to disk, so we'll let readpage pick it up
7251 i_size_write(inode
, start
);
7252 di
->i_size
= cpu_to_le64(start
);
7255 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7256 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7258 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7259 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7261 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7262 ocfs2_journal_dirty(handle
, di_bh
);
7265 ocfs2_commit_trans(osb
, handle
);
7271 static int ocfs2_trim_extent(struct super_block
*sb
,
7272 struct ocfs2_group_desc
*gd
,
7273 u64 group
, u32 start
, u32 count
)
7275 u64 discard
, bcount
;
7276 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7278 bcount
= ocfs2_clusters_to_blocks(sb
, count
);
7279 discard
= ocfs2_clusters_to_blocks(sb
, start
);
7282 * For the first cluster group, the gd->bg_blkno is not at the start
7283 * of the group, but at an offset from the start. If we add it while
7284 * calculating discard for first group, we will wrongly start fstrim a
7285 * few blocks after the desried start block and the range can cross
7286 * over into the next cluster group. So, add it only if this is not
7287 * the first cluster group.
7289 if (group
!= osb
->first_cluster_group_blkno
)
7290 discard
+= le64_to_cpu(gd
->bg_blkno
);
7292 trace_ocfs2_trim_extent(sb
, (unsigned long long)discard
, bcount
);
7294 return sb_issue_discard(sb
, discard
, bcount
, GFP_NOFS
, 0);
7297 static int ocfs2_trim_group(struct super_block
*sb
,
7298 struct ocfs2_group_desc
*gd
, u64 group
,
7299 u32 start
, u32 max
, u32 minbits
)
7301 int ret
= 0, count
= 0, next
;
7302 void *bitmap
= gd
->bg_bitmap
;
7304 if (le16_to_cpu(gd
->bg_free_bits_count
) < minbits
)
7307 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd
->bg_blkno
),
7308 start
, max
, minbits
);
7310 while (start
< max
) {
7311 start
= ocfs2_find_next_zero_bit(bitmap
, max
, start
);
7314 next
= ocfs2_find_next_bit(bitmap
, max
, start
);
7316 if ((next
- start
) >= minbits
) {
7317 ret
= ocfs2_trim_extent(sb
, gd
, group
,
7318 start
, next
- start
);
7323 count
+= next
- start
;
7327 if (fatal_signal_pending(current
)) {
7328 count
= -ERESTARTSYS
;
7332 if ((le16_to_cpu(gd
->bg_free_bits_count
) - count
) < minbits
)
7342 int ocfs2_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
7344 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7345 u64 start
, len
, trimmed
, first_group
, last_group
, group
;
7347 u32 first_bit
, last_bit
, minlen
;
7348 struct buffer_head
*main_bm_bh
= NULL
;
7349 struct inode
*main_bm_inode
= NULL
;
7350 struct buffer_head
*gd_bh
= NULL
;
7351 struct ocfs2_dinode
*main_bm
;
7352 struct ocfs2_group_desc
*gd
= NULL
;
7354 start
= range
->start
>> osb
->s_clustersize_bits
;
7355 len
= range
->len
>> osb
->s_clustersize_bits
;
7356 minlen
= range
->minlen
>> osb
->s_clustersize_bits
;
7358 if (minlen
>= osb
->bitmap_cpg
|| range
->len
< sb
->s_blocksize
)
7361 main_bm_inode
= ocfs2_get_system_file_inode(osb
,
7362 GLOBAL_BITMAP_SYSTEM_INODE
,
7363 OCFS2_INVALID_SLOT
);
7364 if (!main_bm_inode
) {
7370 mutex_lock(&main_bm_inode
->i_mutex
);
7372 ret
= ocfs2_inode_lock(main_bm_inode
, &main_bm_bh
, 0);
7377 main_bm
= (struct ocfs2_dinode
*)main_bm_bh
->b_data
;
7379 if (start
>= le32_to_cpu(main_bm
->i_clusters
)) {
7384 len
= range
->len
>> osb
->s_clustersize_bits
;
7385 if (start
+ len
> le32_to_cpu(main_bm
->i_clusters
))
7386 len
= le32_to_cpu(main_bm
->i_clusters
) - start
;
7388 trace_ocfs2_trim_fs(start
, len
, minlen
);
7390 /* Determine first and last group to examine based on start and len */
7391 first_group
= ocfs2_which_cluster_group(main_bm_inode
, start
);
7392 if (first_group
== osb
->first_cluster_group_blkno
)
7395 first_bit
= start
- ocfs2_blocks_to_clusters(sb
, first_group
);
7396 last_group
= ocfs2_which_cluster_group(main_bm_inode
, start
+ len
- 1);
7397 last_bit
= osb
->bitmap_cpg
;
7400 for (group
= first_group
; group
<= last_group
;) {
7401 if (first_bit
+ len
>= osb
->bitmap_cpg
)
7402 last_bit
= osb
->bitmap_cpg
;
7404 last_bit
= first_bit
+ len
;
7406 ret
= ocfs2_read_group_descriptor(main_bm_inode
,
7414 gd
= (struct ocfs2_group_desc
*)gd_bh
->b_data
;
7415 cnt
= ocfs2_trim_group(sb
, gd
, group
,
7416 first_bit
, last_bit
, minlen
);
7426 len
-= osb
->bitmap_cpg
- first_bit
;
7428 if (group
== osb
->first_cluster_group_blkno
)
7429 group
= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7431 group
+= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7433 range
->len
= trimmed
* sb
->s_blocksize
;
7435 ocfs2_inode_unlock(main_bm_inode
, 0);
7438 mutex_unlock(&main_bm_inode
->i_mutex
);
7439 iput(main_bm_inode
);