4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
31 * The max size that a non-root user is allowed to grow the pipe. Can
32 * be set by root in /proc/sys/fs/pipe-max-size
34 unsigned int pipe_max_size
= 1048576;
37 * Minimum pipe size, as required by POSIX
39 unsigned int pipe_min_size
= PAGE_SIZE
;
41 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
42 * matches default values.
44 unsigned long pipe_user_pages_hard
;
45 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
48 * We use a start+len construction, which provides full use of the
50 * -- Florian Coosmann (FGC)
52 * Reads with count = 0 should always return 0.
53 * -- Julian Bradfield 1999-06-07.
55 * FIFOs and Pipes now generate SIGIO for both readers and writers.
56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58 * pipe_read & write cleanup
59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
62 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
65 mutex_lock_nested(&pipe
->mutex
, subclass
);
68 void pipe_lock(struct pipe_inode_info
*pipe
)
71 * pipe_lock() nests non-pipe inode locks (for writing to a file)
73 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
75 EXPORT_SYMBOL(pipe_lock
);
77 void pipe_unlock(struct pipe_inode_info
*pipe
)
80 mutex_unlock(&pipe
->mutex
);
82 EXPORT_SYMBOL(pipe_unlock
);
84 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
86 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
89 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
91 mutex_unlock(&pipe
->mutex
);
94 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
95 struct pipe_inode_info
*pipe2
)
97 BUG_ON(pipe1
== pipe2
);
100 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
101 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
103 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
104 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info
*pipe
)
114 * Pipes are system-local resources, so sleeping on them
115 * is considered a noninteractive wait:
117 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
120 finish_wait(&pipe
->wait
, &wait
);
124 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
125 struct pipe_buffer
*buf
)
127 struct page
*page
= buf
->page
;
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
134 if (page_count(page
) == 1 && !pipe
->tmp_page
)
135 pipe
->tmp_page
= page
;
137 page_cache_release(page
);
141 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
142 * @pipe: the pipe that the buffer belongs to
143 * @buf: the buffer to attempt to steal
146 * This function attempts to steal the &struct page attached to
147 * @buf. If successful, this function returns 0 and returns with
148 * the page locked. The caller may then reuse the page for whatever
149 * he wishes; the typical use is insertion into a different file
152 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
153 struct pipe_buffer
*buf
)
155 struct page
*page
= buf
->page
;
158 * A reference of one is golden, that means that the owner of this
159 * page is the only one holding a reference to it. lock the page
162 if (page_count(page
) == 1) {
169 EXPORT_SYMBOL(generic_pipe_buf_steal
);
172 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
173 * @pipe: the pipe that the buffer belongs to
174 * @buf: the buffer to get a reference to
177 * This function grabs an extra reference to @buf. It's used in
178 * in the tee() system call, when we duplicate the buffers in one
181 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
183 page_cache_get(buf
->page
);
185 EXPORT_SYMBOL(generic_pipe_buf_get
);
188 * generic_pipe_buf_confirm - verify contents of the pipe buffer
189 * @info: the pipe that the buffer belongs to
190 * @buf: the buffer to confirm
193 * This function does nothing, because the generic pipe code uses
194 * pages that are always good when inserted into the pipe.
196 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
197 struct pipe_buffer
*buf
)
201 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
204 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
205 * @pipe: the pipe that the buffer belongs to
206 * @buf: the buffer to put a reference to
209 * This function releases a reference to @buf.
211 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
212 struct pipe_buffer
*buf
)
214 page_cache_release(buf
->page
);
216 EXPORT_SYMBOL(generic_pipe_buf_release
);
218 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
220 .confirm
= generic_pipe_buf_confirm
,
221 .release
= anon_pipe_buf_release
,
222 .steal
= generic_pipe_buf_steal
,
223 .get
= generic_pipe_buf_get
,
226 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
228 .confirm
= generic_pipe_buf_confirm
,
229 .release
= anon_pipe_buf_release
,
230 .steal
= generic_pipe_buf_steal
,
231 .get
= generic_pipe_buf_get
,
235 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
237 size_t total_len
= iov_iter_count(to
);
238 struct file
*filp
= iocb
->ki_filp
;
239 struct pipe_inode_info
*pipe
= filp
->private_data
;
243 /* Null read succeeds. */
244 if (unlikely(total_len
== 0))
251 int bufs
= pipe
->nrbufs
;
253 int curbuf
= pipe
->curbuf
;
254 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
255 const struct pipe_buf_operations
*ops
= buf
->ops
;
256 size_t chars
= buf
->len
;
260 if (chars
> total_len
)
263 error
= ops
->confirm(pipe
, buf
);
270 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
271 if (unlikely(written
< chars
)) {
277 buf
->offset
+= chars
;
280 /* Was it a packet buffer? Clean up and exit */
281 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
288 ops
->release(pipe
, buf
);
289 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
290 pipe
->curbuf
= curbuf
;
291 pipe
->nrbufs
= --bufs
;
296 break; /* common path: read succeeded */
298 if (bufs
) /* More to do? */
302 if (!pipe
->waiting_writers
) {
303 /* syscall merging: Usually we must not sleep
304 * if O_NONBLOCK is set, or if we got some data.
305 * But if a writer sleeps in kernel space, then
306 * we can wait for that data without violating POSIX.
310 if (filp
->f_flags
& O_NONBLOCK
) {
315 if (signal_pending(current
)) {
321 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
322 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
328 /* Signal writers asynchronously that there is more room. */
330 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLOUT
| POLLWRNORM
);
331 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
338 static inline int is_packetized(struct file
*file
)
340 return (file
->f_flags
& O_DIRECT
) != 0;
344 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
346 struct file
*filp
= iocb
->ki_filp
;
347 struct pipe_inode_info
*pipe
= filp
->private_data
;
350 size_t total_len
= iov_iter_count(from
);
353 /* Null write succeeds. */
354 if (unlikely(total_len
== 0))
359 if (!pipe
->readers
) {
360 send_sig(SIGPIPE
, current
, 0);
365 /* We try to merge small writes */
366 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
367 if (pipe
->nrbufs
&& chars
!= 0) {
368 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
370 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
371 const struct pipe_buf_operations
*ops
= buf
->ops
;
372 int offset
= buf
->offset
+ buf
->len
;
374 if (ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
375 ret
= ops
->confirm(pipe
, buf
);
379 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
380 if (unlikely(ret
< chars
)) {
386 if (!iov_iter_count(from
))
394 if (!pipe
->readers
) {
395 send_sig(SIGPIPE
, current
, 0);
401 if (bufs
< pipe
->buffers
) {
402 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
403 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
404 struct page
*page
= pipe
->tmp_page
;
408 page
= alloc_page(GFP_HIGHUSER
);
409 if (unlikely(!page
)) {
410 ret
= ret
? : -ENOMEM
;
413 pipe
->tmp_page
= page
;
415 /* Always wake up, even if the copy fails. Otherwise
416 * we lock up (O_NONBLOCK-)readers that sleep due to
418 * FIXME! Is this really true?
421 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
422 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
429 /* Insert it into the buffer array */
431 buf
->ops
= &anon_pipe_buf_ops
;
435 if (is_packetized(filp
)) {
436 buf
->ops
= &packet_pipe_buf_ops
;
437 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
439 pipe
->nrbufs
= ++bufs
;
440 pipe
->tmp_page
= NULL
;
442 if (!iov_iter_count(from
))
445 if (bufs
< pipe
->buffers
)
447 if (filp
->f_flags
& O_NONBLOCK
) {
452 if (signal_pending(current
)) {
458 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
459 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
462 pipe
->waiting_writers
++;
464 pipe
->waiting_writers
--;
469 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLRDNORM
);
470 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
472 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
473 int err
= file_update_time(filp
);
476 sb_end_write(file_inode(filp
)->i_sb
);
481 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
483 struct pipe_inode_info
*pipe
= filp
->private_data
;
484 int count
, buf
, nrbufs
;
491 nrbufs
= pipe
->nrbufs
;
492 while (--nrbufs
>= 0) {
493 count
+= pipe
->bufs
[buf
].len
;
494 buf
= (buf
+1) & (pipe
->buffers
- 1);
498 return put_user(count
, (int __user
*)arg
);
504 /* No kernel lock held - fine */
506 pipe_poll(struct file
*filp
, poll_table
*wait
)
509 struct pipe_inode_info
*pipe
= filp
->private_data
;
512 poll_wait(filp
, &pipe
->wait
, wait
);
514 /* Reading only -- no need for acquiring the semaphore. */
515 nrbufs
= pipe
->nrbufs
;
517 if (filp
->f_mode
& FMODE_READ
) {
518 mask
= (nrbufs
> 0) ? POLLIN
| POLLRDNORM
: 0;
519 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
523 if (filp
->f_mode
& FMODE_WRITE
) {
524 mask
|= (nrbufs
< pipe
->buffers
) ? POLLOUT
| POLLWRNORM
: 0;
526 * Most Unices do not set POLLERR for FIFOs but on Linux they
527 * behave exactly like pipes for poll().
536 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
540 spin_lock(&inode
->i_lock
);
541 if (!--pipe
->files
) {
542 inode
->i_pipe
= NULL
;
545 spin_unlock(&inode
->i_lock
);
548 free_pipe_info(pipe
);
552 pipe_release(struct inode
*inode
, struct file
*file
)
554 struct pipe_inode_info
*pipe
= file
->private_data
;
557 if (file
->f_mode
& FMODE_READ
)
559 if (file
->f_mode
& FMODE_WRITE
)
562 if (pipe
->readers
|| pipe
->writers
) {
563 wake_up_interruptible_sync_poll(&pipe
->wait
, POLLIN
| POLLOUT
| POLLRDNORM
| POLLWRNORM
| POLLERR
| POLLHUP
);
564 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
565 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
569 put_pipe_info(inode
, pipe
);
574 pipe_fasync(int fd
, struct file
*filp
, int on
)
576 struct pipe_inode_info
*pipe
= filp
->private_data
;
580 if (filp
->f_mode
& FMODE_READ
)
581 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
582 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
583 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
584 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
585 /* this can happen only if on == T */
586 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
592 static void account_pipe_buffers(struct pipe_inode_info
*pipe
,
593 unsigned long old
, unsigned long new)
595 atomic_long_add(new - old
, &pipe
->user
->pipe_bufs
);
598 static bool too_many_pipe_buffers_soft(struct user_struct
*user
)
600 return pipe_user_pages_soft
&&
601 atomic_long_read(&user
->pipe_bufs
) >= pipe_user_pages_soft
;
604 static bool too_many_pipe_buffers_hard(struct user_struct
*user
)
606 return pipe_user_pages_hard
&&
607 atomic_long_read(&user
->pipe_bufs
) >= pipe_user_pages_hard
;
610 struct pipe_inode_info
*alloc_pipe_info(void)
612 struct pipe_inode_info
*pipe
;
614 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL
);
616 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
617 struct user_struct
*user
= get_current_user();
619 if (pipe_bufs
* PAGE_SIZE
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
620 pipe_bufs
= pipe_max_size
>> PAGE_SHIFT
;
622 if (!too_many_pipe_buffers_hard(user
)) {
623 if (too_many_pipe_buffers_soft(user
))
625 pipe
->bufs
= kzalloc(sizeof(struct pipe_buffer
) * pipe_bufs
, GFP_KERNEL
);
629 init_waitqueue_head(&pipe
->wait
);
630 pipe
->r_counter
= pipe
->w_counter
= 1;
631 pipe
->buffers
= pipe_bufs
;
633 account_pipe_buffers(pipe
, 0, pipe_bufs
);
634 mutex_init(&pipe
->mutex
);
644 void free_pipe_info(struct pipe_inode_info
*pipe
)
648 account_pipe_buffers(pipe
, pipe
->buffers
, 0);
649 free_uid(pipe
->user
);
650 for (i
= 0; i
< pipe
->buffers
; i
++) {
651 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
653 buf
->ops
->release(pipe
, buf
);
656 __free_page(pipe
->tmp_page
);
661 static struct vfsmount
*pipe_mnt __read_mostly
;
664 * pipefs_dname() is called from d_path().
666 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
668 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
669 d_inode(dentry
)->i_ino
);
672 static const struct dentry_operations pipefs_dentry_operations
= {
673 .d_dname
= pipefs_dname
,
676 static struct inode
* get_pipe_inode(void)
678 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
679 struct pipe_inode_info
*pipe
;
684 inode
->i_ino
= get_next_ino();
686 pipe
= alloc_pipe_info();
690 inode
->i_pipe
= pipe
;
692 pipe
->readers
= pipe
->writers
= 1;
693 inode
->i_fop
= &pipefifo_fops
;
696 * Mark the inode dirty from the very beginning,
697 * that way it will never be moved to the dirty
698 * list because "mark_inode_dirty()" will think
699 * that it already _is_ on the dirty list.
701 inode
->i_state
= I_DIRTY
;
702 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
703 inode
->i_uid
= current_fsuid();
704 inode
->i_gid
= current_fsgid();
705 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
716 int create_pipe_files(struct file
**res
, int flags
)
719 struct inode
*inode
= get_pipe_inode();
722 static struct qstr name
= { .name
= "" };
728 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &name
);
731 path
.mnt
= mntget(pipe_mnt
);
733 d_instantiate(path
.dentry
, inode
);
735 f
= alloc_file(&path
, FMODE_WRITE
, &pipefifo_fops
);
741 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
742 f
->private_data
= inode
->i_pipe
;
744 res
[0] = alloc_file(&path
, FMODE_READ
, &pipefifo_fops
);
745 if (IS_ERR(res
[0])) {
746 err
= PTR_ERR(res
[0]);
751 res
[0]->private_data
= inode
->i_pipe
;
752 res
[0]->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
759 free_pipe_info(inode
->i_pipe
);
764 free_pipe_info(inode
->i_pipe
);
769 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
774 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
777 error
= create_pipe_files(files
, flags
);
781 error
= get_unused_fd_flags(flags
);
786 error
= get_unused_fd_flags(flags
);
791 audit_fd_pair(fdr
, fdw
);
804 int do_pipe_flags(int *fd
, int flags
)
806 struct file
*files
[2];
807 int error
= __do_pipe_flags(fd
, files
, flags
);
809 fd_install(fd
[0], files
[0]);
810 fd_install(fd
[1], files
[1]);
816 * sys_pipe() is the normal C calling standard for creating
817 * a pipe. It's not the way Unix traditionally does this, though.
819 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
821 struct file
*files
[2];
825 error
= __do_pipe_flags(fd
, files
, flags
);
827 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
830 put_unused_fd(fd
[0]);
831 put_unused_fd(fd
[1]);
834 fd_install(fd
[0], files
[0]);
835 fd_install(fd
[1], files
[1]);
841 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
843 return sys_pipe2(fildes
, 0);
846 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
850 while (cur
== *cnt
) {
852 if (signal_pending(current
))
855 return cur
== *cnt
? -ERESTARTSYS
: 0;
858 static void wake_up_partner(struct pipe_inode_info
*pipe
)
860 wake_up_interruptible(&pipe
->wait
);
863 static int fifo_open(struct inode
*inode
, struct file
*filp
)
865 struct pipe_inode_info
*pipe
;
866 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
871 spin_lock(&inode
->i_lock
);
873 pipe
= inode
->i_pipe
;
875 spin_unlock(&inode
->i_lock
);
877 spin_unlock(&inode
->i_lock
);
878 pipe
= alloc_pipe_info();
882 spin_lock(&inode
->i_lock
);
883 if (unlikely(inode
->i_pipe
)) {
884 inode
->i_pipe
->files
++;
885 spin_unlock(&inode
->i_lock
);
886 free_pipe_info(pipe
);
887 pipe
= inode
->i_pipe
;
889 inode
->i_pipe
= pipe
;
890 spin_unlock(&inode
->i_lock
);
893 filp
->private_data
= pipe
;
894 /* OK, we have a pipe and it's pinned down */
898 /* We can only do regular read/write on fifos */
899 filp
->f_mode
&= (FMODE_READ
| FMODE_WRITE
);
901 switch (filp
->f_mode
) {
905 * POSIX.1 says that O_NONBLOCK means return with the FIFO
906 * opened, even when there is no process writing the FIFO.
909 if (pipe
->readers
++ == 0)
910 wake_up_partner(pipe
);
912 if (!is_pipe
&& !pipe
->writers
) {
913 if ((filp
->f_flags
& O_NONBLOCK
)) {
914 /* suppress POLLHUP until we have
916 filp
->f_version
= pipe
->w_counter
;
918 if (wait_for_partner(pipe
, &pipe
->w_counter
))
927 * POSIX.1 says that O_NONBLOCK means return -1 with
928 * errno=ENXIO when there is no process reading the FIFO.
931 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
935 if (!pipe
->writers
++)
936 wake_up_partner(pipe
);
938 if (!is_pipe
&& !pipe
->readers
) {
939 if (wait_for_partner(pipe
, &pipe
->r_counter
))
944 case FMODE_READ
| FMODE_WRITE
:
947 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
948 * This implementation will NEVER block on a O_RDWR open, since
949 * the process can at least talk to itself.
956 if (pipe
->readers
== 1 || pipe
->writers
== 1)
957 wake_up_partner(pipe
);
970 if (!--pipe
->readers
)
971 wake_up_interruptible(&pipe
->wait
);
976 if (!--pipe
->writers
)
977 wake_up_interruptible(&pipe
->wait
);
984 put_pipe_info(inode
, pipe
);
988 const struct file_operations pipefifo_fops
= {
991 .read_iter
= pipe_read
,
992 .write_iter
= pipe_write
,
994 .unlocked_ioctl
= pipe_ioctl
,
995 .release
= pipe_release
,
996 .fasync
= pipe_fasync
,
1000 * Allocate a new array of pipe buffers and copy the info over. Returns the
1001 * pipe size if successful, or return -ERROR on error.
1003 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long nr_pages
)
1005 struct pipe_buffer
*bufs
;
1011 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1012 * expect a lot of shrink+grow operations, just free and allocate
1013 * again like we would do for growing. If the pipe currently
1014 * contains more buffers than arg, then return busy.
1016 if (nr_pages
< pipe
->nrbufs
)
1019 bufs
= kcalloc(nr_pages
, sizeof(*bufs
), GFP_KERNEL
| __GFP_NOWARN
);
1020 if (unlikely(!bufs
))
1024 * The pipe array wraps around, so just start the new one at zero
1025 * and adjust the indexes.
1031 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1032 if (tail
< pipe
->buffers
)
1035 tail
&= (pipe
->buffers
- 1);
1037 head
= pipe
->nrbufs
- tail
;
1039 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1041 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1044 account_pipe_buffers(pipe
, pipe
->buffers
, nr_pages
);
1048 pipe
->buffers
= nr_pages
;
1049 return nr_pages
* PAGE_SIZE
;
1053 * Currently we rely on the pipe array holding a power-of-2 number
1054 * of pages. Returns 0 on error.
1056 static inline unsigned int round_pipe_size(unsigned int size
)
1058 unsigned long nr_pages
;
1060 if (size
< pipe_min_size
)
1061 size
= pipe_min_size
;
1063 nr_pages
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1067 return roundup_pow_of_two(nr_pages
) << PAGE_SHIFT
;
1071 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1072 * will return an error.
1074 int pipe_proc_fn(struct ctl_table
*table
, int write
, void __user
*buf
,
1075 size_t *lenp
, loff_t
*ppos
)
1077 unsigned int rounded_pipe_max_size
;
1080 ret
= proc_dointvec_minmax(table
, write
, buf
, lenp
, ppos
);
1081 if (ret
< 0 || !write
)
1084 rounded_pipe_max_size
= round_pipe_size(pipe_max_size
);
1085 if (rounded_pipe_max_size
== 0)
1088 pipe_max_size
= rounded_pipe_max_size
;
1093 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1094 * location, so checking ->i_pipe is not enough to verify that this is a
1097 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1099 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1102 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1104 struct pipe_inode_info
*pipe
;
1107 pipe
= get_pipe_info(file
);
1114 case F_SETPIPE_SZ
: {
1115 unsigned int size
, nr_pages
;
1117 size
= round_pipe_size(arg
);
1118 nr_pages
= size
>> PAGE_SHIFT
;
1124 if (!capable(CAP_SYS_RESOURCE
) && size
> pipe_max_size
) {
1127 } else if ((too_many_pipe_buffers_hard(pipe
->user
) ||
1128 too_many_pipe_buffers_soft(pipe
->user
)) &&
1129 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
)) {
1133 ret
= pipe_set_size(pipe
, nr_pages
);
1137 ret
= pipe
->buffers
* PAGE_SIZE
;
1145 __pipe_unlock(pipe
);
1149 static const struct super_operations pipefs_ops
= {
1150 .destroy_inode
= free_inode_nonrcu
,
1151 .statfs
= simple_statfs
,
1155 * pipefs should _never_ be mounted by userland - too much of security hassle,
1156 * no real gain from having the whole whorehouse mounted. So we don't need
1157 * any operations on the root directory. However, we need a non-trivial
1158 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1160 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1161 int flags
, const char *dev_name
, void *data
)
1163 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1164 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1167 static struct file_system_type pipe_fs_type
= {
1169 .mount
= pipefs_mount
,
1170 .kill_sb
= kill_anon_super
,
1173 static int __init
init_pipe_fs(void)
1175 int err
= register_filesystem(&pipe_fs_type
);
1178 pipe_mnt
= kern_mount(&pipe_fs_type
);
1179 if (IS_ERR(pipe_mnt
)) {
1180 err
= PTR_ERR(pipe_mnt
);
1181 unregister_filesystem(&pipe_fs_type
);
1187 fs_initcall(init_pipe_fs
);