2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
3 * licensing and copyright details
6 #include <linux/reiserfs_fs.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/sched.h>
11 #include <linux/bug.h>
12 #include <linux/workqueue.h>
13 #include <asm/unaligned.h>
14 #include <linux/bitops.h>
15 #include <linux/proc_fs.h>
16 #include <linux/buffer_head.h>
18 /* the 32 bit compat definitions with int argument */
19 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
20 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
21 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
22 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
23 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
25 struct reiserfs_journal_list
;
27 /* bitmasks for i_flags field in reiserfs-specific part of inode */
30 * this says what format of key do all items (but stat data) of
31 * an object have. If this is set, that format is 3.6 otherwise - 3.5
33 i_item_key_version_mask
= 0x0001,
36 * If this is unset, object has 3.5 stat data, otherwise,
37 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
39 i_stat_data_version_mask
= 0x0002,
41 /* file might need tail packing on close */
42 i_pack_on_close_mask
= 0x0004,
44 /* don't pack tail of file */
45 i_nopack_mask
= 0x0008,
48 * If either of these are set, "safe link" was created for this
49 * file during truncate or unlink. Safe link is used to avoid
50 * leakage of disk space on crash with some files open, but unlinked.
52 i_link_saved_unlink_mask
= 0x0010,
53 i_link_saved_truncate_mask
= 0x0020,
55 i_has_xattr_dir
= 0x0040,
57 } reiserfs_inode_flags
;
59 struct reiserfs_inode_info
{
60 __u32 i_key
[4]; /* key is still 4 32 bit integers */
63 * transient inode flags that are never stored on disk. Bitmasks
64 * for this field are defined above.
68 /* offset of first byte stored in direct item. */
69 __u32 i_first_direct_byte
;
71 /* copy of persistent inode flags read from sd_attrs. */
74 /* first unused block of a sequence of unused blocks */
76 int i_prealloc_count
; /* length of that sequence */
78 /* per-transaction list of inodes which have preallocated blocks */
79 struct list_head i_prealloc_list
;
82 * new_packing_locality is created; new blocks for the contents
83 * of this directory should be displaced
85 unsigned new_packing_locality
:1;
88 * we use these for fsync or O_SYNC to decide which transaction
89 * needs to be committed in order for this inode to be properly
92 unsigned int i_trans_id
;
94 struct reiserfs_journal_list
*i_jl
;
96 struct mutex tailpack
;
97 #ifdef CONFIG_REISERFS_FS_XATTR
98 struct rw_semaphore i_xattr_sem
;
101 struct dquot
*i_dquot
[MAXQUOTAS
];
104 struct inode vfs_inode
;
108 reiserfs_attrs_cleared
= 0x00000001,
109 } reiserfs_super_block_flags
;
112 * struct reiserfs_super_block accessors/mutators since this is a disk
113 * structure, it will always be in little endian format.
115 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
116 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
117 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
118 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
119 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
120 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
122 #define sb_jp_journal_1st_block(sbp) \
123 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
124 #define set_sb_jp_journal_1st_block(sbp,v) \
125 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
126 #define sb_jp_journal_dev(sbp) \
127 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
128 #define set_sb_jp_journal_dev(sbp,v) \
129 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
130 #define sb_jp_journal_size(sbp) \
131 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
132 #define set_sb_jp_journal_size(sbp,v) \
133 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
134 #define sb_jp_journal_trans_max(sbp) \
135 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
136 #define set_sb_jp_journal_trans_max(sbp,v) \
137 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
138 #define sb_jp_journal_magic(sbp) \
139 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
140 #define set_sb_jp_journal_magic(sbp,v) \
141 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
142 #define sb_jp_journal_max_batch(sbp) \
143 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
144 #define set_sb_jp_journal_max_batch(sbp,v) \
145 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
146 #define sb_jp_jourmal_max_commit_age(sbp) \
147 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
148 #define set_sb_jp_journal_max_commit_age(sbp,v) \
149 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
151 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
152 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
153 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
154 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
155 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
156 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
157 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
158 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
159 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
160 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
161 #define sb_hash_function_code(sbp) \
162 (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
163 #define set_sb_hash_function_code(sbp,v) \
164 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
165 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
166 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
167 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
168 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
169 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
170 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
172 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
173 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
175 #define sb_reserved_for_journal(sbp) \
176 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
177 #define set_sb_reserved_for_journal(sbp,v) \
178 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
183 * These all interelate for performance.
185 * If the journal block count is smaller than n transactions, you lose speed.
186 * I don't know what n is yet, I'm guessing 8-16.
188 * typical transaction size depends on the application, how often fsync is
189 * called, and how many metadata blocks you dirty in a 30 second period.
190 * The more small files (<16k) you use, the larger your transactions will
193 * If your journal fills faster than dirty buffers get flushed to disk, it
194 * must flush them before allowing the journal to wrap, which slows things
195 * down. If you need high speed meta data updates, the journal should be
196 * big enough to prevent wrapping before dirty meta blocks get to disk.
198 * If the batch max is smaller than the transaction max, you'll waste space
199 * at the end of the journal because journal_end sets the next transaction
200 * to start at 0 if the next transaction has any chance of wrapping.
202 * The large the batch max age, the better the speed, and the more meta
203 * data changes you'll lose after a crash.
206 /* don't mess with these for a while */
207 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
208 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
209 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
210 #define JOURNAL_HASH_SIZE 8192
212 /* number of copies of the bitmaps to have floating. Must be >= 2 */
213 #define JOURNAL_NUM_BITMAPS 5
216 * One of these for every block in every transaction
217 * Each one is in two hash tables. First, a hash of the current transaction,
218 * and after journal_end, a hash of all the in memory transactions.
219 * next and prev are used by the current transaction (journal_hash).
220 * hnext and hprev are used by journal_list_hash. If a block is in more
221 * than one transaction, the journal_list_hash links it in multiple times.
222 * This allows flush_journal_list to remove just the cnode belonging to a
225 struct reiserfs_journal_cnode
{
226 struct buffer_head
*bh
; /* real buffer head */
227 struct super_block
*sb
; /* dev of real buffer head */
229 /* block number of real buffer head, == 0 when buffer on disk */
234 /* journal list this cnode lives in */
235 struct reiserfs_journal_list
*jlist
;
237 struct reiserfs_journal_cnode
*next
; /* next in transaction list */
238 struct reiserfs_journal_cnode
*prev
; /* prev in transaction list */
239 struct reiserfs_journal_cnode
*hprev
; /* prev in hash list */
240 struct reiserfs_journal_cnode
*hnext
; /* next in hash list */
243 struct reiserfs_bitmap_node
{
246 struct list_head list
;
249 struct reiserfs_list_bitmap
{
250 struct reiserfs_journal_list
*journal_list
;
251 struct reiserfs_bitmap_node
**bitmaps
;
255 * one of these for each transaction. The most important part here is the
256 * j_realblock. this list of cnodes is used to hash all the blocks in all
257 * the commits, to mark all the real buffer heads dirty once all the commits
258 * hit the disk, and to make sure every real block in a transaction is on
259 * disk before allowing the log area to be overwritten
261 struct reiserfs_journal_list
{
262 unsigned long j_start
;
263 unsigned long j_state
;
265 atomic_t j_nonzerolen
;
266 atomic_t j_commit_left
;
268 /* all commits older than this on disk */
269 atomic_t j_older_commits_done
;
271 struct mutex j_commit_mutex
;
272 unsigned int j_trans_id
;
273 time64_t j_timestamp
; /* write-only but useful for crash dump analysis */
274 struct reiserfs_list_bitmap
*j_list_bitmap
;
275 struct buffer_head
*j_commit_bh
; /* commit buffer head */
276 struct reiserfs_journal_cnode
*j_realblock
;
277 struct reiserfs_journal_cnode
*j_freedlist
; /* list of buffers that were freed during this trans. free each of these on flush */
278 /* time ordered list of all active transactions */
279 struct list_head j_list
;
282 * time ordered list of all transactions we haven't tried
285 struct list_head j_working_list
;
287 /* list of tail conversion targets in need of flush before commit */
288 struct list_head j_tail_bh_list
;
290 /* list of data=ordered buffers in need of flush before commit */
291 struct list_head j_bh_list
;
295 struct reiserfs_journal
{
296 struct buffer_head
**j_ap_blocks
; /* journal blocks on disk */
297 /* newest journal block */
298 struct reiserfs_journal_cnode
*j_last
;
300 /* oldest journal block. start here for traverse */
301 struct reiserfs_journal_cnode
*j_first
;
303 struct block_device
*j_dev_bd
;
306 /* first block on s_dev of reserved area journal */
307 int j_1st_reserved_block
;
309 unsigned long j_state
;
310 unsigned int j_trans_id
;
311 unsigned long j_mount_id
;
313 /* start of current waiting commit (index into j_ap_blocks) */
314 unsigned long j_start
;
315 unsigned long j_len
; /* length of current waiting commit */
317 /* number of buffers requested by journal_begin() */
318 unsigned long j_len_alloc
;
320 atomic_t j_wcount
; /* count of writers for current commit */
322 /* batch count. allows turning X transactions into 1 */
323 unsigned long j_bcount
;
325 /* first unflushed transactions offset */
326 unsigned long j_first_unflushed_offset
;
328 /* last fully flushed journal timestamp */
329 unsigned j_last_flush_trans_id
;
331 struct buffer_head
*j_header_bh
;
333 time_t j_trans_start_time
; /* time this transaction started */
334 struct mutex j_mutex
;
335 struct mutex j_flush_mutex
;
337 /* wait for current transaction to finish before starting new one */
338 wait_queue_head_t j_join_wait
;
340 atomic_t j_jlock
; /* lock for j_join_wait */
341 int j_list_bitmap_index
; /* number of next list bitmap to use */
343 /* no more journal begins allowed. MUST sleep on j_join_wait */
346 /* next journal_end will flush all journal list */
347 int j_next_full_flush
;
349 /* next journal_end will flush all async commits */
350 int j_next_async_flush
;
352 int j_cnode_used
; /* number of cnodes on the used list */
353 int j_cnode_free
; /* number of cnodes on the free list */
355 /* max number of blocks in a transaction. */
356 unsigned int j_trans_max
;
358 /* max number of blocks to batch into a trans */
359 unsigned int j_max_batch
;
361 /* in seconds, how old can an async commit be */
362 unsigned int j_max_commit_age
;
364 /* in seconds, how old can a transaction be */
365 unsigned int j_max_trans_age
;
367 /* the default for the max commit age */
368 unsigned int j_default_max_commit_age
;
370 struct reiserfs_journal_cnode
*j_cnode_free_list
;
372 /* orig pointer returned from vmalloc */
373 struct reiserfs_journal_cnode
*j_cnode_free_orig
;
375 struct reiserfs_journal_list
*j_current_jl
;
376 int j_free_bitmap_nodes
;
377 int j_used_bitmap_nodes
;
379 int j_num_lists
; /* total number of active transactions */
380 int j_num_work_lists
; /* number that need attention from kreiserfsd */
382 /* debugging to make sure things are flushed in order */
383 unsigned int j_last_flush_id
;
385 /* debugging to make sure things are committed in order */
386 unsigned int j_last_commit_id
;
388 struct list_head j_bitmap_nodes
;
389 struct list_head j_dirty_buffers
;
390 spinlock_t j_dirty_buffers_lock
; /* protects j_dirty_buffers */
392 /* list of all active transactions */
393 struct list_head j_journal_list
;
395 /* lists that haven't been touched by writeback attempts */
396 struct list_head j_working_list
;
398 /* hash table for real buffer heads in current trans */
399 struct reiserfs_journal_cnode
*j_hash_table
[JOURNAL_HASH_SIZE
];
401 /* hash table for all the real buffer heads in all the transactions */
402 struct reiserfs_journal_cnode
*j_list_hash_table
[JOURNAL_HASH_SIZE
];
404 /* array of bitmaps to record the deleted blocks */
405 struct reiserfs_list_bitmap j_list_bitmap
[JOURNAL_NUM_BITMAPS
];
407 /* list of inodes which have preallocated blocks */
408 struct list_head j_prealloc_list
;
409 int j_persistent_trans
;
410 unsigned long j_max_trans_size
;
411 unsigned long j_max_batch_size
;
415 /* when flushing ordered buffers, throttle new ordered writers */
416 struct delayed_work j_work
;
417 struct super_block
*j_work_sb
;
418 atomic_t j_async_throttle
;
421 enum journal_state_bits
{
422 J_WRITERS_BLOCKED
= 1, /* set when new writers not allowed */
423 J_WRITERS_QUEUED
, /* set when log is full due to too many writers */
424 J_ABORTED
, /* set when log is aborted */
427 /* ick. magic string to find desc blocks in the journal */
428 #define JOURNAL_DESC_MAGIC "ReIsErLB"
430 typedef __u32(*hashf_t
) (const signed char *, int);
432 struct reiserfs_bitmap_info
{
436 struct proc_dir_entry
;
438 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
439 typedef unsigned long int stat_cnt_t
;
440 typedef struct reiserfs_proc_info_data
{
443 int max_hash_collisions
;
446 stat_cnt_t bread_miss
;
447 stat_cnt_t search_by_key
;
448 stat_cnt_t search_by_key_fs_changed
;
449 stat_cnt_t search_by_key_restarted
;
451 stat_cnt_t insert_item_restarted
;
452 stat_cnt_t paste_into_item_restarted
;
453 stat_cnt_t cut_from_item_restarted
;
454 stat_cnt_t delete_solid_item_restarted
;
455 stat_cnt_t delete_item_restarted
;
457 stat_cnt_t leaked_oid
;
458 stat_cnt_t leaves_removable
;
461 * balances per level.
462 * Use explicit 5 as MAX_HEIGHT is not visible yet.
464 stat_cnt_t balance_at
[5]; /* XXX */
465 /* sbk == search_by_key */
466 stat_cnt_t sbk_read_at
[5]; /* XXX */
467 stat_cnt_t sbk_fs_changed
[5];
468 stat_cnt_t sbk_restarted
[5];
469 stat_cnt_t items_at
[5]; /* XXX */
470 stat_cnt_t free_at
[5]; /* XXX */
471 stat_cnt_t can_node_be_removed
[5]; /* XXX */
472 long int lnum
[5]; /* XXX */
473 long int rnum
[5]; /* XXX */
474 long int lbytes
[5]; /* XXX */
475 long int rbytes
[5]; /* XXX */
476 stat_cnt_t get_neighbors
[5];
477 stat_cnt_t get_neighbors_restart
[5];
478 stat_cnt_t need_l_neighbor
[5];
479 stat_cnt_t need_r_neighbor
[5];
481 stat_cnt_t free_block
;
482 struct __scan_bitmap_stats
{
487 stat_cnt_t in_journal_hint
;
488 stat_cnt_t in_journal_nohint
;
491 struct __journal_stats
{
492 stat_cnt_t in_journal
;
493 stat_cnt_t in_journal_bitmap
;
494 stat_cnt_t in_journal_reusable
;
495 stat_cnt_t lock_journal
;
496 stat_cnt_t lock_journal_wait
;
497 stat_cnt_t journal_being
;
498 stat_cnt_t journal_relock_writers
;
499 stat_cnt_t journal_relock_wcount
;
500 stat_cnt_t mark_dirty
;
501 stat_cnt_t mark_dirty_already
;
502 stat_cnt_t mark_dirty_notjournal
;
503 stat_cnt_t restore_prepared
;
505 stat_cnt_t prepare_retry
;
507 } reiserfs_proc_info_data_t
;
509 typedef struct reiserfs_proc_info_data
{
510 } reiserfs_proc_info_data_t
;
513 /* Number of quota types we support */
514 #define REISERFS_MAXQUOTAS 2
516 /* reiserfs union of in-core super block data */
517 struct reiserfs_sb_info
{
518 /* Buffer containing the super block */
519 struct buffer_head
*s_sbh
;
521 /* Pointer to the on-disk super block in the buffer */
522 struct reiserfs_super_block
*s_rs
;
523 struct reiserfs_bitmap_info
*s_ap_bitmap
;
525 /* pointer to journal information */
526 struct reiserfs_journal
*s_journal
;
528 unsigned short s_mount_state
; /* reiserfs state (valid, invalid) */
530 /* Serialize writers access, replace the old bkl */
533 /* Owner of the lock (can be recursive) */
534 struct task_struct
*lock_owner
;
536 /* Depth of the lock, start from -1 like the bkl */
539 struct workqueue_struct
*commit_wq
;
542 void (*end_io_handler
) (struct buffer_head
*, int);
545 * pointer to function which is used to sort names in directory.
548 hashf_t s_hash_function
;
550 /* reiserfs's mount options are set here */
551 unsigned long s_mount_opt
;
553 /* This is a structure that describes block allocator options */
555 /* Bitfield for enable/disable kind of options */
559 * size started from which we consider file
560 * to be a large one (in blocks)
562 unsigned long large_file_size
;
564 int border
; /* percentage of disk, border takes */
567 * Minimal file size (in blocks) starting
568 * from which we do preallocations
573 * Number of blocks we try to prealloc when file
574 * reaches preallocmin size (in blocks) or prealloc_list
581 wait_queue_head_t s_wait
;
582 /* increased by one every time the tree gets re-balanced */
583 atomic_t s_generation_counter
;
585 /* File system properties. Currently holds on-disk FS format */
586 unsigned long s_properties
;
588 /* session statistics */
593 int s_unneeded_left_neighbor
;
594 int s_good_search_by_key_reada
;
596 int s_bmaps_without_search
;
597 int s_direct2indirect
;
598 int s_indirect2direct
;
601 * set up when it's ok for reiserfs_read_inode2() to read from
602 * disk inode with nlink==0. Currently this is only used during
603 * finish_unfinished() processing at mount time
605 int s_is_unlinked_ok
;
607 reiserfs_proc_info_data_t s_proc_info_data
;
608 struct proc_dir_entry
*procdir
;
610 /* amount of blocks reserved for further allocations */
614 /* this lock on now only used to protect reserved_blocks variable */
615 spinlock_t bitmap_lock
;
616 struct dentry
*priv_root
; /* root of /.reiserfs_priv */
617 struct dentry
*xattr_root
; /* root of /.reiserfs_priv/xattrs */
620 int work_queued
; /* non-zero delayed work is queued */
621 struct delayed_work old_work
; /* old transactions flush delayed work */
622 spinlock_t old_work_lock
; /* protects old_work and work_queued */
625 char *s_qf_names
[REISERFS_MAXQUOTAS
];
628 char *s_jdev
; /* Stored jdev for mount option showing */
629 #ifdef CONFIG_REISERFS_CHECK
632 * Detects whether more than one copy of tb exists per superblock
633 * as a means of checking whether do_balance is executing
634 * concurrently against another tree reader/writer on a same
637 struct tree_balance
*cur_tb
;
641 /* Definitions of reiserfs on-disk properties: */
642 #define REISERFS_3_5 0
643 #define REISERFS_3_6 1
644 #define REISERFS_OLD_FORMAT 2
647 enum reiserfs_mount_options
{
648 /* large tails will be created in a session */
651 * small (for files less than block size) tails will
652 * be created in a session
656 /* replay journal and return 0. Use by fsck */
660 * -o conv: causes conversion of old format super block to the
661 * new format. If not specified - old partition will be dealt
662 * with in a manner of 3.5.x
667 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
668 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this
669 * option is not required. If the normal autodection code can't
670 * determine which hash to use (because both hashes had the same
671 * value for a file) use this option to force a specific hash.
672 * It won't allow you to override the existing hash on the FS, so
673 * if you have a tea hash disk, and mount with -o hash=rupasov,
674 * the mount will fail.
676 FORCE_TEA_HASH
, /* try to force tea hash on mount */
677 FORCE_RUPASOV_HASH
, /* try to force rupasov hash on mount */
678 FORCE_R5_HASH
, /* try to force rupasov hash on mount */
679 FORCE_HASH_DETECT
, /* try to detect hash function on mount */
682 REISERFS_DATA_ORDERED
,
683 REISERFS_DATA_WRITEBACK
,
686 * used for testing experimental features, makes benchmarking new
687 * features with and without more convenient, should never be used by
688 * users in any code shipped to users (ideally)
692 REISERFS_NO_UNHASHED_RELOCATION
,
693 REISERFS_HASHED_RELOCATION
,
695 REISERFS_XATTRS_USER
,
697 REISERFS_EXPOSE_PRIVROOT
,
698 REISERFS_BARRIER_NONE
,
699 REISERFS_BARRIER_FLUSH
,
701 /* Actions on error */
702 REISERFS_ERROR_PANIC
,
704 REISERFS_ERROR_CONTINUE
,
706 REISERFS_USRQUOTA
, /* User quota option specified */
707 REISERFS_GRPQUOTA
, /* Group quota option specified */
713 REISERFS_UNSUPPORTED_OPT
,
716 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
717 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
718 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
719 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
720 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
721 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
722 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
723 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
725 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
726 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
727 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
728 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
729 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
730 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
731 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
732 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
733 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
734 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
735 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
736 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
737 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
738 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
739 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
741 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
742 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
744 void reiserfs_file_buffer(struct buffer_head
*bh
, int list
);
745 extern struct file_system_type reiserfs_fs_type
;
746 int reiserfs_resize(struct super_block
*, unsigned long);
749 #define SCHEDULE_OCCURRED 1
751 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
752 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
753 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
754 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
755 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
757 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
759 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
760 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
763 return test_bit(J_ABORTED
, &journal
->j_state
);
767 * Locking primitives. The write lock is a per superblock
768 * special mutex that has properties close to the Big Kernel Lock
769 * which was used in the previous locking scheme.
771 void reiserfs_write_lock(struct super_block
*s
);
772 void reiserfs_write_unlock(struct super_block
*s
);
773 int __must_check
reiserfs_write_unlock_nested(struct super_block
*s
);
774 void reiserfs_write_lock_nested(struct super_block
*s
, int depth
);
776 #ifdef CONFIG_REISERFS_CHECK
777 void reiserfs_lock_check_recursive(struct super_block
*s
);
779 static inline void reiserfs_lock_check_recursive(struct super_block
*s
) { }
783 * Several mutexes depend on the write lock.
784 * However sometimes we want to relax the write lock while we hold
785 * these mutexes, according to the release/reacquire on schedule()
786 * properties of the Bkl that were used.
787 * Reiserfs performances and locking were based on this scheme.
788 * Now that the write lock is a mutex and not the bkl anymore, doing so
789 * may result in a deadlock:
791 * A acquire write_lock
792 * A acquire j_commit_mutex
793 * A release write_lock and wait for something
794 * B acquire write_lock
795 * B can't acquire j_commit_mutex and sleep
796 * A can't acquire write lock anymore
799 * What we do here is avoiding such deadlock by playing the same game
800 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
801 * we release the write lock, wait a bit and then retry.
803 * The mutexes concerned by this hack are:
804 * - The commit mutex of a journal list
809 static inline void reiserfs_mutex_lock_safe(struct mutex
*m
,
810 struct super_block
*s
)
814 depth
= reiserfs_write_unlock_nested(s
);
816 reiserfs_write_lock_nested(s
, depth
);
820 reiserfs_mutex_lock_nested_safe(struct mutex
*m
, unsigned int subclass
,
821 struct super_block
*s
)
825 depth
= reiserfs_write_unlock_nested(s
);
826 mutex_lock_nested(m
, subclass
);
827 reiserfs_write_lock_nested(s
, depth
);
831 reiserfs_down_read_safe(struct rw_semaphore
*sem
, struct super_block
*s
)
834 depth
= reiserfs_write_unlock_nested(s
);
836 reiserfs_write_lock_nested(s
, depth
);
840 * When we schedule, we usually want to also release the write lock,
841 * according to the previous bkl based locking scheme of reiserfs.
843 static inline void reiserfs_cond_resched(struct super_block
*s
)
845 if (need_resched()) {
848 depth
= reiserfs_write_unlock_nested(s
);
850 reiserfs_write_lock_nested(s
, depth
);
857 * in reading the #defines, it may help to understand that they employ
858 * the following abbreviations:
862 * H = Height within the tree (should be changed to LEV)
863 * N = Number of the item in the node
865 * DEH = Directory Entry Header
869 * BLKH = BLocK Header
870 * UNFM = UNForMatted node
874 * These #defines are named by concatenating these abbreviations,
875 * where first comes the arguments, and last comes the return value,
879 #define USE_INODE_GENERATION_COUNTER
881 #define REISERFS_PREALLOCATE
882 #define DISPLACE_NEW_PACKING_LOCALITIES
883 #define PREALLOCATION_SIZE 9
885 /* n must be power of 2 */
886 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
889 * to be ok for alpha and others we have to align structures to 8 byte
891 * FIXME: do not change 4 by anything else: there is code which relies on that
893 #define ROUND_UP(x) _ROUND_UP(x,8LL)
896 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
899 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
901 void __reiserfs_warning(struct super_block
*s
, const char *id
,
902 const char *func
, const char *fmt
, ...);
903 #define reiserfs_warning(s, id, fmt, args...) \
904 __reiserfs_warning(s, id, __func__, fmt, ##args)
905 /* assertions handling */
907 /* always check a condition and panic if it's false. */
908 #define __RASSERT(cond, scond, format, args...) \
911 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
912 __FILE__ ":%i:%s: " format "\n", \
913 __LINE__, __func__ , ##args); \
916 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
918 #if defined( CONFIG_REISERFS_CHECK )
919 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
921 #define RFALSE( cond, format, args... ) do {;} while( 0 )
924 #define CONSTF __attribute_const__
926 * Disk Data Structures
929 /***************************************************************************
931 ***************************************************************************/
934 * Structure of super block on disk, a version of which in RAM is often
935 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
936 * structure containing fields never written to disk.
938 #define UNSET_HASH 0 /* Detect hash on disk */
942 #define DEFAULT_HASH R5_HASH
944 struct journal_params
{
945 /* where does journal start from on its * device */
946 __le32 jp_journal_1st_block
;
948 /* journal device st_rdev */
949 __le32 jp_journal_dev
;
951 /* size of the journal */
952 __le32 jp_journal_size
;
954 /* max number of blocks in a transaction. */
955 __le32 jp_journal_trans_max
;
958 * random value made on fs creation
959 * (this was sb_journal_block_count)
961 __le32 jp_journal_magic
;
963 /* max number of blocks to batch into a trans */
964 __le32 jp_journal_max_batch
;
966 /* in seconds, how old can an async commit be */
967 __le32 jp_journal_max_commit_age
;
969 /* in seconds, how old can a transaction be */
970 __le32 jp_journal_max_trans_age
;
973 /* this is the super from 3.5.X, where X >= 10 */
974 struct reiserfs_super_block_v1
{
975 __le32 s_block_count
; /* blocks count */
976 __le32 s_free_blocks
; /* free blocks count */
977 __le32 s_root_block
; /* root block number */
978 struct journal_params s_journal
;
979 __le16 s_blocksize
; /* block size */
981 /* max size of object id array, see get_objectid() commentary */
982 __le16 s_oid_maxsize
;
983 __le16 s_oid_cursize
; /* current size of object id array */
985 /* this is set to 1 when filesystem was umounted, to 2 - when not */
986 __le16 s_umount_state
;
989 * reiserfs magic string indicates that file system is reiserfs:
990 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
995 * it is set to used by fsck to mark which
996 * phase of rebuilding is done
1000 * indicate, what hash function is being use
1001 * to sort names in a directory
1003 __le32 s_hash_function_code
;
1004 __le16 s_tree_height
; /* height of disk tree */
1007 * amount of bitmap blocks needed to address
1008 * each block of file system
1013 * this field is only reliable on filesystem with non-standard journal
1018 * size in blocks of journal area on main device, we need to
1019 * keep after making fs with non-standard journal
1021 __le16 s_reserved_for_journal
;
1022 } __attribute__ ((__packed__
));
1024 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1026 /* this is the on disk super block */
1027 struct reiserfs_super_block
{
1028 struct reiserfs_super_block_v1 s_v1
;
1029 __le32 s_inode_generation
;
1031 /* Right now used only by inode-attributes, if enabled */
1034 unsigned char s_uuid
[16]; /* filesystem unique identifier */
1035 unsigned char s_label
[16]; /* filesystem volume label */
1036 __le16 s_mnt_count
; /* Count of mounts since last fsck */
1037 __le16 s_max_mnt_count
; /* Maximum mounts before check */
1038 __le32 s_lastcheck
; /* Timestamp of last fsck */
1039 __le32 s_check_interval
; /* Interval between checks */
1042 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1043 * so any additions must be updated there as well. */
1045 } __attribute__ ((__packed__
));
1047 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1049 #define REISERFS_VERSION_1 0
1050 #define REISERFS_VERSION_2 2
1052 /* on-disk super block fields converted to cpu form */
1053 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1054 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1055 #define SB_BLOCKSIZE(s) \
1056 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1057 #define SB_BLOCK_COUNT(s) \
1058 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1059 #define SB_FREE_BLOCKS(s) \
1060 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1061 #define SB_REISERFS_MAGIC(s) \
1062 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1063 #define SB_ROOT_BLOCK(s) \
1064 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1065 #define SB_TREE_HEIGHT(s) \
1066 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1067 #define SB_REISERFS_STATE(s) \
1068 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1069 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1070 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1072 #define PUT_SB_BLOCK_COUNT(s, val) \
1073 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1074 #define PUT_SB_FREE_BLOCKS(s, val) \
1075 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1076 #define PUT_SB_ROOT_BLOCK(s, val) \
1077 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1078 #define PUT_SB_TREE_HEIGHT(s, val) \
1079 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1080 #define PUT_SB_REISERFS_STATE(s, val) \
1081 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1082 #define PUT_SB_VERSION(s, val) \
1083 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1084 #define PUT_SB_BMAP_NR(s, val) \
1085 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1087 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1088 #define SB_ONDISK_JOURNAL_SIZE(s) \
1089 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1090 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1091 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1092 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1093 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1094 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1095 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1097 #define is_block_in_log_or_reserved_area(s, block) \
1098 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1099 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
1100 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1101 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1103 int is_reiserfs_3_5(struct reiserfs_super_block
*rs
);
1104 int is_reiserfs_3_6(struct reiserfs_super_block
*rs
);
1105 int is_reiserfs_jr(struct reiserfs_super_block
*rs
);
1108 * ReiserFS leaves the first 64k unused, so that partition labels have
1109 * enough space. If someone wants to write a fancy bootloader that
1110 * needs more than 64k, let us know, and this will be increased in size.
1111 * This number must be larger than than the largest block size on any
1112 * platform, or code will break. -Hans
1114 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1115 #define REISERFS_FIRST_BLOCK unused_define
1116 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1118 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1119 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1121 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1123 #define REPEAT_SEARCH -1
1125 #define NO_DISK_SPACE -3
1126 #define NO_BALANCING_NEEDED (-4)
1127 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1128 #define QUOTA_EXCEEDED -6
1130 typedef __u32 b_blocknr_t
;
1131 typedef __le32 unp_t
;
1133 struct unfm_nodeinfo
{
1135 unsigned short unfm_freespace
;
1138 /* there are two formats of keys: 3.5 and 3.6 */
1139 #define KEY_FORMAT_3_5 0
1140 #define KEY_FORMAT_3_6 1
1142 /* there are two stat datas */
1143 #define STAT_DATA_V1 0
1144 #define STAT_DATA_V2 1
1146 static inline struct reiserfs_inode_info
*REISERFS_I(const struct inode
*inode
)
1148 return container_of(inode
, struct reiserfs_inode_info
, vfs_inode
);
1151 static inline struct reiserfs_sb_info
*REISERFS_SB(const struct super_block
*sb
)
1153 return sb
->s_fs_info
;
1157 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1158 * which overflows on large file systems.
1160 static inline __u32
reiserfs_bmap_count(struct super_block
*sb
)
1162 return (SB_BLOCK_COUNT(sb
) - 1) / (sb
->s_blocksize
* 8) + 1;
1165 static inline int bmap_would_wrap(unsigned bmap_nr
)
1167 return bmap_nr
> ((1LL << 16) - 1);
1171 * this says about version of key of all items (but stat data) the
1172 * object consists of
1174 #define get_inode_item_key_version( inode ) \
1175 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1177 #define set_inode_item_key_version( inode, version ) \
1178 ({ if((version)==KEY_FORMAT_3_6) \
1179 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
1181 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1183 #define get_inode_sd_version(inode) \
1184 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1186 #define set_inode_sd_version(inode, version) \
1187 ({ if((version)==STAT_DATA_V2) \
1188 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
1190 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1193 * This is an aggressive tail suppression policy, I am hoping it
1194 * improves our benchmarks. The principle behind it is that percentage
1195 * space saving is what matters, not absolute space saving. This is
1196 * non-intuitive, but it helps to understand it if you consider that the
1197 * cost to access 4 blocks is not much more than the cost to access 1
1198 * block, if you have to do a seek and rotate. A tail risks a
1199 * non-linear disk access that is significant as a percentage of total
1200 * time cost for a 4 block file and saves an amount of space that is
1201 * less significant as a percentage of space, or so goes the hypothesis.
1204 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1206 (!(n_tail_size)) || \
1207 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1208 ( (n_file_size) >= (n_block_size) * 4 ) || \
1209 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1210 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1211 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1212 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1213 ( ( (n_file_size) >= (n_block_size) ) && \
1214 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1218 * Another strategy for tails, this one means only create a tail if all the
1219 * file would fit into one DIRECT item.
1220 * Primary intention for this one is to increase performance by decreasing
1223 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1225 (!(n_tail_size)) || \
1226 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1230 * values for s_umount_state field
1232 #define REISERFS_VALID_FS 1
1233 #define REISERFS_ERROR_FS 2
1236 * there are 5 item types currently
1238 #define TYPE_STAT_DATA 0
1239 #define TYPE_INDIRECT 1
1240 #define TYPE_DIRECT 2
1241 #define TYPE_DIRENTRY 3
1242 #define TYPE_MAXTYPE 3
1243 #define TYPE_ANY 15 /* FIXME: comment is required */
1245 /***************************************************************************
1247 ***************************************************************************/
1249 /* * directories use this key as well as old files */
1252 __le32 k_uniqueness
;
1253 } __attribute__ ((__packed__
));
1257 } __attribute__ ((__packed__
));
1259 static inline __u16
offset_v2_k_type(const struct offset_v2
*v2
)
1261 __u8 type
= le64_to_cpu(v2
->v
) >> 60;
1262 return (type
<= TYPE_MAXTYPE
) ? type
: TYPE_ANY
;
1265 static inline void set_offset_v2_k_type(struct offset_v2
*v2
, int type
)
1268 (v2
->v
& cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64
) type
<< 60);
1271 static inline loff_t
offset_v2_k_offset(const struct offset_v2
*v2
)
1273 return le64_to_cpu(v2
->v
) & (~0ULL >> 4);
1276 static inline void set_offset_v2_k_offset(struct offset_v2
*v2
, loff_t offset
)
1278 offset
&= (~0ULL >> 4);
1279 v2
->v
= (v2
->v
& cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset
);
1283 * Key of an item determines its location in the S+tree, and
1284 * is composed of 4 components
1286 struct reiserfs_key
{
1287 /* packing locality: by default parent directory object id */
1290 __le32 k_objectid
; /* object identifier */
1292 struct offset_v1 k_offset_v1
;
1293 struct offset_v2 k_offset_v2
;
1294 } __attribute__ ((__packed__
)) u
;
1295 } __attribute__ ((__packed__
));
1297 struct in_core_key
{
1298 /* packing locality: by default parent directory object id */
1300 __u32 k_objectid
; /* object identifier */
1306 struct in_core_key on_disk_key
;
1308 /* 3 in all cases but direct2indirect and indirect2direct conversion */
1313 * Our function for comparing keys can compare keys of different
1314 * lengths. It takes as a parameter the length of the keys it is to
1315 * compare. These defines are used in determining what is to be passed
1316 * to it as that parameter.
1318 #define REISERFS_FULL_KEY_LEN 4
1319 #define REISERFS_SHORT_KEY_LEN 2
1321 /* The result of the key compare */
1322 #define FIRST_GREATER 1
1323 #define SECOND_GREATER -1
1324 #define KEYS_IDENTICAL 0
1326 #define KEY_NOT_FOUND 0
1328 #define KEY_SIZE (sizeof(struct reiserfs_key))
1330 /* return values for search_by_key and clones */
1331 #define ITEM_FOUND 1
1332 #define ITEM_NOT_FOUND 0
1333 #define ENTRY_FOUND 1
1334 #define ENTRY_NOT_FOUND 0
1335 #define DIRECTORY_NOT_FOUND -1
1336 #define REGULAR_FILE_FOUND -2
1337 #define DIRECTORY_FOUND -3
1338 #define BYTE_FOUND 1
1339 #define BYTE_NOT_FOUND 0
1340 #define FILE_NOT_FOUND -1
1342 #define POSITION_FOUND 1
1343 #define POSITION_NOT_FOUND 0
1345 /* return values for reiserfs_find_entry and search_by_entry_key */
1346 #define NAME_FOUND 1
1347 #define NAME_NOT_FOUND 0
1348 #define GOTO_PREVIOUS_ITEM 2
1349 #define NAME_FOUND_INVISIBLE 3
1352 * Everything in the filesystem is stored as a set of items. The
1353 * item head contains the key of the item, its free space (for
1354 * indirect items) and specifies the location of the item itself
1360 * Everything in the tree is found by searching for it based on
1363 struct reiserfs_key ih_key
;
1366 * The free space in the last unformatted node of an
1367 * indirect item if this is an indirect item. This
1368 * equals 0xFFFF iff this is a direct item or stat data
1369 * item. Note that the key, not this field, is used to
1370 * determine the item type, and thus which field this
1373 __le16 ih_free_space_reserved
;
1376 * Iff this is a directory item, this field equals the
1377 * number of directory entries in the directory item.
1379 __le16 ih_entry_count
;
1380 } __attribute__ ((__packed__
)) u
;
1381 __le16 ih_item_len
; /* total size of the item body */
1383 /* an offset to the item body within the block */
1384 __le16 ih_item_location
;
1387 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1388 * temporary, cleaned after all done
1391 } __attribute__ ((__packed__
));
1392 /* size of item header */
1393 #define IH_SIZE (sizeof(struct item_head))
1395 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1396 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
1397 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1398 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1399 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1401 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1402 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1403 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1404 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1405 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1407 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1409 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1410 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1413 * these operate on indirect items, where you've got an array of ints
1414 * at a possibly unaligned location. These are a noop on ia32
1416 * p is the array of __u32, i is the index into the array, v is the value
1419 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1420 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1422 /* * in old version uniqueness field shows key type */
1423 #define V1_SD_UNIQUENESS 0
1424 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1425 #define V1_DIRECT_UNIQUENESS 0xffffffff
1426 #define V1_DIRENTRY_UNIQUENESS 500
1427 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */
1429 /* here are conversion routines */
1430 static inline int uniqueness2type(__u32 uniqueness
) CONSTF
;
1431 static inline int uniqueness2type(__u32 uniqueness
)
1433 switch ((int)uniqueness
) {
1434 case V1_SD_UNIQUENESS
:
1435 return TYPE_STAT_DATA
;
1436 case V1_INDIRECT_UNIQUENESS
:
1437 return TYPE_INDIRECT
;
1438 case V1_DIRECT_UNIQUENESS
:
1440 case V1_DIRENTRY_UNIQUENESS
:
1441 return TYPE_DIRENTRY
;
1442 case V1_ANY_UNIQUENESS
:
1448 static inline __u32
type2uniqueness(int type
) CONSTF
;
1449 static inline __u32
type2uniqueness(int type
)
1452 case TYPE_STAT_DATA
:
1453 return V1_SD_UNIQUENESS
;
1455 return V1_INDIRECT_UNIQUENESS
;
1457 return V1_DIRECT_UNIQUENESS
;
1459 return V1_DIRENTRY_UNIQUENESS
;
1462 return V1_ANY_UNIQUENESS
;
1467 * key is pointer to on disk key which is stored in le, result is cpu,
1468 * there is no way to get version of object from key, so, provide
1469 * version to these defines
1471 static inline loff_t
le_key_k_offset(int version
,
1472 const struct reiserfs_key
*key
)
1474 return (version
== KEY_FORMAT_3_5
) ?
1475 le32_to_cpu(key
->u
.k_offset_v1
.k_offset
) :
1476 offset_v2_k_offset(&(key
->u
.k_offset_v2
));
1479 static inline loff_t
le_ih_k_offset(const struct item_head
*ih
)
1481 return le_key_k_offset(ih_version(ih
), &(ih
->ih_key
));
1484 static inline loff_t
le_key_k_type(int version
, const struct reiserfs_key
*key
)
1486 if (version
== KEY_FORMAT_3_5
) {
1487 loff_t val
= le32_to_cpu(key
->u
.k_offset_v1
.k_uniqueness
);
1488 return uniqueness2type(val
);
1490 return offset_v2_k_type(&(key
->u
.k_offset_v2
));
1493 static inline loff_t
le_ih_k_type(const struct item_head
*ih
)
1495 return le_key_k_type(ih_version(ih
), &(ih
->ih_key
));
1498 static inline void set_le_key_k_offset(int version
, struct reiserfs_key
*key
,
1501 if (version
== KEY_FORMAT_3_5
)
1502 key
->u
.k_offset_v1
.k_offset
= cpu_to_le32(offset
);
1504 set_offset_v2_k_offset(&key
->u
.k_offset_v2
, offset
);
1507 static inline void add_le_key_k_offset(int version
, struct reiserfs_key
*key
,
1510 set_le_key_k_offset(version
, key
,
1511 le_key_k_offset(version
, key
) + offset
);
1514 static inline void add_le_ih_k_offset(struct item_head
*ih
, loff_t offset
)
1516 add_le_key_k_offset(ih_version(ih
), &(ih
->ih_key
), offset
);
1519 static inline void set_le_ih_k_offset(struct item_head
*ih
, loff_t offset
)
1521 set_le_key_k_offset(ih_version(ih
), &(ih
->ih_key
), offset
);
1524 static inline void set_le_key_k_type(int version
, struct reiserfs_key
*key
,
1527 if (version
== KEY_FORMAT_3_5
) {
1528 type
= type2uniqueness(type
);
1529 key
->u
.k_offset_v1
.k_uniqueness
= cpu_to_le32(type
);
1531 set_offset_v2_k_type(&key
->u
.k_offset_v2
, type
);
1534 static inline void set_le_ih_k_type(struct item_head
*ih
, int type
)
1536 set_le_key_k_type(ih_version(ih
), &(ih
->ih_key
), type
);
1539 static inline int is_direntry_le_key(int version
, struct reiserfs_key
*key
)
1541 return le_key_k_type(version
, key
) == TYPE_DIRENTRY
;
1544 static inline int is_direct_le_key(int version
, struct reiserfs_key
*key
)
1546 return le_key_k_type(version
, key
) == TYPE_DIRECT
;
1549 static inline int is_indirect_le_key(int version
, struct reiserfs_key
*key
)
1551 return le_key_k_type(version
, key
) == TYPE_INDIRECT
;
1554 static inline int is_statdata_le_key(int version
, struct reiserfs_key
*key
)
1556 return le_key_k_type(version
, key
) == TYPE_STAT_DATA
;
1559 /* item header has version. */
1560 static inline int is_direntry_le_ih(struct item_head
*ih
)
1562 return is_direntry_le_key(ih_version(ih
), &ih
->ih_key
);
1565 static inline int is_direct_le_ih(struct item_head
*ih
)
1567 return is_direct_le_key(ih_version(ih
), &ih
->ih_key
);
1570 static inline int is_indirect_le_ih(struct item_head
*ih
)
1572 return is_indirect_le_key(ih_version(ih
), &ih
->ih_key
);
1575 static inline int is_statdata_le_ih(struct item_head
*ih
)
1577 return is_statdata_le_key(ih_version(ih
), &ih
->ih_key
);
1580 /* key is pointer to cpu key, result is cpu */
1581 static inline loff_t
cpu_key_k_offset(const struct cpu_key
*key
)
1583 return key
->on_disk_key
.k_offset
;
1586 static inline loff_t
cpu_key_k_type(const struct cpu_key
*key
)
1588 return key
->on_disk_key
.k_type
;
1591 static inline void set_cpu_key_k_offset(struct cpu_key
*key
, loff_t offset
)
1593 key
->on_disk_key
.k_offset
= offset
;
1596 static inline void set_cpu_key_k_type(struct cpu_key
*key
, int type
)
1598 key
->on_disk_key
.k_type
= type
;
1601 static inline void cpu_key_k_offset_dec(struct cpu_key
*key
)
1603 key
->on_disk_key
.k_offset
--;
1606 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1607 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1608 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1609 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1611 /* are these used ? */
1612 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1613 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1614 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1615 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1617 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1618 (!COMP_SHORT_KEYS(ih, key) && \
1619 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1621 /* maximal length of item */
1622 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1623 #define MIN_ITEM_LEN 1
1625 /* object identifier for root dir */
1626 #define REISERFS_ROOT_OBJECTID 2
1627 #define REISERFS_ROOT_PARENT_OBJECTID 1
1629 extern struct reiserfs_key root_key
;
1632 * Picture represents a leaf of the S+tree
1633 * ______________________________________________________
1634 * | | Array of | | |
1635 * |Block | Object-Item | F r e e | Objects- |
1636 * | head | Headers | S p a c e | Items |
1637 * |______|_______________|___________________|___________|
1641 * Header of a disk block. More precisely, header of a formatted leaf
1642 * or internal node, and not the header of an unformatted node.
1645 __le16 blk_level
; /* Level of a block in the tree. */
1646 __le16 blk_nr_item
; /* Number of keys/items in a block. */
1647 __le16 blk_free_space
; /* Block free space in bytes. */
1648 __le16 blk_reserved
;
1649 /* dump this in v4/planA */
1651 /* kept only for compatibility */
1652 struct reiserfs_key blk_right_delim_key
;
1655 #define BLKH_SIZE (sizeof(struct block_head))
1656 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1657 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1658 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1659 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1660 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1661 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1662 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1663 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1664 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1665 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1667 /* values for blk_level field of the struct block_head */
1670 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1671 * It is then used to see whether the node is still in the tree
1673 #define FREE_LEVEL 0
1675 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1678 * Given the buffer head of a formatted node, resolve to the
1679 * block head of that node.
1681 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1682 /* Number of items that are in buffer. */
1683 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1684 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1685 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1687 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1688 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1689 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1691 /* Get right delimiting key. -- little endian */
1692 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1694 /* Does the buffer contain a disk leaf. */
1695 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1697 /* Does the buffer contain a disk internal node */
1698 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1699 && B_LEVEL(bh) <= MAX_HEIGHT)
1701 /***************************************************************************
1703 ***************************************************************************/
1706 * old stat data is 32 bytes long. We are going to distinguish new one by
1709 struct stat_data_v1
{
1710 __le16 sd_mode
; /* file type, permissions */
1711 __le16 sd_nlink
; /* number of hard links */
1712 __le16 sd_uid
; /* owner */
1713 __le16 sd_gid
; /* group */
1714 __le32 sd_size
; /* file size */
1715 __le32 sd_atime
; /* time of last access */
1716 __le32 sd_mtime
; /* time file was last modified */
1719 * time inode (stat data) was last changed
1720 * (except changes to sd_atime and sd_mtime)
1725 __le32 sd_blocks
; /* number of blocks file uses */
1726 } __attribute__ ((__packed__
)) u
;
1729 * first byte of file which is stored in a direct item: except that if
1730 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1731 * direct item. The existence of this field really grates on me.
1732 * Let's replace it with a macro based on sd_size and our tail
1733 * suppression policy. Someday. -Hans
1735 __le32 sd_first_direct_byte
;
1736 } __attribute__ ((__packed__
));
1738 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
1739 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1740 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1741 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1742 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1743 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1744 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1745 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1746 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1747 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1748 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1749 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1750 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1751 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1752 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1753 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1754 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1755 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1756 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1757 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1758 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1759 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1760 #define sd_v1_first_direct_byte(sdp) \
1761 (le32_to_cpu((sdp)->sd_first_direct_byte))
1762 #define set_sd_v1_first_direct_byte(sdp,v) \
1763 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1765 /* inode flags stored in sd_attrs (nee sd_reserved) */
1768 * we want common flags to have the same values as in ext2,
1769 * so chattr(1) will work without problems
1771 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1772 #define REISERFS_APPEND_FL FS_APPEND_FL
1773 #define REISERFS_SYNC_FL FS_SYNC_FL
1774 #define REISERFS_NOATIME_FL FS_NOATIME_FL
1775 #define REISERFS_NODUMP_FL FS_NODUMP_FL
1776 #define REISERFS_SECRM_FL FS_SECRM_FL
1777 #define REISERFS_UNRM_FL FS_UNRM_FL
1778 #define REISERFS_COMPR_FL FS_COMPR_FL
1779 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1781 /* persistent flags that file inherits from the parent directory */
1782 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1783 REISERFS_SYNC_FL | \
1784 REISERFS_NOATIME_FL | \
1785 REISERFS_NODUMP_FL | \
1786 REISERFS_SECRM_FL | \
1787 REISERFS_COMPR_FL | \
1788 REISERFS_NOTAIL_FL )
1791 * Stat Data on disk (reiserfs version of UFS disk inode minus the
1795 __le16 sd_mode
; /* file type, permissions */
1796 __le16 sd_attrs
; /* persistent inode flags */
1797 __le32 sd_nlink
; /* number of hard links */
1798 __le64 sd_size
; /* file size */
1799 __le32 sd_uid
; /* owner */
1800 __le32 sd_gid
; /* group */
1801 __le32 sd_atime
; /* time of last access */
1802 __le32 sd_mtime
; /* time file was last modified */
1805 * time inode (stat data) was last changed
1806 * (except changes to sd_atime and sd_mtime)
1812 __le32 sd_generation
;
1813 } __attribute__ ((__packed__
)) u
;
1814 } __attribute__ ((__packed__
));
1816 /* this is 44 bytes long */
1817 #define SD_SIZE (sizeof(struct stat_data))
1818 #define SD_V2_SIZE SD_SIZE
1819 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1820 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1821 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1823 /* set_sd_reserved */
1824 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1825 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1826 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1827 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1828 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1829 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1830 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1831 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1832 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1833 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1834 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1835 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1836 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1837 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1838 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1839 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1840 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1841 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1842 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1843 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1844 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1845 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1847 /***************************************************************************
1848 * DIRECTORY STRUCTURE *
1849 ***************************************************************************/
1851 * Picture represents the structure of directory items
1852 * ________________________________________________
1853 * | Array of | | | | | |
1854 * | directory |N-1| N-2 | .... | 1st |0th|
1855 * | entry headers | | | | | |
1856 * |_______________|___|_____|________|_______|___|
1857 * <---- directory entries ------>
1859 * First directory item has k_offset component 1. We store "." and ".."
1860 * in one item, always, we never split "." and ".." into differing
1861 * items. This makes, among other things, the code for removing
1862 * directories simpler.
1865 #define SD_UNIQUENESS 0
1866 #define DOT_OFFSET 1
1867 #define DOT_DOT_OFFSET 2
1868 #define DIRENTRY_UNIQUENESS 500
1870 #define FIRST_ITEM_OFFSET 1
1873 * Q: How to get key of object pointed to by entry from entry?
1875 * A: Each directory entry has its header. This header has deh_dir_id
1876 * and deh_objectid fields, those are key of object, entry points to
1881 * Directory will someday contain stat data of object
1884 struct reiserfs_de_head
{
1885 __le32 deh_offset
; /* third component of the directory entry key */
1888 * objectid of the parent directory of the object, that is referenced
1889 * by directory entry
1893 /* objectid of the object, that is referenced by directory entry */
1894 __le32 deh_objectid
;
1895 __le16 deh_location
; /* offset of name in the whole item */
1898 * whether 1) entry contains stat data (for future), and
1899 * 2) whether entry is hidden (unlinked)
1902 } __attribute__ ((__packed__
));
1903 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1904 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1905 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1906 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1907 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1908 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1910 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1911 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1912 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1913 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1914 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1916 /* empty directory contains two entries "." and ".." and their headers */
1917 #define EMPTY_DIR_SIZE \
1918 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1920 /* old format directories have this size when empty */
1921 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1923 #define DEH_Statdata 0 /* not used now */
1924 #define DEH_Visible 2
1926 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1927 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1928 # define ADDR_UNALIGNED_BITS (3)
1932 * These are only used to manipulate deh_state.
1933 * Because of this, we'll use the ext2_ bit routines,
1934 * since they are little endian
1936 #ifdef ADDR_UNALIGNED_BITS
1938 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1939 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1941 # define set_bit_unaligned(nr, addr) \
1942 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943 # define clear_bit_unaligned(nr, addr) \
1944 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1945 # define test_bit_unaligned(nr, addr) \
1946 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1950 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1951 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1952 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1956 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1959 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1961 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1962 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1965 extern void make_empty_dir_item_v1(char *body
, __le32 dirid
, __le32 objid
,
1966 __le32 par_dirid
, __le32 par_objid
);
1967 extern void make_empty_dir_item(char *body
, __le32 dirid
, __le32 objid
,
1968 __le32 par_dirid
, __le32 par_objid
);
1970 /* two entries per block (at least) */
1971 #define REISERFS_MAX_NAME(block_size) 255
1974 * this structure is used for operations on directory entries. It is
1975 * not a disk structure.
1977 * When reiserfs_find_entry or search_by_entry_key find directory
1978 * entry, they return filled reiserfs_dir_entry structure
1980 struct reiserfs_dir_entry
{
1981 struct buffer_head
*de_bh
;
1983 struct item_head
*de_ih
;
1985 struct reiserfs_de_head
*de_deh
;
1989 unsigned long *de_gen_number_bit_string
;
1994 struct cpu_key de_entry_key
;
1998 * these defines are useful when a particular member of
1999 * a reiserfs_dir_entry is needed
2002 /* pointer to file name, stored in entry */
2003 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2004 (ih_item_body(bh, ih) + deh_location(deh))
2006 /* length of name */
2007 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2008 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2010 /* hash value occupies bits from 7 up to 30 */
2011 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2012 /* generation number occupies 7 bits starting from 0 up to 6 */
2013 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2014 #define MAX_GENERATION_NUMBER 127
2016 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2019 * Picture represents an internal node of the reiserfs tree
2020 * ______________________________________________________
2021 * | | Array of | Array of | Free |
2022 * |block | keys | pointers | space |
2023 * | head | N | N+1 | |
2024 * |______|_______________|___________________|___________|
2027 /***************************************************************************
2029 ***************************************************************************/
2031 * Disk child pointer:
2032 * The pointer from an internal node of the tree to a node that is on disk.
2035 __le32 dc_block_number
; /* Disk child's block number. */
2036 __le16 dc_size
; /* Disk child's used space. */
2040 #define DC_SIZE (sizeof(struct disk_child))
2041 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
2042 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
2043 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2044 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2046 /* Get disk child by buffer header and position in the tree node. */
2047 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
2048 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2050 /* Get disk child number by buffer header and position in the tree node. */
2051 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2052 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2053 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2055 /* maximal value of field child_size in structure disk_child */
2056 /* child size is the combined size of all items and their headers */
2057 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2059 /* amount of used space in buffer (not including block head) */
2060 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2062 /* max and min number of keys in internal node */
2063 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2064 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
2066 /***************************************************************************
2067 * PATH STRUCTURES AND DEFINES *
2068 ***************************************************************************/
2071 * search_by_key fills up the path from the root to the leaf as it descends
2072 * the tree looking for the key. It uses reiserfs_bread to try to find
2073 * buffers in the cache given their block number. If it does not find
2074 * them in the cache it reads them from disk. For each node search_by_key
2075 * finds using reiserfs_bread it then uses bin_search to look through that
2076 * node. bin_search will find the position of the block_number of the next
2077 * node if it is looking through an internal node. If it is looking through
2078 * a leaf node bin_search will find the position of the item which has key
2079 * either equal to given key, or which is the maximal key less than the
2083 struct path_element
{
2084 /* Pointer to the buffer at the path in the tree. */
2085 struct buffer_head
*pe_buffer
;
2086 /* Position in the tree node which is placed in the buffer above. */
2091 * maximal height of a tree. don't change this without
2092 * changing JOURNAL_PER_BALANCE_CNT
2094 #define MAX_HEIGHT 5
2096 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2097 #define EXTENDED_MAX_HEIGHT 7
2099 /* Must be equal to at least 2. */
2100 #define FIRST_PATH_ELEMENT_OFFSET 2
2102 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2103 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2105 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2106 #define MAX_FEB_SIZE 6
2109 * We need to keep track of who the ancestors of nodes are. When we
2110 * perform a search we record which nodes were visited while
2111 * descending the tree looking for the node we searched for. This list
2112 * of nodes is called the path. This information is used while
2113 * performing balancing. Note that this path information may become
2114 * invalid, and this means we must check it when using it to see if it
2115 * is still valid. You'll need to read search_by_key and the comments
2116 * in it, especially about decrement_counters_in_path(), to understand
2119 * Paths make the code so much harder to work with and debug.... An
2120 * enormous number of bugs are due to them, and trying to write or modify
2121 * code that uses them just makes my head hurt. They are based on an
2122 * excessive effort to avoid disturbing the precious VFS code.:-( The
2123 * gods only know how we are going to SMP the code that uses them.
2124 * znodes are the way!
2127 #define PATH_READA 0x1 /* do read ahead */
2128 #define PATH_READA_BACK 0x2 /* read backwards */
2131 int path_length
; /* Length of the array above. */
2133 /* Array of the path elements. */
2134 struct path_element path_elements
[EXTENDED_MAX_HEIGHT
];
2138 #define pos_in_item(path) ((path)->pos_in_item)
2140 #define INITIALIZE_PATH(var) \
2141 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2143 /* Get path element by path and path position. */
2144 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
2146 /* Get buffer header at the path by path and path position. */
2147 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2149 /* Get position in the element at the path by path and path position. */
2150 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2152 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2155 * you know, to the person who didn't write this the macro name does not
2156 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or
2157 * maybe we should just focus on dumping paths... -Hans
2159 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2162 * in do_balance leaf has h == 0 in contrast with path structure,
2163 * where root has level == 0. That is why we need these defines
2167 #define PATH_H_PBUFFER(path, h) \
2168 PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2170 /* tb->F[h] or tb->S[0]->b_parent */
2171 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2173 #define PATH_H_POSITION(path, h) \
2174 PATH_OFFSET_POSITION(path, path->path_length - (h))
2176 /* tb->S[h]->b_item_order */
2177 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2179 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2181 static inline void *reiserfs_node_data(const struct buffer_head
*bh
)
2183 return bh
->b_data
+ sizeof(struct block_head
);
2186 /* get key from internal node */
2187 static inline struct reiserfs_key
*internal_key(struct buffer_head
*bh
,
2190 struct reiserfs_key
*key
= reiserfs_node_data(bh
);
2192 return &key
[item_num
];
2195 /* get the item header from leaf node */
2196 static inline struct item_head
*item_head(const struct buffer_head
*bh
,
2199 struct item_head
*ih
= reiserfs_node_data(bh
);
2201 return &ih
[item_num
];
2204 /* get the key from leaf node */
2205 static inline struct reiserfs_key
*leaf_key(const struct buffer_head
*bh
,
2208 return &item_head(bh
, item_num
)->ih_key
;
2211 static inline void *ih_item_body(const struct buffer_head
*bh
,
2212 const struct item_head
*ih
)
2214 return bh
->b_data
+ ih_location(ih
);
2217 /* get item body from leaf node */
2218 static inline void *item_body(const struct buffer_head
*bh
, int item_num
)
2220 return ih_item_body(bh
, item_head(bh
, item_num
));
2223 static inline struct item_head
*tp_item_head(const struct treepath
*path
)
2225 return item_head(PATH_PLAST_BUFFER(path
), PATH_LAST_POSITION(path
));
2228 static inline void *tp_item_body(const struct treepath
*path
)
2230 return item_body(PATH_PLAST_BUFFER(path
), PATH_LAST_POSITION(path
));
2233 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2234 #define get_item_pos(path) PATH_LAST_POSITION(path)
2235 #define item_moved(ih,path) comp_items(ih, path)
2236 #define path_changed(ih,path) comp_items (ih, path)
2238 /* array of the entry headers */
2240 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2243 * length of the directory entry in directory item. This define
2244 * calculates length of i-th directory entry using directory entry
2245 * locations from dir entry head. When it calculates length of 0-th
2246 * directory entry, it uses length of whole item in place of entry
2247 * location of the non-existent following entry in the calculation.
2248 * See picture above.
2250 static inline int entry_length(const struct buffer_head
*bh
,
2251 const struct item_head
*ih
, int pos_in_item
)
2253 struct reiserfs_de_head
*deh
;
2255 deh
= B_I_DEH(bh
, ih
) + pos_in_item
;
2257 return deh_location(deh
- 1) - deh_location(deh
);
2259 return ih_item_len(ih
) - deh_location(deh
);
2262 /***************************************************************************
2264 ***************************************************************************/
2266 /* Size of pointer to the unformatted node. */
2267 #define UNFM_P_SIZE (sizeof(unp_t))
2268 #define UNFM_P_SHIFT 2
2270 /* in in-core inode key is stored on le form */
2271 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2273 #define MAX_UL_INT 0xffffffff
2274 #define MAX_INT 0x7ffffff
2275 #define MAX_US_INT 0xffff
2277 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2278 static inline loff_t
max_reiserfs_offset(struct inode
*inode
)
2280 if (get_inode_item_key_version(inode
) == KEY_FORMAT_3_5
)
2281 return (loff_t
) U32_MAX
;
2283 return (loff_t
) ((~(__u64
) 0) >> 4);
2286 #define MAX_KEY_OBJECTID MAX_UL_INT
2288 #define MAX_B_NUM MAX_UL_INT
2289 #define MAX_FC_NUM MAX_US_INT
2291 /* the purpose is to detect overflow of an unsigned short */
2292 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2295 * The following defines are used in reiserfs_insert_item
2296 * and reiserfs_append_item
2298 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */
2299 #define REISERFS_USER_MEM 1 /* user memory mode */
2301 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2302 #define get_generation(s) atomic_read (&fs_generation(s))
2303 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2304 #define __fs_changed(gen,s) (gen != get_generation (s))
2305 #define fs_changed(gen,s) \
2307 reiserfs_cond_resched(s); \
2308 __fs_changed(gen, s); \
2311 /***************************************************************************
2313 ***************************************************************************/
2315 #define VI_TYPE_LEFT_MERGEABLE 1
2316 #define VI_TYPE_RIGHT_MERGEABLE 2
2319 * To make any changes in the tree we always first find node, that
2320 * contains item to be changed/deleted or place to insert a new
2321 * item. We call this node S. To do balancing we need to decide what
2322 * we will shift to left/right neighbor, or to a new node, where new
2323 * item will be etc. To make this analysis simpler we build virtual
2324 * node. Virtual node is an array of items, that will replace items of
2325 * node S. (For instance if we are going to delete an item, virtual
2326 * node does not contain it). Virtual node keeps information about
2327 * item sizes and types, mergeability of first and last items, sizes
2328 * of all entries in directory item. We use this array of items when
2329 * calculating what we can shift to neighbors and how many nodes we
2330 * have to have if we do not any shiftings, if we shift to left/right
2331 * neighbor or to both.
2333 struct virtual_item
{
2334 int vi_index
; /* index in the array of item operations */
2335 unsigned short vi_type
; /* left/right mergeability */
2337 /* length of item that it will have after balancing */
2338 unsigned short vi_item_len
;
2340 struct item_head
*vi_ih
;
2341 const char *vi_item
; /* body of item (old or new) */
2342 const void *vi_new_data
; /* 0 always but paste mode */
2343 void *vi_uarea
; /* item specific area */
2346 struct virtual_node
{
2347 /* this is a pointer to the free space in the buffer */
2350 unsigned short vn_nr_item
; /* number of items in virtual node */
2353 * size of node , that node would have if it has
2354 * unlimited size and no balancing is performed
2358 /* mode of balancing (paste, insert, delete, cut) */
2361 short vn_affected_item_num
;
2362 short vn_pos_in_item
;
2364 /* item header of inserted item, 0 for other modes */
2365 struct item_head
*vn_ins_ih
;
2366 const void *vn_data
;
2368 /* array of items (including a new one, excluding item to be deleted) */
2369 struct virtual_item
*vn_vi
;
2372 /* used by directory items when creating virtual nodes */
2373 struct direntry_uarea
{
2376 __u16 entry_sizes
[1];
2377 } __attribute__ ((__packed__
));
2379 /***************************************************************************
2381 ***************************************************************************/
2384 * This temporary structure is used in tree balance algorithms, and
2385 * constructed as we go to the extent that its various parts are
2386 * needed. It contains arrays of nodes that can potentially be
2387 * involved in the balancing of node S, and parameters that define how
2388 * each of the nodes must be balanced. Note that in these algorithms
2389 * for balancing the worst case is to need to balance the current node
2390 * S and the left and right neighbors and all of their parents plus
2391 * create a new node. We implement S1 balancing for the leaf nodes
2392 * and S0 balancing for the internal nodes (S1 and S0 are defined in
2396 /* size of the array of buffers to free at end of do_balance */
2397 #define MAX_FREE_BLOCK 7
2399 /* maximum number of FEB blocknrs on a single level */
2400 #define MAX_AMOUNT_NEEDED 2
2402 /* someday somebody will prefix every field in this struct with tb_ */
2403 struct tree_balance
{
2405 int need_balance_dirty
;
2406 struct super_block
*tb_sb
;
2407 struct reiserfs_transaction_handle
*transaction_handle
;
2408 struct treepath
*tb_path
;
2410 /* array of left neighbors of nodes in the path */
2411 struct buffer_head
*L
[MAX_HEIGHT
];
2413 /* array of right neighbors of nodes in the path */
2414 struct buffer_head
*R
[MAX_HEIGHT
];
2416 /* array of fathers of the left neighbors */
2417 struct buffer_head
*FL
[MAX_HEIGHT
];
2419 /* array of fathers of the right neighbors */
2420 struct buffer_head
*FR
[MAX_HEIGHT
];
2421 /* array of common parents of center node and its left neighbor */
2422 struct buffer_head
*CFL
[MAX_HEIGHT
];
2424 /* array of common parents of center node and its right neighbor */
2425 struct buffer_head
*CFR
[MAX_HEIGHT
];
2428 * array of empty buffers. Number of buffers in array equals
2431 struct buffer_head
*FEB
[MAX_FEB_SIZE
];
2432 struct buffer_head
*used
[MAX_FEB_SIZE
];
2433 struct buffer_head
*thrown
[MAX_FEB_SIZE
];
2436 * array of number of items which must be shifted to the left in
2437 * order to balance the current node; for leaves includes item that
2438 * will be partially shifted; for internal nodes, it is the number
2439 * of child pointers rather than items. It includes the new item
2440 * being created. The code sometimes subtracts one to get the
2441 * number of wholly shifted items for other purposes.
2443 int lnum
[MAX_HEIGHT
];
2445 /* substitute right for left in comment above */
2446 int rnum
[MAX_HEIGHT
];
2449 * array indexed by height h mapping the key delimiting L[h] and
2450 * S[h] to its item number within the node CFL[h]
2452 int lkey
[MAX_HEIGHT
];
2454 /* substitute r for l in comment above */
2455 int rkey
[MAX_HEIGHT
];
2458 * the number of bytes by we are trying to add or remove from
2459 * S[h]. A negative value means removing.
2461 int insert_size
[MAX_HEIGHT
];
2464 * number of nodes that will replace node S[h] after balancing
2465 * on the level h of the tree. If 0 then S is being deleted,
2466 * if 1 then S is remaining and no new nodes are being created,
2467 * if 2 or 3 then 1 or 2 new nodes is being created
2469 int blknum
[MAX_HEIGHT
];
2471 /* fields that are used only for balancing leaves of the tree */
2473 /* number of empty blocks having been already allocated */
2476 /* number of items that fall into left most node when S[0] splits */
2480 * number of bytes which can flow to the left neighbor from the left
2481 * most liquid item that cannot be shifted from S[0] entirely
2482 * if -1 then nothing will be partially shifted
2487 * number of bytes which will flow to the right neighbor from the right
2488 * most liquid item that cannot be shifted from S[0] entirely
2489 * if -1 then nothing will be partially shifted
2495 * index into the array of item headers in
2496 * S[0] of the affected item
2500 /* new nodes allocated to hold what could not fit into S */
2501 struct buffer_head
*S_new
[2];
2504 * number of items that will be placed into nodes in S_new
2510 * number of bytes which flow to nodes in S_new when S[0] splits
2511 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2519 * buffers which are to be freed after do_balance finishes
2522 struct buffer_head
*buf_to_free
[MAX_FREE_BLOCK
];
2525 * kmalloced memory. Used to create virtual node and keep
2526 * map of dirtied bitmap blocks
2530 int vn_buf_size
; /* size of the vn_buf */
2532 /* VN starts after bitmap of bitmap blocks */
2533 struct virtual_node
*tb_vn
;
2536 * saved value of `reiserfs_generation' counter see
2537 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2541 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2543 * key pointer, to pass to block allocator or
2544 * another low-level subsystem
2546 struct in_core_key key
;
2550 /* These are modes of balancing */
2552 /* When inserting an item. */
2553 #define M_INSERT 'i'
2555 * When inserting into (directories only) or appending onto an already
2559 /* When deleting an item. */
2560 #define M_DELETE 'd'
2561 /* When truncating an item or removing an entry from a (directory) item. */
2564 /* used when balancing on leaf level skipped (in reiserfsck) */
2565 #define M_INTERNAL 'n'
2568 * When further balancing is not needed, then do_balance does not need
2571 #define M_SKIP_BALANCING 's'
2572 #define M_CONVERT 'v'
2574 /* modes of leaf_move_items */
2575 #define LEAF_FROM_S_TO_L 0
2576 #define LEAF_FROM_S_TO_R 1
2577 #define LEAF_FROM_R_TO_L 2
2578 #define LEAF_FROM_L_TO_R 3
2579 #define LEAF_FROM_S_TO_SNEW 4
2581 #define FIRST_TO_LAST 0
2582 #define LAST_TO_FIRST 1
2585 * used in do_balance for passing parent of node information that has
2586 * been gotten from tb struct
2588 struct buffer_info
{
2589 struct tree_balance
*tb
;
2590 struct buffer_head
*bi_bh
;
2591 struct buffer_head
*bi_parent
;
2595 static inline struct super_block
*sb_from_tb(struct tree_balance
*tb
)
2597 return tb
? tb
->tb_sb
: NULL
;
2600 static inline struct super_block
*sb_from_bi(struct buffer_info
*bi
)
2602 return bi
? sb_from_tb(bi
->tb
) : NULL
;
2606 * there are 4 types of items: stat data, directory item, indirect, direct.
2607 * +-------------------+------------+--------------+------------+
2608 * | | k_offset | k_uniqueness | mergeable? |
2609 * +-------------------+------------+--------------+------------+
2610 * | stat data | 0 | 0 | no |
2611 * +-------------------+------------+--------------+------------+
2612 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no |
2613 * | non 1st directory | hash value | UNIQUENESS | yes |
2615 * +-------------------+------------+--------------+------------+
2616 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] |
2617 * +-------------------+------------+--------------+------------+
2618 * | direct item | offset + 1 |TYPE_DIRECT | [2] |
2619 * +-------------------+------------+--------------+------------+
2621 * [1] if this is not the first indirect item of the object
2622 * [2] if this is not the first direct item of the object
2625 struct item_operations
{
2626 int (*bytes_number
) (struct item_head
* ih
, int block_size
);
2627 void (*decrement_key
) (struct cpu_key
*);
2628 int (*is_left_mergeable
) (struct reiserfs_key
* ih
,
2629 unsigned long bsize
);
2630 void (*print_item
) (struct item_head
*, char *item
);
2631 void (*check_item
) (struct item_head
*, char *item
);
2633 int (*create_vi
) (struct virtual_node
* vn
, struct virtual_item
* vi
,
2634 int is_affected
, int insert_size
);
2635 int (*check_left
) (struct virtual_item
* vi
, int free
,
2636 int start_skip
, int end_skip
);
2637 int (*check_right
) (struct virtual_item
* vi
, int free
);
2638 int (*part_size
) (struct virtual_item
* vi
, int from
, int to
);
2639 int (*unit_num
) (struct virtual_item
* vi
);
2640 void (*print_vi
) (struct virtual_item
* vi
);
2643 extern struct item_operations
*item_ops
[TYPE_ANY
+ 1];
2645 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2646 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2647 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2648 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2649 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2650 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2651 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2652 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2653 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2654 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2656 #define COMP_SHORT_KEYS comp_short_keys
2658 /* number of blocks pointed to by the indirect item */
2659 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2662 * the used space within the unformatted node corresponding
2663 * to pos within the item pointed to by ih
2665 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2668 * number of bytes contained by the direct item or the
2669 * unformatted nodes the indirect item points to
2672 /* following defines use reiserfs buffer header and item header */
2675 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2677 /* this is 3976 for size==4096 */
2678 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2681 * indirect items consist of entries which contain blocknrs, pos
2682 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2683 * blocknr contained by the entry pos points to
2685 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \
2686 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2687 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \
2688 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2690 struct reiserfs_iget_args
{
2695 /***************************************************************************
2696 * FUNCTION DECLARATIONS *
2697 ***************************************************************************/
2699 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2701 #define journal_trans_half(blocksize) \
2702 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
2704 /* journal.c see journal.c for all the comments here */
2706 /* first block written in a commit. */
2707 struct reiserfs_journal_desc
{
2708 __le32 j_trans_id
; /* id of commit */
2710 /* length of commit. len +1 is the commit block */
2713 __le32 j_mount_id
; /* mount id of this trans */
2714 __le32 j_realblock
[1]; /* real locations for each block */
2717 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2718 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2719 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2721 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2722 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2723 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2725 /* last block written in a commit */
2726 struct reiserfs_journal_commit
{
2727 __le32 j_trans_id
; /* must match j_trans_id from the desc block */
2728 __le32 j_len
; /* ditto */
2729 __le32 j_realblock
[1]; /* real locations for each block */
2732 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2733 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2734 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2736 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2737 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2740 * this header block gets written whenever a transaction is considered
2741 * fully flushed, and is more recent than the last fully flushed transaction.
2742 * fully flushed means all the log blocks and all the real blocks are on
2743 * disk, and this transaction does not need to be replayed.
2745 struct reiserfs_journal_header
{
2746 /* id of last fully flushed transaction */
2747 __le32 j_last_flush_trans_id
;
2749 /* offset in the log of where to start replay after a crash */
2750 __le32 j_first_unflushed_offset
;
2753 /* 12 */ struct journal_params jh_journal
;
2756 /* biggest tunable defines are right here */
2757 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2759 /* biggest possible single transaction, don't change for now (8/3/99) */
2760 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2761 #define JOURNAL_TRANS_MIN_DEFAULT 256
2764 * max blocks to batch into one transaction,
2765 * don't make this any bigger than 900
2767 #define JOURNAL_MAX_BATCH_DEFAULT 900
2768 #define JOURNAL_MIN_RATIO 2
2769 #define JOURNAL_MAX_COMMIT_AGE 30
2770 #define JOURNAL_MAX_TRANS_AGE 30
2771 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2772 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2773 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2774 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2777 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2778 /* We need to update data and inode (atime) */
2779 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2780 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2781 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2782 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2783 /* same as with INIT */
2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2787 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2788 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2789 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2793 * both of these can be as low as 1, or as high as you want. The min is the
2794 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2795 * as needed, and released when transactions are committed. On release, if
2796 * the current number of nodes is > max, the node is freed, otherwise,
2797 * it is put on a free list for faster use later.
2799 #define REISERFS_MIN_BITMAP_NODES 10
2800 #define REISERFS_MAX_BITMAP_NODES 100
2802 /* these are based on journal hash size of 8192 */
2803 #define JBH_HASH_SHIFT 13
2804 #define JBH_HASH_MASK 8191
2806 #define _jhashfn(sb,block) \
2807 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2808 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2809 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2811 /* We need these to make journal.c code more readable */
2812 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2813 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2814 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
2816 enum reiserfs_bh_state_bits
{
2817 BH_JDirty
= BH_PrivateStart
, /* buffer is in current transaction */
2820 * disk block was taken off free list before being in a
2821 * finished transaction, or written to disk. Can be reused immed.
2826 BH_JTest
, /* debugging only will go away */
2829 BUFFER_FNS(JDirty
, journaled
);
2830 TAS_BUFFER_FNS(JDirty
, journaled
);
2831 BUFFER_FNS(JDirty_wait
, journal_dirty
);
2832 TAS_BUFFER_FNS(JDirty_wait
, journal_dirty
);
2833 BUFFER_FNS(JNew
, journal_new
);
2834 TAS_BUFFER_FNS(JNew
, journal_new
);
2835 BUFFER_FNS(JPrepared
, journal_prepared
);
2836 TAS_BUFFER_FNS(JPrepared
, journal_prepared
);
2837 BUFFER_FNS(JRestore_dirty
, journal_restore_dirty
);
2838 TAS_BUFFER_FNS(JRestore_dirty
, journal_restore_dirty
);
2839 BUFFER_FNS(JTest
, journal_test
);
2840 TAS_BUFFER_FNS(JTest
, journal_test
);
2842 /* transaction handle which is passed around for all journal calls */
2843 struct reiserfs_transaction_handle
{
2845 * super for this FS when journal_begin was called. saves calls to
2846 * reiserfs_get_super also used by nested transactions to make
2847 * sure they are nesting on the right FS _must_ be first
2850 struct super_block
*t_super
;
2853 int t_blocks_logged
; /* number of blocks this writer has logged */
2854 int t_blocks_allocated
; /* number of blocks this writer allocated */
2856 /* sanity check, equals the current trans id */
2857 unsigned int t_trans_id
;
2859 void *t_handle_save
; /* save existing current->journal_info */
2862 * if new block allocation occurres, that block
2863 * should be displaced from others
2865 unsigned displace_new_blocks
:1;
2867 struct list_head t_list
;
2871 * used to keep track of ordered and tail writes, attached to the buffer
2872 * head through b_journal_head.
2874 struct reiserfs_jh
{
2875 struct reiserfs_journal_list
*jl
;
2876 struct buffer_head
*bh
;
2877 struct list_head list
;
2880 void reiserfs_free_jh(struct buffer_head
*bh
);
2881 int reiserfs_add_tail_list(struct inode
*inode
, struct buffer_head
*bh
);
2882 int reiserfs_add_ordered_list(struct inode
*inode
, struct buffer_head
*bh
);
2883 int journal_mark_dirty(struct reiserfs_transaction_handle
*,
2884 struct buffer_head
*bh
);
2886 static inline int reiserfs_file_data_log(struct inode
*inode
)
2888 if (reiserfs_data_log(inode
->i_sb
) ||
2889 (REISERFS_I(inode
)->i_flags
& i_data_log
))
2894 static inline int reiserfs_transaction_running(struct super_block
*s
)
2896 struct reiserfs_transaction_handle
*th
= current
->journal_info
;
2897 if (th
&& th
->t_super
== s
)
2899 if (th
&& th
->t_super
== NULL
)
2904 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle
*th
)
2906 return th
->t_blocks_allocated
- th
->t_blocks_logged
;
2909 struct reiserfs_transaction_handle
*reiserfs_persistent_transaction(struct
2913 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle
*);
2914 void reiserfs_vfs_truncate_file(struct inode
*inode
);
2915 int reiserfs_commit_page(struct inode
*inode
, struct page
*page
,
2916 unsigned from
, unsigned to
);
2917 void reiserfs_flush_old_commits(struct super_block
*);
2918 int reiserfs_commit_for_inode(struct inode
*);
2919 int reiserfs_inode_needs_commit(struct inode
*);
2920 void reiserfs_update_inode_transaction(struct inode
*);
2921 void reiserfs_wait_on_write_block(struct super_block
*s
);
2922 void reiserfs_block_writes(struct reiserfs_transaction_handle
*th
);
2923 void reiserfs_allow_writes(struct super_block
*s
);
2924 void reiserfs_check_lock_depth(struct super_block
*s
, char *caller
);
2925 int reiserfs_prepare_for_journal(struct super_block
*, struct buffer_head
*bh
,
2927 void reiserfs_restore_prepared_buffer(struct super_block
*,
2928 struct buffer_head
*bh
);
2929 int journal_init(struct super_block
*, const char *j_dev_name
, int old_format
,
2931 int journal_release(struct reiserfs_transaction_handle
*, struct super_block
*);
2932 int journal_release_error(struct reiserfs_transaction_handle
*,
2933 struct super_block
*);
2934 int journal_end(struct reiserfs_transaction_handle
*);
2935 int journal_end_sync(struct reiserfs_transaction_handle
*);
2936 int journal_mark_freed(struct reiserfs_transaction_handle
*,
2937 struct super_block
*, b_blocknr_t blocknr
);
2938 int journal_transaction_should_end(struct reiserfs_transaction_handle
*, int);
2939 int reiserfs_in_journal(struct super_block
*sb
, unsigned int bmap_nr
,
2940 int bit_nr
, int searchall
, b_blocknr_t
*next
);
2941 int journal_begin(struct reiserfs_transaction_handle
*,
2942 struct super_block
*sb
, unsigned long);
2943 int journal_join_abort(struct reiserfs_transaction_handle
*,
2944 struct super_block
*sb
);
2945 void reiserfs_abort_journal(struct super_block
*sb
, int errno
);
2946 void reiserfs_abort(struct super_block
*sb
, int errno
, const char *fmt
, ...);
2947 int reiserfs_allocate_list_bitmaps(struct super_block
*s
,
2948 struct reiserfs_list_bitmap
*, unsigned int);
2950 void reiserfs_schedule_old_flush(struct super_block
*s
);
2951 void reiserfs_cancel_old_flush(struct super_block
*s
);
2952 void add_save_link(struct reiserfs_transaction_handle
*th
,
2953 struct inode
*inode
, int truncate
);
2954 int remove_save_link(struct inode
*inode
, int truncate
);
2957 __u32
reiserfs_get_unused_objectid(struct reiserfs_transaction_handle
*th
);
2958 void reiserfs_release_objectid(struct reiserfs_transaction_handle
*th
,
2959 __u32 objectid_to_release
);
2960 int reiserfs_convert_objectid_map_v1(struct super_block
*);
2963 int B_IS_IN_TREE(const struct buffer_head
*);
2964 extern void copy_item_head(struct item_head
*to
,
2965 const struct item_head
*from
);
2967 /* first key is in cpu form, second - le */
2968 extern int comp_short_keys(const struct reiserfs_key
*le_key
,
2969 const struct cpu_key
*cpu_key
);
2970 extern void le_key2cpu_key(struct cpu_key
*to
, const struct reiserfs_key
*from
);
2972 /* both are in le form */
2973 extern int comp_le_keys(const struct reiserfs_key
*,
2974 const struct reiserfs_key
*);
2975 extern int comp_short_le_keys(const struct reiserfs_key
*,
2976 const struct reiserfs_key
*);
2978 /* * get key version from on disk key - kludge */
2979 static inline int le_key_version(const struct reiserfs_key
*key
)
2983 type
= offset_v2_k_type(&(key
->u
.k_offset_v2
));
2984 if (type
!= TYPE_DIRECT
&& type
!= TYPE_INDIRECT
2985 && type
!= TYPE_DIRENTRY
)
2986 return KEY_FORMAT_3_5
;
2988 return KEY_FORMAT_3_6
;
2992 static inline void copy_key(struct reiserfs_key
*to
,
2993 const struct reiserfs_key
*from
)
2995 memcpy(to
, from
, KEY_SIZE
);
2998 int comp_items(const struct item_head
*stored_ih
, const struct treepath
*path
);
2999 const struct reiserfs_key
*get_rkey(const struct treepath
*chk_path
,
3000 const struct super_block
*sb
);
3001 int search_by_key(struct super_block
*, const struct cpu_key
*,
3002 struct treepath
*, int);
3003 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3004 int search_for_position_by_key(struct super_block
*sb
,
3005 const struct cpu_key
*cpu_key
,
3006 struct treepath
*search_path
);
3007 extern void decrement_bcount(struct buffer_head
*bh
);
3008 void decrement_counters_in_path(struct treepath
*search_path
);
3009 void pathrelse(struct treepath
*search_path
);
3010 int reiserfs_check_path(struct treepath
*p
);
3011 void pathrelse_and_restore(struct super_block
*s
, struct treepath
*search_path
);
3013 int reiserfs_insert_item(struct reiserfs_transaction_handle
*th
,
3014 struct treepath
*path
,
3015 const struct cpu_key
*key
,
3016 struct item_head
*ih
,
3017 struct inode
*inode
, const char *body
);
3019 int reiserfs_paste_into_item(struct reiserfs_transaction_handle
*th
,
3020 struct treepath
*path
,
3021 const struct cpu_key
*key
,
3022 struct inode
*inode
,
3023 const char *body
, int paste_size
);
3025 int reiserfs_cut_from_item(struct reiserfs_transaction_handle
*th
,
3026 struct treepath
*path
,
3027 struct cpu_key
*key
,
3028 struct inode
*inode
,
3029 struct page
*page
, loff_t new_file_size
);
3031 int reiserfs_delete_item(struct reiserfs_transaction_handle
*th
,
3032 struct treepath
*path
,
3033 const struct cpu_key
*key
,
3034 struct inode
*inode
, struct buffer_head
*un_bh
);
3036 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle
*th
,
3037 struct inode
*inode
, struct reiserfs_key
*key
);
3038 int reiserfs_delete_object(struct reiserfs_transaction_handle
*th
,
3039 struct inode
*inode
);
3040 int reiserfs_do_truncate(struct reiserfs_transaction_handle
*th
,
3041 struct inode
*inode
, struct page
*,
3042 int update_timestamps
);
3044 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3045 #define file_size(inode) ((inode)->i_size)
3046 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3048 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3049 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3051 void padd_item(char *item
, int total_length
, int length
);
3054 /* args for the create parameter of reiserfs_get_block */
3055 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
3056 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
3057 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
3058 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
3059 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
3060 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
3062 void reiserfs_read_locked_inode(struct inode
*inode
,
3063 struct reiserfs_iget_args
*args
);
3064 int reiserfs_find_actor(struct inode
*inode
, void *p
);
3065 int reiserfs_init_locked_inode(struct inode
*inode
, void *p
);
3066 void reiserfs_evict_inode(struct inode
*inode
);
3067 int reiserfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
);
3068 int reiserfs_get_block(struct inode
*inode
, sector_t block
,
3069 struct buffer_head
*bh_result
, int create
);
3070 struct dentry
*reiserfs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
3071 int fh_len
, int fh_type
);
3072 struct dentry
*reiserfs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
3073 int fh_len
, int fh_type
);
3074 int reiserfs_encode_fh(struct inode
*inode
, __u32
* data
, int *lenp
,
3075 struct inode
*parent
);
3077 int reiserfs_truncate_file(struct inode
*, int update_timestamps
);
3078 void make_cpu_key(struct cpu_key
*cpu_key
, struct inode
*inode
, loff_t offset
,
3079 int type
, int key_length
);
3080 void make_le_item_head(struct item_head
*ih
, const struct cpu_key
*key
,
3082 loff_t offset
, int type
, int length
, int entry_count
);
3083 struct inode
*reiserfs_iget(struct super_block
*s
, const struct cpu_key
*key
);
3085 struct reiserfs_security_handle
;
3086 int reiserfs_new_inode(struct reiserfs_transaction_handle
*th
,
3087 struct inode
*dir
, umode_t mode
,
3088 const char *symname
, loff_t i_size
,
3089 struct dentry
*dentry
, struct inode
*inode
,
3090 struct reiserfs_security_handle
*security
);
3092 void reiserfs_update_sd_size(struct reiserfs_transaction_handle
*th
,
3093 struct inode
*inode
, loff_t size
);
3095 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle
*th
,
3096 struct inode
*inode
)
3098 reiserfs_update_sd_size(th
, inode
, inode
->i_size
);
3101 void sd_attrs_to_i_attrs(__u16 sd_attrs
, struct inode
*inode
);
3102 void i_attrs_to_sd_attrs(struct inode
*inode
, __u16
* sd_attrs
);
3103 int reiserfs_setattr(struct dentry
*dentry
, struct iattr
*attr
);
3105 int __reiserfs_write_begin(struct page
*page
, unsigned from
, unsigned len
);
3108 void set_de_name_and_namelen(struct reiserfs_dir_entry
*de
);
3109 int search_by_entry_key(struct super_block
*sb
, const struct cpu_key
*key
,
3110 struct treepath
*path
, struct reiserfs_dir_entry
*de
);
3111 struct dentry
*reiserfs_get_parent(struct dentry
*);
3113 #ifdef CONFIG_REISERFS_PROC_INFO
3114 int reiserfs_proc_info_init(struct super_block
*sb
);
3115 int reiserfs_proc_info_done(struct super_block
*sb
);
3116 int reiserfs_proc_info_global_init(void);
3117 int reiserfs_proc_info_global_done(void);
3119 #define PROC_EXP( e ) e
3121 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3122 #define PROC_INFO_MAX( sb, field, value ) \
3123 __PINFO( sb ).field = \
3124 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3125 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3126 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3127 #define PROC_INFO_BH_STAT( sb, bh, level ) \
3128 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
3129 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
3130 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3132 static inline int reiserfs_proc_info_init(struct super_block
*sb
)
3137 static inline int reiserfs_proc_info_done(struct super_block
*sb
)
3142 static inline int reiserfs_proc_info_global_init(void)
3147 static inline int reiserfs_proc_info_global_done(void)
3152 #define PROC_EXP( e )
3153 #define VOID_V ( ( void ) 0 )
3154 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3155 #define PROC_INFO_INC( sb, field ) VOID_V
3156 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3157 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3161 extern const struct inode_operations reiserfs_dir_inode_operations
;
3162 extern const struct inode_operations reiserfs_symlink_inode_operations
;
3163 extern const struct inode_operations reiserfs_special_inode_operations
;
3164 extern const struct file_operations reiserfs_dir_operations
;
3165 int reiserfs_readdir_inode(struct inode
*, struct dir_context
*);
3167 /* tail_conversion.c */
3168 int direct2indirect(struct reiserfs_transaction_handle
*, struct inode
*,
3169 struct treepath
*, struct buffer_head
*, loff_t
);
3170 int indirect2direct(struct reiserfs_transaction_handle
*, struct inode
*,
3171 struct page
*, struct treepath
*, const struct cpu_key
*,
3173 void reiserfs_unmap_buffer(struct buffer_head
*);
3176 extern const struct inode_operations reiserfs_file_inode_operations
;
3177 extern const struct file_operations reiserfs_file_operations
;
3178 extern const struct address_space_operations reiserfs_address_space_operations
;
3182 int fix_nodes(int n_op_mode
, struct tree_balance
*tb
,
3183 struct item_head
*ins_ih
, const void *);
3184 void unfix_nodes(struct tree_balance
*);
3187 void __reiserfs_panic(struct super_block
*s
, const char *id
,
3188 const char *function
, const char *fmt
, ...)
3189 __attribute__ ((noreturn
));
3190 #define reiserfs_panic(s, id, fmt, args...) \
3191 __reiserfs_panic(s, id, __func__, fmt, ##args)
3192 void __reiserfs_error(struct super_block
*s
, const char *id
,
3193 const char *function
, const char *fmt
, ...);
3194 #define reiserfs_error(s, id, fmt, args...) \
3195 __reiserfs_error(s, id, __func__, fmt, ##args)
3196 void reiserfs_info(struct super_block
*s
, const char *fmt
, ...);
3197 void reiserfs_debug(struct super_block
*s
, int level
, const char *fmt
, ...);
3198 void print_indirect_item(struct buffer_head
*bh
, int item_num
);
3199 void store_print_tb(struct tree_balance
*tb
);
3200 void print_cur_tb(char *mes
);
3201 void print_de(struct reiserfs_dir_entry
*de
);
3202 void print_bi(struct buffer_info
*bi
, char *mes
);
3203 #define PRINT_LEAF_ITEMS 1 /* print all items */
3204 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3205 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
3206 void print_block(struct buffer_head
*bh
, ...);
3207 void print_bmap(struct super_block
*s
, int silent
);
3208 void print_bmap_block(int i
, char *data
, int size
, int silent
);
3209 /*void print_super_block (struct super_block * s, char * mes);*/
3210 void print_objectid_map(struct super_block
*s
);
3211 void print_block_head(struct buffer_head
*bh
, char *mes
);
3212 void check_leaf(struct buffer_head
*bh
);
3213 void check_internal(struct buffer_head
*bh
);
3214 void print_statistics(struct super_block
*s
);
3215 char *reiserfs_hashname(int code
);
3218 int leaf_move_items(int shift_mode
, struct tree_balance
*tb
, int mov_num
,
3219 int mov_bytes
, struct buffer_head
*Snew
);
3220 int leaf_shift_left(struct tree_balance
*tb
, int shift_num
, int shift_bytes
);
3221 int leaf_shift_right(struct tree_balance
*tb
, int shift_num
, int shift_bytes
);
3222 void leaf_delete_items(struct buffer_info
*cur_bi
, int last_first
, int first
,
3223 int del_num
, int del_bytes
);
3224 void leaf_insert_into_buf(struct buffer_info
*bi
, int before
,
3225 struct item_head
* const inserted_item_ih
,
3226 const char * const inserted_item_body
,
3228 void leaf_paste_in_buffer(struct buffer_info
*bi
, int pasted_item_num
,
3229 int pos_in_item
, int paste_size
,
3230 const char * const body
, int zeros_number
);
3231 void leaf_cut_from_buffer(struct buffer_info
*bi
, int cut_item_num
,
3232 int pos_in_item
, int cut_size
);
3233 void leaf_paste_entries(struct buffer_info
*bi
, int item_num
, int before
,
3234 int new_entry_count
, struct reiserfs_de_head
*new_dehs
,
3235 const char *records
, int paste_size
);
3237 int balance_internal(struct tree_balance
*, int, int, struct item_head
*,
3238 struct buffer_head
**);
3241 void do_balance_mark_leaf_dirty(struct tree_balance
*tb
,
3242 struct buffer_head
*bh
, int flag
);
3243 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3244 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3246 void do_balance(struct tree_balance
*tb
, struct item_head
*ih
,
3247 const char *body
, int flag
);
3248 void reiserfs_invalidate_buffer(struct tree_balance
*tb
,
3249 struct buffer_head
*bh
);
3251 int get_left_neighbor_position(struct tree_balance
*tb
, int h
);
3252 int get_right_neighbor_position(struct tree_balance
*tb
, int h
);
3253 void replace_key(struct tree_balance
*tb
, struct buffer_head
*, int,
3254 struct buffer_head
*, int);
3255 void make_empty_node(struct buffer_info
*);
3256 struct buffer_head
*get_FEB(struct tree_balance
*);
3261 * structure contains hints for block allocator, and it is a container for
3262 * arguments, such as node, search path, transaction_handle, etc.
3264 struct __reiserfs_blocknr_hint
{
3265 /* inode passed to allocator, if we allocate unf. nodes */
3266 struct inode
*inode
;
3268 sector_t block
; /* file offset, in blocks */
3269 struct in_core_key key
;
3272 * search path, used by allocator to deternine search_start by
3275 struct treepath
*path
;
3278 * transaction handle is needed to log super blocks
3279 * and bitmap blocks changes
3281 struct reiserfs_transaction_handle
*th
;
3283 b_blocknr_t beg
, end
;
3286 * a field used to transfer search start value (block number)
3287 * between different block allocator procedures
3288 * (determine_search_start() and others)
3290 b_blocknr_t search_start
;
3293 * is set in determine_prealloc_size() function,
3294 * used by underlayed function that do actual allocation
3299 * the allocator uses different polices for getting disk
3300 * space for formatted/unformatted blocks with/without preallocation
3302 unsigned formatted_node
:1;
3303 unsigned preallocate
:1;
3306 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t
;
3308 int reiserfs_parse_alloc_options(struct super_block
*, char *);
3309 void reiserfs_init_alloc_options(struct super_block
*s
);
3312 * given a directory, this will tell you what packing locality
3313 * to use for a new object underneat it. The locality is returned
3314 * in disk byte order (le).
3316 __le32
reiserfs_choose_packing(struct inode
*dir
);
3318 void show_alloc_options(struct seq_file
*seq
, struct super_block
*s
);
3319 int reiserfs_init_bitmap_cache(struct super_block
*sb
);
3320 void reiserfs_free_bitmap_cache(struct super_block
*sb
);
3321 void reiserfs_cache_bitmap_metadata(struct super_block
*sb
, struct buffer_head
*bh
, struct reiserfs_bitmap_info
*info
);
3322 struct buffer_head
*reiserfs_read_bitmap_block(struct super_block
*sb
, unsigned int bitmap
);
3323 int is_reusable(struct super_block
*s
, b_blocknr_t block
, int bit_value
);
3324 void reiserfs_free_block(struct reiserfs_transaction_handle
*th
, struct inode
*,
3325 b_blocknr_t
, int for_unformatted
);
3326 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t
*, b_blocknr_t
*, int,
3328 static inline int reiserfs_new_form_blocknrs(struct tree_balance
*tb
,
3329 b_blocknr_t
* new_blocknrs
,
3332 reiserfs_blocknr_hint_t hint
= {
3333 .th
= tb
->transaction_handle
,
3334 .path
= tb
->tb_path
,
3340 return reiserfs_allocate_blocknrs(&hint
, new_blocknrs
, amount_needed
,
3344 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3345 *th
, struct inode
*inode
,
3346 b_blocknr_t
* new_blocknrs
,
3347 struct treepath
*path
,
3350 reiserfs_blocknr_hint_t hint
= {
3355 .formatted_node
= 0,
3358 return reiserfs_allocate_blocknrs(&hint
, new_blocknrs
, 1, 0);
3361 #ifdef REISERFS_PREALLOCATE
3362 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3363 *th
, struct inode
*inode
,
3364 b_blocknr_t
* new_blocknrs
,
3365 struct treepath
*path
,
3368 reiserfs_blocknr_hint_t hint
= {
3373 .formatted_node
= 0,
3376 return reiserfs_allocate_blocknrs(&hint
, new_blocknrs
, 1, 0);
3379 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle
*th
,
3380 struct inode
*inode
);
3381 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle
*th
);
3385 __u32
keyed_hash(const signed char *msg
, int len
);
3386 __u32
yura_hash(const signed char *msg
, int len
);
3387 __u32
r5_hash(const signed char *msg
, int len
);
3389 #define reiserfs_set_le_bit __set_bit_le
3390 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le
3391 #define reiserfs_clear_le_bit __clear_bit_le
3392 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
3393 #define reiserfs_test_le_bit test_bit_le
3394 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
3397 * sometimes reiserfs_truncate may require to allocate few new blocks
3398 * to perform indirect2direct conversion. People probably used to
3399 * think, that truncate should work without problems on a filesystem
3400 * without free disk space. They may complain that they can not
3401 * truncate due to lack of free disk space. This spare space allows us
3402 * to not worry about it. 500 is probably too much, but it should be
3405 #define SPARE_SPACE 500
3407 /* prototypes from ioctl.c */
3408 long reiserfs_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
);
3409 long reiserfs_compat_ioctl(struct file
*filp
,
3410 unsigned int cmd
, unsigned long arg
);
3411 int reiserfs_unpack(struct inode
*inode
, struct file
*filp
);