5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
49 #define EXTENT_MERGE_SIZE 5
51 static umode_t
udf_convert_permissions(struct fileEntry
*);
52 static int udf_update_inode(struct inode
*, int);
53 static int udf_sync_inode(struct inode
*inode
);
54 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
55 static sector_t
inode_getblk(struct inode
*, sector_t
, int *, int *);
56 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
57 struct kernel_lb_addr
, uint32_t);
58 static void udf_split_extents(struct inode
*, int *, int, int,
59 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
60 static void udf_prealloc_extents(struct inode
*, int, int,
61 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
62 static void udf_merge_extents(struct inode
*,
63 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
64 static void udf_update_extents(struct inode
*,
65 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
66 struct extent_position
*);
67 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
69 static void __udf_clear_extent_cache(struct inode
*inode
)
71 struct udf_inode_info
*iinfo
= UDF_I(inode
);
73 if (iinfo
->cached_extent
.lstart
!= -1) {
74 brelse(iinfo
->cached_extent
.epos
.bh
);
75 iinfo
->cached_extent
.lstart
= -1;
79 /* Invalidate extent cache */
80 static void udf_clear_extent_cache(struct inode
*inode
)
82 struct udf_inode_info
*iinfo
= UDF_I(inode
);
84 spin_lock(&iinfo
->i_extent_cache_lock
);
85 __udf_clear_extent_cache(inode
);
86 spin_unlock(&iinfo
->i_extent_cache_lock
);
89 /* Return contents of extent cache */
90 static int udf_read_extent_cache(struct inode
*inode
, loff_t bcount
,
91 loff_t
*lbcount
, struct extent_position
*pos
)
93 struct udf_inode_info
*iinfo
= UDF_I(inode
);
96 spin_lock(&iinfo
->i_extent_cache_lock
);
97 if ((iinfo
->cached_extent
.lstart
<= bcount
) &&
98 (iinfo
->cached_extent
.lstart
!= -1)) {
100 *lbcount
= iinfo
->cached_extent
.lstart
;
101 memcpy(pos
, &iinfo
->cached_extent
.epos
,
102 sizeof(struct extent_position
));
107 spin_unlock(&iinfo
->i_extent_cache_lock
);
111 /* Add extent to extent cache */
112 static void udf_update_extent_cache(struct inode
*inode
, loff_t estart
,
113 struct extent_position
*pos
, int next_epos
)
115 struct udf_inode_info
*iinfo
= UDF_I(inode
);
117 spin_lock(&iinfo
->i_extent_cache_lock
);
118 /* Invalidate previously cached extent */
119 __udf_clear_extent_cache(inode
);
122 memcpy(&iinfo
->cached_extent
.epos
, pos
,
123 sizeof(struct extent_position
));
124 iinfo
->cached_extent
.lstart
= estart
;
126 switch (iinfo
->i_alloc_type
) {
127 case ICBTAG_FLAG_AD_SHORT
:
128 iinfo
->cached_extent
.epos
.offset
-=
129 sizeof(struct short_ad
);
131 case ICBTAG_FLAG_AD_LONG
:
132 iinfo
->cached_extent
.epos
.offset
-=
133 sizeof(struct long_ad
);
135 spin_unlock(&iinfo
->i_extent_cache_lock
);
138 void udf_evict_inode(struct inode
*inode
)
140 struct udf_inode_info
*iinfo
= UDF_I(inode
);
143 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
145 udf_setsize(inode
, 0);
146 udf_update_inode(inode
, IS_SYNC(inode
));
148 truncate_inode_pages_final(&inode
->i_data
);
149 invalidate_inode_buffers(inode
);
151 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
&&
152 inode
->i_size
!= iinfo
->i_lenExtents
) {
153 udf_warn(inode
->i_sb
, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154 inode
->i_ino
, inode
->i_mode
,
155 (unsigned long long)inode
->i_size
,
156 (unsigned long long)iinfo
->i_lenExtents
);
158 kfree(iinfo
->i_ext
.i_data
);
159 iinfo
->i_ext
.i_data
= NULL
;
160 udf_clear_extent_cache(inode
);
162 udf_free_inode(inode
);
166 static void udf_write_failed(struct address_space
*mapping
, loff_t to
)
168 struct inode
*inode
= mapping
->host
;
169 struct udf_inode_info
*iinfo
= UDF_I(inode
);
170 loff_t isize
= inode
->i_size
;
173 truncate_pagecache(inode
, isize
);
174 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
) {
175 down_write(&iinfo
->i_data_sem
);
176 udf_clear_extent_cache(inode
);
177 udf_truncate_extents(inode
);
178 up_write(&iinfo
->i_data_sem
);
183 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
185 return block_write_full_page(page
, udf_get_block
, wbc
);
188 static int udf_writepages(struct address_space
*mapping
,
189 struct writeback_control
*wbc
)
191 return mpage_writepages(mapping
, wbc
, udf_get_block
);
194 static int udf_readpage(struct file
*file
, struct page
*page
)
196 return mpage_readpage(page
, udf_get_block
);
199 static int udf_readpages(struct file
*file
, struct address_space
*mapping
,
200 struct list_head
*pages
, unsigned nr_pages
)
202 return mpage_readpages(mapping
, pages
, nr_pages
, udf_get_block
);
205 static int udf_write_begin(struct file
*file
, struct address_space
*mapping
,
206 loff_t pos
, unsigned len
, unsigned flags
,
207 struct page
**pagep
, void **fsdata
)
211 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
, udf_get_block
);
213 udf_write_failed(mapping
, pos
+ len
);
217 static ssize_t
udf_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
220 struct file
*file
= iocb
->ki_filp
;
221 struct address_space
*mapping
= file
->f_mapping
;
222 struct inode
*inode
= mapping
->host
;
223 size_t count
= iov_iter_count(iter
);
226 ret
= blockdev_direct_IO(iocb
, inode
, iter
, offset
, udf_get_block
);
227 if (unlikely(ret
< 0 && iov_iter_rw(iter
) == WRITE
))
228 udf_write_failed(mapping
, offset
+ count
);
232 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
234 return generic_block_bmap(mapping
, block
, udf_get_block
);
237 const struct address_space_operations udf_aops
= {
238 .readpage
= udf_readpage
,
239 .readpages
= udf_readpages
,
240 .writepage
= udf_writepage
,
241 .writepages
= udf_writepages
,
242 .write_begin
= udf_write_begin
,
243 .write_end
= generic_write_end
,
244 .direct_IO
= udf_direct_IO
,
249 * Expand file stored in ICB to a normal one-block-file
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
254 int udf_expand_file_adinicb(struct inode
*inode
)
258 struct udf_inode_info
*iinfo
= UDF_I(inode
);
260 struct writeback_control udf_wbc
= {
261 .sync_mode
= WB_SYNC_NONE
,
265 WARN_ON_ONCE(!mutex_is_locked(&inode
->i_mutex
));
266 if (!iinfo
->i_lenAlloc
) {
267 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
268 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
270 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
271 /* from now on we have normal address_space methods */
272 inode
->i_data
.a_ops
= &udf_aops
;
273 up_write(&iinfo
->i_data_sem
);
274 mark_inode_dirty(inode
);
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
281 up_write(&iinfo
->i_data_sem
);
283 page
= find_or_create_page(inode
->i_mapping
, 0, GFP_NOFS
);
287 if (!PageUptodate(page
)) {
289 memset(kaddr
+ iinfo
->i_lenAlloc
, 0x00,
290 PAGE_CACHE_SIZE
- iinfo
->i_lenAlloc
);
291 memcpy(kaddr
, iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
,
293 flush_dcache_page(page
);
294 SetPageUptodate(page
);
297 down_write(&iinfo
->i_data_sem
);
298 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0x00,
300 iinfo
->i_lenAlloc
= 0;
301 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
302 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
304 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
305 /* from now on we have normal address_space methods */
306 inode
->i_data
.a_ops
= &udf_aops
;
307 up_write(&iinfo
->i_data_sem
);
308 err
= inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
310 /* Restore everything back so that we don't lose data... */
313 down_write(&iinfo
->i_data_sem
);
314 memcpy(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, kaddr
,
318 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
319 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
320 up_write(&iinfo
->i_data_sem
);
322 page_cache_release(page
);
323 mark_inode_dirty(inode
);
328 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
332 struct buffer_head
*dbh
= NULL
;
333 struct kernel_lb_addr eloc
;
335 struct extent_position epos
;
337 struct udf_fileident_bh sfibh
, dfibh
;
338 loff_t f_pos
= udf_ext0_offset(inode
);
339 int size
= udf_ext0_offset(inode
) + inode
->i_size
;
340 struct fileIdentDesc cfi
, *sfi
, *dfi
;
341 struct udf_inode_info
*iinfo
= UDF_I(inode
);
343 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
344 alloctype
= ICBTAG_FLAG_AD_SHORT
;
346 alloctype
= ICBTAG_FLAG_AD_LONG
;
348 if (!inode
->i_size
) {
349 iinfo
->i_alloc_type
= alloctype
;
350 mark_inode_dirty(inode
);
354 /* alloc block, and copy data to it */
355 *block
= udf_new_block(inode
->i_sb
, inode
,
356 iinfo
->i_location
.partitionReferenceNum
,
357 iinfo
->i_location
.logicalBlockNum
, err
);
360 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
361 iinfo
->i_location
.partitionReferenceNum
,
365 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
369 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
370 set_buffer_uptodate(dbh
);
372 mark_buffer_dirty_inode(dbh
, inode
);
374 sfibh
.soffset
= sfibh
.eoffset
=
375 f_pos
& (inode
->i_sb
->s_blocksize
- 1);
376 sfibh
.sbh
= sfibh
.ebh
= NULL
;
377 dfibh
.soffset
= dfibh
.eoffset
= 0;
378 dfibh
.sbh
= dfibh
.ebh
= dbh
;
379 while (f_pos
< size
) {
380 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
381 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
,
387 iinfo
->i_alloc_type
= alloctype
;
388 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
389 dfibh
.soffset
= dfibh
.eoffset
;
390 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
391 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
392 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
394 le16_to_cpu(sfi
->lengthOfImpUse
))) {
395 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
400 mark_buffer_dirty_inode(dbh
, inode
);
402 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0,
404 iinfo
->i_lenAlloc
= 0;
405 eloc
.logicalBlockNum
= *block
;
406 eloc
.partitionReferenceNum
=
407 iinfo
->i_location
.partitionReferenceNum
;
408 iinfo
->i_lenExtents
= inode
->i_size
;
410 epos
.block
= iinfo
->i_location
;
411 epos
.offset
= udf_file_entry_alloc_offset(inode
);
412 udf_add_aext(inode
, &epos
, &eloc
, inode
->i_size
, 0);
416 mark_inode_dirty(inode
);
420 static int udf_get_block(struct inode
*inode
, sector_t block
,
421 struct buffer_head
*bh_result
, int create
)
425 struct udf_inode_info
*iinfo
;
428 phys
= udf_block_map(inode
, block
);
430 map_bh(bh_result
, inode
->i_sb
, phys
);
436 iinfo
= UDF_I(inode
);
438 down_write(&iinfo
->i_data_sem
);
439 if (block
== iinfo
->i_next_alloc_block
+ 1) {
440 iinfo
->i_next_alloc_block
++;
441 iinfo
->i_next_alloc_goal
++;
444 udf_clear_extent_cache(inode
);
445 phys
= inode_getblk(inode
, block
, &err
, &new);
450 set_buffer_new(bh_result
);
451 map_bh(bh_result
, inode
->i_sb
, phys
);
454 up_write(&iinfo
->i_data_sem
);
458 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
459 int create
, int *err
)
461 struct buffer_head
*bh
;
462 struct buffer_head dummy
;
465 dummy
.b_blocknr
= -1000;
466 *err
= udf_get_block(inode
, block
, &dummy
, create
);
467 if (!*err
&& buffer_mapped(&dummy
)) {
468 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
469 if (buffer_new(&dummy
)) {
471 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
472 set_buffer_uptodate(bh
);
474 mark_buffer_dirty_inode(bh
, inode
);
482 /* Extend the file by 'blocks' blocks, return the number of extents added */
483 static int udf_do_extend_file(struct inode
*inode
,
484 struct extent_position
*last_pos
,
485 struct kernel_long_ad
*last_ext
,
489 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
490 struct super_block
*sb
= inode
->i_sb
;
491 struct kernel_lb_addr prealloc_loc
= {};
492 int prealloc_len
= 0;
493 struct udf_inode_info
*iinfo
;
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
501 iinfo
= UDF_I(inode
);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
504 last_ext
->extLength
=
505 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
506 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
507 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
508 iinfo
->i_lenExtents
=
509 (iinfo
->i_lenExtents
+ sb
->s_blocksize
- 1) &
510 ~(sb
->s_blocksize
- 1);
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
515 EXT_NOT_RECORDED_ALLOCATED
) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc
= last_ext
->extLocation
;
518 prealloc_len
= last_ext
->extLength
;
519 /* Mark the extent as a hole */
520 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
521 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
522 last_ext
->extLocation
.logicalBlockNum
= 0;
523 last_ext
->extLocation
.partitionReferenceNum
= 0;
526 /* Can we merge with the previous extent? */
527 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED
) {
529 add
= ((1 << 30) - sb
->s_blocksize
-
530 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
)) >>
531 sb
->s_blocksize_bits
;
535 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
539 udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
540 last_ext
->extLength
, 1);
543 udf_write_aext(inode
, last_pos
, &last_ext
->extLocation
,
544 last_ext
->extLength
, 1);
546 /* Managed to do everything necessary? */
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext
->extLocation
.logicalBlockNum
= 0;
552 last_ext
->extLocation
.partitionReferenceNum
= 0;
553 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
554 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
555 (add
<< sb
->s_blocksize_bits
);
557 /* Create enough extents to cover the whole hole */
558 while (blocks
> add
) {
560 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
561 last_ext
->extLength
, 1);
567 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
568 (blocks
<< sb
->s_blocksize_bits
);
569 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
570 last_ext
->extLength
, 1);
577 /* Do we have some preallocated blocks saved? */
579 err
= udf_add_aext(inode
, last_pos
, &prealloc_loc
,
583 last_ext
->extLocation
= prealloc_loc
;
584 last_ext
->extLength
= prealloc_len
;
588 /* last_pos should point to the last written extent... */
589 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
590 last_pos
->offset
-= sizeof(struct short_ad
);
591 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
592 last_pos
->offset
-= sizeof(struct long_ad
);
599 static int udf_extend_file(struct inode
*inode
, loff_t newsize
)
602 struct extent_position epos
;
603 struct kernel_lb_addr eloc
;
606 struct super_block
*sb
= inode
->i_sb
;
607 sector_t first_block
= newsize
>> sb
->s_blocksize_bits
, offset
;
609 struct udf_inode_info
*iinfo
= UDF_I(inode
);
610 struct kernel_long_ad extent
;
613 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
614 adsize
= sizeof(struct short_ad
);
615 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
616 adsize
= sizeof(struct long_ad
);
620 etype
= inode_bmap(inode
, first_block
, &epos
, &eloc
, &elen
, &offset
);
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
626 if (newsize
& (sb
->s_blocksize
- 1))
628 /* Extended file just to the boundary of the last file block? */
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos
.bh
&& epos
.offset
== udf_file_entry_alloc_offset(inode
)) ||
634 (epos
.bh
&& epos
.offset
== sizeof(struct allocExtDesc
))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent
.extLocation
.logicalBlockNum
= 0;
638 extent
.extLocation
.partitionReferenceNum
= 0;
639 extent
.extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
641 epos
.offset
-= adsize
;
642 etype
= udf_next_aext(inode
, &epos
, &extent
.extLocation
,
643 &extent
.extLength
, 0);
644 extent
.extLength
|= etype
<< 30;
646 err
= udf_do_extend_file(inode
, &epos
, &extent
, offset
);
650 iinfo
->i_lenExtents
= newsize
;
656 static sector_t
inode_getblk(struct inode
*inode
, sector_t block
,
659 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
660 struct extent_position prev_epos
, cur_epos
, next_epos
;
661 int count
= 0, startnum
= 0, endnum
= 0;
662 uint32_t elen
= 0, tmpelen
;
663 struct kernel_lb_addr eloc
, tmpeloc
;
665 loff_t lbcount
= 0, b_off
= 0;
666 uint32_t newblocknum
, newblock
;
669 struct udf_inode_info
*iinfo
= UDF_I(inode
);
670 int goal
= 0, pgoal
= iinfo
->i_location
.logicalBlockNum
;
676 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
677 prev_epos
.block
= iinfo
->i_location
;
679 cur_epos
= next_epos
= prev_epos
;
680 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
686 if (prev_epos
.bh
!= cur_epos
.bh
) {
687 brelse(prev_epos
.bh
);
689 prev_epos
.bh
= cur_epos
.bh
;
691 if (cur_epos
.bh
!= next_epos
.bh
) {
693 get_bh(next_epos
.bh
);
694 cur_epos
.bh
= next_epos
.bh
;
699 prev_epos
.block
= cur_epos
.block
;
700 cur_epos
.block
= next_epos
.block
;
702 prev_epos
.offset
= cur_epos
.offset
;
703 cur_epos
.offset
= next_epos
.offset
;
705 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1);
711 laarr
[c
].extLength
= (etype
<< 30) | elen
;
712 laarr
[c
].extLocation
= eloc
;
714 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
715 pgoal
= eloc
.logicalBlockNum
+
716 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
717 inode
->i_sb
->s_blocksize_bits
);
720 } while (lbcount
+ elen
<= b_off
);
723 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
725 * Move prev_epos and cur_epos into indirect extent if we are at
728 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
729 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
734 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
735 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
736 elen
= EXT_RECORDED_ALLOCATED
|
737 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
738 ~(inode
->i_sb
->s_blocksize
- 1));
739 udf_write_aext(inode
, &cur_epos
, &eloc
, elen
, 1);
741 brelse(prev_epos
.bh
);
743 brelse(next_epos
.bh
);
744 newblock
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
748 /* Are we beyond EOF? */
757 /* Create a fake extent when there's not one */
758 memset(&laarr
[0].extLocation
, 0x00,
759 sizeof(struct kernel_lb_addr
));
760 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
761 /* Will udf_do_extend_file() create real extent from
763 startnum
= (offset
> 0);
765 /* Create extents for the hole between EOF and offset */
766 ret
= udf_do_extend_file(inode
, &prev_epos
, laarr
, offset
);
768 brelse(prev_epos
.bh
);
770 brelse(next_epos
.bh
);
777 /* We are not covered by a preallocated extent? */
778 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) !=
779 EXT_NOT_RECORDED_ALLOCATED
) {
780 /* Is there any real extent? - otherwise we overwrite
784 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
785 inode
->i_sb
->s_blocksize
;
786 memset(&laarr
[c
].extLocation
, 0x00,
787 sizeof(struct kernel_lb_addr
));
794 endnum
= startnum
= ((count
> 2) ? 2 : count
);
796 /* if the current extent is in position 0,
797 swap it with the previous */
798 if (!c
&& count
!= 1) {
805 /* if the current block is located in an extent,
806 read the next extent */
807 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0);
809 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
810 laarr
[c
+ 1].extLocation
= eloc
;
818 /* if the current extent is not recorded but allocated, get the
819 * block in the extent corresponding to the requested block */
820 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30))
821 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
822 else { /* otherwise, allocate a new block */
823 if (iinfo
->i_next_alloc_block
== block
)
824 goal
= iinfo
->i_next_alloc_goal
;
827 if (!(goal
= pgoal
)) /* XXX: what was intended here? */
828 goal
= iinfo
->i_location
.logicalBlockNum
+ 1;
831 newblocknum
= udf_new_block(inode
->i_sb
, inode
,
832 iinfo
->i_location
.partitionReferenceNum
,
835 brelse(prev_epos
.bh
);
837 brelse(next_epos
.bh
);
842 iinfo
->i_lenExtents
+= inode
->i_sb
->s_blocksize
;
845 /* if the extent the requsted block is located in contains multiple
846 * blocks, split the extent into at most three extents. blocks prior
847 * to requested block, requested block, and blocks after requested
849 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
851 #ifdef UDF_PREALLOCATE
852 /* We preallocate blocks only for regular files. It also makes sense
853 * for directories but there's a problem when to drop the
854 * preallocation. We might use some delayed work for that but I feel
855 * it's overengineering for a filesystem like UDF. */
856 if (S_ISREG(inode
->i_mode
))
857 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
860 /* merge any continuous blocks in laarr */
861 udf_merge_extents(inode
, laarr
, &endnum
);
863 /* write back the new extents, inserting new extents if the new number
864 * of extents is greater than the old number, and deleting extents if
865 * the new number of extents is less than the old number */
866 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
868 brelse(prev_epos
.bh
);
870 brelse(next_epos
.bh
);
872 newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
873 iinfo
->i_location
.partitionReferenceNum
, 0);
879 iinfo
->i_next_alloc_block
= block
;
880 iinfo
->i_next_alloc_goal
= newblocknum
;
881 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
884 udf_sync_inode(inode
);
886 mark_inode_dirty(inode
);
891 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
893 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
896 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
897 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
899 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
900 (laarr
[*c
].extLength
>> 30) ==
901 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
903 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
904 blocksize
- 1) >> blocksize_bits
;
905 int8_t etype
= (laarr
[curr
].extLength
>> 30);
909 else if (!offset
|| blen
== offset
+ 1) {
910 laarr
[curr
+ 2] = laarr
[curr
+ 1];
911 laarr
[curr
+ 1] = laarr
[curr
];
913 laarr
[curr
+ 3] = laarr
[curr
+ 1];
914 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
918 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
919 udf_free_blocks(inode
->i_sb
, inode
,
920 &laarr
[curr
].extLocation
,
922 laarr
[curr
].extLength
=
923 EXT_NOT_RECORDED_NOT_ALLOCATED
|
924 (offset
<< blocksize_bits
);
925 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
926 laarr
[curr
].extLocation
.
927 partitionReferenceNum
= 0;
929 laarr
[curr
].extLength
= (etype
<< 30) |
930 (offset
<< blocksize_bits
);
936 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
937 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
938 laarr
[curr
].extLocation
.partitionReferenceNum
=
939 UDF_I(inode
)->i_location
.partitionReferenceNum
;
940 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
944 if (blen
!= offset
+ 1) {
945 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
946 laarr
[curr
].extLocation
.logicalBlockNum
+=
948 laarr
[curr
].extLength
= (etype
<< 30) |
949 ((blen
- (offset
+ 1)) << blocksize_bits
);
956 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
957 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
960 int start
, length
= 0, currlength
= 0, i
;
962 if (*endnum
>= (c
+ 1)) {
968 if ((laarr
[c
+ 1].extLength
>> 30) ==
969 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
971 length
= currlength
=
972 (((laarr
[c
+ 1].extLength
&
973 UDF_EXTENT_LENGTH_MASK
) +
974 inode
->i_sb
->s_blocksize
- 1) >>
975 inode
->i_sb
->s_blocksize_bits
);
980 for (i
= start
+ 1; i
<= *endnum
; i
++) {
983 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
984 } else if ((laarr
[i
].extLength
>> 30) ==
985 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
986 length
+= (((laarr
[i
].extLength
&
987 UDF_EXTENT_LENGTH_MASK
) +
988 inode
->i_sb
->s_blocksize
- 1) >>
989 inode
->i_sb
->s_blocksize_bits
);
995 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
996 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
997 inode
->i_sb
->s_blocksize
- 1) >>
998 inode
->i_sb
->s_blocksize_bits
);
999 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
1000 laarr
[start
].extLocation
.partitionReferenceNum
,
1001 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
?
1002 length
: UDF_DEFAULT_PREALLOC_BLOCKS
) -
1005 if (start
== (c
+ 1))
1006 laarr
[start
].extLength
+=
1008 inode
->i_sb
->s_blocksize_bits
);
1010 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
1011 sizeof(struct long_ad
) * (*endnum
- (c
+ 1)));
1013 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
1014 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
1015 laarr
[c
].extLocation
.
1016 partitionReferenceNum
;
1017 laarr
[c
+ 1].extLength
=
1018 EXT_NOT_RECORDED_ALLOCATED
|
1020 inode
->i_sb
->s_blocksize_bits
);
1024 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
1025 int elen
= ((laarr
[i
].extLength
&
1026 UDF_EXTENT_LENGTH_MASK
) +
1027 inode
->i_sb
->s_blocksize
- 1) >>
1028 inode
->i_sb
->s_blocksize_bits
;
1030 if (elen
> numalloc
) {
1031 laarr
[i
].extLength
-=
1033 inode
->i_sb
->s_blocksize_bits
);
1037 if (*endnum
> (i
+ 1))
1040 sizeof(struct long_ad
) *
1041 (*endnum
- (i
+ 1)));
1046 UDF_I(inode
)->i_lenExtents
+=
1047 numalloc
<< inode
->i_sb
->s_blocksize_bits
;
1052 static void udf_merge_extents(struct inode
*inode
,
1053 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
1057 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
1058 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1060 for (i
= 0; i
< (*endnum
- 1); i
++) {
1061 struct kernel_long_ad
*li
/*l[i]*/ = &laarr
[i
];
1062 struct kernel_long_ad
*lip1
/*l[i plus 1]*/ = &laarr
[i
+ 1];
1064 if (((li
->extLength
>> 30) == (lip1
->extLength
>> 30)) &&
1065 (((li
->extLength
>> 30) ==
1066 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
1067 ((lip1
->extLocation
.logicalBlockNum
-
1068 li
->extLocation
.logicalBlockNum
) ==
1069 (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1070 blocksize
- 1) >> blocksize_bits
)))) {
1072 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1073 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1074 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
1075 lip1
->extLength
= (lip1
->extLength
-
1077 UDF_EXTENT_LENGTH_MASK
) +
1078 UDF_EXTENT_LENGTH_MASK
) &
1080 li
->extLength
= (li
->extLength
&
1081 UDF_EXTENT_FLAG_MASK
) +
1082 (UDF_EXTENT_LENGTH_MASK
+ 1) -
1084 lip1
->extLocation
.logicalBlockNum
=
1085 li
->extLocation
.logicalBlockNum
+
1087 UDF_EXTENT_LENGTH_MASK
) >>
1090 li
->extLength
= lip1
->extLength
+
1092 UDF_EXTENT_LENGTH_MASK
) +
1093 blocksize
- 1) & ~(blocksize
- 1));
1094 if (*endnum
> (i
+ 2))
1095 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
1096 sizeof(struct long_ad
) *
1097 (*endnum
- (i
+ 2)));
1101 } else if (((li
->extLength
>> 30) ==
1102 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
1103 ((lip1
->extLength
>> 30) ==
1104 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
1105 udf_free_blocks(inode
->i_sb
, inode
, &li
->extLocation
, 0,
1107 UDF_EXTENT_LENGTH_MASK
) +
1108 blocksize
- 1) >> blocksize_bits
);
1109 li
->extLocation
.logicalBlockNum
= 0;
1110 li
->extLocation
.partitionReferenceNum
= 0;
1112 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1113 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1114 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
1115 lip1
->extLength
= (lip1
->extLength
-
1117 UDF_EXTENT_LENGTH_MASK
) +
1118 UDF_EXTENT_LENGTH_MASK
) &
1120 li
->extLength
= (li
->extLength
&
1121 UDF_EXTENT_FLAG_MASK
) +
1122 (UDF_EXTENT_LENGTH_MASK
+ 1) -
1125 li
->extLength
= lip1
->extLength
+
1127 UDF_EXTENT_LENGTH_MASK
) +
1128 blocksize
- 1) & ~(blocksize
- 1));
1129 if (*endnum
> (i
+ 2))
1130 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
1131 sizeof(struct long_ad
) *
1132 (*endnum
- (i
+ 2)));
1136 } else if ((li
->extLength
>> 30) ==
1137 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
1138 udf_free_blocks(inode
->i_sb
, inode
,
1139 &li
->extLocation
, 0,
1141 UDF_EXTENT_LENGTH_MASK
) +
1142 blocksize
- 1) >> blocksize_bits
);
1143 li
->extLocation
.logicalBlockNum
= 0;
1144 li
->extLocation
.partitionReferenceNum
= 0;
1145 li
->extLength
= (li
->extLength
&
1146 UDF_EXTENT_LENGTH_MASK
) |
1147 EXT_NOT_RECORDED_NOT_ALLOCATED
;
1152 static void udf_update_extents(struct inode
*inode
,
1153 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
1154 int startnum
, int endnum
,
1155 struct extent_position
*epos
)
1158 struct kernel_lb_addr tmploc
;
1161 if (startnum
> endnum
) {
1162 for (i
= 0; i
< (startnum
- endnum
); i
++)
1163 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
1164 laarr
[i
].extLength
);
1165 } else if (startnum
< endnum
) {
1166 for (i
= 0; i
< (endnum
- startnum
); i
++) {
1167 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
1168 laarr
[i
].extLength
);
1169 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
1170 &laarr
[i
].extLength
, 1);
1175 for (i
= start
; i
< endnum
; i
++) {
1176 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
1177 udf_write_aext(inode
, epos
, &laarr
[i
].extLocation
,
1178 laarr
[i
].extLength
, 1);
1182 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
1183 int create
, int *err
)
1185 struct buffer_head
*bh
= NULL
;
1187 bh
= udf_getblk(inode
, block
, create
, err
);
1191 if (buffer_uptodate(bh
))
1194 ll_rw_block(READ
, 1, &bh
);
1197 if (buffer_uptodate(bh
))
1205 int udf_setsize(struct inode
*inode
, loff_t newsize
)
1208 struct udf_inode_info
*iinfo
;
1209 int bsize
= i_blocksize(inode
);
1211 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1212 S_ISLNK(inode
->i_mode
)))
1214 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1217 iinfo
= UDF_I(inode
);
1218 if (newsize
> inode
->i_size
) {
1219 down_write(&iinfo
->i_data_sem
);
1220 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1222 (udf_file_entry_alloc_offset(inode
) + newsize
)) {
1223 err
= udf_expand_file_adinicb(inode
);
1226 down_write(&iinfo
->i_data_sem
);
1228 iinfo
->i_lenAlloc
= newsize
;
1232 err
= udf_extend_file(inode
, newsize
);
1234 up_write(&iinfo
->i_data_sem
);
1238 up_write(&iinfo
->i_data_sem
);
1239 truncate_setsize(inode
, newsize
);
1241 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1242 down_write(&iinfo
->i_data_sem
);
1243 udf_clear_extent_cache(inode
);
1244 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
+ newsize
,
1245 0x00, bsize
- newsize
-
1246 udf_file_entry_alloc_offset(inode
));
1247 iinfo
->i_lenAlloc
= newsize
;
1248 truncate_setsize(inode
, newsize
);
1249 up_write(&iinfo
->i_data_sem
);
1252 err
= block_truncate_page(inode
->i_mapping
, newsize
,
1256 truncate_setsize(inode
, newsize
);
1257 down_write(&iinfo
->i_data_sem
);
1258 udf_clear_extent_cache(inode
);
1259 udf_truncate_extents(inode
);
1260 up_write(&iinfo
->i_data_sem
);
1263 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
1265 udf_sync_inode(inode
);
1267 mark_inode_dirty(inode
);
1272 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1273 * arbitrary - just that we hopefully don't limit any real use of rewritten
1274 * inode on write-once media but avoid looping for too long on corrupted media.
1276 #define UDF_MAX_ICB_NESTING 1024
1278 static int udf_read_inode(struct inode
*inode
, bool hidden_inode
)
1280 struct buffer_head
*bh
= NULL
;
1281 struct fileEntry
*fe
;
1282 struct extendedFileEntry
*efe
;
1284 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1285 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1286 struct kernel_lb_addr
*iloc
= &iinfo
->i_location
;
1287 unsigned int link_count
;
1288 unsigned int indirections
= 0;
1289 int bs
= inode
->i_sb
->s_blocksize
;
1293 if (iloc
->logicalBlockNum
>=
1294 sbi
->s_partmaps
[iloc
->partitionReferenceNum
].s_partition_len
) {
1295 udf_debug("block=%d, partition=%d out of range\n",
1296 iloc
->logicalBlockNum
, iloc
->partitionReferenceNum
);
1301 * Set defaults, but the inode is still incomplete!
1302 * Note: get_new_inode() sets the following on a new inode:
1305 * i_flags = sb->s_flags
1307 * clean_inode(): zero fills and sets
1312 bh
= udf_read_ptagged(inode
->i_sb
, iloc
, 0, &ident
);
1314 udf_err(inode
->i_sb
, "(ino %ld) failed !bh\n", inode
->i_ino
);
1318 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1319 ident
!= TAG_IDENT_USE
) {
1320 udf_err(inode
->i_sb
, "(ino %ld) failed ident=%d\n",
1321 inode
->i_ino
, ident
);
1325 fe
= (struct fileEntry
*)bh
->b_data
;
1326 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1328 if (fe
->icbTag
.strategyType
== cpu_to_le16(4096)) {
1329 struct buffer_head
*ibh
;
1331 ibh
= udf_read_ptagged(inode
->i_sb
, iloc
, 1, &ident
);
1332 if (ident
== TAG_IDENT_IE
&& ibh
) {
1333 struct kernel_lb_addr loc
;
1334 struct indirectEntry
*ie
;
1336 ie
= (struct indirectEntry
*)ibh
->b_data
;
1337 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1339 if (ie
->indirectICB
.extLength
) {
1341 memcpy(&iinfo
->i_location
, &loc
,
1342 sizeof(struct kernel_lb_addr
));
1343 if (++indirections
> UDF_MAX_ICB_NESTING
) {
1344 udf_err(inode
->i_sb
,
1345 "too many ICBs in ICB hierarchy"
1346 " (max %d supported)\n",
1347 UDF_MAX_ICB_NESTING
);
1355 } else if (fe
->icbTag
.strategyType
!= cpu_to_le16(4)) {
1356 udf_err(inode
->i_sb
, "unsupported strategy type: %d\n",
1357 le16_to_cpu(fe
->icbTag
.strategyType
));
1360 if (fe
->icbTag
.strategyType
== cpu_to_le16(4))
1361 iinfo
->i_strat4096
= 0;
1362 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1363 iinfo
->i_strat4096
= 1;
1365 iinfo
->i_alloc_type
= le16_to_cpu(fe
->icbTag
.flags
) &
1366 ICBTAG_FLAG_AD_MASK
;
1367 iinfo
->i_unique
= 0;
1368 iinfo
->i_lenEAttr
= 0;
1369 iinfo
->i_lenExtents
= 0;
1370 iinfo
->i_lenAlloc
= 0;
1371 iinfo
->i_next_alloc_block
= 0;
1372 iinfo
->i_next_alloc_goal
= 0;
1373 if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_EFE
)) {
1376 ret
= udf_alloc_i_data(inode
, bs
-
1377 sizeof(struct extendedFileEntry
));
1380 memcpy(iinfo
->i_ext
.i_data
,
1381 bh
->b_data
+ sizeof(struct extendedFileEntry
),
1382 bs
- sizeof(struct extendedFileEntry
));
1383 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_FE
)) {
1386 ret
= udf_alloc_i_data(inode
, bs
- sizeof(struct fileEntry
));
1389 memcpy(iinfo
->i_ext
.i_data
,
1390 bh
->b_data
+ sizeof(struct fileEntry
),
1391 bs
- sizeof(struct fileEntry
));
1392 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_USE
)) {
1395 iinfo
->i_lenAlloc
= le32_to_cpu(
1396 ((struct unallocSpaceEntry
*)bh
->b_data
)->
1398 ret
= udf_alloc_i_data(inode
, bs
-
1399 sizeof(struct unallocSpaceEntry
));
1402 memcpy(iinfo
->i_ext
.i_data
,
1403 bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1404 bs
- sizeof(struct unallocSpaceEntry
));
1409 read_lock(&sbi
->s_cred_lock
);
1410 i_uid_write(inode
, le32_to_cpu(fe
->uid
));
1411 if (!uid_valid(inode
->i_uid
) ||
1412 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_IGNORE
) ||
1413 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_SET
))
1414 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1416 i_gid_write(inode
, le32_to_cpu(fe
->gid
));
1417 if (!gid_valid(inode
->i_gid
) ||
1418 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_IGNORE
) ||
1419 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_SET
))
1420 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1422 if (fe
->icbTag
.fileType
!= ICBTAG_FILE_TYPE_DIRECTORY
&&
1423 sbi
->s_fmode
!= UDF_INVALID_MODE
)
1424 inode
->i_mode
= sbi
->s_fmode
;
1425 else if (fe
->icbTag
.fileType
== ICBTAG_FILE_TYPE_DIRECTORY
&&
1426 sbi
->s_dmode
!= UDF_INVALID_MODE
)
1427 inode
->i_mode
= sbi
->s_dmode
;
1429 inode
->i_mode
= udf_convert_permissions(fe
);
1430 inode
->i_mode
&= ~sbi
->s_umask
;
1431 read_unlock(&sbi
->s_cred_lock
);
1433 link_count
= le16_to_cpu(fe
->fileLinkCount
);
1435 if (!hidden_inode
) {
1441 set_nlink(inode
, link_count
);
1443 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1444 iinfo
->i_lenExtents
= inode
->i_size
;
1446 if (iinfo
->i_efe
== 0) {
1447 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1448 (inode
->i_sb
->s_blocksize_bits
- 9);
1450 if (!udf_disk_stamp_to_time(&inode
->i_atime
, fe
->accessTime
))
1451 inode
->i_atime
= sbi
->s_record_time
;
1453 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1454 fe
->modificationTime
))
1455 inode
->i_mtime
= sbi
->s_record_time
;
1457 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, fe
->attrTime
))
1458 inode
->i_ctime
= sbi
->s_record_time
;
1460 iinfo
->i_unique
= le64_to_cpu(fe
->uniqueID
);
1461 iinfo
->i_lenEAttr
= le32_to_cpu(fe
->lengthExtendedAttr
);
1462 iinfo
->i_lenAlloc
= le32_to_cpu(fe
->lengthAllocDescs
);
1463 iinfo
->i_checkpoint
= le32_to_cpu(fe
->checkpoint
);
1465 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1466 (inode
->i_sb
->s_blocksize_bits
- 9);
1468 if (!udf_disk_stamp_to_time(&inode
->i_atime
, efe
->accessTime
))
1469 inode
->i_atime
= sbi
->s_record_time
;
1471 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1472 efe
->modificationTime
))
1473 inode
->i_mtime
= sbi
->s_record_time
;
1475 if (!udf_disk_stamp_to_time(&iinfo
->i_crtime
, efe
->createTime
))
1476 iinfo
->i_crtime
= sbi
->s_record_time
;
1478 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, efe
->attrTime
))
1479 inode
->i_ctime
= sbi
->s_record_time
;
1481 iinfo
->i_unique
= le64_to_cpu(efe
->uniqueID
);
1482 iinfo
->i_lenEAttr
= le32_to_cpu(efe
->lengthExtendedAttr
);
1483 iinfo
->i_lenAlloc
= le32_to_cpu(efe
->lengthAllocDescs
);
1484 iinfo
->i_checkpoint
= le32_to_cpu(efe
->checkpoint
);
1486 inode
->i_generation
= iinfo
->i_unique
;
1489 * Sanity check length of allocation descriptors and extended attrs to
1490 * avoid integer overflows
1492 if (iinfo
->i_lenEAttr
> bs
|| iinfo
->i_lenAlloc
> bs
)
1494 /* Now do exact checks */
1495 if (udf_file_entry_alloc_offset(inode
) + iinfo
->i_lenAlloc
> bs
)
1497 /* Sanity checks for files in ICB so that we don't get confused later */
1498 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1500 * For file in ICB data is stored in allocation descriptor
1501 * so sizes should match
1503 if (iinfo
->i_lenAlloc
!= inode
->i_size
)
1505 /* File in ICB has to fit in there... */
1506 if (inode
->i_size
> bs
- udf_file_entry_alloc_offset(inode
))
1510 switch (fe
->icbTag
.fileType
) {
1511 case ICBTAG_FILE_TYPE_DIRECTORY
:
1512 inode
->i_op
= &udf_dir_inode_operations
;
1513 inode
->i_fop
= &udf_dir_operations
;
1514 inode
->i_mode
|= S_IFDIR
;
1517 case ICBTAG_FILE_TYPE_REALTIME
:
1518 case ICBTAG_FILE_TYPE_REGULAR
:
1519 case ICBTAG_FILE_TYPE_UNDEF
:
1520 case ICBTAG_FILE_TYPE_VAT20
:
1521 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
)
1522 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1524 inode
->i_data
.a_ops
= &udf_aops
;
1525 inode
->i_op
= &udf_file_inode_operations
;
1526 inode
->i_fop
= &udf_file_operations
;
1527 inode
->i_mode
|= S_IFREG
;
1529 case ICBTAG_FILE_TYPE_BLOCK
:
1530 inode
->i_mode
|= S_IFBLK
;
1532 case ICBTAG_FILE_TYPE_CHAR
:
1533 inode
->i_mode
|= S_IFCHR
;
1535 case ICBTAG_FILE_TYPE_FIFO
:
1536 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1538 case ICBTAG_FILE_TYPE_SOCKET
:
1539 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1541 case ICBTAG_FILE_TYPE_SYMLINK
:
1542 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1543 inode
->i_op
= &udf_symlink_inode_operations
;
1544 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1546 case ICBTAG_FILE_TYPE_MAIN
:
1547 udf_debug("METADATA FILE-----\n");
1549 case ICBTAG_FILE_TYPE_MIRROR
:
1550 udf_debug("METADATA MIRROR FILE-----\n");
1552 case ICBTAG_FILE_TYPE_BITMAP
:
1553 udf_debug("METADATA BITMAP FILE-----\n");
1556 udf_err(inode
->i_sb
, "(ino %ld) failed unknown file type=%d\n",
1557 inode
->i_ino
, fe
->icbTag
.fileType
);
1560 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1561 struct deviceSpec
*dsea
=
1562 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1564 init_special_inode(inode
, inode
->i_mode
,
1565 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1566 le32_to_cpu(dsea
->minorDeviceIdent
)));
1567 /* Developer ID ??? */
1577 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1579 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1580 iinfo
->i_ext
.i_data
= kmalloc(size
, GFP_KERNEL
);
1582 if (!iinfo
->i_ext
.i_data
) {
1583 udf_err(inode
->i_sb
, "(ino %ld) no free memory\n",
1591 static umode_t
udf_convert_permissions(struct fileEntry
*fe
)
1594 uint32_t permissions
;
1597 permissions
= le32_to_cpu(fe
->permissions
);
1598 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1600 mode
= ((permissions
) & S_IRWXO
) |
1601 ((permissions
>> 2) & S_IRWXG
) |
1602 ((permissions
>> 4) & S_IRWXU
) |
1603 ((flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1604 ((flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1605 ((flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1610 int udf_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1612 return udf_update_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1615 static int udf_sync_inode(struct inode
*inode
)
1617 return udf_update_inode(inode
, 1);
1620 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1622 struct buffer_head
*bh
= NULL
;
1623 struct fileEntry
*fe
;
1624 struct extendedFileEntry
*efe
;
1625 uint64_t lb_recorded
;
1630 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1631 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1632 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1634 bh
= udf_tgetblk(inode
->i_sb
,
1635 udf_get_lb_pblock(inode
->i_sb
, &iinfo
->i_location
, 0));
1637 udf_debug("getblk failure\n");
1642 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1643 fe
= (struct fileEntry
*)bh
->b_data
;
1644 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1647 struct unallocSpaceEntry
*use
=
1648 (struct unallocSpaceEntry
*)bh
->b_data
;
1650 use
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1651 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1652 iinfo
->i_ext
.i_data
, inode
->i_sb
->s_blocksize
-
1653 sizeof(struct unallocSpaceEntry
));
1654 use
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_USE
);
1655 crclen
= sizeof(struct unallocSpaceEntry
);
1660 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1661 fe
->uid
= cpu_to_le32(-1);
1663 fe
->uid
= cpu_to_le32(i_uid_read(inode
));
1665 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1666 fe
->gid
= cpu_to_le32(-1);
1668 fe
->gid
= cpu_to_le32(i_gid_read(inode
));
1670 udfperms
= ((inode
->i_mode
& S_IRWXO
)) |
1671 ((inode
->i_mode
& S_IRWXG
) << 2) |
1672 ((inode
->i_mode
& S_IRWXU
) << 4);
1674 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1675 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1676 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1677 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1678 fe
->permissions
= cpu_to_le32(udfperms
);
1680 if (S_ISDIR(inode
->i_mode
) && inode
->i_nlink
> 0)
1681 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1683 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1685 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1687 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1689 struct deviceSpec
*dsea
=
1690 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1692 dsea
= (struct deviceSpec
*)
1693 udf_add_extendedattr(inode
,
1694 sizeof(struct deviceSpec
) +
1695 sizeof(struct regid
), 12, 0x3);
1696 dsea
->attrType
= cpu_to_le32(12);
1697 dsea
->attrSubtype
= 1;
1698 dsea
->attrLength
= cpu_to_le32(
1699 sizeof(struct deviceSpec
) +
1700 sizeof(struct regid
));
1701 dsea
->impUseLength
= cpu_to_le32(sizeof(struct regid
));
1703 eid
= (struct regid
*)dsea
->impUse
;
1704 memset(eid
, 0, sizeof(struct regid
));
1705 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1706 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1707 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1708 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1709 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1712 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
)
1713 lb_recorded
= 0; /* No extents => no blocks! */
1716 (inode
->i_blocks
+ (1 << (blocksize_bits
- 9)) - 1) >>
1717 (blocksize_bits
- 9);
1719 if (iinfo
->i_efe
== 0) {
1720 memcpy(bh
->b_data
+ sizeof(struct fileEntry
),
1721 iinfo
->i_ext
.i_data
,
1722 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1723 fe
->logicalBlocksRecorded
= cpu_to_le64(lb_recorded
);
1725 udf_time_to_disk_stamp(&fe
->accessTime
, inode
->i_atime
);
1726 udf_time_to_disk_stamp(&fe
->modificationTime
, inode
->i_mtime
);
1727 udf_time_to_disk_stamp(&fe
->attrTime
, inode
->i_ctime
);
1728 memset(&(fe
->impIdent
), 0, sizeof(struct regid
));
1729 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1730 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1731 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1732 fe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1733 fe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1734 fe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1735 fe
->checkpoint
= cpu_to_le32(iinfo
->i_checkpoint
);
1736 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1737 crclen
= sizeof(struct fileEntry
);
1739 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
),
1740 iinfo
->i_ext
.i_data
,
1741 inode
->i_sb
->s_blocksize
-
1742 sizeof(struct extendedFileEntry
));
1743 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1744 efe
->logicalBlocksRecorded
= cpu_to_le64(lb_recorded
);
1746 if (iinfo
->i_crtime
.tv_sec
> inode
->i_atime
.tv_sec
||
1747 (iinfo
->i_crtime
.tv_sec
== inode
->i_atime
.tv_sec
&&
1748 iinfo
->i_crtime
.tv_nsec
> inode
->i_atime
.tv_nsec
))
1749 iinfo
->i_crtime
= inode
->i_atime
;
1751 if (iinfo
->i_crtime
.tv_sec
> inode
->i_mtime
.tv_sec
||
1752 (iinfo
->i_crtime
.tv_sec
== inode
->i_mtime
.tv_sec
&&
1753 iinfo
->i_crtime
.tv_nsec
> inode
->i_mtime
.tv_nsec
))
1754 iinfo
->i_crtime
= inode
->i_mtime
;
1756 if (iinfo
->i_crtime
.tv_sec
> inode
->i_ctime
.tv_sec
||
1757 (iinfo
->i_crtime
.tv_sec
== inode
->i_ctime
.tv_sec
&&
1758 iinfo
->i_crtime
.tv_nsec
> inode
->i_ctime
.tv_nsec
))
1759 iinfo
->i_crtime
= inode
->i_ctime
;
1761 udf_time_to_disk_stamp(&efe
->accessTime
, inode
->i_atime
);
1762 udf_time_to_disk_stamp(&efe
->modificationTime
, inode
->i_mtime
);
1763 udf_time_to_disk_stamp(&efe
->createTime
, iinfo
->i_crtime
);
1764 udf_time_to_disk_stamp(&efe
->attrTime
, inode
->i_ctime
);
1766 memset(&(efe
->impIdent
), 0, sizeof(struct regid
));
1767 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1768 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1769 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1770 efe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1771 efe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1772 efe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1773 efe
->checkpoint
= cpu_to_le32(iinfo
->i_checkpoint
);
1774 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1775 crclen
= sizeof(struct extendedFileEntry
);
1779 if (iinfo
->i_strat4096
) {
1780 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1781 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1782 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1784 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1785 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1789 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_USE
;
1790 else if (S_ISDIR(inode
->i_mode
))
1791 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1792 else if (S_ISREG(inode
->i_mode
))
1793 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1794 else if (S_ISLNK(inode
->i_mode
))
1795 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1796 else if (S_ISBLK(inode
->i_mode
))
1797 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1798 else if (S_ISCHR(inode
->i_mode
))
1799 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1800 else if (S_ISFIFO(inode
->i_mode
))
1801 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1802 else if (S_ISSOCK(inode
->i_mode
))
1803 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1805 icbflags
= iinfo
->i_alloc_type
|
1806 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1807 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1808 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1809 (le16_to_cpu(fe
->icbTag
.flags
) &
1810 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1811 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1813 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1814 if (sbi
->s_udfrev
>= 0x0200)
1815 fe
->descTag
.descVersion
= cpu_to_le16(3);
1817 fe
->descTag
.descVersion
= cpu_to_le16(2);
1818 fe
->descTag
.tagSerialNum
= cpu_to_le16(sbi
->s_serial_number
);
1819 fe
->descTag
.tagLocation
= cpu_to_le32(
1820 iinfo
->i_location
.logicalBlockNum
);
1821 crclen
+= iinfo
->i_lenEAttr
+ iinfo
->i_lenAlloc
- sizeof(struct tag
);
1822 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1823 fe
->descTag
.descCRC
= cpu_to_le16(crc_itu_t(0, (char *)fe
+ sizeof(struct tag
),
1825 fe
->descTag
.tagChecksum
= udf_tag_checksum(&fe
->descTag
);
1827 set_buffer_uptodate(bh
);
1830 /* write the data blocks */
1831 mark_buffer_dirty(bh
);
1833 sync_dirty_buffer(bh
);
1834 if (buffer_write_io_error(bh
)) {
1835 udf_warn(inode
->i_sb
, "IO error syncing udf inode [%08lx]\n",
1845 struct inode
*__udf_iget(struct super_block
*sb
, struct kernel_lb_addr
*ino
,
1848 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1849 struct inode
*inode
= iget_locked(sb
, block
);
1853 return ERR_PTR(-ENOMEM
);
1855 if (!(inode
->i_state
& I_NEW
))
1858 memcpy(&UDF_I(inode
)->i_location
, ino
, sizeof(struct kernel_lb_addr
));
1859 err
= udf_read_inode(inode
, hidden_inode
);
1862 return ERR_PTR(err
);
1864 unlock_new_inode(inode
);
1869 int udf_add_aext(struct inode
*inode
, struct extent_position
*epos
,
1870 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
1873 struct short_ad
*sad
= NULL
;
1874 struct long_ad
*lad
= NULL
;
1875 struct allocExtDesc
*aed
;
1877 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1880 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
1881 udf_file_entry_alloc_offset(inode
) +
1884 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1886 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
1887 adsize
= sizeof(struct short_ad
);
1888 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
1889 adsize
= sizeof(struct long_ad
);
1893 if (epos
->offset
+ (2 * adsize
) > inode
->i_sb
->s_blocksize
) {
1894 unsigned char *sptr
, *dptr
;
1895 struct buffer_head
*nbh
;
1897 struct kernel_lb_addr obloc
= epos
->block
;
1899 epos
->block
.logicalBlockNum
= udf_new_block(inode
->i_sb
, NULL
,
1900 obloc
.partitionReferenceNum
,
1901 obloc
.logicalBlockNum
, &err
);
1902 if (!epos
->block
.logicalBlockNum
)
1904 nbh
= udf_tgetblk(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
,
1910 memset(nbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1911 set_buffer_uptodate(nbh
);
1913 mark_buffer_dirty_inode(nbh
, inode
);
1915 aed
= (struct allocExtDesc
*)(nbh
->b_data
);
1916 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
))
1917 aed
->previousAllocExtLocation
=
1918 cpu_to_le32(obloc
.logicalBlockNum
);
1919 if (epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
) {
1920 loffset
= epos
->offset
;
1921 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
1922 sptr
= ptr
- adsize
;
1923 dptr
= nbh
->b_data
+ sizeof(struct allocExtDesc
);
1924 memcpy(dptr
, sptr
, adsize
);
1925 epos
->offset
= sizeof(struct allocExtDesc
) + adsize
;
1927 loffset
= epos
->offset
+ adsize
;
1928 aed
->lengthAllocDescs
= cpu_to_le32(0);
1930 epos
->offset
= sizeof(struct allocExtDesc
);
1933 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1934 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
1936 iinfo
->i_lenAlloc
+= adsize
;
1937 mark_inode_dirty(inode
);
1940 if (UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0200)
1941 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 3, 1,
1942 epos
->block
.logicalBlockNum
, sizeof(struct tag
));
1944 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 2, 1,
1945 epos
->block
.logicalBlockNum
, sizeof(struct tag
));
1946 switch (iinfo
->i_alloc_type
) {
1947 case ICBTAG_FLAG_AD_SHORT
:
1948 sad
= (struct short_ad
*)sptr
;
1949 sad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1950 inode
->i_sb
->s_blocksize
);
1952 cpu_to_le32(epos
->block
.logicalBlockNum
);
1954 case ICBTAG_FLAG_AD_LONG
:
1955 lad
= (struct long_ad
*)sptr
;
1956 lad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1957 inode
->i_sb
->s_blocksize
);
1958 lad
->extLocation
= cpu_to_lelb(epos
->block
);
1959 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1963 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1964 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
1965 udf_update_tag(epos
->bh
->b_data
, loffset
);
1967 udf_update_tag(epos
->bh
->b_data
,
1968 sizeof(struct allocExtDesc
));
1969 mark_buffer_dirty_inode(epos
->bh
, inode
);
1972 mark_inode_dirty(inode
);
1977 udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1980 iinfo
->i_lenAlloc
+= adsize
;
1981 mark_inode_dirty(inode
);
1983 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1984 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
1985 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1986 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
1987 udf_update_tag(epos
->bh
->b_data
,
1988 epos
->offset
+ (inc
? 0 : adsize
));
1990 udf_update_tag(epos
->bh
->b_data
,
1991 sizeof(struct allocExtDesc
));
1992 mark_buffer_dirty_inode(epos
->bh
, inode
);
1998 void udf_write_aext(struct inode
*inode
, struct extent_position
*epos
,
1999 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
2003 struct short_ad
*sad
;
2004 struct long_ad
*lad
;
2005 struct udf_inode_info
*iinfo
= UDF_I(inode
);
2008 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
2009 udf_file_entry_alloc_offset(inode
) +
2012 ptr
= epos
->bh
->b_data
+ epos
->offset
;
2014 switch (iinfo
->i_alloc_type
) {
2015 case ICBTAG_FLAG_AD_SHORT
:
2016 sad
= (struct short_ad
*)ptr
;
2017 sad
->extLength
= cpu_to_le32(elen
);
2018 sad
->extPosition
= cpu_to_le32(eloc
->logicalBlockNum
);
2019 adsize
= sizeof(struct short_ad
);
2021 case ICBTAG_FLAG_AD_LONG
:
2022 lad
= (struct long_ad
*)ptr
;
2023 lad
->extLength
= cpu_to_le32(elen
);
2024 lad
->extLocation
= cpu_to_lelb(*eloc
);
2025 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
2026 adsize
= sizeof(struct long_ad
);
2033 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2034 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201) {
2035 struct allocExtDesc
*aed
=
2036 (struct allocExtDesc
*)epos
->bh
->b_data
;
2037 udf_update_tag(epos
->bh
->b_data
,
2038 le32_to_cpu(aed
->lengthAllocDescs
) +
2039 sizeof(struct allocExtDesc
));
2041 mark_buffer_dirty_inode(epos
->bh
, inode
);
2043 mark_inode_dirty(inode
);
2047 epos
->offset
+= adsize
;
2051 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2052 * someone does some weird stuff.
2054 #define UDF_MAX_INDIR_EXTS 16
2056 int8_t udf_next_aext(struct inode
*inode
, struct extent_position
*epos
,
2057 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
2060 unsigned int indirections
= 0;
2062 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
2063 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
2066 if (++indirections
> UDF_MAX_INDIR_EXTS
) {
2067 udf_err(inode
->i_sb
,
2068 "too many indirect extents in inode %lu\n",
2073 epos
->block
= *eloc
;
2074 epos
->offset
= sizeof(struct allocExtDesc
);
2076 block
= udf_get_lb_pblock(inode
->i_sb
, &epos
->block
, 0);
2077 epos
->bh
= udf_tread(inode
->i_sb
, block
);
2079 udf_debug("reading block %d failed!\n", block
);
2087 int8_t udf_current_aext(struct inode
*inode
, struct extent_position
*epos
,
2088 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
2093 struct short_ad
*sad
;
2094 struct long_ad
*lad
;
2095 struct udf_inode_info
*iinfo
= UDF_I(inode
);
2099 epos
->offset
= udf_file_entry_alloc_offset(inode
);
2100 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
2101 udf_file_entry_alloc_offset(inode
) +
2103 alen
= udf_file_entry_alloc_offset(inode
) +
2107 epos
->offset
= sizeof(struct allocExtDesc
);
2108 ptr
= epos
->bh
->b_data
+ epos
->offset
;
2109 alen
= sizeof(struct allocExtDesc
) +
2110 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->
2114 switch (iinfo
->i_alloc_type
) {
2115 case ICBTAG_FLAG_AD_SHORT
:
2116 sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
);
2119 etype
= le32_to_cpu(sad
->extLength
) >> 30;
2120 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
2121 eloc
->partitionReferenceNum
=
2122 iinfo
->i_location
.partitionReferenceNum
;
2123 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
2125 case ICBTAG_FLAG_AD_LONG
:
2126 lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
);
2129 etype
= le32_to_cpu(lad
->extLength
) >> 30;
2130 *eloc
= lelb_to_cpu(lad
->extLocation
);
2131 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
2134 udf_debug("alloc_type = %d unsupported\n", iinfo
->i_alloc_type
);
2141 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
2142 struct kernel_lb_addr neloc
, uint32_t nelen
)
2144 struct kernel_lb_addr oeloc
;
2151 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
2152 udf_write_aext(inode
, &epos
, &neloc
, nelen
, 1);
2154 nelen
= (etype
<< 30) | oelen
;
2156 udf_add_aext(inode
, &epos
, &neloc
, nelen
, 1);
2159 return (nelen
>> 30);
2162 int8_t udf_delete_aext(struct inode
*inode
, struct extent_position epos
,
2163 struct kernel_lb_addr eloc
, uint32_t elen
)
2165 struct extent_position oepos
;
2168 struct allocExtDesc
*aed
;
2169 struct udf_inode_info
*iinfo
;
2176 iinfo
= UDF_I(inode
);
2177 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
2178 adsize
= sizeof(struct short_ad
);
2179 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
2180 adsize
= sizeof(struct long_ad
);
2185 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
2188 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
2189 udf_write_aext(inode
, &oepos
, &eloc
, (etype
<< 30) | elen
, 1);
2190 if (oepos
.bh
!= epos
.bh
) {
2191 oepos
.block
= epos
.block
;
2195 oepos
.offset
= epos
.offset
- adsize
;
2198 memset(&eloc
, 0x00, sizeof(struct kernel_lb_addr
));
2201 if (epos
.bh
!= oepos
.bh
) {
2202 udf_free_blocks(inode
->i_sb
, inode
, &epos
.block
, 0, 1);
2203 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2204 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2206 iinfo
->i_lenAlloc
-= (adsize
* 2);
2207 mark_inode_dirty(inode
);
2209 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2210 le32_add_cpu(&aed
->lengthAllocDescs
, -(2 * adsize
));
2211 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2212 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2213 udf_update_tag(oepos
.bh
->b_data
,
2214 oepos
.offset
- (2 * adsize
));
2216 udf_update_tag(oepos
.bh
->b_data
,
2217 sizeof(struct allocExtDesc
));
2218 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2221 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2223 iinfo
->i_lenAlloc
-= adsize
;
2224 mark_inode_dirty(inode
);
2226 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2227 le32_add_cpu(&aed
->lengthAllocDescs
, -adsize
);
2228 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2229 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2230 udf_update_tag(oepos
.bh
->b_data
,
2231 epos
.offset
- adsize
);
2233 udf_update_tag(oepos
.bh
->b_data
,
2234 sizeof(struct allocExtDesc
));
2235 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2242 return (elen
>> 30);
2245 int8_t inode_bmap(struct inode
*inode
, sector_t block
,
2246 struct extent_position
*pos
, struct kernel_lb_addr
*eloc
,
2247 uint32_t *elen
, sector_t
*offset
)
2249 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
2250 loff_t lbcount
= 0, bcount
=
2251 (loff_t
) block
<< blocksize_bits
;
2253 struct udf_inode_info
*iinfo
;
2255 iinfo
= UDF_I(inode
);
2256 if (!udf_read_extent_cache(inode
, bcount
, &lbcount
, pos
)) {
2258 pos
->block
= iinfo
->i_location
;
2263 etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1);
2265 *offset
= (bcount
- lbcount
) >> blocksize_bits
;
2266 iinfo
->i_lenExtents
= lbcount
;
2270 } while (lbcount
<= bcount
);
2271 /* update extent cache */
2272 udf_update_extent_cache(inode
, lbcount
- *elen
, pos
, 1);
2273 *offset
= (bcount
+ *elen
- lbcount
) >> blocksize_bits
;
2278 long udf_block_map(struct inode
*inode
, sector_t block
)
2280 struct kernel_lb_addr eloc
;
2283 struct extent_position epos
= {};
2286 down_read(&UDF_I(inode
)->i_data_sem
);
2288 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) ==
2289 (EXT_RECORDED_ALLOCATED
>> 30))
2290 ret
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
2294 up_read(&UDF_I(inode
)->i_data_sem
);
2297 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
2298 return udf_fixed_to_variable(ret
);