2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded
;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list
);
90 EXPORT_SYMBOL_GPL (usb_bus_list
);
92 /* used when allocating bus numbers */
95 unsigned long busmap
[USB_MAXBUS
/ (8*sizeof (unsigned long))];
97 static struct usb_busmap busmap
;
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
115 static inline int is_root_hub(struct usb_device
*udev
)
117 return (udev
->parent
== NULL
);
120 /*-------------------------------------------------------------------------*/
123 * Sharable chunks of root hub code.
126 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor
[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
144 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* usb 2.0 root hub device descriptor */
153 static const u8 usb2_rh_dev_descriptor
[18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
173 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
175 /* usb 1.1 root hub device descriptor */
176 static const u8 usb11_rh_dev_descriptor
[18] = {
177 0x12, /* __u8 bLength; */
178 0x01, /* __u8 bDescriptorType; Device */
179 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
181 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
182 0x00, /* __u8 bDeviceSubClass; */
183 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
184 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
186 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
187 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
188 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
190 0x03, /* __u8 iManufacturer; */
191 0x02, /* __u8 iProduct; */
192 0x01, /* __u8 iSerialNumber; */
193 0x01 /* __u8 bNumConfigurations; */
197 /*-------------------------------------------------------------------------*/
199 /* Configuration descriptors for our root hubs */
201 static const u8 fs_rh_config_descriptor
[] = {
203 /* one configuration */
204 0x09, /* __u8 bLength; */
205 0x02, /* __u8 bDescriptorType; Configuration */
206 0x19, 0x00, /* __le16 wTotalLength; */
207 0x01, /* __u8 bNumInterfaces; (1) */
208 0x01, /* __u8 bConfigurationValue; */
209 0x00, /* __u8 iConfiguration; */
210 0xc0, /* __u8 bmAttributes;
215 0x00, /* __u8 MaxPower; */
218 * USB 2.0, single TT organization (mandatory):
219 * one interface, protocol 0
221 * USB 2.0, multiple TT organization (optional):
222 * two interfaces, protocols 1 (like single TT)
223 * and 2 (multiple TT mode) ... config is
229 0x09, /* __u8 if_bLength; */
230 0x04, /* __u8 if_bDescriptorType; Interface */
231 0x00, /* __u8 if_bInterfaceNumber; */
232 0x00, /* __u8 if_bAlternateSetting; */
233 0x01, /* __u8 if_bNumEndpoints; */
234 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
235 0x00, /* __u8 if_bInterfaceSubClass; */
236 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
237 0x00, /* __u8 if_iInterface; */
239 /* one endpoint (status change endpoint) */
240 0x07, /* __u8 ep_bLength; */
241 0x05, /* __u8 ep_bDescriptorType; Endpoint */
242 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
243 0x03, /* __u8 ep_bmAttributes; Interrupt */
244 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
245 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
248 static const u8 hs_rh_config_descriptor
[] = {
250 /* one configuration */
251 0x09, /* __u8 bLength; */
252 0x02, /* __u8 bDescriptorType; Configuration */
253 0x19, 0x00, /* __le16 wTotalLength; */
254 0x01, /* __u8 bNumInterfaces; (1) */
255 0x01, /* __u8 bConfigurationValue; */
256 0x00, /* __u8 iConfiguration; */
257 0xc0, /* __u8 bmAttributes;
262 0x00, /* __u8 MaxPower; */
265 * USB 2.0, single TT organization (mandatory):
266 * one interface, protocol 0
268 * USB 2.0, multiple TT organization (optional):
269 * two interfaces, protocols 1 (like single TT)
270 * and 2 (multiple TT mode) ... config is
276 0x09, /* __u8 if_bLength; */
277 0x04, /* __u8 if_bDescriptorType; Interface */
278 0x00, /* __u8 if_bInterfaceNumber; */
279 0x00, /* __u8 if_bAlternateSetting; */
280 0x01, /* __u8 if_bNumEndpoints; */
281 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
282 0x00, /* __u8 if_bInterfaceSubClass; */
283 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
284 0x00, /* __u8 if_iInterface; */
286 /* one endpoint (status change endpoint) */
287 0x07, /* __u8 ep_bLength; */
288 0x05, /* __u8 ep_bDescriptorType; Endpoint */
289 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
290 0x03, /* __u8 ep_bmAttributes; Interrupt */
291 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
292 * see hub.c:hub_configure() for details. */
293 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
294 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
297 static const u8 ss_rh_config_descriptor
[] = {
298 /* one configuration */
299 0x09, /* __u8 bLength; */
300 0x02, /* __u8 bDescriptorType; Configuration */
301 0x19, 0x00, /* __le16 wTotalLength; FIXME */
302 0x01, /* __u8 bNumInterfaces; (1) */
303 0x01, /* __u8 bConfigurationValue; */
304 0x00, /* __u8 iConfiguration; */
305 0xc0, /* __u8 bmAttributes;
310 0x00, /* __u8 MaxPower; */
313 0x09, /* __u8 if_bLength; */
314 0x04, /* __u8 if_bDescriptorType; Interface */
315 0x00, /* __u8 if_bInterfaceNumber; */
316 0x00, /* __u8 if_bAlternateSetting; */
317 0x01, /* __u8 if_bNumEndpoints; */
318 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
319 0x00, /* __u8 if_bInterfaceSubClass; */
320 0x00, /* __u8 if_bInterfaceProtocol; */
321 0x00, /* __u8 if_iInterface; */
323 /* one endpoint (status change endpoint) */
324 0x07, /* __u8 ep_bLength; */
325 0x05, /* __u8 ep_bDescriptorType; Endpoint */
326 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
327 0x03, /* __u8 ep_bmAttributes; Interrupt */
328 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
329 * see hub.c:hub_configure() for details. */
330 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
331 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
333 * All 3.0 hubs should have an endpoint companion descriptor,
334 * but we're ignoring that for now. FIXME?
338 /*-------------------------------------------------------------------------*/
341 * helper routine for returning string descriptors in UTF-16LE
342 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
344 static unsigned ascii2utf(char *s
, u8
*utf
, int utfmax
)
348 for (retval
= 0; *s
&& utfmax
> 1; utfmax
-= 2, retval
+= 2) {
360 * rh_string - provides manufacturer, product and serial strings for root hub
361 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
362 * @hcd: the host controller for this root hub
363 * @data: return packet in UTF-16 LE
364 * @len: length of the return packet
366 * Produces either a manufacturer, product or serial number string for the
367 * virtual root hub device.
369 static unsigned rh_string(int id
, struct usb_hcd
*hcd
, u8
*data
, unsigned len
)
375 buf
[0] = 4; buf
[1] = 3; /* 4 bytes string data */
376 buf
[2] = 0x09; buf
[3] = 0x04; /* MSFT-speak for "en-us" */
377 len
= min_t(unsigned, len
, 4);
378 memcpy (data
, buf
, len
);
382 } else if (id
== 1) {
383 strlcpy (buf
, hcd
->self
.bus_name
, sizeof buf
);
385 // product description
386 } else if (id
== 2) {
387 strlcpy (buf
, hcd
->product_desc
, sizeof buf
);
389 // id 3 == vendor description
390 } else if (id
== 3) {
391 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
392 init_utsname()->release
, hcd
->driver
->description
);
395 switch (len
) { /* All cases fall through */
397 len
= 2 + ascii2utf (buf
, data
+ 2, len
- 2);
399 data
[1] = 3; /* type == string */
401 data
[0] = 2 * (strlen (buf
) + 1);
403 ; /* Compiler wants a statement here */
409 /* Root hub control transfers execute synchronously */
410 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
412 struct usb_ctrlrequest
*cmd
;
413 u16 typeReq
, wValue
, wIndex
, wLength
;
414 u8
*ubuf
= urb
->transfer_buffer
;
415 u8 tbuf
[sizeof (struct usb_hub_descriptor
)]
416 __attribute__((aligned(4)));
417 const u8
*bufp
= tbuf
;
421 u8 patch_protocol
= 0;
425 spin_lock_irq(&hcd_root_hub_lock
);
426 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
427 spin_unlock_irq(&hcd_root_hub_lock
);
430 urb
->hcpriv
= hcd
; /* Indicate it's queued */
432 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
433 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
434 wValue
= le16_to_cpu (cmd
->wValue
);
435 wIndex
= le16_to_cpu (cmd
->wIndex
);
436 wLength
= le16_to_cpu (cmd
->wLength
);
438 if (wLength
> urb
->transfer_buffer_length
)
441 urb
->actual_length
= 0;
444 /* DEVICE REQUESTS */
446 /* The root hub's remote wakeup enable bit is implemented using
447 * driver model wakeup flags. If this system supports wakeup
448 * through USB, userspace may change the default "allow wakeup"
449 * policy through sysfs or these calls.
451 * Most root hubs support wakeup from downstream devices, for
452 * runtime power management (disabling USB clocks and reducing
453 * VBUS power usage). However, not all of them do so; silicon,
454 * board, and BIOS bugs here are not uncommon, so these can't
455 * be treated quite like external hubs.
457 * Likewise, not all root hubs will pass wakeup events upstream,
458 * to wake up the whole system. So don't assume root hub and
459 * controller capabilities are identical.
462 case DeviceRequest
| USB_REQ_GET_STATUS
:
463 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
464 << USB_DEVICE_REMOTE_WAKEUP
)
465 | (1 << USB_DEVICE_SELF_POWERED
);
469 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
470 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
471 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
475 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
476 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
477 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
478 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
482 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
486 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
488 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
489 switch (wValue
& 0xff00) {
490 case USB_DT_DEVICE
<< 8:
491 switch (hcd
->driver
->flags
& HCD_MASK
) {
493 bufp
= usb3_rh_dev_descriptor
;
496 bufp
= usb2_rh_dev_descriptor
;
499 bufp
= usb11_rh_dev_descriptor
;
508 case USB_DT_CONFIG
<< 8:
509 switch (hcd
->driver
->flags
& HCD_MASK
) {
511 bufp
= ss_rh_config_descriptor
;
512 len
= sizeof ss_rh_config_descriptor
;
515 bufp
= hs_rh_config_descriptor
;
516 len
= sizeof hs_rh_config_descriptor
;
519 bufp
= fs_rh_config_descriptor
;
520 len
= sizeof fs_rh_config_descriptor
;
525 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
528 case USB_DT_STRING
<< 8:
529 if ((wValue
& 0xff) < 4)
530 urb
->actual_length
= rh_string(wValue
& 0xff,
532 else /* unsupported IDs --> "protocol stall" */
539 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
543 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
545 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
546 // wValue == urb->dev->devaddr
547 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
551 /* INTERFACE REQUESTS (no defined feature/status flags) */
553 /* ENDPOINT REQUESTS */
555 case EndpointRequest
| USB_REQ_GET_STATUS
:
556 // ENDPOINT_HALT flag
561 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
562 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
563 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
566 /* CLASS REQUESTS (and errors) */
569 /* non-generic request */
575 case GetHubDescriptor
:
576 len
= sizeof (struct usb_hub_descriptor
);
579 status
= hcd
->driver
->hub_control (hcd
,
580 typeReq
, wValue
, wIndex
,
584 /* "protocol stall" on error */
590 if (status
!= -EPIPE
) {
591 dev_dbg (hcd
->self
.controller
,
592 "CTRL: TypeReq=0x%x val=0x%x "
593 "idx=0x%x len=%d ==> %d\n",
594 typeReq
, wValue
, wIndex
,
599 if (urb
->transfer_buffer_length
< len
)
600 len
= urb
->transfer_buffer_length
;
601 urb
->actual_length
= len
;
602 // always USB_DIR_IN, toward host
603 memcpy (ubuf
, bufp
, len
);
605 /* report whether RH hardware supports remote wakeup */
607 len
> offsetof (struct usb_config_descriptor
,
609 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
610 |= USB_CONFIG_ATT_WAKEUP
;
612 /* report whether RH hardware has an integrated TT */
613 if (patch_protocol
&&
614 len
> offsetof(struct usb_device_descriptor
,
616 ((struct usb_device_descriptor
*) ubuf
)->
620 /* any errors get returned through the urb completion */
621 spin_lock_irq(&hcd_root_hub_lock
);
622 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
624 /* This peculiar use of spinlocks echoes what real HC drivers do.
625 * Avoiding calls to local_irq_disable/enable makes the code
628 spin_unlock(&hcd_root_hub_lock
);
629 usb_hcd_giveback_urb(hcd
, urb
, status
);
630 spin_lock(&hcd_root_hub_lock
);
632 spin_unlock_irq(&hcd_root_hub_lock
);
636 /*-------------------------------------------------------------------------*/
639 * Root Hub interrupt transfers are polled using a timer if the
640 * driver requests it; otherwise the driver is responsible for
641 * calling usb_hcd_poll_rh_status() when an event occurs.
643 * Completions are called in_interrupt(), but they may or may not
646 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
651 char buffer
[6]; /* Any root hubs with > 31 ports? */
653 if (unlikely(!hcd
->rh_registered
))
655 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
658 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
661 /* try to complete the status urb */
662 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
663 urb
= hcd
->status_urb
;
665 hcd
->poll_pending
= 0;
666 hcd
->status_urb
= NULL
;
667 urb
->actual_length
= length
;
668 memcpy(urb
->transfer_buffer
, buffer
, length
);
670 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
671 spin_unlock(&hcd_root_hub_lock
);
672 usb_hcd_giveback_urb(hcd
, urb
, 0);
673 spin_lock(&hcd_root_hub_lock
);
676 hcd
->poll_pending
= 1;
678 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
681 /* The USB 2.0 spec says 256 ms. This is close enough and won't
682 * exceed that limit if HZ is 100. The math is more clunky than
683 * maybe expected, this is to make sure that all timers for USB devices
684 * fire at the same time to give the CPU a break inbetween */
685 if (hcd
->uses_new_polling
? hcd
->poll_rh
:
686 (length
== 0 && hcd
->status_urb
!= NULL
))
687 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
689 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
692 static void rh_timer_func (unsigned long _hcd
)
694 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
697 /*-------------------------------------------------------------------------*/
699 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
703 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
705 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
706 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
707 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
712 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
716 hcd
->status_urb
= urb
;
717 urb
->hcpriv
= hcd
; /* indicate it's queued */
718 if (!hcd
->uses_new_polling
)
719 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
721 /* If a status change has already occurred, report it ASAP */
722 else if (hcd
->poll_pending
)
723 mod_timer(&hcd
->rh_timer
, jiffies
);
726 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
730 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
732 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
733 return rh_queue_status (hcd
, urb
);
734 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
735 return rh_call_control (hcd
, urb
);
739 /*-------------------------------------------------------------------------*/
741 /* Unlinks of root-hub control URBs are legal, but they don't do anything
742 * since these URBs always execute synchronously.
744 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
749 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
750 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
754 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
757 } else { /* Status URB */
758 if (!hcd
->uses_new_polling
)
759 del_timer (&hcd
->rh_timer
);
760 if (urb
== hcd
->status_urb
) {
761 hcd
->status_urb
= NULL
;
762 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
764 spin_unlock(&hcd_root_hub_lock
);
765 usb_hcd_giveback_urb(hcd
, urb
, status
);
766 spin_lock(&hcd_root_hub_lock
);
770 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
777 * Show & store the current value of authorized_default
779 static ssize_t
usb_host_authorized_default_show(struct device
*dev
,
780 struct device_attribute
*attr
,
783 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
784 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
785 struct usb_hcd
*usb_hcd
;
787 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
789 usb_hcd
= bus_to_hcd(usb_bus
);
790 return snprintf(buf
, PAGE_SIZE
, "%u\n", usb_hcd
->authorized_default
);
793 static ssize_t
usb_host_authorized_default_store(struct device
*dev
,
794 struct device_attribute
*attr
,
795 const char *buf
, size_t size
)
799 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
800 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
801 struct usb_hcd
*usb_hcd
;
803 if (usb_bus
== NULL
) /* FIXME: not sure if this case is possible */
805 usb_hcd
= bus_to_hcd(usb_bus
);
806 result
= sscanf(buf
, "%u\n", &val
);
808 usb_hcd
->authorized_default
= val
? 1 : 0;
816 static DEVICE_ATTR(authorized_default
, 0644,
817 usb_host_authorized_default_show
,
818 usb_host_authorized_default_store
);
821 /* Group all the USB bus attributes */
822 static struct attribute
*usb_bus_attrs
[] = {
823 &dev_attr_authorized_default
.attr
,
827 static struct attribute_group usb_bus_attr_group
= {
828 .name
= NULL
, /* we want them in the same directory */
829 .attrs
= usb_bus_attrs
,
834 /*-------------------------------------------------------------------------*/
837 * usb_bus_init - shared initialization code
838 * @bus: the bus structure being initialized
840 * This code is used to initialize a usb_bus structure, memory for which is
841 * separately managed.
843 static void usb_bus_init (struct usb_bus
*bus
)
845 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
847 bus
->devnum_next
= 1;
849 bus
->root_hub
= NULL
;
851 bus
->bandwidth_allocated
= 0;
852 bus
->bandwidth_int_reqs
= 0;
853 bus
->bandwidth_isoc_reqs
= 0;
855 INIT_LIST_HEAD (&bus
->bus_list
);
858 /*-------------------------------------------------------------------------*/
861 * usb_register_bus - registers the USB host controller with the usb core
862 * @bus: pointer to the bus to register
863 * Context: !in_interrupt()
865 * Assigns a bus number, and links the controller into usbcore data
866 * structures so that it can be seen by scanning the bus list.
868 static int usb_register_bus(struct usb_bus
*bus
)
873 mutex_lock(&usb_bus_list_lock
);
874 busnum
= find_next_zero_bit (busmap
.busmap
, USB_MAXBUS
, 1);
875 if (busnum
>= USB_MAXBUS
) {
876 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
877 goto error_find_busnum
;
879 set_bit (busnum
, busmap
.busmap
);
880 bus
->busnum
= busnum
;
882 /* Add it to the local list of buses */
883 list_add (&bus
->bus_list
, &usb_bus_list
);
884 mutex_unlock(&usb_bus_list_lock
);
886 usb_notify_add_bus(bus
);
888 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
889 "number %d\n", bus
->busnum
);
893 mutex_unlock(&usb_bus_list_lock
);
898 * usb_deregister_bus - deregisters the USB host controller
899 * @bus: pointer to the bus to deregister
900 * Context: !in_interrupt()
902 * Recycles the bus number, and unlinks the controller from usbcore data
903 * structures so that it won't be seen by scanning the bus list.
905 static void usb_deregister_bus (struct usb_bus
*bus
)
907 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
910 * NOTE: make sure that all the devices are removed by the
911 * controller code, as well as having it call this when cleaning
914 mutex_lock(&usb_bus_list_lock
);
915 list_del (&bus
->bus_list
);
916 mutex_unlock(&usb_bus_list_lock
);
918 usb_notify_remove_bus(bus
);
920 clear_bit (bus
->busnum
, busmap
.busmap
);
924 * register_root_hub - called by usb_add_hcd() to register a root hub
925 * @hcd: host controller for this root hub
927 * This function registers the root hub with the USB subsystem. It sets up
928 * the device properly in the device tree and then calls usb_new_device()
929 * to register the usb device. It also assigns the root hub's USB address
932 static int register_root_hub(struct usb_hcd
*hcd
)
934 struct device
*parent_dev
= hcd
->self
.controller
;
935 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
936 const int devnum
= 1;
939 usb_dev
->devnum
= devnum
;
940 usb_dev
->bus
->devnum_next
= devnum
+ 1;
941 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
942 sizeof usb_dev
->bus
->devmap
.devicemap
);
943 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
944 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
946 mutex_lock(&usb_bus_list_lock
);
948 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
949 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
950 if (retval
!= sizeof usb_dev
->descriptor
) {
951 mutex_unlock(&usb_bus_list_lock
);
952 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
953 dev_name(&usb_dev
->dev
), retval
);
954 return (retval
< 0) ? retval
: -EMSGSIZE
;
957 retval
= usb_new_device (usb_dev
);
959 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
960 dev_name(&usb_dev
->dev
), retval
);
962 mutex_unlock(&usb_bus_list_lock
);
965 spin_lock_irq (&hcd_root_hub_lock
);
966 hcd
->rh_registered
= 1;
967 spin_unlock_irq (&hcd_root_hub_lock
);
969 /* Did the HC die before the root hub was registered? */
970 if (hcd
->state
== HC_STATE_HALT
)
971 usb_hc_died (hcd
); /* This time clean up */
978 /*-------------------------------------------------------------------------*/
981 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
982 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
983 * @is_input: true iff the transaction sends data to the host
984 * @isoc: true for isochronous transactions, false for interrupt ones
985 * @bytecount: how many bytes in the transaction.
987 * Returns approximate bus time in nanoseconds for a periodic transaction.
988 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
989 * scheduled in software, this function is only used for such scheduling.
991 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
996 case USB_SPEED_LOW
: /* INTR only */
998 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
999 return (64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1001 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1002 return (64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
);
1004 case USB_SPEED_FULL
: /* ISOC or INTR */
1006 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1007 return (((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
);
1009 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1010 return (9107L + BW_HOST_DELAY
+ tmp
);
1012 case USB_SPEED_HIGH
: /* ISOC or INTR */
1013 // FIXME adjust for input vs output
1015 tmp
= HS_NSECS_ISO (bytecount
);
1017 tmp
= HS_NSECS (bytecount
);
1020 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1024 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1027 /*-------------------------------------------------------------------------*/
1030 * Generic HC operations.
1033 /*-------------------------------------------------------------------------*/
1036 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1037 * @hcd: host controller to which @urb was submitted
1038 * @urb: URB being submitted
1040 * Host controller drivers should call this routine in their enqueue()
1041 * method. The HCD's private spinlock must be held and interrupts must
1042 * be disabled. The actions carried out here are required for URB
1043 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1045 * Returns 0 for no error, otherwise a negative error code (in which case
1046 * the enqueue() method must fail). If no error occurs but enqueue() fails
1047 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1048 * the private spinlock and returning.
1050 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1054 spin_lock(&hcd_urb_list_lock
);
1056 /* Check that the URB isn't being killed */
1057 if (unlikely(atomic_read(&urb
->reject
))) {
1062 if (unlikely(!urb
->ep
->enabled
)) {
1067 if (unlikely(!urb
->dev
->can_submit
)) {
1073 * Check the host controller's state and add the URB to the
1076 switch (hcd
->state
) {
1077 case HC_STATE_RUNNING
:
1078 case HC_STATE_RESUMING
:
1080 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1087 spin_unlock(&hcd_urb_list_lock
);
1090 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1093 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1094 * @hcd: host controller to which @urb was submitted
1095 * @urb: URB being checked for unlinkability
1096 * @status: error code to store in @urb if the unlink succeeds
1098 * Host controller drivers should call this routine in their dequeue()
1099 * method. The HCD's private spinlock must be held and interrupts must
1100 * be disabled. The actions carried out here are required for making
1101 * sure than an unlink is valid.
1103 * Returns 0 for no error, otherwise a negative error code (in which case
1104 * the dequeue() method must fail). The possible error codes are:
1106 * -EIDRM: @urb was not submitted or has already completed.
1107 * The completion function may not have been called yet.
1109 * -EBUSY: @urb has already been unlinked.
1111 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1114 struct list_head
*tmp
;
1116 /* insist the urb is still queued */
1117 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1118 if (tmp
== &urb
->urb_list
)
1121 if (tmp
!= &urb
->urb_list
)
1124 /* Any status except -EINPROGRESS means something already started to
1125 * unlink this URB from the hardware. So there's no more work to do.
1129 urb
->unlinked
= status
;
1131 /* IRQ setup can easily be broken so that USB controllers
1132 * never get completion IRQs ... maybe even the ones we need to
1133 * finish unlinking the initial failed usb_set_address()
1134 * or device descriptor fetch.
1136 if (!test_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
) &&
1137 !is_root_hub(urb
->dev
)) {
1138 dev_warn(hcd
->self
.controller
, "Unlink after no-IRQ? "
1139 "Controller is probably using the wrong IRQ.\n");
1140 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
1145 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1148 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1149 * @hcd: host controller to which @urb was submitted
1150 * @urb: URB being unlinked
1152 * Host controller drivers should call this routine before calling
1153 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1154 * interrupts must be disabled. The actions carried out here are required
1155 * for URB completion.
1157 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1159 /* clear all state linking urb to this dev (and hcd) */
1160 spin_lock(&hcd_urb_list_lock
);
1161 list_del_init(&urb
->urb_list
);
1162 spin_unlock(&hcd_urb_list_lock
);
1164 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1167 * Some usb host controllers can only perform dma using a small SRAM area.
1168 * The usb core itself is however optimized for host controllers that can dma
1169 * using regular system memory - like pci devices doing bus mastering.
1171 * To support host controllers with limited dma capabilites we provide dma
1172 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1173 * For this to work properly the host controller code must first use the
1174 * function dma_declare_coherent_memory() to point out which memory area
1175 * that should be used for dma allocations.
1177 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1178 * dma using dma_alloc_coherent() which in turn allocates from the memory
1179 * area pointed out with dma_declare_coherent_memory().
1181 * So, to summarize...
1183 * - We need "local" memory, canonical example being
1184 * a small SRAM on a discrete controller being the
1185 * only memory that the controller can read ...
1186 * (a) "normal" kernel memory is no good, and
1187 * (b) there's not enough to share
1189 * - The only *portable* hook for such stuff in the
1190 * DMA framework is dma_declare_coherent_memory()
1192 * - So we use that, even though the primary requirement
1193 * is that the memory be "local" (hence addressible
1194 * by that device), not "coherent".
1198 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1199 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1200 void **vaddr_handle
, size_t size
,
1201 enum dma_data_direction dir
)
1203 unsigned char *vaddr
;
1205 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1206 mem_flags
, dma_handle
);
1211 * Store the virtual address of the buffer at the end
1212 * of the allocated dma buffer. The size of the buffer
1213 * may be uneven so use unaligned functions instead
1214 * of just rounding up. It makes sense to optimize for
1215 * memory footprint over access speed since the amount
1216 * of memory available for dma may be limited.
1218 put_unaligned((unsigned long)*vaddr_handle
,
1219 (unsigned long *)(vaddr
+ size
));
1221 if (dir
== DMA_TO_DEVICE
)
1222 memcpy(vaddr
, *vaddr_handle
, size
);
1224 *vaddr_handle
= vaddr
;
1228 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1229 void **vaddr_handle
, size_t size
,
1230 enum dma_data_direction dir
)
1232 unsigned char *vaddr
= *vaddr_handle
;
1234 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1236 if (dir
== DMA_FROM_DEVICE
)
1237 memcpy(vaddr
, *vaddr_handle
, size
);
1239 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1241 *vaddr_handle
= vaddr
;
1245 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1248 enum dma_data_direction dir
;
1251 /* Map the URB's buffers for DMA access.
1252 * Lower level HCD code should use *_dma exclusively,
1253 * unless it uses pio or talks to another transport,
1254 * or uses the provided scatter gather list for bulk.
1256 if (is_root_hub(urb
->dev
))
1259 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)
1260 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
)) {
1261 if (hcd
->self
.uses_dma
)
1262 urb
->setup_dma
= dma_map_single(
1263 hcd
->self
.controller
,
1265 sizeof(struct usb_ctrlrequest
),
1267 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1268 ret
= hcd_alloc_coherent(
1269 urb
->dev
->bus
, mem_flags
,
1271 (void **)&urb
->setup_packet
,
1272 sizeof(struct usb_ctrlrequest
),
1276 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1277 if (ret
== 0 && urb
->transfer_buffer_length
!= 0
1278 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1279 if (hcd
->self
.uses_dma
)
1280 urb
->transfer_dma
= dma_map_single (
1281 hcd
->self
.controller
,
1282 urb
->transfer_buffer
,
1283 urb
->transfer_buffer_length
,
1285 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1286 ret
= hcd_alloc_coherent(
1287 urb
->dev
->bus
, mem_flags
,
1289 &urb
->transfer_buffer
,
1290 urb
->transfer_buffer_length
,
1293 if (ret
&& usb_endpoint_xfer_control(&urb
->ep
->desc
)
1294 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
))
1295 hcd_free_coherent(urb
->dev
->bus
,
1297 (void **)&urb
->setup_packet
,
1298 sizeof(struct usb_ctrlrequest
),
1305 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1307 enum dma_data_direction dir
;
1309 if (is_root_hub(urb
->dev
))
1312 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)
1313 && !(urb
->transfer_flags
& URB_NO_SETUP_DMA_MAP
)) {
1314 if (hcd
->self
.uses_dma
)
1315 dma_unmap_single(hcd
->self
.controller
, urb
->setup_dma
,
1316 sizeof(struct usb_ctrlrequest
),
1318 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1319 hcd_free_coherent(urb
->dev
->bus
, &urb
->setup_dma
,
1320 (void **)&urb
->setup_packet
,
1321 sizeof(struct usb_ctrlrequest
),
1325 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1326 if (urb
->transfer_buffer_length
!= 0
1327 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1328 if (hcd
->self
.uses_dma
)
1329 dma_unmap_single(hcd
->self
.controller
,
1331 urb
->transfer_buffer_length
,
1333 else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
)
1334 hcd_free_coherent(urb
->dev
->bus
, &urb
->transfer_dma
,
1335 &urb
->transfer_buffer
,
1336 urb
->transfer_buffer_length
,
1341 /*-------------------------------------------------------------------------*/
1343 /* may be called in any context with a valid urb->dev usecount
1344 * caller surrenders "ownership" of urb
1345 * expects usb_submit_urb() to have sanity checked and conditioned all
1348 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1351 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1353 /* increment urb's reference count as part of giving it to the HCD
1354 * (which will control it). HCD guarantees that it either returns
1355 * an error or calls giveback(), but not both.
1358 atomic_inc(&urb
->use_count
);
1359 atomic_inc(&urb
->dev
->urbnum
);
1360 usbmon_urb_submit(&hcd
->self
, urb
);
1362 /* NOTE requirements on root-hub callers (usbfs and the hub
1363 * driver, for now): URBs' urb->transfer_buffer must be
1364 * valid and usb_buffer_{sync,unmap}() not be needed, since
1365 * they could clobber root hub response data. Also, control
1366 * URBs must be submitted in process context with interrupts
1369 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1370 if (unlikely(status
)) {
1371 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1375 if (is_root_hub(urb
->dev
))
1376 status
= rh_urb_enqueue(hcd
, urb
);
1378 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1380 if (unlikely(status
)) {
1381 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1382 unmap_urb_for_dma(hcd
, urb
);
1385 INIT_LIST_HEAD(&urb
->urb_list
);
1386 atomic_dec(&urb
->use_count
);
1387 atomic_dec(&urb
->dev
->urbnum
);
1388 if (atomic_read(&urb
->reject
))
1389 wake_up(&usb_kill_urb_queue
);
1395 /*-------------------------------------------------------------------------*/
1397 /* this makes the hcd giveback() the urb more quickly, by kicking it
1398 * off hardware queues (which may take a while) and returning it as
1399 * soon as practical. we've already set up the urb's return status,
1400 * but we can't know if the callback completed already.
1402 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1406 if (is_root_hub(urb
->dev
))
1407 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1410 /* The only reason an HCD might fail this call is if
1411 * it has not yet fully queued the urb to begin with.
1412 * Such failures should be harmless. */
1413 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1419 * called in any context
1421 * caller guarantees urb won't be recycled till both unlink()
1422 * and the urb's completion function return
1424 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1426 struct usb_hcd
*hcd
;
1427 int retval
= -EIDRM
;
1428 unsigned long flags
;
1430 /* Prevent the device and bus from going away while
1431 * the unlink is carried out. If they are already gone
1432 * then urb->use_count must be 0, since disconnected
1433 * devices can't have any active URBs.
1435 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1436 if (atomic_read(&urb
->use_count
) > 0) {
1438 usb_get_dev(urb
->dev
);
1440 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1442 hcd
= bus_to_hcd(urb
->dev
->bus
);
1443 retval
= unlink1(hcd
, urb
, status
);
1444 usb_put_dev(urb
->dev
);
1448 retval
= -EINPROGRESS
;
1449 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1450 dev_dbg(&urb
->dev
->dev
, "hcd_unlink_urb %p fail %d\n",
1455 /*-------------------------------------------------------------------------*/
1458 * usb_hcd_giveback_urb - return URB from HCD to device driver
1459 * @hcd: host controller returning the URB
1460 * @urb: urb being returned to the USB device driver.
1461 * @status: completion status code for the URB.
1462 * Context: in_interrupt()
1464 * This hands the URB from HCD to its USB device driver, using its
1465 * completion function. The HCD has freed all per-urb resources
1466 * (and is done using urb->hcpriv). It also released all HCD locks;
1467 * the device driver won't cause problems if it frees, modifies,
1468 * or resubmits this URB.
1470 * If @urb was unlinked, the value of @status will be overridden by
1471 * @urb->unlinked. Erroneous short transfers are detected in case
1472 * the HCD hasn't checked for them.
1474 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1477 if (unlikely(urb
->unlinked
))
1478 status
= urb
->unlinked
;
1479 else if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1480 urb
->actual_length
< urb
->transfer_buffer_length
&&
1482 status
= -EREMOTEIO
;
1484 unmap_urb_for_dma(hcd
, urb
);
1485 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1486 usb_unanchor_urb(urb
);
1488 /* pass ownership to the completion handler */
1489 urb
->status
= status
;
1490 urb
->complete (urb
);
1491 atomic_dec (&urb
->use_count
);
1492 if (unlikely(atomic_read(&urb
->reject
)))
1493 wake_up (&usb_kill_urb_queue
);
1496 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1498 /*-------------------------------------------------------------------------*/
1500 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1501 * queue to drain completely. The caller must first insure that no more
1502 * URBs can be submitted for this endpoint.
1504 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1505 struct usb_host_endpoint
*ep
)
1507 struct usb_hcd
*hcd
;
1513 hcd
= bus_to_hcd(udev
->bus
);
1515 /* No more submits can occur */
1516 spin_lock_irq(&hcd_urb_list_lock
);
1518 list_for_each_entry (urb
, &ep
->urb_list
, urb_list
) {
1524 is_in
= usb_urb_dir_in(urb
);
1525 spin_unlock(&hcd_urb_list_lock
);
1528 unlink1(hcd
, urb
, -ESHUTDOWN
);
1529 dev_dbg (hcd
->self
.controller
,
1530 "shutdown urb %p ep%d%s%s\n",
1531 urb
, usb_endpoint_num(&ep
->desc
),
1532 is_in
? "in" : "out",
1535 switch (usb_endpoint_type(&ep
->desc
)) {
1536 case USB_ENDPOINT_XFER_CONTROL
:
1538 case USB_ENDPOINT_XFER_BULK
:
1540 case USB_ENDPOINT_XFER_INT
:
1549 /* list contents may have changed */
1550 spin_lock(&hcd_urb_list_lock
);
1553 spin_unlock_irq(&hcd_urb_list_lock
);
1555 /* Wait until the endpoint queue is completely empty */
1556 while (!list_empty (&ep
->urb_list
)) {
1557 spin_lock_irq(&hcd_urb_list_lock
);
1559 /* The list may have changed while we acquired the spinlock */
1561 if (!list_empty (&ep
->urb_list
)) {
1562 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1566 spin_unlock_irq(&hcd_urb_list_lock
);
1575 /* Check whether a new configuration or alt setting for an interface
1576 * will exceed the bandwidth for the bus (or the host controller resources).
1577 * Only pass in a non-NULL config or interface, not both!
1578 * Passing NULL for both new_config and new_intf means the device will be
1579 * de-configured by issuing a set configuration 0 command.
1581 int usb_hcd_check_bandwidth(struct usb_device
*udev
,
1582 struct usb_host_config
*new_config
,
1583 struct usb_interface
*new_intf
)
1585 int num_intfs
, i
, j
;
1586 struct usb_interface_cache
*intf_cache
;
1587 struct usb_host_interface
*alt
= 0;
1589 struct usb_hcd
*hcd
;
1590 struct usb_host_endpoint
*ep
;
1592 hcd
= bus_to_hcd(udev
->bus
);
1593 if (!hcd
->driver
->check_bandwidth
)
1596 /* Configuration is being removed - set configuration 0 */
1597 if (!new_config
&& !new_intf
) {
1598 for (i
= 1; i
< 16; ++i
) {
1599 ep
= udev
->ep_out
[i
];
1601 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1602 ep
= udev
->ep_in
[i
];
1604 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1606 hcd
->driver
->check_bandwidth(hcd
, udev
);
1609 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1610 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1611 * of the bus. There will always be bandwidth for endpoint 0, so it's
1615 num_intfs
= new_config
->desc
.bNumInterfaces
;
1616 /* Remove endpoints (except endpoint 0, which is always on the
1617 * schedule) from the old config from the schedule
1619 for (i
= 1; i
< 16; ++i
) {
1620 ep
= udev
->ep_out
[i
];
1622 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1626 ep
= udev
->ep_in
[i
];
1628 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1633 for (i
= 0; i
< num_intfs
; ++i
) {
1635 /* Dig the endpoints for alt setting 0 out of the
1636 * interface cache for this interface
1638 intf_cache
= new_config
->intf_cache
[i
];
1639 for (j
= 0; j
< intf_cache
->num_altsetting
; j
++) {
1640 if (intf_cache
->altsetting
[j
].desc
.bAlternateSetting
== 0)
1641 alt
= &intf_cache
->altsetting
[j
];
1644 printk(KERN_DEBUG
"Did not find alt setting 0 for intf %d\n", i
);
1647 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1648 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
1654 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
1657 hcd
->driver
->reset_bandwidth(hcd
, udev
);
1661 /* Disables the endpoint: synchronizes with the hcd to make sure all
1662 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1663 * have been called previously. Use for set_configuration, set_interface,
1664 * driver removal, physical disconnect.
1666 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1667 * type, maxpacket size, toggle, halt status, and scheduling.
1669 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1670 struct usb_host_endpoint
*ep
)
1672 struct usb_hcd
*hcd
;
1675 hcd
= bus_to_hcd(udev
->bus
);
1676 if (hcd
->driver
->endpoint_disable
)
1677 hcd
->driver
->endpoint_disable(hcd
, ep
);
1681 * usb_hcd_reset_endpoint - reset host endpoint state
1682 * @udev: USB device.
1683 * @ep: the endpoint to reset.
1685 * Resets any host endpoint state such as the toggle bit, sequence
1686 * number and current window.
1688 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
1689 struct usb_host_endpoint
*ep
)
1691 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1693 if (hcd
->driver
->endpoint_reset
)
1694 hcd
->driver
->endpoint_reset(hcd
, ep
);
1696 int epnum
= usb_endpoint_num(&ep
->desc
);
1697 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
1698 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
1700 usb_settoggle(udev
, epnum
, is_out
, 0);
1702 usb_settoggle(udev
, epnum
, !is_out
, 0);
1706 /* Protect against drivers that try to unlink URBs after the device
1707 * is gone, by waiting until all unlinks for @udev are finished.
1708 * Since we don't currently track URBs by device, simply wait until
1709 * nothing is running in the locked region of usb_hcd_unlink_urb().
1711 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
1713 spin_lock_irq(&hcd_urb_unlink_lock
);
1714 spin_unlock_irq(&hcd_urb_unlink_lock
);
1717 /*-------------------------------------------------------------------------*/
1719 /* called in any context */
1720 int usb_hcd_get_frame_number (struct usb_device
*udev
)
1722 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
1724 if (!HC_IS_RUNNING (hcd
->state
))
1726 return hcd
->driver
->get_frame_number (hcd
);
1729 /*-------------------------------------------------------------------------*/
1733 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
1735 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1737 int old_state
= hcd
->state
;
1739 dev_dbg(&rhdev
->dev
, "bus %s%s\n",
1740 (msg
.event
& PM_EVENT_AUTO
? "auto-" : ""), "suspend");
1741 if (!hcd
->driver
->bus_suspend
) {
1744 hcd
->state
= HC_STATE_QUIESCING
;
1745 status
= hcd
->driver
->bus_suspend(hcd
);
1748 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
1749 hcd
->state
= HC_STATE_SUSPENDED
;
1751 hcd
->state
= old_state
;
1752 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1758 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
1760 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
1762 int old_state
= hcd
->state
;
1764 dev_dbg(&rhdev
->dev
, "usb %s%s\n",
1765 (msg
.event
& PM_EVENT_AUTO
? "auto-" : ""), "resume");
1766 if (!hcd
->driver
->bus_resume
)
1768 if (hcd
->state
== HC_STATE_RUNNING
)
1771 hcd
->state
= HC_STATE_RESUMING
;
1772 status
= hcd
->driver
->bus_resume(hcd
);
1774 /* TRSMRCY = 10 msec */
1776 usb_set_device_state(rhdev
, rhdev
->actconfig
1777 ? USB_STATE_CONFIGURED
1778 : USB_STATE_ADDRESS
);
1779 hcd
->state
= HC_STATE_RUNNING
;
1781 hcd
->state
= old_state
;
1782 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
1784 if (status
!= -ESHUTDOWN
)
1790 /* Workqueue routine for root-hub remote wakeup */
1791 static void hcd_resume_work(struct work_struct
*work
)
1793 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
1794 struct usb_device
*udev
= hcd
->self
.root_hub
;
1796 usb_lock_device(udev
);
1797 usb_mark_last_busy(udev
);
1798 usb_external_resume_device(udev
, PMSG_REMOTE_RESUME
);
1799 usb_unlock_device(udev
);
1803 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1804 * @hcd: host controller for this root hub
1806 * The USB host controller calls this function when its root hub is
1807 * suspended (with the remote wakeup feature enabled) and a remote
1808 * wakeup request is received. The routine submits a workqueue request
1809 * to resume the root hub (that is, manage its downstream ports again).
1811 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
1813 unsigned long flags
;
1815 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
1816 if (hcd
->rh_registered
)
1817 queue_work(ksuspend_usb_wq
, &hcd
->wakeup_work
);
1818 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
1820 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
1824 /*-------------------------------------------------------------------------*/
1826 #ifdef CONFIG_USB_OTG
1829 * usb_bus_start_enum - start immediate enumeration (for OTG)
1830 * @bus: the bus (must use hcd framework)
1831 * @port_num: 1-based number of port; usually bus->otg_port
1832 * Context: in_interrupt()
1834 * Starts enumeration, with an immediate reset followed later by
1835 * khubd identifying and possibly configuring the device.
1836 * This is needed by OTG controller drivers, where it helps meet
1837 * HNP protocol timing requirements for starting a port reset.
1839 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
1841 struct usb_hcd
*hcd
;
1842 int status
= -EOPNOTSUPP
;
1844 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1845 * boards with root hubs hooked up to internal devices (instead of
1846 * just the OTG port) may need more attention to resetting...
1848 hcd
= container_of (bus
, struct usb_hcd
, self
);
1849 if (port_num
&& hcd
->driver
->start_port_reset
)
1850 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
1852 /* run khubd shortly after (first) root port reset finishes;
1853 * it may issue others, until at least 50 msecs have passed.
1856 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
1859 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
1863 /*-------------------------------------------------------------------------*/
1866 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1867 * @irq: the IRQ being raised
1868 * @__hcd: pointer to the HCD whose IRQ is being signaled
1870 * If the controller isn't HALTed, calls the driver's irq handler.
1871 * Checks whether the controller is now dead.
1873 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
1875 struct usb_hcd
*hcd
= __hcd
;
1876 unsigned long flags
;
1879 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1880 * when the first handler doesn't use it. So let's just
1881 * assume it's never used.
1883 local_irq_save(flags
);
1885 if (unlikely(hcd
->state
== HC_STATE_HALT
||
1886 !test_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
))) {
1888 } else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
) {
1891 set_bit(HCD_FLAG_SAW_IRQ
, &hcd
->flags
);
1893 if (unlikely(hcd
->state
== HC_STATE_HALT
))
1898 local_irq_restore(flags
);
1902 /*-------------------------------------------------------------------------*/
1905 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1906 * @hcd: pointer to the HCD representing the controller
1908 * This is called by bus glue to report a USB host controller that died
1909 * while operations may still have been pending. It's called automatically
1910 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1912 void usb_hc_died (struct usb_hcd
*hcd
)
1914 unsigned long flags
;
1916 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
1918 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
1919 if (hcd
->rh_registered
) {
1922 /* make khubd clean up old urbs and devices */
1923 usb_set_device_state (hcd
->self
.root_hub
,
1924 USB_STATE_NOTATTACHED
);
1925 usb_kick_khubd (hcd
->self
.root_hub
);
1927 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
1929 EXPORT_SYMBOL_GPL (usb_hc_died
);
1931 /*-------------------------------------------------------------------------*/
1934 * usb_create_hcd - create and initialize an HCD structure
1935 * @driver: HC driver that will use this hcd
1936 * @dev: device for this HC, stored in hcd->self.controller
1937 * @bus_name: value to store in hcd->self.bus_name
1938 * Context: !in_interrupt()
1940 * Allocate a struct usb_hcd, with extra space at the end for the
1941 * HC driver's private data. Initialize the generic members of the
1944 * If memory is unavailable, returns NULL.
1946 struct usb_hcd
*usb_create_hcd (const struct hc_driver
*driver
,
1947 struct device
*dev
, const char *bus_name
)
1949 struct usb_hcd
*hcd
;
1951 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
1953 dev_dbg (dev
, "hcd alloc failed\n");
1956 dev_set_drvdata(dev
, hcd
);
1957 kref_init(&hcd
->kref
);
1959 usb_bus_init(&hcd
->self
);
1960 hcd
->self
.controller
= dev
;
1961 hcd
->self
.bus_name
= bus_name
;
1962 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
1964 init_timer(&hcd
->rh_timer
);
1965 hcd
->rh_timer
.function
= rh_timer_func
;
1966 hcd
->rh_timer
.data
= (unsigned long) hcd
;
1968 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
1971 hcd
->driver
= driver
;
1972 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
1973 "USB Host Controller";
1976 EXPORT_SYMBOL_GPL(usb_create_hcd
);
1978 static void hcd_release (struct kref
*kref
)
1980 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
1985 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
1988 kref_get (&hcd
->kref
);
1991 EXPORT_SYMBOL_GPL(usb_get_hcd
);
1993 void usb_put_hcd (struct usb_hcd
*hcd
)
1996 kref_put (&hcd
->kref
, hcd_release
);
1998 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2001 * usb_add_hcd - finish generic HCD structure initialization and register
2002 * @hcd: the usb_hcd structure to initialize
2003 * @irqnum: Interrupt line to allocate
2004 * @irqflags: Interrupt type flags
2006 * Finish the remaining parts of generic HCD initialization: allocate the
2007 * buffers of consistent memory, register the bus, request the IRQ line,
2008 * and call the driver's reset() and start() routines.
2010 int usb_add_hcd(struct usb_hcd
*hcd
,
2011 unsigned int irqnum
, unsigned long irqflags
)
2014 struct usb_device
*rhdev
;
2016 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2018 hcd
->authorized_default
= hcd
->wireless
? 0 : 1;
2019 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2021 /* HC is in reset state, but accessible. Now do the one-time init,
2022 * bottom up so that hcds can customize the root hubs before khubd
2023 * starts talking to them. (Note, bus id is assigned early too.)
2025 if ((retval
= hcd_buffer_create(hcd
)) != 0) {
2026 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2030 if ((retval
= usb_register_bus(&hcd
->self
)) < 0)
2031 goto err_register_bus
;
2033 if ((rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0)) == NULL
) {
2034 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2036 goto err_allocate_root_hub
;
2039 switch (hcd
->driver
->flags
& HCD_MASK
) {
2041 rhdev
->speed
= USB_SPEED_FULL
;
2044 rhdev
->speed
= USB_SPEED_HIGH
;
2047 rhdev
->speed
= USB_SPEED_SUPER
;
2050 goto err_allocate_root_hub
;
2052 hcd
->self
.root_hub
= rhdev
;
2054 /* wakeup flag init defaults to "everything works" for root hubs,
2055 * but drivers can override it in reset() if needed, along with
2056 * recording the overall controller's system wakeup capability.
2058 device_init_wakeup(&rhdev
->dev
, 1);
2060 /* "reset" is misnamed; its role is now one-time init. the controller
2061 * should already have been reset (and boot firmware kicked off etc).
2063 if (hcd
->driver
->reset
&& (retval
= hcd
->driver
->reset(hcd
)) < 0) {
2064 dev_err(hcd
->self
.controller
, "can't setup\n");
2065 goto err_hcd_driver_setup
;
2068 /* NOTE: root hub and controller capabilities may not be the same */
2069 if (device_can_wakeup(hcd
->self
.controller
)
2070 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2071 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2073 /* enable irqs just before we start the controller */
2074 if (hcd
->driver
->irq
) {
2076 /* IRQF_DISABLED doesn't work as advertised when used together
2077 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2078 * interrupts we can remove it here.
2080 if (irqflags
& IRQF_SHARED
)
2081 irqflags
&= ~IRQF_DISABLED
;
2083 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2084 hcd
->driver
->description
, hcd
->self
.busnum
);
2085 if ((retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2086 hcd
->irq_descr
, hcd
)) != 0) {
2087 dev_err(hcd
->self
.controller
,
2088 "request interrupt %d failed\n", irqnum
);
2089 goto err_request_irq
;
2092 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2093 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2094 "io mem" : "io base",
2095 (unsigned long long)hcd
->rsrc_start
);
2098 if (hcd
->rsrc_start
)
2099 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2100 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2101 "io mem" : "io base",
2102 (unsigned long long)hcd
->rsrc_start
);
2105 if ((retval
= hcd
->driver
->start(hcd
)) < 0) {
2106 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2107 goto err_hcd_driver_start
;
2110 /* starting here, usbcore will pay attention to this root hub */
2111 rhdev
->bus_mA
= min(500u, hcd
->power_budget
);
2112 if ((retval
= register_root_hub(hcd
)) != 0)
2113 goto err_register_root_hub
;
2115 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2117 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2119 goto error_create_attr_group
;
2121 if (hcd
->uses_new_polling
&& hcd
->poll_rh
)
2122 usb_hcd_poll_rh_status(hcd
);
2125 error_create_attr_group
:
2126 mutex_lock(&usb_bus_list_lock
);
2127 usb_disconnect(&hcd
->self
.root_hub
);
2128 mutex_unlock(&usb_bus_list_lock
);
2129 err_register_root_hub
:
2130 hcd
->driver
->stop(hcd
);
2131 err_hcd_driver_start
:
2133 free_irq(irqnum
, hcd
);
2135 err_hcd_driver_setup
:
2136 hcd
->self
.root_hub
= NULL
;
2138 err_allocate_root_hub
:
2139 usb_deregister_bus(&hcd
->self
);
2141 hcd_buffer_destroy(hcd
);
2144 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2147 * usb_remove_hcd - shutdown processing for generic HCDs
2148 * @hcd: the usb_hcd structure to remove
2149 * Context: !in_interrupt()
2151 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2152 * invoking the HCD's stop() method.
2154 void usb_remove_hcd(struct usb_hcd
*hcd
)
2156 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2158 if (HC_IS_RUNNING (hcd
->state
))
2159 hcd
->state
= HC_STATE_QUIESCING
;
2161 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2162 spin_lock_irq (&hcd_root_hub_lock
);
2163 hcd
->rh_registered
= 0;
2164 spin_unlock_irq (&hcd_root_hub_lock
);
2167 cancel_work_sync(&hcd
->wakeup_work
);
2170 sysfs_remove_group(&hcd
->self
.root_hub
->dev
.kobj
, &usb_bus_attr_group
);
2171 mutex_lock(&usb_bus_list_lock
);
2172 usb_disconnect(&hcd
->self
.root_hub
);
2173 mutex_unlock(&usb_bus_list_lock
);
2175 hcd
->driver
->stop(hcd
);
2176 hcd
->state
= HC_STATE_HALT
;
2179 del_timer_sync(&hcd
->rh_timer
);
2182 free_irq(hcd
->irq
, hcd
);
2183 usb_deregister_bus(&hcd
->self
);
2184 hcd_buffer_destroy(hcd
);
2186 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
2189 usb_hcd_platform_shutdown(struct platform_device
* dev
)
2191 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2193 if (hcd
->driver
->shutdown
)
2194 hcd
->driver
->shutdown(hcd
);
2196 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2198 /*-------------------------------------------------------------------------*/
2200 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2202 struct usb_mon_operations
*mon_ops
;
2205 * The registration is unlocked.
2206 * We do it this way because we do not want to lock in hot paths.
2208 * Notice that the code is minimally error-proof. Because usbmon needs
2209 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2212 int usb_mon_register (struct usb_mon_operations
*ops
)
2222 EXPORT_SYMBOL_GPL (usb_mon_register
);
2224 void usb_mon_deregister (void)
2227 if (mon_ops
== NULL
) {
2228 printk(KERN_ERR
"USB: monitor was not registered\n");
2234 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
2236 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */