mtd: nand_base: use __func__ instead of typing names
[linux/fpc-iii.git] / fs / xfs / linux-2.6 / xfs_aops.c
blobaecf2519db76345a206fb812c61f0598d85440fb
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_dir2.h"
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
38 #include "xfs_rw.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
49 #define NVSYNC 37
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
53 void __init
54 xfs_ioend_init(void)
56 int i;
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
62 void
63 xfs_ioend_wait(
64 xfs_inode_t *ip)
66 wait_queue_head_t *wq = to_ioend_wq(ip);
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
71 STATIC void
72 xfs_ioend_wake(
73 xfs_inode_t *ip)
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
79 STATIC void
80 xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
86 struct buffer_head *bh, *head;
88 *delalloc = *unmapped = *unwritten = 0;
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
101 #if defined(XFS_RW_TRACE)
102 void
103 xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
107 unsigned long pgoff)
109 xfs_inode_t *ip;
110 loff_t isize = i_size_read(inode);
111 loff_t offset = page_offset(page);
112 int delalloc = -1, unmapped = -1, unwritten = -1;
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
117 ip = XFS_I(inode);
118 if (!ip->i_rwtrace)
119 return;
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
126 (void *)pgoff,
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
136 (void *)((unsigned long)current_pid()),
137 (void *)NULL);
139 #else
140 #define xfs_page_trace(tag, inode, page, pgoff)
141 #endif
143 STATIC struct block_device *
144 xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
147 struct xfs_mount *mp = ip->i_mount;
149 if (XFS_IS_REALTIME_INODE(ip))
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
161 STATIC void
162 xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
165 struct buffer_head *bh, *next;
166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
170 bh->b_end_io(bh, !ioend->io_error);
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
184 xfs_ioend_wake(ip);
185 mempool_free(ioend, xfs_ioend_pool);
189 * Update on-disk file size now that data has been written to disk.
190 * The current in-memory file size is i_size. If a write is beyond
191 * eof i_new_size will be the intended file size until i_size is
192 * updated. If this write does not extend all the way to the valid
193 * file size then restrict this update to the end of the write.
195 STATIC void
196 xfs_setfilesize(
197 xfs_ioend_t *ioend)
199 xfs_inode_t *ip = XFS_I(ioend->io_inode);
200 xfs_fsize_t isize;
201 xfs_fsize_t bsize;
203 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
204 ASSERT(ioend->io_type != IOMAP_READ);
206 if (unlikely(ioend->io_error))
207 return;
209 bsize = ioend->io_offset + ioend->io_size;
211 xfs_ilock(ip, XFS_ILOCK_EXCL);
213 isize = MAX(ip->i_size, ip->i_new_size);
214 isize = MIN(isize, bsize);
216 if (ip->i_d.di_size < isize) {
217 ip->i_d.di_size = isize;
218 ip->i_update_core = 1;
219 ip->i_update_size = 1;
220 xfs_mark_inode_dirty_sync(ip);
223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
227 * Buffered IO write completion for delayed allocate extents.
229 STATIC void
230 xfs_end_bio_delalloc(
231 struct work_struct *work)
233 xfs_ioend_t *ioend =
234 container_of(work, xfs_ioend_t, io_work);
236 xfs_setfilesize(ioend);
237 xfs_destroy_ioend(ioend);
241 * Buffered IO write completion for regular, written extents.
243 STATIC void
244 xfs_end_bio_written(
245 struct work_struct *work)
247 xfs_ioend_t *ioend =
248 container_of(work, xfs_ioend_t, io_work);
250 xfs_setfilesize(ioend);
251 xfs_destroy_ioend(ioend);
255 * IO write completion for unwritten extents.
257 * Issue transactions to convert a buffer range from unwritten
258 * to written extents.
260 STATIC void
261 xfs_end_bio_unwritten(
262 struct work_struct *work)
264 xfs_ioend_t *ioend =
265 container_of(work, xfs_ioend_t, io_work);
266 struct xfs_inode *ip = XFS_I(ioend->io_inode);
267 xfs_off_t offset = ioend->io_offset;
268 size_t size = ioend->io_size;
270 if (likely(!ioend->io_error)) {
271 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
272 int error;
273 error = xfs_iomap_write_unwritten(ip, offset, size);
274 if (error)
275 ioend->io_error = error;
277 xfs_setfilesize(ioend);
279 xfs_destroy_ioend(ioend);
283 * IO read completion for regular, written extents.
285 STATIC void
286 xfs_end_bio_read(
287 struct work_struct *work)
289 xfs_ioend_t *ioend =
290 container_of(work, xfs_ioend_t, io_work);
292 xfs_destroy_ioend(ioend);
296 * Schedule IO completion handling on a xfsdatad if this was
297 * the final hold on this ioend. If we are asked to wait,
298 * flush the workqueue.
300 STATIC void
301 xfs_finish_ioend(
302 xfs_ioend_t *ioend,
303 int wait)
305 if (atomic_dec_and_test(&ioend->io_remaining)) {
306 struct workqueue_struct *wq = xfsdatad_workqueue;
307 if (ioend->io_work.func == xfs_end_bio_unwritten)
308 wq = xfsconvertd_workqueue;
310 queue_work(wq, &ioend->io_work);
311 if (wait)
312 flush_workqueue(wq);
317 * Allocate and initialise an IO completion structure.
318 * We need to track unwritten extent write completion here initially.
319 * We'll need to extend this for updating the ondisk inode size later
320 * (vs. incore size).
322 STATIC xfs_ioend_t *
323 xfs_alloc_ioend(
324 struct inode *inode,
325 unsigned int type)
327 xfs_ioend_t *ioend;
329 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
332 * Set the count to 1 initially, which will prevent an I/O
333 * completion callback from happening before we have started
334 * all the I/O from calling the completion routine too early.
336 atomic_set(&ioend->io_remaining, 1);
337 ioend->io_error = 0;
338 ioend->io_list = NULL;
339 ioend->io_type = type;
340 ioend->io_inode = inode;
341 ioend->io_buffer_head = NULL;
342 ioend->io_buffer_tail = NULL;
343 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
344 ioend->io_offset = 0;
345 ioend->io_size = 0;
347 if (type == IOMAP_UNWRITTEN)
348 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
349 else if (type == IOMAP_DELAY)
350 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
351 else if (type == IOMAP_READ)
352 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
353 else
354 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
356 return ioend;
359 STATIC int
360 xfs_map_blocks(
361 struct inode *inode,
362 loff_t offset,
363 ssize_t count,
364 xfs_iomap_t *mapp,
365 int flags)
367 int nmaps = 1;
369 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
372 STATIC_INLINE int
373 xfs_iomap_valid(
374 xfs_iomap_t *iomapp,
375 loff_t offset)
377 return offset >= iomapp->iomap_offset &&
378 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
382 * BIO completion handler for buffered IO.
384 STATIC void
385 xfs_end_bio(
386 struct bio *bio,
387 int error)
389 xfs_ioend_t *ioend = bio->bi_private;
391 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
392 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
394 /* Toss bio and pass work off to an xfsdatad thread */
395 bio->bi_private = NULL;
396 bio->bi_end_io = NULL;
397 bio_put(bio);
399 xfs_finish_ioend(ioend, 0);
402 STATIC void
403 xfs_submit_ioend_bio(
404 xfs_ioend_t *ioend,
405 struct bio *bio)
407 atomic_inc(&ioend->io_remaining);
409 bio->bi_private = ioend;
410 bio->bi_end_io = xfs_end_bio;
412 submit_bio(WRITE, bio);
413 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
414 bio_put(bio);
417 STATIC struct bio *
418 xfs_alloc_ioend_bio(
419 struct buffer_head *bh)
421 struct bio *bio;
422 int nvecs = bio_get_nr_vecs(bh->b_bdev);
424 do {
425 bio = bio_alloc(GFP_NOIO, nvecs);
426 nvecs >>= 1;
427 } while (!bio);
429 ASSERT(bio->bi_private == NULL);
430 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
431 bio->bi_bdev = bh->b_bdev;
432 bio_get(bio);
433 return bio;
436 STATIC void
437 xfs_start_buffer_writeback(
438 struct buffer_head *bh)
440 ASSERT(buffer_mapped(bh));
441 ASSERT(buffer_locked(bh));
442 ASSERT(!buffer_delay(bh));
443 ASSERT(!buffer_unwritten(bh));
445 mark_buffer_async_write(bh);
446 set_buffer_uptodate(bh);
447 clear_buffer_dirty(bh);
450 STATIC void
451 xfs_start_page_writeback(
452 struct page *page,
453 int clear_dirty,
454 int buffers)
456 ASSERT(PageLocked(page));
457 ASSERT(!PageWriteback(page));
458 if (clear_dirty)
459 clear_page_dirty_for_io(page);
460 set_page_writeback(page);
461 unlock_page(page);
462 /* If no buffers on the page are to be written, finish it here */
463 if (!buffers)
464 end_page_writeback(page);
467 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
469 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
473 * Submit all of the bios for all of the ioends we have saved up, covering the
474 * initial writepage page and also any probed pages.
476 * Because we may have multiple ioends spanning a page, we need to start
477 * writeback on all the buffers before we submit them for I/O. If we mark the
478 * buffers as we got, then we can end up with a page that only has buffers
479 * marked async write and I/O complete on can occur before we mark the other
480 * buffers async write.
482 * The end result of this is that we trip a bug in end_page_writeback() because
483 * we call it twice for the one page as the code in end_buffer_async_write()
484 * assumes that all buffers on the page are started at the same time.
486 * The fix is two passes across the ioend list - one to start writeback on the
487 * buffer_heads, and then submit them for I/O on the second pass.
489 STATIC void
490 xfs_submit_ioend(
491 xfs_ioend_t *ioend)
493 xfs_ioend_t *head = ioend;
494 xfs_ioend_t *next;
495 struct buffer_head *bh;
496 struct bio *bio;
497 sector_t lastblock = 0;
499 /* Pass 1 - start writeback */
500 do {
501 next = ioend->io_list;
502 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
503 xfs_start_buffer_writeback(bh);
505 } while ((ioend = next) != NULL);
507 /* Pass 2 - submit I/O */
508 ioend = head;
509 do {
510 next = ioend->io_list;
511 bio = NULL;
513 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
515 if (!bio) {
516 retry:
517 bio = xfs_alloc_ioend_bio(bh);
518 } else if (bh->b_blocknr != lastblock + 1) {
519 xfs_submit_ioend_bio(ioend, bio);
520 goto retry;
523 if (bio_add_buffer(bio, bh) != bh->b_size) {
524 xfs_submit_ioend_bio(ioend, bio);
525 goto retry;
528 lastblock = bh->b_blocknr;
530 if (bio)
531 xfs_submit_ioend_bio(ioend, bio);
532 xfs_finish_ioend(ioend, 0);
533 } while ((ioend = next) != NULL);
537 * Cancel submission of all buffer_heads so far in this endio.
538 * Toss the endio too. Only ever called for the initial page
539 * in a writepage request, so only ever one page.
541 STATIC void
542 xfs_cancel_ioend(
543 xfs_ioend_t *ioend)
545 xfs_ioend_t *next;
546 struct buffer_head *bh, *next_bh;
548 do {
549 next = ioend->io_list;
550 bh = ioend->io_buffer_head;
551 do {
552 next_bh = bh->b_private;
553 clear_buffer_async_write(bh);
554 unlock_buffer(bh);
555 } while ((bh = next_bh) != NULL);
557 xfs_ioend_wake(XFS_I(ioend->io_inode));
558 mempool_free(ioend, xfs_ioend_pool);
559 } while ((ioend = next) != NULL);
563 * Test to see if we've been building up a completion structure for
564 * earlier buffers -- if so, we try to append to this ioend if we
565 * can, otherwise we finish off any current ioend and start another.
566 * Return true if we've finished the given ioend.
568 STATIC void
569 xfs_add_to_ioend(
570 struct inode *inode,
571 struct buffer_head *bh,
572 xfs_off_t offset,
573 unsigned int type,
574 xfs_ioend_t **result,
575 int need_ioend)
577 xfs_ioend_t *ioend = *result;
579 if (!ioend || need_ioend || type != ioend->io_type) {
580 xfs_ioend_t *previous = *result;
582 ioend = xfs_alloc_ioend(inode, type);
583 ioend->io_offset = offset;
584 ioend->io_buffer_head = bh;
585 ioend->io_buffer_tail = bh;
586 if (previous)
587 previous->io_list = ioend;
588 *result = ioend;
589 } else {
590 ioend->io_buffer_tail->b_private = bh;
591 ioend->io_buffer_tail = bh;
594 bh->b_private = NULL;
595 ioend->io_size += bh->b_size;
598 STATIC void
599 xfs_map_buffer(
600 struct buffer_head *bh,
601 xfs_iomap_t *mp,
602 xfs_off_t offset,
603 uint block_bits)
605 sector_t bn;
607 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
609 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
610 ((offset - mp->iomap_offset) >> block_bits);
612 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
614 bh->b_blocknr = bn;
615 set_buffer_mapped(bh);
618 STATIC void
619 xfs_map_at_offset(
620 struct buffer_head *bh,
621 loff_t offset,
622 int block_bits,
623 xfs_iomap_t *iomapp)
625 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
626 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
628 lock_buffer(bh);
629 xfs_map_buffer(bh, iomapp, offset, block_bits);
630 bh->b_bdev = iomapp->iomap_target->bt_bdev;
631 set_buffer_mapped(bh);
632 clear_buffer_delay(bh);
633 clear_buffer_unwritten(bh);
637 * Look for a page at index that is suitable for clustering.
639 STATIC unsigned int
640 xfs_probe_page(
641 struct page *page,
642 unsigned int pg_offset,
643 int mapped)
645 int ret = 0;
647 if (PageWriteback(page))
648 return 0;
650 if (page->mapping && PageDirty(page)) {
651 if (page_has_buffers(page)) {
652 struct buffer_head *bh, *head;
654 bh = head = page_buffers(page);
655 do {
656 if (!buffer_uptodate(bh))
657 break;
658 if (mapped != buffer_mapped(bh))
659 break;
660 ret += bh->b_size;
661 if (ret >= pg_offset)
662 break;
663 } while ((bh = bh->b_this_page) != head);
664 } else
665 ret = mapped ? 0 : PAGE_CACHE_SIZE;
668 return ret;
671 STATIC size_t
672 xfs_probe_cluster(
673 struct inode *inode,
674 struct page *startpage,
675 struct buffer_head *bh,
676 struct buffer_head *head,
677 int mapped)
679 struct pagevec pvec;
680 pgoff_t tindex, tlast, tloff;
681 size_t total = 0;
682 int done = 0, i;
684 /* First sum forwards in this page */
685 do {
686 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
687 return total;
688 total += bh->b_size;
689 } while ((bh = bh->b_this_page) != head);
691 /* if we reached the end of the page, sum forwards in following pages */
692 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
693 tindex = startpage->index + 1;
695 /* Prune this back to avoid pathological behavior */
696 tloff = min(tlast, startpage->index + 64);
698 pagevec_init(&pvec, 0);
699 while (!done && tindex <= tloff) {
700 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
702 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
703 break;
705 for (i = 0; i < pagevec_count(&pvec); i++) {
706 struct page *page = pvec.pages[i];
707 size_t pg_offset, pg_len = 0;
709 if (tindex == tlast) {
710 pg_offset =
711 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
712 if (!pg_offset) {
713 done = 1;
714 break;
716 } else
717 pg_offset = PAGE_CACHE_SIZE;
719 if (page->index == tindex && trylock_page(page)) {
720 pg_len = xfs_probe_page(page, pg_offset, mapped);
721 unlock_page(page);
724 if (!pg_len) {
725 done = 1;
726 break;
729 total += pg_len;
730 tindex++;
733 pagevec_release(&pvec);
734 cond_resched();
737 return total;
741 * Test if a given page is suitable for writing as part of an unwritten
742 * or delayed allocate extent.
744 STATIC int
745 xfs_is_delayed_page(
746 struct page *page,
747 unsigned int type)
749 if (PageWriteback(page))
750 return 0;
752 if (page->mapping && page_has_buffers(page)) {
753 struct buffer_head *bh, *head;
754 int acceptable = 0;
756 bh = head = page_buffers(page);
757 do {
758 if (buffer_unwritten(bh))
759 acceptable = (type == IOMAP_UNWRITTEN);
760 else if (buffer_delay(bh))
761 acceptable = (type == IOMAP_DELAY);
762 else if (buffer_dirty(bh) && buffer_mapped(bh))
763 acceptable = (type == IOMAP_NEW);
764 else
765 break;
766 } while ((bh = bh->b_this_page) != head);
768 if (acceptable)
769 return 1;
772 return 0;
776 * Allocate & map buffers for page given the extent map. Write it out.
777 * except for the original page of a writepage, this is called on
778 * delalloc/unwritten pages only, for the original page it is possible
779 * that the page has no mapping at all.
781 STATIC int
782 xfs_convert_page(
783 struct inode *inode,
784 struct page *page,
785 loff_t tindex,
786 xfs_iomap_t *mp,
787 xfs_ioend_t **ioendp,
788 struct writeback_control *wbc,
789 int startio,
790 int all_bh)
792 struct buffer_head *bh, *head;
793 xfs_off_t end_offset;
794 unsigned long p_offset;
795 unsigned int type;
796 int bbits = inode->i_blkbits;
797 int len, page_dirty;
798 int count = 0, done = 0, uptodate = 1;
799 xfs_off_t offset = page_offset(page);
801 if (page->index != tindex)
802 goto fail;
803 if (!trylock_page(page))
804 goto fail;
805 if (PageWriteback(page))
806 goto fail_unlock_page;
807 if (page->mapping != inode->i_mapping)
808 goto fail_unlock_page;
809 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
810 goto fail_unlock_page;
813 * page_dirty is initially a count of buffers on the page before
814 * EOF and is decremented as we move each into a cleanable state.
816 * Derivation:
818 * End offset is the highest offset that this page should represent.
819 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
820 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
821 * hence give us the correct page_dirty count. On any other page,
822 * it will be zero and in that case we need page_dirty to be the
823 * count of buffers on the page.
825 end_offset = min_t(unsigned long long,
826 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
827 i_size_read(inode));
829 len = 1 << inode->i_blkbits;
830 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
831 PAGE_CACHE_SIZE);
832 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
833 page_dirty = p_offset / len;
835 bh = head = page_buffers(page);
836 do {
837 if (offset >= end_offset)
838 break;
839 if (!buffer_uptodate(bh))
840 uptodate = 0;
841 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
842 done = 1;
843 continue;
846 if (buffer_unwritten(bh) || buffer_delay(bh)) {
847 if (buffer_unwritten(bh))
848 type = IOMAP_UNWRITTEN;
849 else
850 type = IOMAP_DELAY;
852 if (!xfs_iomap_valid(mp, offset)) {
853 done = 1;
854 continue;
857 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
858 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
860 xfs_map_at_offset(bh, offset, bbits, mp);
861 if (startio) {
862 xfs_add_to_ioend(inode, bh, offset,
863 type, ioendp, done);
864 } else {
865 set_buffer_dirty(bh);
866 unlock_buffer(bh);
867 mark_buffer_dirty(bh);
869 page_dirty--;
870 count++;
871 } else {
872 type = IOMAP_NEW;
873 if (buffer_mapped(bh) && all_bh && startio) {
874 lock_buffer(bh);
875 xfs_add_to_ioend(inode, bh, offset,
876 type, ioendp, done);
877 count++;
878 page_dirty--;
879 } else {
880 done = 1;
883 } while (offset += len, (bh = bh->b_this_page) != head);
885 if (uptodate && bh == head)
886 SetPageUptodate(page);
888 if (startio) {
889 if (count) {
890 struct backing_dev_info *bdi;
892 bdi = inode->i_mapping->backing_dev_info;
893 wbc->nr_to_write--;
894 if (bdi_write_congested(bdi)) {
895 wbc->encountered_congestion = 1;
896 done = 1;
897 } else if (wbc->nr_to_write <= 0) {
898 done = 1;
901 xfs_start_page_writeback(page, !page_dirty, count);
904 return done;
905 fail_unlock_page:
906 unlock_page(page);
907 fail:
908 return 1;
912 * Convert & write out a cluster of pages in the same extent as defined
913 * by mp and following the start page.
915 STATIC void
916 xfs_cluster_write(
917 struct inode *inode,
918 pgoff_t tindex,
919 xfs_iomap_t *iomapp,
920 xfs_ioend_t **ioendp,
921 struct writeback_control *wbc,
922 int startio,
923 int all_bh,
924 pgoff_t tlast)
926 struct pagevec pvec;
927 int done = 0, i;
929 pagevec_init(&pvec, 0);
930 while (!done && tindex <= tlast) {
931 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
933 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
934 break;
936 for (i = 0; i < pagevec_count(&pvec); i++) {
937 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
938 iomapp, ioendp, wbc, startio, all_bh);
939 if (done)
940 break;
943 pagevec_release(&pvec);
944 cond_resched();
949 * Calling this without startio set means we are being asked to make a dirty
950 * page ready for freeing it's buffers. When called with startio set then
951 * we are coming from writepage.
953 * When called with startio set it is important that we write the WHOLE
954 * page if possible.
955 * The bh->b_state's cannot know if any of the blocks or which block for
956 * that matter are dirty due to mmap writes, and therefore bh uptodate is
957 * only valid if the page itself isn't completely uptodate. Some layers
958 * may clear the page dirty flag prior to calling write page, under the
959 * assumption the entire page will be written out; by not writing out the
960 * whole page the page can be reused before all valid dirty data is
961 * written out. Note: in the case of a page that has been dirty'd by
962 * mapwrite and but partially setup by block_prepare_write the
963 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
964 * valid state, thus the whole page must be written out thing.
967 STATIC int
968 xfs_page_state_convert(
969 struct inode *inode,
970 struct page *page,
971 struct writeback_control *wbc,
972 int startio,
973 int unmapped) /* also implies page uptodate */
975 struct buffer_head *bh, *head;
976 xfs_iomap_t iomap;
977 xfs_ioend_t *ioend = NULL, *iohead = NULL;
978 loff_t offset;
979 unsigned long p_offset = 0;
980 unsigned int type;
981 __uint64_t end_offset;
982 pgoff_t end_index, last_index, tlast;
983 ssize_t size, len;
984 int flags, err, iomap_valid = 0, uptodate = 1;
985 int page_dirty, count = 0;
986 int trylock = 0;
987 int all_bh = unmapped;
989 if (startio) {
990 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
991 trylock |= BMAPI_TRYLOCK;
994 /* Is this page beyond the end of the file? */
995 offset = i_size_read(inode);
996 end_index = offset >> PAGE_CACHE_SHIFT;
997 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
998 if (page->index >= end_index) {
999 if ((page->index >= end_index + 1) ||
1000 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1001 if (startio)
1002 unlock_page(page);
1003 return 0;
1008 * page_dirty is initially a count of buffers on the page before
1009 * EOF and is decremented as we move each into a cleanable state.
1011 * Derivation:
1013 * End offset is the highest offset that this page should represent.
1014 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1015 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1016 * hence give us the correct page_dirty count. On any other page,
1017 * it will be zero and in that case we need page_dirty to be the
1018 * count of buffers on the page.
1020 end_offset = min_t(unsigned long long,
1021 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
1022 len = 1 << inode->i_blkbits;
1023 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1024 PAGE_CACHE_SIZE);
1025 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
1026 page_dirty = p_offset / len;
1028 bh = head = page_buffers(page);
1029 offset = page_offset(page);
1030 flags = BMAPI_READ;
1031 type = IOMAP_NEW;
1033 /* TODO: cleanup count and page_dirty */
1035 do {
1036 if (offset >= end_offset)
1037 break;
1038 if (!buffer_uptodate(bh))
1039 uptodate = 0;
1040 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1042 * the iomap is actually still valid, but the ioend
1043 * isn't. shouldn't happen too often.
1045 iomap_valid = 0;
1046 continue;
1049 if (iomap_valid)
1050 iomap_valid = xfs_iomap_valid(&iomap, offset);
1053 * First case, map an unwritten extent and prepare for
1054 * extent state conversion transaction on completion.
1056 * Second case, allocate space for a delalloc buffer.
1057 * We can return EAGAIN here in the release page case.
1059 * Third case, an unmapped buffer was found, and we are
1060 * in a path where we need to write the whole page out.
1062 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1063 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1064 !buffer_mapped(bh) && (unmapped || startio))) {
1065 int new_ioend = 0;
1068 * Make sure we don't use a read-only iomap
1070 if (flags == BMAPI_READ)
1071 iomap_valid = 0;
1073 if (buffer_unwritten(bh)) {
1074 type = IOMAP_UNWRITTEN;
1075 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1076 } else if (buffer_delay(bh)) {
1077 type = IOMAP_DELAY;
1078 flags = BMAPI_ALLOCATE | trylock;
1079 } else {
1080 type = IOMAP_NEW;
1081 flags = BMAPI_WRITE | BMAPI_MMAP;
1084 if (!iomap_valid) {
1086 * if we didn't have a valid mapping then we
1087 * need to ensure that we put the new mapping
1088 * in a new ioend structure. This needs to be
1089 * done to ensure that the ioends correctly
1090 * reflect the block mappings at io completion
1091 * for unwritten extent conversion.
1093 new_ioend = 1;
1094 if (type == IOMAP_NEW) {
1095 size = xfs_probe_cluster(inode,
1096 page, bh, head, 0);
1097 } else {
1098 size = len;
1101 err = xfs_map_blocks(inode, offset, size,
1102 &iomap, flags);
1103 if (err)
1104 goto error;
1105 iomap_valid = xfs_iomap_valid(&iomap, offset);
1107 if (iomap_valid) {
1108 xfs_map_at_offset(bh, offset,
1109 inode->i_blkbits, &iomap);
1110 if (startio) {
1111 xfs_add_to_ioend(inode, bh, offset,
1112 type, &ioend,
1113 new_ioend);
1114 } else {
1115 set_buffer_dirty(bh);
1116 unlock_buffer(bh);
1117 mark_buffer_dirty(bh);
1119 page_dirty--;
1120 count++;
1122 } else if (buffer_uptodate(bh) && startio) {
1124 * we got here because the buffer is already mapped.
1125 * That means it must already have extents allocated
1126 * underneath it. Map the extent by reading it.
1128 if (!iomap_valid || flags != BMAPI_READ) {
1129 flags = BMAPI_READ;
1130 size = xfs_probe_cluster(inode, page, bh,
1131 head, 1);
1132 err = xfs_map_blocks(inode, offset, size,
1133 &iomap, flags);
1134 if (err)
1135 goto error;
1136 iomap_valid = xfs_iomap_valid(&iomap, offset);
1140 * We set the type to IOMAP_NEW in case we are doing a
1141 * small write at EOF that is extending the file but
1142 * without needing an allocation. We need to update the
1143 * file size on I/O completion in this case so it is
1144 * the same case as having just allocated a new extent
1145 * that we are writing into for the first time.
1147 type = IOMAP_NEW;
1148 if (trylock_buffer(bh)) {
1149 ASSERT(buffer_mapped(bh));
1150 if (iomap_valid)
1151 all_bh = 1;
1152 xfs_add_to_ioend(inode, bh, offset, type,
1153 &ioend, !iomap_valid);
1154 page_dirty--;
1155 count++;
1156 } else {
1157 iomap_valid = 0;
1159 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1160 (unmapped || startio)) {
1161 iomap_valid = 0;
1164 if (!iohead)
1165 iohead = ioend;
1167 } while (offset += len, ((bh = bh->b_this_page) != head));
1169 if (uptodate && bh == head)
1170 SetPageUptodate(page);
1172 if (startio)
1173 xfs_start_page_writeback(page, 1, count);
1175 if (ioend && iomap_valid) {
1176 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1177 PAGE_CACHE_SHIFT;
1178 tlast = min_t(pgoff_t, offset, last_index);
1179 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1180 wbc, startio, all_bh, tlast);
1183 if (iohead)
1184 xfs_submit_ioend(iohead);
1186 return page_dirty;
1188 error:
1189 if (iohead)
1190 xfs_cancel_ioend(iohead);
1193 * If it's delalloc and we have nowhere to put it,
1194 * throw it away, unless the lower layers told
1195 * us to try again.
1197 if (err != -EAGAIN) {
1198 if (!unmapped)
1199 block_invalidatepage(page, 0);
1200 ClearPageUptodate(page);
1202 return err;
1206 * writepage: Called from one of two places:
1208 * 1. we are flushing a delalloc buffer head.
1210 * 2. we are writing out a dirty page. Typically the page dirty
1211 * state is cleared before we get here. In this case is it
1212 * conceivable we have no buffer heads.
1214 * For delalloc space on the page we need to allocate space and
1215 * flush it. For unmapped buffer heads on the page we should
1216 * allocate space if the page is uptodate. For any other dirty
1217 * buffer heads on the page we should flush them.
1219 * If we detect that a transaction would be required to flush
1220 * the page, we have to check the process flags first, if we
1221 * are already in a transaction or disk I/O during allocations
1222 * is off, we need to fail the writepage and redirty the page.
1225 STATIC int
1226 xfs_vm_writepage(
1227 struct page *page,
1228 struct writeback_control *wbc)
1230 int error;
1231 int need_trans;
1232 int delalloc, unmapped, unwritten;
1233 struct inode *inode = page->mapping->host;
1235 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1238 * We need a transaction if:
1239 * 1. There are delalloc buffers on the page
1240 * 2. The page is uptodate and we have unmapped buffers
1241 * 3. The page is uptodate and we have no buffers
1242 * 4. There are unwritten buffers on the page
1245 if (!page_has_buffers(page)) {
1246 unmapped = 1;
1247 need_trans = 1;
1248 } else {
1249 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1250 if (!PageUptodate(page))
1251 unmapped = 0;
1252 need_trans = delalloc + unmapped + unwritten;
1256 * If we need a transaction and the process flags say
1257 * we are already in a transaction, or no IO is allowed
1258 * then mark the page dirty again and leave the page
1259 * as is.
1261 if (current_test_flags(PF_FSTRANS) && need_trans)
1262 goto out_fail;
1265 * Delay hooking up buffer heads until we have
1266 * made our go/no-go decision.
1268 if (!page_has_buffers(page))
1269 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1273 * VM calculation for nr_to_write seems off. Bump it way
1274 * up, this gets simple streaming writes zippy again.
1275 * To be reviewed again after Jens' writeback changes.
1277 wbc->nr_to_write *= 4;
1280 * Convert delayed allocate, unwritten or unmapped space
1281 * to real space and flush out to disk.
1283 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1284 if (error == -EAGAIN)
1285 goto out_fail;
1286 if (unlikely(error < 0))
1287 goto out_unlock;
1289 return 0;
1291 out_fail:
1292 redirty_page_for_writepage(wbc, page);
1293 unlock_page(page);
1294 return 0;
1295 out_unlock:
1296 unlock_page(page);
1297 return error;
1300 STATIC int
1301 xfs_vm_writepages(
1302 struct address_space *mapping,
1303 struct writeback_control *wbc)
1305 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1306 return generic_writepages(mapping, wbc);
1310 * Called to move a page into cleanable state - and from there
1311 * to be released. Possibly the page is already clean. We always
1312 * have buffer heads in this call.
1314 * Returns 0 if the page is ok to release, 1 otherwise.
1316 * Possible scenarios are:
1318 * 1. We are being called to release a page which has been written
1319 * to via regular I/O. buffer heads will be dirty and possibly
1320 * delalloc. If no delalloc buffer heads in this case then we
1321 * can just return zero.
1323 * 2. We are called to release a page which has been written via
1324 * mmap, all we need to do is ensure there is no delalloc
1325 * state in the buffer heads, if not we can let the caller
1326 * free them and we should come back later via writepage.
1328 STATIC int
1329 xfs_vm_releasepage(
1330 struct page *page,
1331 gfp_t gfp_mask)
1333 struct inode *inode = page->mapping->host;
1334 int dirty, delalloc, unmapped, unwritten;
1335 struct writeback_control wbc = {
1336 .sync_mode = WB_SYNC_ALL,
1337 .nr_to_write = 1,
1340 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1342 if (!page_has_buffers(page))
1343 return 0;
1345 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1346 if (!delalloc && !unwritten)
1347 goto free_buffers;
1349 if (!(gfp_mask & __GFP_FS))
1350 return 0;
1352 /* If we are already inside a transaction or the thread cannot
1353 * do I/O, we cannot release this page.
1355 if (current_test_flags(PF_FSTRANS))
1356 return 0;
1359 * Convert delalloc space to real space, do not flush the
1360 * data out to disk, that will be done by the caller.
1361 * Never need to allocate space here - we will always
1362 * come back to writepage in that case.
1364 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1365 if (dirty == 0 && !unwritten)
1366 goto free_buffers;
1367 return 0;
1369 free_buffers:
1370 return try_to_free_buffers(page);
1373 STATIC int
1374 __xfs_get_blocks(
1375 struct inode *inode,
1376 sector_t iblock,
1377 struct buffer_head *bh_result,
1378 int create,
1379 int direct,
1380 bmapi_flags_t flags)
1382 xfs_iomap_t iomap;
1383 xfs_off_t offset;
1384 ssize_t size;
1385 int niomap = 1;
1386 int error;
1388 offset = (xfs_off_t)iblock << inode->i_blkbits;
1389 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1390 size = bh_result->b_size;
1392 if (!create && direct && offset >= i_size_read(inode))
1393 return 0;
1395 error = xfs_iomap(XFS_I(inode), offset, size,
1396 create ? flags : BMAPI_READ, &iomap, &niomap);
1397 if (error)
1398 return -error;
1399 if (niomap == 0)
1400 return 0;
1402 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1404 * For unwritten extents do not report a disk address on
1405 * the read case (treat as if we're reading into a hole).
1407 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1408 xfs_map_buffer(bh_result, &iomap, offset,
1409 inode->i_blkbits);
1411 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1412 if (direct)
1413 bh_result->b_private = inode;
1414 set_buffer_unwritten(bh_result);
1419 * If this is a realtime file, data may be on a different device.
1420 * to that pointed to from the buffer_head b_bdev currently.
1422 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1425 * If we previously allocated a block out beyond eof and we are now
1426 * coming back to use it then we will need to flag it as new even if it
1427 * has a disk address.
1429 * With sub-block writes into unwritten extents we also need to mark
1430 * the buffer as new so that the unwritten parts of the buffer gets
1431 * correctly zeroed.
1433 if (create &&
1434 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1435 (offset >= i_size_read(inode)) ||
1436 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1437 set_buffer_new(bh_result);
1439 if (iomap.iomap_flags & IOMAP_DELAY) {
1440 BUG_ON(direct);
1441 if (create) {
1442 set_buffer_uptodate(bh_result);
1443 set_buffer_mapped(bh_result);
1444 set_buffer_delay(bh_result);
1448 if (direct || size > (1 << inode->i_blkbits)) {
1449 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1450 offset = min_t(xfs_off_t,
1451 iomap.iomap_bsize - iomap.iomap_delta, size);
1452 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1455 return 0;
1459 xfs_get_blocks(
1460 struct inode *inode,
1461 sector_t iblock,
1462 struct buffer_head *bh_result,
1463 int create)
1465 return __xfs_get_blocks(inode, iblock,
1466 bh_result, create, 0, BMAPI_WRITE);
1469 STATIC int
1470 xfs_get_blocks_direct(
1471 struct inode *inode,
1472 sector_t iblock,
1473 struct buffer_head *bh_result,
1474 int create)
1476 return __xfs_get_blocks(inode, iblock,
1477 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1480 STATIC void
1481 xfs_end_io_direct(
1482 struct kiocb *iocb,
1483 loff_t offset,
1484 ssize_t size,
1485 void *private)
1487 xfs_ioend_t *ioend = iocb->private;
1490 * Non-NULL private data means we need to issue a transaction to
1491 * convert a range from unwritten to written extents. This needs
1492 * to happen from process context but aio+dio I/O completion
1493 * happens from irq context so we need to defer it to a workqueue.
1494 * This is not necessary for synchronous direct I/O, but we do
1495 * it anyway to keep the code uniform and simpler.
1497 * Well, if only it were that simple. Because synchronous direct I/O
1498 * requires extent conversion to occur *before* we return to userspace,
1499 * we have to wait for extent conversion to complete. Look at the
1500 * iocb that has been passed to us to determine if this is AIO or
1501 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1502 * workqueue and wait for it to complete.
1504 * The core direct I/O code might be changed to always call the
1505 * completion handler in the future, in which case all this can
1506 * go away.
1508 ioend->io_offset = offset;
1509 ioend->io_size = size;
1510 if (ioend->io_type == IOMAP_READ) {
1511 xfs_finish_ioend(ioend, 0);
1512 } else if (private && size > 0) {
1513 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1514 } else {
1516 * A direct I/O write ioend starts it's life in unwritten
1517 * state in case they map an unwritten extent. This write
1518 * didn't map an unwritten extent so switch it's completion
1519 * handler.
1521 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1522 xfs_finish_ioend(ioend, 0);
1526 * blockdev_direct_IO can return an error even after the I/O
1527 * completion handler was called. Thus we need to protect
1528 * against double-freeing.
1530 iocb->private = NULL;
1533 STATIC ssize_t
1534 xfs_vm_direct_IO(
1535 int rw,
1536 struct kiocb *iocb,
1537 const struct iovec *iov,
1538 loff_t offset,
1539 unsigned long nr_segs)
1541 struct file *file = iocb->ki_filp;
1542 struct inode *inode = file->f_mapping->host;
1543 struct block_device *bdev;
1544 ssize_t ret;
1546 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1548 if (rw == WRITE) {
1549 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1550 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1551 bdev, iov, offset, nr_segs,
1552 xfs_get_blocks_direct,
1553 xfs_end_io_direct);
1554 } else {
1555 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1556 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1557 bdev, iov, offset, nr_segs,
1558 xfs_get_blocks_direct,
1559 xfs_end_io_direct);
1562 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1563 xfs_destroy_ioend(iocb->private);
1564 return ret;
1567 STATIC int
1568 xfs_vm_write_begin(
1569 struct file *file,
1570 struct address_space *mapping,
1571 loff_t pos,
1572 unsigned len,
1573 unsigned flags,
1574 struct page **pagep,
1575 void **fsdata)
1577 *pagep = NULL;
1578 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1579 xfs_get_blocks);
1582 STATIC sector_t
1583 xfs_vm_bmap(
1584 struct address_space *mapping,
1585 sector_t block)
1587 struct inode *inode = (struct inode *)mapping->host;
1588 struct xfs_inode *ip = XFS_I(inode);
1590 xfs_itrace_entry(XFS_I(inode));
1591 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1592 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1593 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1594 return generic_block_bmap(mapping, block, xfs_get_blocks);
1597 STATIC int
1598 xfs_vm_readpage(
1599 struct file *unused,
1600 struct page *page)
1602 return mpage_readpage(page, xfs_get_blocks);
1605 STATIC int
1606 xfs_vm_readpages(
1607 struct file *unused,
1608 struct address_space *mapping,
1609 struct list_head *pages,
1610 unsigned nr_pages)
1612 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1615 STATIC void
1616 xfs_vm_invalidatepage(
1617 struct page *page,
1618 unsigned long offset)
1620 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1621 page->mapping->host, page, offset);
1622 block_invalidatepage(page, offset);
1625 const struct address_space_operations xfs_address_space_operations = {
1626 .readpage = xfs_vm_readpage,
1627 .readpages = xfs_vm_readpages,
1628 .writepage = xfs_vm_writepage,
1629 .writepages = xfs_vm_writepages,
1630 .sync_page = block_sync_page,
1631 .releasepage = xfs_vm_releasepage,
1632 .invalidatepage = xfs_vm_invalidatepage,
1633 .write_begin = xfs_vm_write_begin,
1634 .write_end = generic_write_end,
1635 .bmap = xfs_vm_bmap,
1636 .direct_IO = xfs_vm_direct_IO,
1637 .migratepage = buffer_migrate_page,
1638 .is_partially_uptodate = block_is_partially_uptodate,