2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
55 kmem_zone_t
*xfs_ifork_zone
;
56 kmem_zone_t
*xfs_inode_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
71 * Make sure that the extents in the given memory buffer
81 xfs_bmbt_rec_host_t rec
;
84 for (i
= 0; i
< nrecs
; i
++) {
85 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
86 rec
.l0
= get_unaligned(&ep
->l0
);
87 rec
.l1
= get_unaligned(&ep
->l1
);
88 xfs_bmbt_get_all(&rec
, &irec
);
89 if (fmt
== XFS_EXTFMT_NOSTATE
)
90 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
94 #define xfs_validate_extents(ifp, nrecs, fmt)
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
111 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
113 for (i
= 0; i
< j
; i
++) {
114 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
115 i
* mp
->m_sb
.sb_inodesize
);
116 if (!dip
->di_next_unlinked
) {
117 xfs_fs_cmn_err(CE_ALERT
, mp
,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 ASSERT(dip
->di_next_unlinked
);
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
135 struct xfs_imap
*imap
,
145 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
146 (int)imap
->im_len
, buf_flags
, &bp
);
148 if (error
!= EAGAIN
) {
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error
, mp
->m_fsname
);
154 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
165 #else /* usual case */
169 for (i
= 0; i
< ni
; i
++) {
173 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
174 (i
<< mp
->m_sb
.sb_inodelog
));
175 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
176 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
177 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
178 XFS_ERRTAG_ITOBP_INOTOBP
,
179 XFS_RANDOM_ITOBP_INOTOBP
))) {
180 if (iget_flags
& XFS_IGET_BULKSTAT
) {
181 xfs_trans_brelse(tp
, bp
);
182 return XFS_ERROR(EINVAL
);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH
, mp
, dip
);
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
191 (unsigned long long)imap
->im_blkno
, i
,
192 be16_to_cpu(dip
->di_magic
));
194 xfs_trans_brelse(tp
, bp
);
195 return XFS_ERROR(EFSCORRUPTED
);
199 xfs_inobp_check(mp
, bp
);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
233 struct xfs_imap imap
;
238 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
242 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, imap_flags
);
246 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
248 *offset
= imap
.im_boffset
;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
281 ASSERT(ip
->i_imap
.im_blkno
!= 0);
283 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
288 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
294 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
313 xfs_attr_shortform_t
*atp
;
317 ip
->i_df
.if_ext_max
=
318 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
321 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
322 be16_to_cpu(dip
->di_anextents
) >
323 be64_to_cpu(dip
->di_nblocks
))) {
324 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip
->i_ino
,
327 (int)(be32_to_cpu(dip
->di_nextents
) +
328 be16_to_cpu(dip
->di_anextents
)),
330 be64_to_cpu(dip
->di_nblocks
));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
333 return XFS_ERROR(EFSCORRUPTED
);
336 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
337 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip
->i_ino
,
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
343 return XFS_ERROR(EFSCORRUPTED
);
346 if (unlikely((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) &&
347 !ip
->i_mount
->m_rtdev_targp
)) {
348 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
349 "corrupt dinode %Lu, has realtime flag set.",
351 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
352 XFS_ERRLEVEL_LOW
, ip
->i_mount
, dip
);
353 return XFS_ERROR(EFSCORRUPTED
);
356 switch (ip
->i_d
.di_mode
& S_IFMT
) {
361 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
362 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
364 return XFS_ERROR(EFSCORRUPTED
);
368 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
374 switch (dip
->di_format
) {
375 case XFS_DINODE_FMT_LOCAL
:
377 * no local regular files yet
379 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
380 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
382 "(local format for regular file).",
383 (unsigned long long) ip
->i_ino
);
384 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
387 return XFS_ERROR(EFSCORRUPTED
);
390 di_size
= be64_to_cpu(dip
->di_size
);
391 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
392 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
394 "(bad size %Ld for local inode).",
395 (unsigned long long) ip
->i_ino
,
396 (long long) di_size
);
397 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
400 return XFS_ERROR(EFSCORRUPTED
);
404 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
406 case XFS_DINODE_FMT_EXTENTS
:
407 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
409 case XFS_DINODE_FMT_BTREE
:
410 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
413 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
415 return XFS_ERROR(EFSCORRUPTED
);
420 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
421 return XFS_ERROR(EFSCORRUPTED
);
426 if (!XFS_DFORK_Q(dip
))
428 ASSERT(ip
->i_afp
== NULL
);
429 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
430 ip
->i_afp
->if_ext_max
=
431 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
432 switch (dip
->di_aformat
) {
433 case XFS_DINODE_FMT_LOCAL
:
434 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
435 size
= be16_to_cpu(atp
->hdr
.totsize
);
437 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
438 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
440 "(bad attr fork size %Ld).",
441 (unsigned long long) ip
->i_ino
,
443 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
446 return XFS_ERROR(EFSCORRUPTED
);
449 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
451 case XFS_DINODE_FMT_EXTENTS
:
452 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
454 case XFS_DINODE_FMT_BTREE
:
455 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
458 error
= XFS_ERROR(EFSCORRUPTED
);
462 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
464 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
470 * The file is in-lined in the on-disk inode.
471 * If it fits into if_inline_data, then copy
472 * it there, otherwise allocate a buffer for it
473 * and copy the data there. Either way, set
474 * if_data to point at the data.
475 * If we allocate a buffer for the data, make
476 * sure that its size is a multiple of 4 and
477 * record the real size in i_real_bytes.
490 * If the size is unreasonable, then something
491 * is wrong and we just bail out rather than crash in
492 * kmem_alloc() or memcpy() below.
494 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
495 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
497 "(bad size %d for local fork, size = %d).",
498 (unsigned long long) ip
->i_ino
, size
,
499 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
500 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
502 return XFS_ERROR(EFSCORRUPTED
);
504 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
507 ifp
->if_u1
.if_data
= NULL
;
508 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
509 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
511 real_size
= roundup(size
, 4);
512 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
514 ifp
->if_bytes
= size
;
515 ifp
->if_real_bytes
= real_size
;
517 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
518 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
519 ifp
->if_flags
|= XFS_IFINLINE
;
524 * The file consists of a set of extents all
525 * of which fit into the on-disk inode.
526 * If there are few enough extents to fit into
527 * the if_inline_ext, then copy them there.
528 * Otherwise allocate a buffer for them and copy
529 * them into it. Either way, set if_extents
530 * to point at the extents.
544 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
545 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
546 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
549 * If the number of extents is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
554 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
555 "corrupt inode %Lu ((a)extents = %d).",
556 (unsigned long long) ip
->i_ino
, nex
);
557 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
559 return XFS_ERROR(EFSCORRUPTED
);
562 ifp
->if_real_bytes
= 0;
564 ifp
->if_u1
.if_extents
= NULL
;
565 else if (nex
<= XFS_INLINE_EXTS
)
566 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
568 xfs_iext_add(ifp
, 0, nex
);
570 ifp
->if_bytes
= size
;
572 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
573 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
574 for (i
= 0; i
< nex
; i
++, dp
++) {
575 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
576 ep
->l0
= get_unaligned_be64(&dp
->l0
);
577 ep
->l1
= get_unaligned_be64(&dp
->l1
);
579 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
580 if (whichfork
!= XFS_DATA_FORK
||
581 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
582 if (unlikely(xfs_check_nostate_extents(
584 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
587 return XFS_ERROR(EFSCORRUPTED
);
590 ifp
->if_flags
|= XFS_IFEXTENTS
;
595 * The file has too many extents to fit into
596 * the inode, so they are in B-tree format.
597 * Allocate a buffer for the root of the B-tree
598 * and copy the root into it. The i_extents
599 * field will remain NULL until all of the
600 * extents are read in (when they are needed).
608 xfs_bmdr_block_t
*dfp
;
614 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
615 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
616 size
= XFS_BMAP_BROOT_SPACE(dfp
);
617 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
620 * blow out if -- fork has less extents than can fit in
621 * fork (fork shouldn't be a btree format), root btree
622 * block has more records than can fit into the fork,
623 * or the number of extents is greater than the number of
626 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
627 || XFS_BMDR_SPACE_CALC(nrecs
) >
628 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
629 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
630 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
631 "corrupt inode %Lu (btree).",
632 (unsigned long long) ip
->i_ino
);
633 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
635 return XFS_ERROR(EFSCORRUPTED
);
638 ifp
->if_broot_bytes
= size
;
639 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
640 ASSERT(ifp
->if_broot
!= NULL
);
642 * Copy and convert from the on-disk structure
643 * to the in-memory structure.
645 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
646 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
647 ifp
->if_broot
, size
);
648 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
649 ifp
->if_flags
|= XFS_IFBROOT
;
655 xfs_dinode_from_disk(
659 to
->di_magic
= be16_to_cpu(from
->di_magic
);
660 to
->di_mode
= be16_to_cpu(from
->di_mode
);
661 to
->di_version
= from
->di_version
;
662 to
->di_format
= from
->di_format
;
663 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
664 to
->di_uid
= be32_to_cpu(from
->di_uid
);
665 to
->di_gid
= be32_to_cpu(from
->di_gid
);
666 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
667 to
->di_projid
= be16_to_cpu(from
->di_projid
);
668 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
669 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
670 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
671 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
672 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
673 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
674 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
675 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
676 to
->di_size
= be64_to_cpu(from
->di_size
);
677 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
678 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
679 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
680 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
681 to
->di_forkoff
= from
->di_forkoff
;
682 to
->di_aformat
= from
->di_aformat
;
683 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
684 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
685 to
->di_flags
= be16_to_cpu(from
->di_flags
);
686 to
->di_gen
= be32_to_cpu(from
->di_gen
);
692 xfs_icdinode_t
*from
)
694 to
->di_magic
= cpu_to_be16(from
->di_magic
);
695 to
->di_mode
= cpu_to_be16(from
->di_mode
);
696 to
->di_version
= from
->di_version
;
697 to
->di_format
= from
->di_format
;
698 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
699 to
->di_uid
= cpu_to_be32(from
->di_uid
);
700 to
->di_gid
= cpu_to_be32(from
->di_gid
);
701 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
702 to
->di_projid
= cpu_to_be16(from
->di_projid
);
703 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
704 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
705 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
706 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
707 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
708 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
709 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
710 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
711 to
->di_size
= cpu_to_be64(from
->di_size
);
712 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
713 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
714 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
715 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
716 to
->di_forkoff
= from
->di_forkoff
;
717 to
->di_aformat
= from
->di_aformat
;
718 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
719 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
720 to
->di_flags
= cpu_to_be16(from
->di_flags
);
721 to
->di_gen
= cpu_to_be32(from
->di_gen
);
730 if (di_flags
& XFS_DIFLAG_ANY
) {
731 if (di_flags
& XFS_DIFLAG_REALTIME
)
732 flags
|= XFS_XFLAG_REALTIME
;
733 if (di_flags
& XFS_DIFLAG_PREALLOC
)
734 flags
|= XFS_XFLAG_PREALLOC
;
735 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
736 flags
|= XFS_XFLAG_IMMUTABLE
;
737 if (di_flags
& XFS_DIFLAG_APPEND
)
738 flags
|= XFS_XFLAG_APPEND
;
739 if (di_flags
& XFS_DIFLAG_SYNC
)
740 flags
|= XFS_XFLAG_SYNC
;
741 if (di_flags
& XFS_DIFLAG_NOATIME
)
742 flags
|= XFS_XFLAG_NOATIME
;
743 if (di_flags
& XFS_DIFLAG_NODUMP
)
744 flags
|= XFS_XFLAG_NODUMP
;
745 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
746 flags
|= XFS_XFLAG_RTINHERIT
;
747 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
748 flags
|= XFS_XFLAG_PROJINHERIT
;
749 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
750 flags
|= XFS_XFLAG_NOSYMLINKS
;
751 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
752 flags
|= XFS_XFLAG_EXTSIZE
;
753 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
754 flags
|= XFS_XFLAG_EXTSZINHERIT
;
755 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
756 flags
|= XFS_XFLAG_NODEFRAG
;
757 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
758 flags
|= XFS_XFLAG_FILESTREAM
;
768 xfs_icdinode_t
*dic
= &ip
->i_d
;
770 return _xfs_dic2xflags(dic
->di_flags
) |
771 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
778 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
779 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
783 * Read the disk inode attributes into the in-core inode structure.
798 * Fill in the location information in the in-core inode.
800 ip
->i_imap
.im_blkno
= bno
;
801 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
804 ASSERT(bno
== 0 || bno
== ip
->i_imap
.im_blkno
);
807 * Get pointers to the on-disk inode and the buffer containing it.
809 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
810 XFS_BUF_LOCK
, iget_flags
);
813 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
816 * If we got something that isn't an inode it means someone
817 * (nfs or dmi) has a stale handle.
819 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
821 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
822 "dip->di_magic (0x%x) != "
823 "XFS_DINODE_MAGIC (0x%x)",
824 be16_to_cpu(dip
->di_magic
),
827 error
= XFS_ERROR(EINVAL
);
832 * If the on-disk inode is already linked to a directory
833 * entry, copy all of the inode into the in-core inode.
834 * xfs_iformat() handles copying in the inode format
835 * specific information.
836 * Otherwise, just get the truly permanent information.
839 xfs_dinode_from_disk(&ip
->i_d
, dip
);
840 error
= xfs_iformat(ip
, dip
);
843 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
844 "xfs_iformat() returned error %d",
850 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
851 ip
->i_d
.di_version
= dip
->di_version
;
852 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
853 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
855 * Make sure to pull in the mode here as well in
856 * case the inode is released without being used.
857 * This ensures that xfs_inactive() will see that
858 * the inode is already free and not try to mess
859 * with the uninitialized part of it.
863 * Initialize the per-fork minima and maxima for a new
864 * inode here. xfs_iformat will do it for old inodes.
866 ip
->i_df
.if_ext_max
=
867 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
871 * The inode format changed when we moved the link count and
872 * made it 32 bits long. If this is an old format inode,
873 * convert it in memory to look like a new one. If it gets
874 * flushed to disk we will convert back before flushing or
875 * logging it. We zero out the new projid field and the old link
876 * count field. We'll handle clearing the pad field (the remains
877 * of the old uuid field) when we actually convert the inode to
878 * the new format. We don't change the version number so that we
879 * can distinguish this from a real new format inode.
881 if (ip
->i_d
.di_version
== 1) {
882 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
883 ip
->i_d
.di_onlink
= 0;
884 ip
->i_d
.di_projid
= 0;
887 ip
->i_delayed_blks
= 0;
888 ip
->i_size
= ip
->i_d
.di_size
;
891 * Mark the buffer containing the inode as something to keep
892 * around for a while. This helps to keep recently accessed
893 * meta-data in-core longer.
895 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
898 * Use xfs_trans_brelse() to release the buffer containing the
899 * on-disk inode, because it was acquired with xfs_trans_read_buf()
900 * in xfs_itobp() above. If tp is NULL, this is just a normal
901 * brelse(). If we're within a transaction, then xfs_trans_brelse()
902 * will only release the buffer if it is not dirty within the
903 * transaction. It will be OK to release the buffer in this case,
904 * because inodes on disk are never destroyed and we will be
905 * locking the new in-core inode before putting it in the hash
906 * table where other processes can find it. Thus we don't have
907 * to worry about the inode being changed just because we released
911 xfs_trans_brelse(tp
, bp
);
916 * Read in extents from a btree-format inode.
917 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
927 xfs_extnum_t nextents
;
930 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
931 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
933 return XFS_ERROR(EFSCORRUPTED
);
935 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
936 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
937 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
940 * We know that the size is valid (it's checked in iformat_btree)
942 ifp
->if_lastex
= NULLEXTNUM
;
943 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
944 ifp
->if_flags
|= XFS_IFEXTENTS
;
945 xfs_iext_add(ifp
, 0, nextents
);
946 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
948 xfs_iext_destroy(ifp
);
949 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
952 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
957 * Allocate an inode on disk and return a copy of its in-core version.
958 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
959 * appropriately within the inode. The uid and gid for the inode are
960 * set according to the contents of the given cred structure.
962 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
963 * has a free inode available, call xfs_iget()
964 * to obtain the in-core version of the allocated inode. Finally,
965 * fill in the inode and log its initial contents. In this case,
966 * ialloc_context would be set to NULL and call_again set to false.
968 * If xfs_dialloc() does not have an available inode,
969 * it will replenish its supply by doing an allocation. Since we can
970 * only do one allocation within a transaction without deadlocks, we
971 * must commit the current transaction before returning the inode itself.
972 * In this case, therefore, we will set call_again to true and return.
973 * The caller should then commit the current transaction, start a new
974 * transaction, and call xfs_ialloc() again to actually get the inode.
976 * To ensure that some other process does not grab the inode that
977 * was allocated during the first call to xfs_ialloc(), this routine
978 * also returns the [locked] bp pointing to the head of the freelist
979 * as ialloc_context. The caller should hold this buffer across
980 * the commit and pass it back into this routine on the second call.
982 * If we are allocating quota inodes, we do not have a parent inode
983 * to attach to or associate with (i.e. pip == NULL) because they
984 * are not linked into the directory structure - they are attached
985 * directly to the superblock - and so have no parent.
997 xfs_buf_t
**ialloc_context
,
998 boolean_t
*call_again
,
1006 int filestreams
= 0;
1009 * Call the space management code to pick
1010 * the on-disk inode to be allocated.
1012 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1013 ialloc_context
, call_again
, &ino
);
1016 if (*call_again
|| ino
== NULLFSINO
) {
1020 ASSERT(*ialloc_context
== NULL
);
1023 * Get the in-core inode with the lock held exclusively.
1024 * This is because we're setting fields here we need
1025 * to prevent others from looking at until we're done.
1027 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1028 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1033 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1034 ip
->i_d
.di_onlink
= 0;
1035 ip
->i_d
.di_nlink
= nlink
;
1036 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1037 ip
->i_d
.di_uid
= current_fsuid();
1038 ip
->i_d
.di_gid
= current_fsgid();
1039 ip
->i_d
.di_projid
= prid
;
1040 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1043 * If the superblock version is up to where we support new format
1044 * inodes and this is currently an old format inode, then change
1045 * the inode version number now. This way we only do the conversion
1046 * here rather than here and in the flush/logging code.
1048 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1049 ip
->i_d
.di_version
== 1) {
1050 ip
->i_d
.di_version
= 2;
1052 * We've already zeroed the old link count, the projid field,
1053 * and the pad field.
1058 * Project ids won't be stored on disk if we are using a version 1 inode.
1060 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1061 xfs_bump_ino_vers2(tp
, ip
);
1063 if (pip
&& XFS_INHERIT_GID(pip
)) {
1064 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1065 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1066 ip
->i_d
.di_mode
|= S_ISGID
;
1071 * If the group ID of the new file does not match the effective group
1072 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1073 * (and only if the irix_sgid_inherit compatibility variable is set).
1075 if ((irix_sgid_inherit
) &&
1076 (ip
->i_d
.di_mode
& S_ISGID
) &&
1077 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1078 ip
->i_d
.di_mode
&= ~S_ISGID
;
1081 ip
->i_d
.di_size
= 0;
1083 ip
->i_d
.di_nextents
= 0;
1084 ASSERT(ip
->i_d
.di_nblocks
== 0);
1087 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1088 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1089 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1090 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1093 * di_gen will have been taken care of in xfs_iread.
1095 ip
->i_d
.di_extsize
= 0;
1096 ip
->i_d
.di_dmevmask
= 0;
1097 ip
->i_d
.di_dmstate
= 0;
1098 ip
->i_d
.di_flags
= 0;
1099 flags
= XFS_ILOG_CORE
;
1100 switch (mode
& S_IFMT
) {
1105 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1106 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1107 ip
->i_df
.if_flags
= 0;
1108 flags
|= XFS_ILOG_DEV
;
1112 * we can't set up filestreams until after the VFS inode
1113 * is set up properly.
1115 if (pip
&& xfs_inode_is_filestream(pip
))
1119 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1122 if ((mode
& S_IFMT
) == S_IFDIR
) {
1123 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1124 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1125 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1126 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1127 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1129 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1130 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1131 di_flags
|= XFS_DIFLAG_REALTIME
;
1132 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1133 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1134 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1137 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1138 xfs_inherit_noatime
)
1139 di_flags
|= XFS_DIFLAG_NOATIME
;
1140 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1142 di_flags
|= XFS_DIFLAG_NODUMP
;
1143 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1145 di_flags
|= XFS_DIFLAG_SYNC
;
1146 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1147 xfs_inherit_nosymlinks
)
1148 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1149 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1150 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1151 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1152 xfs_inherit_nodefrag
)
1153 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1154 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1155 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1156 ip
->i_d
.di_flags
|= di_flags
;
1160 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1161 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1162 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1163 ip
->i_df
.if_u1
.if_extents
= NULL
;
1169 * Attribute fork settings for new inode.
1171 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1172 ip
->i_d
.di_anextents
= 0;
1175 * Log the new values stuffed into the inode.
1177 xfs_trans_log_inode(tp
, ip
, flags
);
1179 /* now that we have an i_mode we can setup inode ops and unlock */
1180 xfs_setup_inode(ip
);
1182 /* now we have set up the vfs inode we can associate the filestream */
1184 error
= xfs_filestream_associate(pip
, ip
);
1188 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1196 * Check to make sure that there are no blocks allocated to the
1197 * file beyond the size of the file. We don't check this for
1198 * files with fixed size extents or real time extents, but we
1199 * at least do it for regular files.
1208 xfs_fileoff_t map_first
;
1210 xfs_bmbt_irec_t imaps
[2];
1212 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1215 if (XFS_IS_REALTIME_INODE(ip
))
1218 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1222 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1224 * The filesystem could be shutting down, so bmapi may return
1227 if (xfs_bmapi(NULL
, ip
, map_first
,
1229 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1231 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1234 ASSERT(nimaps
== 1);
1235 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1240 * Calculate the last possible buffered byte in a file. This must
1241 * include data that was buffered beyond the EOF by the write code.
1242 * This also needs to deal with overflowing the xfs_fsize_t type
1243 * which can happen for sizes near the limit.
1245 * We also need to take into account any blocks beyond the EOF. It
1246 * may be the case that they were buffered by a write which failed.
1247 * In that case the pages will still be in memory, but the inode size
1248 * will never have been updated.
1255 xfs_fsize_t last_byte
;
1256 xfs_fileoff_t last_block
;
1257 xfs_fileoff_t size_last_block
;
1260 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1264 * Only check for blocks beyond the EOF if the extents have
1265 * been read in. This eliminates the need for the inode lock,
1266 * and it also saves us from looking when it really isn't
1269 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1270 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1271 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1273 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1280 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1281 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1283 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1284 if (last_byte
< 0) {
1285 return XFS_MAXIOFFSET(mp
);
1287 last_byte
+= (1 << mp
->m_writeio_log
);
1288 if (last_byte
< 0) {
1289 return XFS_MAXIOFFSET(mp
);
1294 #if defined(XFS_RW_TRACE)
1300 xfs_fsize_t new_size
,
1301 xfs_off_t toss_start
,
1302 xfs_off_t toss_finish
)
1304 if (ip
->i_rwtrace
== NULL
) {
1308 ktrace_enter(ip
->i_rwtrace
,
1311 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1312 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1313 (void*)((long)flag
),
1314 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1315 (void*)(unsigned long)(new_size
& 0xffffffff),
1316 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1317 (void*)(unsigned long)(toss_start
& 0xffffffff),
1318 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1319 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1320 (void*)(unsigned long)current_cpu(),
1321 (void*)(unsigned long)current_pid(),
1327 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1331 * Start the truncation of the file to new_size. The new size
1332 * must be smaller than the current size. This routine will
1333 * clear the buffer and page caches of file data in the removed
1334 * range, and xfs_itruncate_finish() will remove the underlying
1337 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1338 * must NOT have the inode lock held at all. This is because we're
1339 * calling into the buffer/page cache code and we can't hold the
1340 * inode lock when we do so.
1342 * We need to wait for any direct I/Os in flight to complete before we
1343 * proceed with the truncate. This is needed to prevent the extents
1344 * being read or written by the direct I/Os from being removed while the
1345 * I/O is in flight as there is no other method of synchronising
1346 * direct I/O with the truncate operation. Also, because we hold
1347 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1348 * started until the truncate completes and drops the lock. Essentially,
1349 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1350 * ordering between direct I/Os and the truncate operation.
1352 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1353 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1354 * in the case that the caller is locking things out of order and
1355 * may not be able to call xfs_itruncate_finish() with the inode lock
1356 * held without dropping the I/O lock. If the caller must drop the
1357 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1358 * must be called again with all the same restrictions as the initial
1362 xfs_itruncate_start(
1365 xfs_fsize_t new_size
)
1367 xfs_fsize_t last_byte
;
1368 xfs_off_t toss_start
;
1372 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1373 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1374 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1375 (flags
== XFS_ITRUNC_MAYBE
));
1379 /* wait for the completion of any pending DIOs */
1380 if (new_size
== 0 || new_size
< ip
->i_size
)
1384 * Call toss_pages or flushinval_pages to get rid of pages
1385 * overlapping the region being removed. We have to use
1386 * the less efficient flushinval_pages in the case that the
1387 * caller may not be able to finish the truncate without
1388 * dropping the inode's I/O lock. Make sure
1389 * to catch any pages brought in by buffers overlapping
1390 * the EOF by searching out beyond the isize by our
1391 * block size. We round new_size up to a block boundary
1392 * so that we don't toss things on the same block as
1393 * new_size but before it.
1395 * Before calling toss_page or flushinval_pages, make sure to
1396 * call remapf() over the same region if the file is mapped.
1397 * This frees up mapped file references to the pages in the
1398 * given range and for the flushinval_pages case it ensures
1399 * that we get the latest mapped changes flushed out.
1401 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1402 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1403 if (toss_start
< 0) {
1405 * The place to start tossing is beyond our maximum
1406 * file size, so there is no way that the data extended
1411 last_byte
= xfs_file_last_byte(ip
);
1412 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1414 if (last_byte
> toss_start
) {
1415 if (flags
& XFS_ITRUNC_DEFINITE
) {
1416 xfs_tosspages(ip
, toss_start
,
1417 -1, FI_REMAPF_LOCKED
);
1419 error
= xfs_flushinval_pages(ip
, toss_start
,
1420 -1, FI_REMAPF_LOCKED
);
1425 if (new_size
== 0) {
1426 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1433 * Shrink the file to the given new_size. The new size must be smaller than
1434 * the current size. This will free up the underlying blocks in the removed
1435 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1437 * The transaction passed to this routine must have made a permanent log
1438 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1439 * given transaction and start new ones, so make sure everything involved in
1440 * the transaction is tidy before calling here. Some transaction will be
1441 * returned to the caller to be committed. The incoming transaction must
1442 * already include the inode, and both inode locks must be held exclusively.
1443 * The inode must also be "held" within the transaction. On return the inode
1444 * will be "held" within the returned transaction. This routine does NOT
1445 * require any disk space to be reserved for it within the transaction.
1447 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1448 * indicates the fork which is to be truncated. For the attribute fork we only
1449 * support truncation to size 0.
1451 * We use the sync parameter to indicate whether or not the first transaction
1452 * we perform might have to be synchronous. For the attr fork, it needs to be
1453 * so if the unlink of the inode is not yet known to be permanent in the log.
1454 * This keeps us from freeing and reusing the blocks of the attribute fork
1455 * before the unlink of the inode becomes permanent.
1457 * For the data fork, we normally have to run synchronously if we're being
1458 * called out of the inactive path or we're being called out of the create path
1459 * where we're truncating an existing file. Either way, the truncate needs to
1460 * be sync so blocks don't reappear in the file with altered data in case of a
1461 * crash. wsync filesystems can run the first case async because anything that
1462 * shrinks the inode has to run sync so by the time we're called here from
1463 * inactive, the inode size is permanently set to 0.
1465 * Calls from the truncate path always need to be sync unless we're in a wsync
1466 * filesystem and the file has already been unlinked.
1468 * The caller is responsible for correctly setting the sync parameter. It gets
1469 * too hard for us to guess here which path we're being called out of just
1470 * based on inode state.
1472 * If we get an error, we must return with the inode locked and linked into the
1473 * current transaction. This keeps things simple for the higher level code,
1474 * because it always knows that the inode is locked and held in the transaction
1475 * that returns to it whether errors occur or not. We don't mark the inode
1476 * dirty on error so that transactions can be easily aborted if possible.
1479 xfs_itruncate_finish(
1482 xfs_fsize_t new_size
,
1486 xfs_fsblock_t first_block
;
1487 xfs_fileoff_t first_unmap_block
;
1488 xfs_fileoff_t last_block
;
1489 xfs_filblks_t unmap_len
=0;
1494 xfs_bmap_free_t free_list
;
1497 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1498 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1499 ASSERT(*tp
!= NULL
);
1500 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1501 ASSERT(ip
->i_transp
== *tp
);
1502 ASSERT(ip
->i_itemp
!= NULL
);
1503 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1507 mp
= (ntp
)->t_mountp
;
1508 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1511 * We only support truncating the entire attribute fork.
1513 if (fork
== XFS_ATTR_FORK
) {
1516 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1517 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1519 * The first thing we do is set the size to new_size permanently
1520 * on disk. This way we don't have to worry about anyone ever
1521 * being able to look at the data being freed even in the face
1522 * of a crash. What we're getting around here is the case where
1523 * we free a block, it is allocated to another file, it is written
1524 * to, and then we crash. If the new data gets written to the
1525 * file but the log buffers containing the free and reallocation
1526 * don't, then we'd end up with garbage in the blocks being freed.
1527 * As long as we make the new_size permanent before actually
1528 * freeing any blocks it doesn't matter if they get writtten to.
1530 * The callers must signal into us whether or not the size
1531 * setting here must be synchronous. There are a few cases
1532 * where it doesn't have to be synchronous. Those cases
1533 * occur if the file is unlinked and we know the unlink is
1534 * permanent or if the blocks being truncated are guaranteed
1535 * to be beyond the inode eof (regardless of the link count)
1536 * and the eof value is permanent. Both of these cases occur
1537 * only on wsync-mounted filesystems. In those cases, we're
1538 * guaranteed that no user will ever see the data in the blocks
1539 * that are being truncated so the truncate can run async.
1540 * In the free beyond eof case, the file may wind up with
1541 * more blocks allocated to it than it needs if we crash
1542 * and that won't get fixed until the next time the file
1543 * is re-opened and closed but that's ok as that shouldn't
1544 * be too many blocks.
1546 * However, we can't just make all wsync xactions run async
1547 * because there's one call out of the create path that needs
1548 * to run sync where it's truncating an existing file to size
1549 * 0 whose size is > 0.
1551 * It's probably possible to come up with a test in this
1552 * routine that would correctly distinguish all the above
1553 * cases from the values of the function parameters and the
1554 * inode state but for sanity's sake, I've decided to let the
1555 * layers above just tell us. It's simpler to correctly figure
1556 * out in the layer above exactly under what conditions we
1557 * can run async and I think it's easier for others read and
1558 * follow the logic in case something has to be changed.
1559 * cscope is your friend -- rcc.
1561 * The attribute fork is much simpler.
1563 * For the attribute fork we allow the caller to tell us whether
1564 * the unlink of the inode that led to this call is yet permanent
1565 * in the on disk log. If it is not and we will be freeing extents
1566 * in this inode then we make the first transaction synchronous
1567 * to make sure that the unlink is permanent by the time we free
1570 if (fork
== XFS_DATA_FORK
) {
1571 if (ip
->i_d
.di_nextents
> 0) {
1573 * If we are not changing the file size then do
1574 * not update the on-disk file size - we may be
1575 * called from xfs_inactive_free_eofblocks(). If we
1576 * update the on-disk file size and then the system
1577 * crashes before the contents of the file are
1578 * flushed to disk then the files may be full of
1579 * holes (ie NULL files bug).
1581 if (ip
->i_size
!= new_size
) {
1582 ip
->i_d
.di_size
= new_size
;
1583 ip
->i_size
= new_size
;
1584 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1588 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1589 if (ip
->i_d
.di_anextents
> 0)
1590 xfs_trans_set_sync(ntp
);
1592 ASSERT(fork
== XFS_DATA_FORK
||
1593 (fork
== XFS_ATTR_FORK
&&
1594 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1595 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1598 * Since it is possible for space to become allocated beyond
1599 * the end of the file (in a crash where the space is allocated
1600 * but the inode size is not yet updated), simply remove any
1601 * blocks which show up between the new EOF and the maximum
1602 * possible file size. If the first block to be removed is
1603 * beyond the maximum file size (ie it is the same as last_block),
1604 * then there is nothing to do.
1606 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1607 ASSERT(first_unmap_block
<= last_block
);
1609 if (last_block
== first_unmap_block
) {
1612 unmap_len
= last_block
- first_unmap_block
+ 1;
1616 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1617 * will tell us whether it freed the entire range or
1618 * not. If this is a synchronous mount (wsync),
1619 * then we can tell bunmapi to keep all the
1620 * transactions asynchronous since the unlink
1621 * transaction that made this inode inactive has
1622 * already hit the disk. There's no danger of
1623 * the freed blocks being reused, there being a
1624 * crash, and the reused blocks suddenly reappearing
1625 * in this file with garbage in them once recovery
1628 xfs_bmap_init(&free_list
, &first_block
);
1629 error
= xfs_bunmapi(ntp
, ip
,
1630 first_unmap_block
, unmap_len
,
1631 xfs_bmapi_aflag(fork
) |
1632 (sync
? 0 : XFS_BMAPI_ASYNC
),
1633 XFS_ITRUNC_MAX_EXTENTS
,
1634 &first_block
, &free_list
,
1638 * If the bunmapi call encounters an error,
1639 * return to the caller where the transaction
1640 * can be properly aborted. We just need to
1641 * make sure we're not holding any resources
1642 * that we were not when we came in.
1644 xfs_bmap_cancel(&free_list
);
1649 * Duplicate the transaction that has the permanent
1650 * reservation and commit the old transaction.
1652 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1655 /* link the inode into the next xact in the chain */
1656 xfs_trans_ijoin(ntp
, ip
,
1657 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1658 xfs_trans_ihold(ntp
, ip
);
1663 * If the bmap finish call encounters an error, return
1664 * to the caller where the transaction can be properly
1665 * aborted. We just need to make sure we're not
1666 * holding any resources that we were not when we came
1669 * Aborting from this point might lose some blocks in
1670 * the file system, but oh well.
1672 xfs_bmap_cancel(&free_list
);
1678 * Mark the inode dirty so it will be logged and
1679 * moved forward in the log as part of every commit.
1681 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1684 ntp
= xfs_trans_dup(ntp
);
1685 error
= xfs_trans_commit(*tp
, 0);
1688 /* link the inode into the next transaction in the chain */
1689 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1690 xfs_trans_ihold(ntp
, ip
);
1695 * transaction commit worked ok so we can drop the extra ticket
1696 * reference that we gained in xfs_trans_dup()
1698 xfs_log_ticket_put(ntp
->t_ticket
);
1699 error
= xfs_trans_reserve(ntp
, 0,
1700 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1701 XFS_TRANS_PERM_LOG_RES
,
1702 XFS_ITRUNCATE_LOG_COUNT
);
1707 * Only update the size in the case of the data fork, but
1708 * always re-log the inode so that our permanent transaction
1709 * can keep on rolling it forward in the log.
1711 if (fork
== XFS_DATA_FORK
) {
1712 xfs_isize_check(mp
, ip
, new_size
);
1714 * If we are not changing the file size then do
1715 * not update the on-disk file size - we may be
1716 * called from xfs_inactive_free_eofblocks(). If we
1717 * update the on-disk file size and then the system
1718 * crashes before the contents of the file are
1719 * flushed to disk then the files may be full of
1720 * holes (ie NULL files bug).
1722 if (ip
->i_size
!= new_size
) {
1723 ip
->i_d
.di_size
= new_size
;
1724 ip
->i_size
= new_size
;
1727 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1728 ASSERT((new_size
!= 0) ||
1729 (fork
== XFS_ATTR_FORK
) ||
1730 (ip
->i_delayed_blks
== 0));
1731 ASSERT((new_size
!= 0) ||
1732 (fork
== XFS_ATTR_FORK
) ||
1733 (ip
->i_d
.di_nextents
== 0));
1734 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1739 * This is called when the inode's link count goes to 0.
1740 * We place the on-disk inode on a list in the AGI. It
1741 * will be pulled from this list when the inode is freed.
1758 ASSERT(ip
->i_d
.di_nlink
== 0);
1759 ASSERT(ip
->i_d
.di_mode
!= 0);
1760 ASSERT(ip
->i_transp
== tp
);
1765 * Get the agi buffer first. It ensures lock ordering
1768 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1771 agi
= XFS_BUF_TO_AGI(agibp
);
1774 * Get the index into the agi hash table for the
1775 * list this inode will go on.
1777 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1779 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1780 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1781 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1783 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1785 * There is already another inode in the bucket we need
1786 * to add ourselves to. Add us at the front of the list.
1787 * Here we put the head pointer into our next pointer,
1788 * and then we fall through to point the head at us.
1790 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1794 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1795 /* both on-disk, don't endian flip twice */
1796 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1797 offset
= ip
->i_imap
.im_boffset
+
1798 offsetof(xfs_dinode_t
, di_next_unlinked
);
1799 xfs_trans_inode_buf(tp
, ibp
);
1800 xfs_trans_log_buf(tp
, ibp
, offset
,
1801 (offset
+ sizeof(xfs_agino_t
) - 1));
1802 xfs_inobp_check(mp
, ibp
);
1806 * Point the bucket head pointer at the inode being inserted.
1809 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1810 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1811 (sizeof(xfs_agino_t
) * bucket_index
);
1812 xfs_trans_log_buf(tp
, agibp
, offset
,
1813 (offset
+ sizeof(xfs_agino_t
) - 1));
1818 * Pull the on-disk inode from the AGI unlinked list.
1831 xfs_agnumber_t agno
;
1833 xfs_agino_t next_agino
;
1834 xfs_buf_t
*last_ibp
;
1835 xfs_dinode_t
*last_dip
= NULL
;
1837 int offset
, last_offset
= 0;
1841 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1844 * Get the agi buffer first. It ensures lock ordering
1847 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1851 agi
= XFS_BUF_TO_AGI(agibp
);
1854 * Get the index into the agi hash table for the
1855 * list this inode will go on.
1857 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1859 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1860 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1861 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1863 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1865 * We're at the head of the list. Get the inode's
1866 * on-disk buffer to see if there is anyone after us
1867 * on the list. Only modify our next pointer if it
1868 * is not already NULLAGINO. This saves us the overhead
1869 * of dealing with the buffer when there is no need to
1872 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1875 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1876 error
, mp
->m_fsname
);
1879 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1880 ASSERT(next_agino
!= 0);
1881 if (next_agino
!= NULLAGINO
) {
1882 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1883 offset
= ip
->i_imap
.im_boffset
+
1884 offsetof(xfs_dinode_t
, di_next_unlinked
);
1885 xfs_trans_inode_buf(tp
, ibp
);
1886 xfs_trans_log_buf(tp
, ibp
, offset
,
1887 (offset
+ sizeof(xfs_agino_t
) - 1));
1888 xfs_inobp_check(mp
, ibp
);
1890 xfs_trans_brelse(tp
, ibp
);
1893 * Point the bucket head pointer at the next inode.
1895 ASSERT(next_agino
!= 0);
1896 ASSERT(next_agino
!= agino
);
1897 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1898 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1899 (sizeof(xfs_agino_t
) * bucket_index
);
1900 xfs_trans_log_buf(tp
, agibp
, offset
,
1901 (offset
+ sizeof(xfs_agino_t
) - 1));
1904 * We need to search the list for the inode being freed.
1906 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1908 while (next_agino
!= agino
) {
1910 * If the last inode wasn't the one pointing to
1911 * us, then release its buffer since we're not
1912 * going to do anything with it.
1914 if (last_ibp
!= NULL
) {
1915 xfs_trans_brelse(tp
, last_ibp
);
1917 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1918 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1919 &last_ibp
, &last_offset
, 0);
1922 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1923 error
, mp
->m_fsname
);
1926 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1927 ASSERT(next_agino
!= NULLAGINO
);
1928 ASSERT(next_agino
!= 0);
1931 * Now last_ibp points to the buffer previous to us on
1932 * the unlinked list. Pull us from the list.
1934 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1937 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1938 error
, mp
->m_fsname
);
1941 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1942 ASSERT(next_agino
!= 0);
1943 ASSERT(next_agino
!= agino
);
1944 if (next_agino
!= NULLAGINO
) {
1945 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1946 offset
= ip
->i_imap
.im_boffset
+
1947 offsetof(xfs_dinode_t
, di_next_unlinked
);
1948 xfs_trans_inode_buf(tp
, ibp
);
1949 xfs_trans_log_buf(tp
, ibp
, offset
,
1950 (offset
+ sizeof(xfs_agino_t
) - 1));
1951 xfs_inobp_check(mp
, ibp
);
1953 xfs_trans_brelse(tp
, ibp
);
1956 * Point the previous inode on the list to the next inode.
1958 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1959 ASSERT(next_agino
!= 0);
1960 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1961 xfs_trans_inode_buf(tp
, last_ibp
);
1962 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1963 (offset
+ sizeof(xfs_agino_t
) - 1));
1964 xfs_inobp_check(mp
, last_ibp
);
1971 xfs_inode_t
*free_ip
,
1975 xfs_mount_t
*mp
= free_ip
->i_mount
;
1976 int blks_per_cluster
;
1979 int i
, j
, found
, pre_flushed
;
1982 xfs_inode_t
*ip
, **ip_found
;
1983 xfs_inode_log_item_t
*iip
;
1984 xfs_log_item_t
*lip
;
1985 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
1987 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1988 blks_per_cluster
= 1;
1989 ninodes
= mp
->m_sb
.sb_inopblock
;
1990 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1992 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1993 mp
->m_sb
.sb_blocksize
;
1994 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1995 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1998 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2000 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2001 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2002 XFS_INO_TO_AGBNO(mp
, inum
));
2006 * Look for each inode in memory and attempt to lock it,
2007 * we can be racing with flush and tail pushing here.
2008 * any inode we get the locks on, add to an array of
2009 * inode items to process later.
2011 * The get the buffer lock, we could beat a flush
2012 * or tail pushing thread to the lock here, in which
2013 * case they will go looking for the inode buffer
2014 * and fail, we need some other form of interlock
2018 for (i
= 0; i
< ninodes
; i
++) {
2019 read_lock(&pag
->pag_ici_lock
);
2020 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2021 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2023 /* Inode not in memory or we found it already,
2026 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2027 read_unlock(&pag
->pag_ici_lock
);
2031 if (xfs_inode_clean(ip
)) {
2032 read_unlock(&pag
->pag_ici_lock
);
2036 /* If we can get the locks then add it to the
2037 * list, otherwise by the time we get the bp lock
2038 * below it will already be attached to the
2042 /* This inode will already be locked - by us, lets
2046 if (ip
== free_ip
) {
2047 if (xfs_iflock_nowait(ip
)) {
2048 xfs_iflags_set(ip
, XFS_ISTALE
);
2049 if (xfs_inode_clean(ip
)) {
2052 ip_found
[found
++] = ip
;
2055 read_unlock(&pag
->pag_ici_lock
);
2059 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2060 if (xfs_iflock_nowait(ip
)) {
2061 xfs_iflags_set(ip
, XFS_ISTALE
);
2063 if (xfs_inode_clean(ip
)) {
2065 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2067 ip_found
[found
++] = ip
;
2070 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2073 read_unlock(&pag
->pag_ici_lock
);
2076 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2077 mp
->m_bsize
* blks_per_cluster
,
2081 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2083 if (lip
->li_type
== XFS_LI_INODE
) {
2084 iip
= (xfs_inode_log_item_t
*)lip
;
2085 ASSERT(iip
->ili_logged
== 1);
2086 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2087 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2088 &iip
->ili_flush_lsn
,
2089 &iip
->ili_item
.li_lsn
);
2090 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2093 lip
= lip
->li_bio_list
;
2096 for (i
= 0; i
< found
; i
++) {
2101 ip
->i_update_core
= 0;
2103 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2107 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2108 iip
->ili_format
.ilf_fields
= 0;
2109 iip
->ili_logged
= 1;
2110 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2111 &iip
->ili_item
.li_lsn
);
2113 xfs_buf_attach_iodone(bp
,
2114 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2115 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2116 if (ip
!= free_ip
) {
2117 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2121 if (found
|| pre_flushed
)
2122 xfs_trans_stale_inode_buf(tp
, bp
);
2123 xfs_trans_binval(tp
, bp
);
2126 kmem_free(ip_found
);
2127 xfs_put_perag(mp
, pag
);
2131 * This is called to return an inode to the inode free list.
2132 * The inode should already be truncated to 0 length and have
2133 * no pages associated with it. This routine also assumes that
2134 * the inode is already a part of the transaction.
2136 * The on-disk copy of the inode will have been added to the list
2137 * of unlinked inodes in the AGI. We need to remove the inode from
2138 * that list atomically with respect to freeing it here.
2144 xfs_bmap_free_t
*flist
)
2148 xfs_ino_t first_ino
;
2152 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2153 ASSERT(ip
->i_transp
== tp
);
2154 ASSERT(ip
->i_d
.di_nlink
== 0);
2155 ASSERT(ip
->i_d
.di_nextents
== 0);
2156 ASSERT(ip
->i_d
.di_anextents
== 0);
2157 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2158 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2159 ASSERT(ip
->i_d
.di_nblocks
== 0);
2162 * Pull the on-disk inode from the AGI unlinked list.
2164 error
= xfs_iunlink_remove(tp
, ip
);
2169 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2173 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2174 ip
->i_d
.di_flags
= 0;
2175 ip
->i_d
.di_dmevmask
= 0;
2176 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2177 ip
->i_df
.if_ext_max
=
2178 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2179 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2180 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2182 * Bump the generation count so no one will be confused
2183 * by reincarnations of this inode.
2187 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2189 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
2194 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2195 * from picking up this inode when it is reclaimed (its incore state
2196 * initialzed but not flushed to disk yet). The in-core di_mode is
2197 * already cleared and a corresponding transaction logged.
2198 * The hack here just synchronizes the in-core to on-disk
2199 * di_mode value in advance before the actual inode sync to disk.
2200 * This is OK because the inode is already unlinked and would never
2201 * change its di_mode again for this inode generation.
2202 * This is a temporary hack that would require a proper fix
2208 xfs_ifree_cluster(ip
, tp
, first_ino
);
2215 * Reallocate the space for if_broot based on the number of records
2216 * being added or deleted as indicated in rec_diff. Move the records
2217 * and pointers in if_broot to fit the new size. When shrinking this
2218 * will eliminate holes between the records and pointers created by
2219 * the caller. When growing this will create holes to be filled in
2222 * The caller must not request to add more records than would fit in
2223 * the on-disk inode root. If the if_broot is currently NULL, then
2224 * if we adding records one will be allocated. The caller must also
2225 * not request that the number of records go below zero, although
2226 * it can go to zero.
2228 * ip -- the inode whose if_broot area is changing
2229 * ext_diff -- the change in the number of records, positive or negative,
2230 * requested for the if_broot array.
2238 struct xfs_mount
*mp
= ip
->i_mount
;
2241 struct xfs_btree_block
*new_broot
;
2248 * Handle the degenerate case quietly.
2250 if (rec_diff
== 0) {
2254 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2257 * If there wasn't any memory allocated before, just
2258 * allocate it now and get out.
2260 if (ifp
->if_broot_bytes
== 0) {
2261 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2262 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2263 ifp
->if_broot_bytes
= (int)new_size
;
2268 * If there is already an existing if_broot, then we need
2269 * to realloc() it and shift the pointers to their new
2270 * location. The records don't change location because
2271 * they are kept butted up against the btree block header.
2273 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2274 new_max
= cur_max
+ rec_diff
;
2275 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2276 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2277 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2279 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2280 ifp
->if_broot_bytes
);
2281 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2283 ifp
->if_broot_bytes
= (int)new_size
;
2284 ASSERT(ifp
->if_broot_bytes
<=
2285 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2286 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2291 * rec_diff is less than 0. In this case, we are shrinking the
2292 * if_broot buffer. It must already exist. If we go to zero
2293 * records, just get rid of the root and clear the status bit.
2295 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2296 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2297 new_max
= cur_max
+ rec_diff
;
2298 ASSERT(new_max
>= 0);
2300 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2304 new_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2306 * First copy over the btree block header.
2308 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2311 ifp
->if_flags
&= ~XFS_IFBROOT
;
2315 * Only copy the records and pointers if there are any.
2319 * First copy the records.
2321 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2322 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2323 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2326 * Then copy the pointers.
2328 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2329 ifp
->if_broot_bytes
);
2330 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2332 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2334 kmem_free(ifp
->if_broot
);
2335 ifp
->if_broot
= new_broot
;
2336 ifp
->if_broot_bytes
= (int)new_size
;
2337 ASSERT(ifp
->if_broot_bytes
<=
2338 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2344 * This is called when the amount of space needed for if_data
2345 * is increased or decreased. The change in size is indicated by
2346 * the number of bytes that need to be added or deleted in the
2347 * byte_diff parameter.
2349 * If the amount of space needed has decreased below the size of the
2350 * inline buffer, then switch to using the inline buffer. Otherwise,
2351 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2352 * to what is needed.
2354 * ip -- the inode whose if_data area is changing
2355 * byte_diff -- the change in the number of bytes, positive or negative,
2356 * requested for the if_data array.
2368 if (byte_diff
== 0) {
2372 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2373 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2374 ASSERT(new_size
>= 0);
2376 if (new_size
== 0) {
2377 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2378 kmem_free(ifp
->if_u1
.if_data
);
2380 ifp
->if_u1
.if_data
= NULL
;
2382 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2384 * If the valid extents/data can fit in if_inline_ext/data,
2385 * copy them from the malloc'd vector and free it.
2387 if (ifp
->if_u1
.if_data
== NULL
) {
2388 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2389 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2390 ASSERT(ifp
->if_real_bytes
!= 0);
2391 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2393 kmem_free(ifp
->if_u1
.if_data
);
2394 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2399 * Stuck with malloc/realloc.
2400 * For inline data, the underlying buffer must be
2401 * a multiple of 4 bytes in size so that it can be
2402 * logged and stay on word boundaries. We enforce
2405 real_size
= roundup(new_size
, 4);
2406 if (ifp
->if_u1
.if_data
== NULL
) {
2407 ASSERT(ifp
->if_real_bytes
== 0);
2408 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2409 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2411 * Only do the realloc if the underlying size
2412 * is really changing.
2414 if (ifp
->if_real_bytes
!= real_size
) {
2415 ifp
->if_u1
.if_data
=
2416 kmem_realloc(ifp
->if_u1
.if_data
,
2422 ASSERT(ifp
->if_real_bytes
== 0);
2423 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2424 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2428 ifp
->if_real_bytes
= real_size
;
2429 ifp
->if_bytes
= new_size
;
2430 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2440 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2441 if (ifp
->if_broot
!= NULL
) {
2442 kmem_free(ifp
->if_broot
);
2443 ifp
->if_broot
= NULL
;
2447 * If the format is local, then we can't have an extents
2448 * array so just look for an inline data array. If we're
2449 * not local then we may or may not have an extents list,
2450 * so check and free it up if we do.
2452 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2453 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2454 (ifp
->if_u1
.if_data
!= NULL
)) {
2455 ASSERT(ifp
->if_real_bytes
!= 0);
2456 kmem_free(ifp
->if_u1
.if_data
);
2457 ifp
->if_u1
.if_data
= NULL
;
2458 ifp
->if_real_bytes
= 0;
2460 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2461 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2462 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2463 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2464 ASSERT(ifp
->if_real_bytes
!= 0);
2465 xfs_iext_destroy(ifp
);
2467 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2468 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2469 ASSERT(ifp
->if_real_bytes
== 0);
2470 if (whichfork
== XFS_ATTR_FORK
) {
2471 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2477 * Increment the pin count of the given buffer.
2478 * This value is protected by ipinlock spinlock in the mount structure.
2484 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2486 atomic_inc(&ip
->i_pincount
);
2490 * Decrement the pin count of the given inode, and wake up
2491 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2492 * inode must have been previously pinned with a call to xfs_ipin().
2498 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2500 if (atomic_dec_and_test(&ip
->i_pincount
))
2501 wake_up(&ip
->i_ipin_wait
);
2505 * This is called to unpin an inode. It can be directed to wait or to return
2506 * immediately without waiting for the inode to be unpinned. The caller must
2507 * have the inode locked in at least shared mode so that the buffer cannot be
2508 * subsequently pinned once someone is waiting for it to be unpinned.
2515 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2517 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2518 if (atomic_read(&ip
->i_pincount
) == 0)
2521 /* Give the log a push to start the unpinning I/O */
2522 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2523 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2525 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2532 __xfs_iunpin_wait(ip
, 1);
2539 __xfs_iunpin_wait(ip
, 0);
2544 * xfs_iextents_copy()
2546 * This is called to copy the REAL extents (as opposed to the delayed
2547 * allocation extents) from the inode into the given buffer. It
2548 * returns the number of bytes copied into the buffer.
2550 * If there are no delayed allocation extents, then we can just
2551 * memcpy() the extents into the buffer. Otherwise, we need to
2552 * examine each extent in turn and skip those which are delayed.
2564 xfs_fsblock_t start_block
;
2566 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2567 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2568 ASSERT(ifp
->if_bytes
> 0);
2570 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2571 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2575 * There are some delayed allocation extents in the
2576 * inode, so copy the extents one at a time and skip
2577 * the delayed ones. There must be at least one
2578 * non-delayed extent.
2581 for (i
= 0; i
< nrecs
; i
++) {
2582 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2583 start_block
= xfs_bmbt_get_startblock(ep
);
2584 if (isnullstartblock(start_block
)) {
2586 * It's a delayed allocation extent, so skip it.
2591 /* Translate to on disk format */
2592 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2593 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2597 ASSERT(copied
!= 0);
2598 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2600 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2604 * Each of the following cases stores data into the same region
2605 * of the on-disk inode, so only one of them can be valid at
2606 * any given time. While it is possible to have conflicting formats
2607 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2608 * in EXTENTS format, this can only happen when the fork has
2609 * changed formats after being modified but before being flushed.
2610 * In these cases, the format always takes precedence, because the
2611 * format indicates the current state of the fork.
2618 xfs_inode_log_item_t
*iip
,
2625 #ifdef XFS_TRANS_DEBUG
2628 static const short brootflag
[2] =
2629 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2630 static const short dataflag
[2] =
2631 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2632 static const short extflag
[2] =
2633 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2637 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2639 * This can happen if we gave up in iformat in an error path,
2640 * for the attribute fork.
2643 ASSERT(whichfork
== XFS_ATTR_FORK
);
2646 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2648 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2649 case XFS_DINODE_FMT_LOCAL
:
2650 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2651 (ifp
->if_bytes
> 0)) {
2652 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2653 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2654 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2658 case XFS_DINODE_FMT_EXTENTS
:
2659 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2660 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2661 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2662 (ifp
->if_bytes
== 0));
2663 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2664 (ifp
->if_bytes
> 0));
2665 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2666 (ifp
->if_bytes
> 0)) {
2667 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2668 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2673 case XFS_DINODE_FMT_BTREE
:
2674 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2675 (ifp
->if_broot_bytes
> 0)) {
2676 ASSERT(ifp
->if_broot
!= NULL
);
2677 ASSERT(ifp
->if_broot_bytes
<=
2678 (XFS_IFORK_SIZE(ip
, whichfork
) +
2679 XFS_BROOT_SIZE_ADJ
));
2680 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2681 (xfs_bmdr_block_t
*)cp
,
2682 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2686 case XFS_DINODE_FMT_DEV
:
2687 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2688 ASSERT(whichfork
== XFS_DATA_FORK
);
2689 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2693 case XFS_DINODE_FMT_UUID
:
2694 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2695 ASSERT(whichfork
== XFS_DATA_FORK
);
2696 memcpy(XFS_DFORK_DPTR(dip
),
2697 &ip
->i_df
.if_u2
.if_uuid
,
2713 xfs_mount_t
*mp
= ip
->i_mount
;
2714 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2715 unsigned long first_index
, mask
;
2716 unsigned long inodes_per_cluster
;
2718 xfs_inode_t
**ilist
;
2725 ASSERT(pag
->pagi_inodeok
);
2726 ASSERT(pag
->pag_ici_init
);
2728 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2729 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2730 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2734 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2735 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2736 read_lock(&pag
->pag_ici_lock
);
2737 /* really need a gang lookup range call here */
2738 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2739 first_index
, inodes_per_cluster
);
2743 for (i
= 0; i
< nr_found
; i
++) {
2747 /* if the inode lies outside this cluster, we're done. */
2748 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2751 * Do an un-protected check to see if the inode is dirty and
2752 * is a candidate for flushing. These checks will be repeated
2753 * later after the appropriate locks are acquired.
2755 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2759 * Try to get locks. If any are unavailable or it is pinned,
2760 * then this inode cannot be flushed and is skipped.
2763 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2765 if (!xfs_iflock_nowait(iq
)) {
2766 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2769 if (xfs_ipincount(iq
)) {
2771 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2776 * arriving here means that this inode can be flushed. First
2777 * re-check that it's dirty before flushing.
2779 if (!xfs_inode_clean(iq
)) {
2781 error
= xfs_iflush_int(iq
, bp
);
2783 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2784 goto cluster_corrupt_out
;
2790 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2794 XFS_STATS_INC(xs_icluster_flushcnt
);
2795 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2799 read_unlock(&pag
->pag_ici_lock
);
2804 cluster_corrupt_out
:
2806 * Corruption detected in the clustering loop. Invalidate the
2807 * inode buffer and shut down the filesystem.
2809 read_unlock(&pag
->pag_ici_lock
);
2811 * Clean up the buffer. If it was B_DELWRI, just release it --
2812 * brelse can handle it with no problems. If not, shut down the
2813 * filesystem before releasing the buffer.
2815 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2819 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2821 if (!bufwasdelwri
) {
2823 * Just like incore_relse: if we have b_iodone functions,
2824 * mark the buffer as an error and call them. Otherwise
2825 * mark it as stale and brelse.
2827 if (XFS_BUF_IODONE_FUNC(bp
)) {
2828 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
2831 XFS_BUF_ERROR(bp
,EIO
);
2840 * Unlocks the flush lock
2842 xfs_iflush_abort(iq
);
2844 return XFS_ERROR(EFSCORRUPTED
);
2848 * xfs_iflush() will write a modified inode's changes out to the
2849 * inode's on disk home. The caller must have the inode lock held
2850 * in at least shared mode and the inode flush completion must be
2851 * active as well. The inode lock will still be held upon return from
2852 * the call and the caller is free to unlock it.
2853 * The inode flush will be completed when the inode reaches the disk.
2854 * The flags indicate how the inode's buffer should be written out.
2861 xfs_inode_log_item_t
*iip
;
2866 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
2867 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
2869 XFS_STATS_INC(xs_iflush_count
);
2871 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2872 ASSERT(!completion_done(&ip
->i_flush
));
2873 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2874 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2880 * If the inode isn't dirty, then just release the inode
2881 * flush lock and do nothing.
2883 if (xfs_inode_clean(ip
)) {
2889 * We can't flush the inode until it is unpinned, so wait for it if we
2890 * are allowed to block. We know noone new can pin it, because we are
2891 * holding the inode lock shared and you need to hold it exclusively to
2894 * If we are not allowed to block, force the log out asynchronously so
2895 * that when we come back the inode will be unpinned. If other inodes
2896 * in the same cluster are dirty, they will probably write the inode
2897 * out for us if they occur after the log force completes.
2899 if (noblock
&& xfs_ipincount(ip
)) {
2900 xfs_iunpin_nowait(ip
);
2904 xfs_iunpin_wait(ip
);
2907 * This may have been unpinned because the filesystem is shutting
2908 * down forcibly. If that's the case we must not write this inode
2909 * to disk, because the log record didn't make it to disk!
2911 if (XFS_FORCED_SHUTDOWN(mp
)) {
2912 ip
->i_update_core
= 0;
2914 iip
->ili_format
.ilf_fields
= 0;
2916 return XFS_ERROR(EIO
);
2920 * Decide how buffer will be flushed out. This is done before
2921 * the call to xfs_iflush_int because this field is zeroed by it.
2923 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
2925 * Flush out the inode buffer according to the directions
2926 * of the caller. In the cases where the caller has given
2927 * us a choice choose the non-delwri case. This is because
2928 * the inode is in the AIL and we need to get it out soon.
2931 case XFS_IFLUSH_SYNC
:
2932 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2935 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2936 case XFS_IFLUSH_ASYNC
:
2937 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2940 case XFS_IFLUSH_DELWRI
:
2950 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2951 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2952 case XFS_IFLUSH_DELWRI
:
2955 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2956 case XFS_IFLUSH_ASYNC
:
2959 case XFS_IFLUSH_SYNC
:
2970 * Get the buffer containing the on-disk inode.
2972 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2973 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
2980 * First flush out the inode that xfs_iflush was called with.
2982 error
= xfs_iflush_int(ip
, bp
);
2987 * If the buffer is pinned then push on the log now so we won't
2988 * get stuck waiting in the write for too long.
2990 if (XFS_BUF_ISPINNED(bp
))
2991 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
2995 * see if other inodes can be gathered into this write
2997 error
= xfs_iflush_cluster(ip
, bp
);
2999 goto cluster_corrupt_out
;
3001 if (flags
& INT_DELWRI
) {
3002 xfs_bdwrite(mp
, bp
);
3003 } else if (flags
& INT_ASYNC
) {
3004 error
= xfs_bawrite(mp
, bp
);
3006 error
= xfs_bwrite(mp
, bp
);
3012 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3013 cluster_corrupt_out
:
3015 * Unlocks the flush lock
3017 xfs_iflush_abort(ip
);
3018 return XFS_ERROR(EFSCORRUPTED
);
3027 xfs_inode_log_item_t
*iip
;
3030 #ifdef XFS_TRANS_DEBUG
3034 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3035 ASSERT(!completion_done(&ip
->i_flush
));
3036 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3037 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3044 * If the inode isn't dirty, then just release the inode
3045 * flush lock and do nothing.
3047 if (xfs_inode_clean(ip
)) {
3052 /* set *dip = inode's place in the buffer */
3053 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3056 * Clear i_update_core before copying out the data.
3057 * This is for coordination with our timestamp updates
3058 * that don't hold the inode lock. They will always
3059 * update the timestamps BEFORE setting i_update_core,
3060 * so if we clear i_update_core after they set it we
3061 * are guaranteed to see their updates to the timestamps.
3062 * I believe that this depends on strongly ordered memory
3063 * semantics, but we have that. We use the SYNCHRONIZE
3064 * macro to make sure that the compiler does not reorder
3065 * the i_update_core access below the data copy below.
3067 ip
->i_update_core
= 0;
3071 * Make sure to get the latest atime from the Linux inode.
3073 xfs_synchronize_atime(ip
);
3075 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
3076 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3077 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3078 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3079 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3082 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3083 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3084 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3085 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3086 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3089 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3091 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3092 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3093 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3094 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3095 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3099 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3101 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3102 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3103 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3104 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3105 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3106 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3111 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3112 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3113 XFS_RANDOM_IFLUSH_5
)) {
3114 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3115 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3117 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3122 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3123 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3124 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3125 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3126 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3130 * bump the flush iteration count, used to detect flushes which
3131 * postdate a log record during recovery.
3134 ip
->i_d
.di_flushiter
++;
3137 * Copy the dirty parts of the inode into the on-disk
3138 * inode. We always copy out the core of the inode,
3139 * because if the inode is dirty at all the core must
3142 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3144 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3145 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3146 ip
->i_d
.di_flushiter
= 0;
3149 * If this is really an old format inode and the superblock version
3150 * has not been updated to support only new format inodes, then
3151 * convert back to the old inode format. If the superblock version
3152 * has been updated, then make the conversion permanent.
3154 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3155 if (ip
->i_d
.di_version
== 1) {
3156 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3160 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3161 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3164 * The superblock version has already been bumped,
3165 * so just make the conversion to the new inode
3168 ip
->i_d
.di_version
= 2;
3169 dip
->di_version
= 2;
3170 ip
->i_d
.di_onlink
= 0;
3172 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3173 memset(&(dip
->di_pad
[0]), 0,
3174 sizeof(dip
->di_pad
));
3175 ASSERT(ip
->i_d
.di_projid
== 0);
3179 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3180 if (XFS_IFORK_Q(ip
))
3181 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3182 xfs_inobp_check(mp
, bp
);
3185 * We've recorded everything logged in the inode, so we'd
3186 * like to clear the ilf_fields bits so we don't log and
3187 * flush things unnecessarily. However, we can't stop
3188 * logging all this information until the data we've copied
3189 * into the disk buffer is written to disk. If we did we might
3190 * overwrite the copy of the inode in the log with all the
3191 * data after re-logging only part of it, and in the face of
3192 * a crash we wouldn't have all the data we need to recover.
3194 * What we do is move the bits to the ili_last_fields field.
3195 * When logging the inode, these bits are moved back to the
3196 * ilf_fields field. In the xfs_iflush_done() routine we
3197 * clear ili_last_fields, since we know that the information
3198 * those bits represent is permanently on disk. As long as
3199 * the flush completes before the inode is logged again, then
3200 * both ilf_fields and ili_last_fields will be cleared.
3202 * We can play with the ilf_fields bits here, because the inode
3203 * lock must be held exclusively in order to set bits there
3204 * and the flush lock protects the ili_last_fields bits.
3205 * Set ili_logged so the flush done
3206 * routine can tell whether or not to look in the AIL.
3207 * Also, store the current LSN of the inode so that we can tell
3208 * whether the item has moved in the AIL from xfs_iflush_done().
3209 * In order to read the lsn we need the AIL lock, because
3210 * it is a 64 bit value that cannot be read atomically.
3212 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3213 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3214 iip
->ili_format
.ilf_fields
= 0;
3215 iip
->ili_logged
= 1;
3217 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3218 &iip
->ili_item
.li_lsn
);
3221 * Attach the function xfs_iflush_done to the inode's
3222 * buffer. This will remove the inode from the AIL
3223 * and unlock the inode's flush lock when the inode is
3224 * completely written to disk.
3226 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3227 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3229 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3230 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3233 * We're flushing an inode which is not in the AIL and has
3234 * not been logged but has i_update_core set. For this
3235 * case we can use a B_DELWRI flush and immediately drop
3236 * the inode flush lock because we can avoid the whole
3237 * AIL state thing. It's OK to drop the flush lock now,
3238 * because we've already locked the buffer and to do anything
3239 * you really need both.
3242 ASSERT(iip
->ili_logged
== 0);
3243 ASSERT(iip
->ili_last_fields
== 0);
3244 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3252 return XFS_ERROR(EFSCORRUPTED
);
3257 #ifdef XFS_ILOCK_TRACE
3259 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3261 ktrace_enter(ip
->i_lock_trace
,
3263 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3264 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3265 (void *)ra
, /* caller of ilock */
3266 (void *)(unsigned long)current_cpu(),
3267 (void *)(unsigned long)current_pid(),
3268 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3273 * Return a pointer to the extent record at file index idx.
3275 xfs_bmbt_rec_host_t
*
3277 xfs_ifork_t
*ifp
, /* inode fork pointer */
3278 xfs_extnum_t idx
) /* index of target extent */
3281 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3282 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3283 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3284 xfs_ext_irec_t
*erp
; /* irec pointer */
3285 int erp_idx
= 0; /* irec index */
3286 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3288 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3289 return &erp
->er_extbuf
[page_idx
];
3290 } else if (ifp
->if_bytes
) {
3291 return &ifp
->if_u1
.if_extents
[idx
];
3298 * Insert new item(s) into the extent records for incore inode
3299 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3303 xfs_ifork_t
*ifp
, /* inode fork pointer */
3304 xfs_extnum_t idx
, /* starting index of new items */
3305 xfs_extnum_t count
, /* number of inserted items */
3306 xfs_bmbt_irec_t
*new) /* items to insert */
3308 xfs_extnum_t i
; /* extent record index */
3310 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3311 xfs_iext_add(ifp
, idx
, count
);
3312 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3313 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3317 * This is called when the amount of space required for incore file
3318 * extents needs to be increased. The ext_diff parameter stores the
3319 * number of new extents being added and the idx parameter contains
3320 * the extent index where the new extents will be added. If the new
3321 * extents are being appended, then we just need to (re)allocate and
3322 * initialize the space. Otherwise, if the new extents are being
3323 * inserted into the middle of the existing entries, a bit more work
3324 * is required to make room for the new extents to be inserted. The
3325 * caller is responsible for filling in the new extent entries upon
3330 xfs_ifork_t
*ifp
, /* inode fork pointer */
3331 xfs_extnum_t idx
, /* index to begin adding exts */
3332 int ext_diff
) /* number of extents to add */
3334 int byte_diff
; /* new bytes being added */
3335 int new_size
; /* size of extents after adding */
3336 xfs_extnum_t nextents
; /* number of extents in file */
3338 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3339 ASSERT((idx
>= 0) && (idx
<= nextents
));
3340 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3341 new_size
= ifp
->if_bytes
+ byte_diff
;
3343 * If the new number of extents (nextents + ext_diff)
3344 * fits inside the inode, then continue to use the inline
3347 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3348 if (idx
< nextents
) {
3349 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3350 &ifp
->if_u2
.if_inline_ext
[idx
],
3351 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3352 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3354 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3355 ifp
->if_real_bytes
= 0;
3356 ifp
->if_lastex
= nextents
+ ext_diff
;
3359 * Otherwise use a linear (direct) extent list.
3360 * If the extents are currently inside the inode,
3361 * xfs_iext_realloc_direct will switch us from
3362 * inline to direct extent allocation mode.
3364 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3365 xfs_iext_realloc_direct(ifp
, new_size
);
3366 if (idx
< nextents
) {
3367 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3368 &ifp
->if_u1
.if_extents
[idx
],
3369 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3370 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3373 /* Indirection array */
3375 xfs_ext_irec_t
*erp
;
3379 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3380 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3381 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3383 xfs_iext_irec_init(ifp
);
3384 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3385 erp
= ifp
->if_u1
.if_ext_irec
;
3387 /* Extents fit in target extent page */
3388 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3389 if (page_idx
< erp
->er_extcount
) {
3390 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3391 &erp
->er_extbuf
[page_idx
],
3392 (erp
->er_extcount
- page_idx
) *
3393 sizeof(xfs_bmbt_rec_t
));
3394 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3396 erp
->er_extcount
+= ext_diff
;
3397 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3399 /* Insert a new extent page */
3401 xfs_iext_add_indirect_multi(ifp
,
3402 erp_idx
, page_idx
, ext_diff
);
3405 * If extent(s) are being appended to the last page in
3406 * the indirection array and the new extent(s) don't fit
3407 * in the page, then erp is NULL and erp_idx is set to
3408 * the next index needed in the indirection array.
3411 int count
= ext_diff
;
3414 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3415 erp
->er_extcount
= count
;
3416 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3423 ifp
->if_bytes
= new_size
;
3427 * This is called when incore extents are being added to the indirection
3428 * array and the new extents do not fit in the target extent list. The
3429 * erp_idx parameter contains the irec index for the target extent list
3430 * in the indirection array, and the idx parameter contains the extent
3431 * index within the list. The number of extents being added is stored
3432 * in the count parameter.
3434 * |-------| |-------|
3435 * | | | | idx - number of extents before idx
3437 * | | | | count - number of extents being inserted at idx
3438 * |-------| |-------|
3439 * | count | | nex2 | nex2 - number of extents after idx + count
3440 * |-------| |-------|
3443 xfs_iext_add_indirect_multi(
3444 xfs_ifork_t
*ifp
, /* inode fork pointer */
3445 int erp_idx
, /* target extent irec index */
3446 xfs_extnum_t idx
, /* index within target list */
3447 int count
) /* new extents being added */
3449 int byte_diff
; /* new bytes being added */
3450 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3451 xfs_extnum_t ext_diff
; /* number of extents to add */
3452 xfs_extnum_t ext_cnt
; /* new extents still needed */
3453 xfs_extnum_t nex2
; /* extents after idx + count */
3454 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3455 int nlists
; /* number of irec's (lists) */
3457 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3458 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3459 nex2
= erp
->er_extcount
- idx
;
3460 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3463 * Save second part of target extent list
3464 * (all extents past */
3466 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3467 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3468 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3469 erp
->er_extcount
-= nex2
;
3470 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3471 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3475 * Add the new extents to the end of the target
3476 * list, then allocate new irec record(s) and
3477 * extent buffer(s) as needed to store the rest
3478 * of the new extents.
3481 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3483 erp
->er_extcount
+= ext_diff
;
3484 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3485 ext_cnt
-= ext_diff
;
3489 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3490 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3491 erp
->er_extcount
= ext_diff
;
3492 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3493 ext_cnt
-= ext_diff
;
3496 /* Add nex2 extents back to indirection array */
3498 xfs_extnum_t ext_avail
;
3501 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3502 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3505 * If nex2 extents fit in the current page, append
3506 * nex2_ep after the new extents.
3508 if (nex2
<= ext_avail
) {
3509 i
= erp
->er_extcount
;
3512 * Otherwise, check if space is available in the
3515 else if ((erp_idx
< nlists
- 1) &&
3516 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3517 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3520 /* Create a hole for nex2 extents */
3521 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3522 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3525 * Final choice, create a new extent page for
3530 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3532 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3534 erp
->er_extcount
+= nex2
;
3535 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3540 * This is called when the amount of space required for incore file
3541 * extents needs to be decreased. The ext_diff parameter stores the
3542 * number of extents to be removed and the idx parameter contains
3543 * the extent index where the extents will be removed from.
3545 * If the amount of space needed has decreased below the linear
3546 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3547 * extent array. Otherwise, use kmem_realloc() to adjust the
3548 * size to what is needed.
3552 xfs_ifork_t
*ifp
, /* inode fork pointer */
3553 xfs_extnum_t idx
, /* index to begin removing exts */
3554 int ext_diff
) /* number of extents to remove */
3556 xfs_extnum_t nextents
; /* number of extents in file */
3557 int new_size
; /* size of extents after removal */
3559 ASSERT(ext_diff
> 0);
3560 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3561 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3563 if (new_size
== 0) {
3564 xfs_iext_destroy(ifp
);
3565 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3566 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3567 } else if (ifp
->if_real_bytes
) {
3568 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3570 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3572 ifp
->if_bytes
= new_size
;
3576 * This removes ext_diff extents from the inline buffer, beginning
3577 * at extent index idx.
3580 xfs_iext_remove_inline(
3581 xfs_ifork_t
*ifp
, /* inode fork pointer */
3582 xfs_extnum_t idx
, /* index to begin removing exts */
3583 int ext_diff
) /* number of extents to remove */
3585 int nextents
; /* number of extents in file */
3587 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3588 ASSERT(idx
< XFS_INLINE_EXTS
);
3589 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3590 ASSERT(((nextents
- ext_diff
) > 0) &&
3591 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3593 if (idx
+ ext_diff
< nextents
) {
3594 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3595 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3596 (nextents
- (idx
+ ext_diff
)) *
3597 sizeof(xfs_bmbt_rec_t
));
3598 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3599 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3601 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3602 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3607 * This removes ext_diff extents from a linear (direct) extent list,
3608 * beginning at extent index idx. If the extents are being removed
3609 * from the end of the list (ie. truncate) then we just need to re-
3610 * allocate the list to remove the extra space. Otherwise, if the
3611 * extents are being removed from the middle of the existing extent
3612 * entries, then we first need to move the extent records beginning
3613 * at idx + ext_diff up in the list to overwrite the records being
3614 * removed, then remove the extra space via kmem_realloc.
3617 xfs_iext_remove_direct(
3618 xfs_ifork_t
*ifp
, /* inode fork pointer */
3619 xfs_extnum_t idx
, /* index to begin removing exts */
3620 int ext_diff
) /* number of extents to remove */
3622 xfs_extnum_t nextents
; /* number of extents in file */
3623 int new_size
; /* size of extents after removal */
3625 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3626 new_size
= ifp
->if_bytes
-
3627 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3628 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3630 if (new_size
== 0) {
3631 xfs_iext_destroy(ifp
);
3634 /* Move extents up in the list (if needed) */
3635 if (idx
+ ext_diff
< nextents
) {
3636 memmove(&ifp
->if_u1
.if_extents
[idx
],
3637 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3638 (nextents
- (idx
+ ext_diff
)) *
3639 sizeof(xfs_bmbt_rec_t
));
3641 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3642 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3644 * Reallocate the direct extent list. If the extents
3645 * will fit inside the inode then xfs_iext_realloc_direct
3646 * will switch from direct to inline extent allocation
3649 xfs_iext_realloc_direct(ifp
, new_size
);
3650 ifp
->if_bytes
= new_size
;
3654 * This is called when incore extents are being removed from the
3655 * indirection array and the extents being removed span multiple extent
3656 * buffers. The idx parameter contains the file extent index where we
3657 * want to begin removing extents, and the count parameter contains
3658 * how many extents need to be removed.
3660 * |-------| |-------|
3661 * | nex1 | | | nex1 - number of extents before idx
3662 * |-------| | count |
3663 * | | | | count - number of extents being removed at idx
3664 * | count | |-------|
3665 * | | | nex2 | nex2 - number of extents after idx + count
3666 * |-------| |-------|
3669 xfs_iext_remove_indirect(
3670 xfs_ifork_t
*ifp
, /* inode fork pointer */
3671 xfs_extnum_t idx
, /* index to begin removing extents */
3672 int count
) /* number of extents to remove */
3674 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3675 int erp_idx
= 0; /* indirection array index */
3676 xfs_extnum_t ext_cnt
; /* extents left to remove */
3677 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3678 xfs_extnum_t nex1
; /* number of extents before idx */
3679 xfs_extnum_t nex2
; /* extents after idx + count */
3680 int nlists
; /* entries in indirection array */
3681 int page_idx
= idx
; /* index in target extent list */
3683 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3684 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3685 ASSERT(erp
!= NULL
);
3686 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3690 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3691 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3693 * Check for deletion of entire list;
3694 * xfs_iext_irec_remove() updates extent offsets.
3696 if (ext_diff
== erp
->er_extcount
) {
3697 xfs_iext_irec_remove(ifp
, erp_idx
);
3698 ext_cnt
-= ext_diff
;
3701 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3703 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3710 /* Move extents up (if needed) */
3712 memmove(&erp
->er_extbuf
[nex1
],
3713 &erp
->er_extbuf
[nex1
+ ext_diff
],
3714 nex2
* sizeof(xfs_bmbt_rec_t
));
3716 /* Zero out rest of page */
3717 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3718 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3719 /* Update remaining counters */
3720 erp
->er_extcount
-= ext_diff
;
3721 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3722 ext_cnt
-= ext_diff
;
3727 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3728 xfs_iext_irec_compact(ifp
);
3732 * Create, destroy, or resize a linear (direct) block of extents.
3735 xfs_iext_realloc_direct(
3736 xfs_ifork_t
*ifp
, /* inode fork pointer */
3737 int new_size
) /* new size of extents */
3739 int rnew_size
; /* real new size of extents */
3741 rnew_size
= new_size
;
3743 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3744 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3745 (new_size
!= ifp
->if_real_bytes
)));
3747 /* Free extent records */
3748 if (new_size
== 0) {
3749 xfs_iext_destroy(ifp
);
3751 /* Resize direct extent list and zero any new bytes */
3752 else if (ifp
->if_real_bytes
) {
3753 /* Check if extents will fit inside the inode */
3754 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3755 xfs_iext_direct_to_inline(ifp
, new_size
/
3756 (uint
)sizeof(xfs_bmbt_rec_t
));
3757 ifp
->if_bytes
= new_size
;
3760 if (!is_power_of_2(new_size
)){
3761 rnew_size
= roundup_pow_of_two(new_size
);
3763 if (rnew_size
!= ifp
->if_real_bytes
) {
3764 ifp
->if_u1
.if_extents
=
3765 kmem_realloc(ifp
->if_u1
.if_extents
,
3767 ifp
->if_real_bytes
, KM_NOFS
);
3769 if (rnew_size
> ifp
->if_real_bytes
) {
3770 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3771 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3772 rnew_size
- ifp
->if_real_bytes
);
3776 * Switch from the inline extent buffer to a direct
3777 * extent list. Be sure to include the inline extent
3778 * bytes in new_size.
3781 new_size
+= ifp
->if_bytes
;
3782 if (!is_power_of_2(new_size
)) {
3783 rnew_size
= roundup_pow_of_two(new_size
);
3785 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3787 ifp
->if_real_bytes
= rnew_size
;
3788 ifp
->if_bytes
= new_size
;
3792 * Switch from linear (direct) extent records to inline buffer.
3795 xfs_iext_direct_to_inline(
3796 xfs_ifork_t
*ifp
, /* inode fork pointer */
3797 xfs_extnum_t nextents
) /* number of extents in file */
3799 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3800 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3802 * The inline buffer was zeroed when we switched
3803 * from inline to direct extent allocation mode,
3804 * so we don't need to clear it here.
3806 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3807 nextents
* sizeof(xfs_bmbt_rec_t
));
3808 kmem_free(ifp
->if_u1
.if_extents
);
3809 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3810 ifp
->if_real_bytes
= 0;
3814 * Switch from inline buffer to linear (direct) extent records.
3815 * new_size should already be rounded up to the next power of 2
3816 * by the caller (when appropriate), so use new_size as it is.
3817 * However, since new_size may be rounded up, we can't update
3818 * if_bytes here. It is the caller's responsibility to update
3819 * if_bytes upon return.
3822 xfs_iext_inline_to_direct(
3823 xfs_ifork_t
*ifp
, /* inode fork pointer */
3824 int new_size
) /* number of extents in file */
3826 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3827 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3828 if (ifp
->if_bytes
) {
3829 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3831 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3832 sizeof(xfs_bmbt_rec_t
));
3834 ifp
->if_real_bytes
= new_size
;
3838 * Resize an extent indirection array to new_size bytes.
3841 xfs_iext_realloc_indirect(
3842 xfs_ifork_t
*ifp
, /* inode fork pointer */
3843 int new_size
) /* new indirection array size */
3845 int nlists
; /* number of irec's (ex lists) */
3846 int size
; /* current indirection array size */
3848 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3849 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3850 size
= nlists
* sizeof(xfs_ext_irec_t
);
3851 ASSERT(ifp
->if_real_bytes
);
3852 ASSERT((new_size
>= 0) && (new_size
!= size
));
3853 if (new_size
== 0) {
3854 xfs_iext_destroy(ifp
);
3856 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3857 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3858 new_size
, size
, KM_NOFS
);
3863 * Switch from indirection array to linear (direct) extent allocations.
3866 xfs_iext_indirect_to_direct(
3867 xfs_ifork_t
*ifp
) /* inode fork pointer */
3869 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3870 xfs_extnum_t nextents
; /* number of extents in file */
3871 int size
; /* size of file extents */
3873 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3874 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3875 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3876 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3878 xfs_iext_irec_compact_pages(ifp
);
3879 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3881 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3882 kmem_free(ifp
->if_u1
.if_ext_irec
);
3883 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3884 ifp
->if_u1
.if_extents
= ep
;
3885 ifp
->if_bytes
= size
;
3886 if (nextents
< XFS_LINEAR_EXTS
) {
3887 xfs_iext_realloc_direct(ifp
, size
);
3892 * Free incore file extents.
3896 xfs_ifork_t
*ifp
) /* inode fork pointer */
3898 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3902 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3903 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3904 xfs_iext_irec_remove(ifp
, erp_idx
);
3906 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3907 } else if (ifp
->if_real_bytes
) {
3908 kmem_free(ifp
->if_u1
.if_extents
);
3909 } else if (ifp
->if_bytes
) {
3910 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3911 sizeof(xfs_bmbt_rec_t
));
3913 ifp
->if_u1
.if_extents
= NULL
;
3914 ifp
->if_real_bytes
= 0;
3919 * Return a pointer to the extent record for file system block bno.
3921 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3922 xfs_iext_bno_to_ext(
3923 xfs_ifork_t
*ifp
, /* inode fork pointer */
3924 xfs_fileoff_t bno
, /* block number to search for */
3925 xfs_extnum_t
*idxp
) /* index of target extent */
3927 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3928 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3929 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3930 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3931 int high
; /* upper boundary in search */
3932 xfs_extnum_t idx
= 0; /* index of target extent */
3933 int low
; /* lower boundary in search */
3934 xfs_extnum_t nextents
; /* number of file extents */
3935 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3937 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3938 if (nextents
== 0) {
3943 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3944 /* Find target extent list */
3946 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3947 base
= erp
->er_extbuf
;
3948 high
= erp
->er_extcount
- 1;
3950 base
= ifp
->if_u1
.if_extents
;
3951 high
= nextents
- 1;
3953 /* Binary search extent records */
3954 while (low
<= high
) {
3955 idx
= (low
+ high
) >> 1;
3957 startoff
= xfs_bmbt_get_startoff(ep
);
3958 blockcount
= xfs_bmbt_get_blockcount(ep
);
3959 if (bno
< startoff
) {
3961 } else if (bno
>= startoff
+ blockcount
) {
3964 /* Convert back to file-based extent index */
3965 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3966 idx
+= erp
->er_extoff
;
3972 /* Convert back to file-based extent index */
3973 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3974 idx
+= erp
->er_extoff
;
3976 if (bno
>= startoff
+ blockcount
) {
3977 if (++idx
== nextents
) {
3980 ep
= xfs_iext_get_ext(ifp
, idx
);
3988 * Return a pointer to the indirection array entry containing the
3989 * extent record for filesystem block bno. Store the index of the
3990 * target irec in *erp_idxp.
3992 xfs_ext_irec_t
* /* pointer to found extent record */
3993 xfs_iext_bno_to_irec(
3994 xfs_ifork_t
*ifp
, /* inode fork pointer */
3995 xfs_fileoff_t bno
, /* block number to search for */
3996 int *erp_idxp
) /* irec index of target ext list */
3998 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3999 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4000 int erp_idx
; /* indirection array index */
4001 int nlists
; /* number of extent irec's (lists) */
4002 int high
; /* binary search upper limit */
4003 int low
; /* binary search lower limit */
4005 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4006 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4010 while (low
<= high
) {
4011 erp_idx
= (low
+ high
) >> 1;
4012 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4013 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4014 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4016 } else if (erp_next
&& bno
>=
4017 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4023 *erp_idxp
= erp_idx
;
4028 * Return a pointer to the indirection array entry containing the
4029 * extent record at file extent index *idxp. Store the index of the
4030 * target irec in *erp_idxp and store the page index of the target
4031 * extent record in *idxp.
4034 xfs_iext_idx_to_irec(
4035 xfs_ifork_t
*ifp
, /* inode fork pointer */
4036 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4037 int *erp_idxp
, /* pointer to target irec */
4038 int realloc
) /* new bytes were just added */
4040 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4041 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4042 int erp_idx
; /* indirection array index */
4043 int nlists
; /* number of irec's (ex lists) */
4044 int high
; /* binary search upper limit */
4045 int low
; /* binary search lower limit */
4046 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4048 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4049 ASSERT(page_idx
>= 0 && page_idx
<=
4050 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4051 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4056 /* Binary search extent irec's */
4057 while (low
<= high
) {
4058 erp_idx
= (low
+ high
) >> 1;
4059 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4060 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4061 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4062 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4064 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4065 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4068 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4069 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4073 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4076 page_idx
-= erp
->er_extoff
;
4081 *erp_idxp
= erp_idx
;
4086 * Allocate and initialize an indirection array once the space needed
4087 * for incore extents increases above XFS_IEXT_BUFSZ.
4091 xfs_ifork_t
*ifp
) /* inode fork pointer */
4093 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4094 xfs_extnum_t nextents
; /* number of extents in file */
4096 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4097 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4098 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4100 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
4102 if (nextents
== 0) {
4103 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4104 } else if (!ifp
->if_real_bytes
) {
4105 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4106 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4107 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4109 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4110 erp
->er_extcount
= nextents
;
4113 ifp
->if_flags
|= XFS_IFEXTIREC
;
4114 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4115 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4116 ifp
->if_u1
.if_ext_irec
= erp
;
4122 * Allocate and initialize a new entry in the indirection array.
4126 xfs_ifork_t
*ifp
, /* inode fork pointer */
4127 int erp_idx
) /* index for new irec */
4129 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4130 int i
; /* loop counter */
4131 int nlists
; /* number of irec's (ex lists) */
4133 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4134 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4136 /* Resize indirection array */
4137 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4138 sizeof(xfs_ext_irec_t
));
4140 * Move records down in the array so the
4141 * new page can use erp_idx.
4143 erp
= ifp
->if_u1
.if_ext_irec
;
4144 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4145 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4147 ASSERT(i
== erp_idx
);
4149 /* Initialize new extent record */
4150 erp
= ifp
->if_u1
.if_ext_irec
;
4151 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4152 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4153 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4154 erp
[erp_idx
].er_extcount
= 0;
4155 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4156 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4157 return (&erp
[erp_idx
]);
4161 * Remove a record from the indirection array.
4164 xfs_iext_irec_remove(
4165 xfs_ifork_t
*ifp
, /* inode fork pointer */
4166 int erp_idx
) /* irec index to remove */
4168 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4169 int i
; /* loop counter */
4170 int nlists
; /* number of irec's (ex lists) */
4172 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4173 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4174 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4175 if (erp
->er_extbuf
) {
4176 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4178 kmem_free(erp
->er_extbuf
);
4180 /* Compact extent records */
4181 erp
= ifp
->if_u1
.if_ext_irec
;
4182 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4183 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4186 * Manually free the last extent record from the indirection
4187 * array. A call to xfs_iext_realloc_indirect() with a size
4188 * of zero would result in a call to xfs_iext_destroy() which
4189 * would in turn call this function again, creating a nasty
4193 xfs_iext_realloc_indirect(ifp
,
4194 nlists
* sizeof(xfs_ext_irec_t
));
4196 kmem_free(ifp
->if_u1
.if_ext_irec
);
4198 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4202 * This is called to clean up large amounts of unused memory allocated
4203 * by the indirection array. Before compacting anything though, verify
4204 * that the indirection array is still needed and switch back to the
4205 * linear extent list (or even the inline buffer) if possible. The
4206 * compaction policy is as follows:
4208 * Full Compaction: Extents fit into a single page (or inline buffer)
4209 * Partial Compaction: Extents occupy less than 50% of allocated space
4210 * No Compaction: Extents occupy at least 50% of allocated space
4213 xfs_iext_irec_compact(
4214 xfs_ifork_t
*ifp
) /* inode fork pointer */
4216 xfs_extnum_t nextents
; /* number of extents in file */
4217 int nlists
; /* number of irec's (ex lists) */
4219 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4220 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4221 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4223 if (nextents
== 0) {
4224 xfs_iext_destroy(ifp
);
4225 } else if (nextents
<= XFS_INLINE_EXTS
) {
4226 xfs_iext_indirect_to_direct(ifp
);
4227 xfs_iext_direct_to_inline(ifp
, nextents
);
4228 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4229 xfs_iext_indirect_to_direct(ifp
);
4230 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4231 xfs_iext_irec_compact_pages(ifp
);
4236 * Combine extents from neighboring extent pages.
4239 xfs_iext_irec_compact_pages(
4240 xfs_ifork_t
*ifp
) /* inode fork pointer */
4242 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4243 int erp_idx
= 0; /* indirection array index */
4244 int nlists
; /* number of irec's (ex lists) */
4246 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4247 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4248 while (erp_idx
< nlists
- 1) {
4249 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4251 if (erp_next
->er_extcount
<=
4252 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4253 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4254 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4255 sizeof(xfs_bmbt_rec_t
));
4256 erp
->er_extcount
+= erp_next
->er_extcount
;
4258 * Free page before removing extent record
4259 * so er_extoffs don't get modified in
4260 * xfs_iext_irec_remove.
4262 kmem_free(erp_next
->er_extbuf
);
4263 erp_next
->er_extbuf
= NULL
;
4264 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4265 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4273 * This is called to update the er_extoff field in the indirection
4274 * array when extents have been added or removed from one of the
4275 * extent lists. erp_idx contains the irec index to begin updating
4276 * at and ext_diff contains the number of extents that were added
4280 xfs_iext_irec_update_extoffs(
4281 xfs_ifork_t
*ifp
, /* inode fork pointer */
4282 int erp_idx
, /* irec index to update */
4283 int ext_diff
) /* number of new extents */
4285 int i
; /* loop counter */
4286 int nlists
; /* number of irec's (ex lists */
4288 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4289 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4290 for (i
= erp_idx
; i
< nlists
; i
++) {
4291 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;