2 * Contains CPU feature definitions
4 * Copyright (C) 2015 ARM Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #define pr_fmt(fmt) "CPU features: " fmt
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
37 unsigned long elf_hwcap __read_mostly
;
38 EXPORT_SYMBOL_GPL(elf_hwcap
);
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
48 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
49 unsigned int compat_elf_hwcap2 __read_mostly
;
52 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
53 EXPORT_SYMBOL(cpu_hwcaps
);
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
63 static bool sys_caps_initialised
;
65 static inline void set_sys_caps_initialised(void)
67 sys_caps_initialised
= true;
70 static int dump_cpu_hwcaps(struct notifier_block
*self
, unsigned long v
, void *p
)
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &cpu_hwcaps
);
77 static struct notifier_block cpu_hwcaps_notifier
= {
78 .notifier_call
= dump_cpu_hwcaps
81 static int __init
register_cpu_hwcaps_dumper(void)
83 atomic_notifier_chain_register(&panic_notifier_list
,
84 &cpu_hwcaps_notifier
);
87 __initcall(register_cpu_hwcaps_dumper
);
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
90 EXPORT_SYMBOL(cpu_hwcap_keys
);
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
100 .safe_val = SAFE_VAL, \
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
111 #define ARM64_FTR_END \
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
125 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_TS_SHIFT
, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_FHM_SHIFT
, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_DP_SHIFT
, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM4_SHIFT
, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM3_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA3_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
141 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
142 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_LRCPC_SHIFT
, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FCMA_SHIFT
, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_JSCVT_SHIFT
, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DPB_SHIFT
, 4, 0),
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
150 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV3_SHIFT
, 4, 0),
151 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV2_SHIFT
, 4, 0),
152 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_DIT_SHIFT
, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
154 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_SVE_SHIFT
, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_RAS_SHIFT
, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
157 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
158 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
159 /* Linux doesn't care about the EL3 */
160 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
163 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
168 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
169 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
170 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
171 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
172 /* Linux shouldn't care about secure memory */
173 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
174 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
175 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
177 * Differing PARange is fine as long as all peripherals and memory are mapped
178 * within the minimum PARange of all CPUs
180 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
185 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
186 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
187 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
188 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
195 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_AT_SHIFT
, 4, 0),
196 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
197 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
198 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
199 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
200 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
204 static const struct arm64_ftr_bits ftr_ctr
[] = {
205 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RES1 */
206 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DIC_SHIFT
, 1, 1),
207 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IDC_SHIFT
, 1, 1),
208 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_CWG_SHIFT
, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_SAFE
, CTR_ERG_SHIFT
, 4, 0),
210 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DMINLINE_SHIFT
, 4, 1),
212 * Linux can handle differing I-cache policies. Userspace JITs will
213 * make use of *minLine.
214 * If we have differing I-cache policies, report it as the weakest - VIPT.
216 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_VIPT
), /* L1Ip */
217 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* IminLine */
221 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
222 .name
= "SYS_CTR_EL0",
226 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
227 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0xf), /* InnerShr */
228 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0), /* FCSE */
229 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
230 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0), /* TCM */
231 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* ShareLvl */
232 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0xf), /* OuterShr */
233 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* PMSA */
234 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* VMSA */
238 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
239 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
245 * We can instantiate multiple PMU instances with different levels
248 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
254 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
255 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* FPMisc */
256 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* SIMDMisc */
260 static const struct arm64_ftr_bits ftr_dczid
[] = {
261 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
262 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
267 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
268 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_RDM_SHIFT
, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
270 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
271 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
272 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_AES_SHIFT
, 4, 0),
273 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
277 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
278 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* ac2 */
282 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
283 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* State3 */
284 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0), /* State2 */
285 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* State1 */
286 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* State0 */
290 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
291 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
292 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
293 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
302 static const struct arm64_ftr_bits ftr_zcr
[] = {
303 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
,
304 ZCR_ELx_LEN_SHIFT
, ZCR_ELx_LEN_SIZE
, 0), /* LEN */
309 * Common ftr bits for a 32bit register with all hidden, strict
310 * attributes, with 4bit feature fields and a default safe value of
311 * 0. Covers the following 32bit registers:
312 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
314 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
315 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
316 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
318 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
319 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
326 /* Table for a single 32bit feature value */
327 static const struct arm64_ftr_bits ftr_single32
[] = {
328 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
332 static const struct arm64_ftr_bits ftr_raz
[] = {
336 #define ARM64_FTR_REG(id, table) { \
338 .reg = &(struct arm64_ftr_reg){ \
340 .ftr_bits = &((table)[0]), \
343 static const struct __ftr_reg_entry
{
345 struct arm64_ftr_reg
*reg
;
346 } arm64_ftr_regs
[] = {
348 /* Op1 = 0, CRn = 0, CRm = 1 */
349 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
350 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
351 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
352 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
353 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
354 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
355 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
357 /* Op1 = 0, CRn = 0, CRm = 2 */
358 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
359 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
360 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
361 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
362 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
363 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
364 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
366 /* Op1 = 0, CRn = 0, CRm = 3 */
367 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
368 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
369 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
371 /* Op1 = 0, CRn = 0, CRm = 4 */
372 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
373 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_raz
),
374 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1
, ftr_raz
),
376 /* Op1 = 0, CRn = 0, CRm = 5 */
377 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
378 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
380 /* Op1 = 0, CRn = 0, CRm = 6 */
381 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
382 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
),
384 /* Op1 = 0, CRn = 0, CRm = 7 */
385 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
386 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
387 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
389 /* Op1 = 0, CRn = 1, CRm = 2 */
390 ARM64_FTR_REG(SYS_ZCR_EL1
, ftr_zcr
),
392 /* Op1 = 3, CRn = 0, CRm = 0 */
393 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
394 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
396 /* Op1 = 3, CRn = 14, CRm = 0 */
397 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
400 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
402 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
406 * get_arm64_ftr_reg - Lookup a feature register entry using its
407 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
408 * ascending order of sys_id , we use binary search to find a matching
411 * returns - Upon success, matching ftr_reg entry for id.
412 * - NULL on failure. It is upto the caller to decide
413 * the impact of a failure.
415 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
417 const struct __ftr_reg_entry
*ret
;
419 ret
= bsearch((const void *)(unsigned long)sys_id
,
421 ARRAY_SIZE(arm64_ftr_regs
),
422 sizeof(arm64_ftr_regs
[0]),
429 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
432 u64 mask
= arm64_ftr_mask(ftrp
);
435 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
439 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
444 switch (ftrp
->type
) {
446 ret
= ftrp
->safe_val
;
449 ret
= new < cur
? new : cur
;
451 case FTR_HIGHER_SAFE
:
452 ret
= new > cur
? new : cur
;
461 static void __init
sort_ftr_regs(void)
465 /* Check that the array is sorted so that we can do the binary search */
466 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
467 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
471 * Initialise the CPU feature register from Boot CPU values.
472 * Also initiliases the strict_mask for the register.
473 * Any bits that are not covered by an arm64_ftr_bits entry are considered
474 * RES0 for the system-wide value, and must strictly match.
476 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
479 u64 strict_mask
= ~0x0ULL
;
483 const struct arm64_ftr_bits
*ftrp
;
484 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
488 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
489 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
490 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
492 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
494 valid_mask
|= ftr_mask
;
496 strict_mask
&= ~ftr_mask
;
498 user_mask
|= ftr_mask
;
500 reg
->user_val
= arm64_ftr_set_value(ftrp
,
508 reg
->strict_mask
= strict_mask
;
509 reg
->user_mask
= user_mask
;
512 extern const struct arm64_cpu_capabilities arm64_errata
[];
513 static void __init
setup_boot_cpu_capabilities(void);
515 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
517 /* Before we start using the tables, make sure it is sorted */
520 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
521 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
522 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
523 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
524 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
525 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
526 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
527 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
528 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
529 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
530 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
531 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
532 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
534 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
535 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
536 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
537 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
538 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
539 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
540 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
541 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
542 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
543 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
544 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
545 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
546 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
547 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
548 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
549 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
550 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
553 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
554 init_cpu_ftr_reg(SYS_ZCR_EL1
, info
->reg_zcr
);
559 * Detect and enable early CPU capabilities based on the boot CPU,
560 * after we have initialised the CPU feature infrastructure.
562 setup_boot_cpu_capabilities();
565 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
567 const struct arm64_ftr_bits
*ftrp
;
569 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
570 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
571 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
573 if (ftr_cur
== ftr_new
)
575 /* Find a safe value */
576 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
577 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
582 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
584 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
587 update_cpu_ftr_reg(regp
, val
);
588 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
590 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
591 regp
->name
, boot
, cpu
, val
);
596 * Update system wide CPU feature registers with the values from a
597 * non-boot CPU. Also performs SANITY checks to make sure that there
598 * aren't any insane variations from that of the boot CPU.
600 void update_cpu_features(int cpu
,
601 struct cpuinfo_arm64
*info
,
602 struct cpuinfo_arm64
*boot
)
607 * The kernel can handle differing I-cache policies, but otherwise
608 * caches should look identical. Userspace JITs will make use of
611 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
612 info
->reg_ctr
, boot
->reg_ctr
);
615 * Userspace may perform DC ZVA instructions. Mismatched block sizes
616 * could result in too much or too little memory being zeroed if a
617 * process is preempted and migrated between CPUs.
619 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
620 info
->reg_dczid
, boot
->reg_dczid
);
622 /* If different, timekeeping will be broken (especially with KVM) */
623 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
624 info
->reg_cntfrq
, boot
->reg_cntfrq
);
627 * The kernel uses self-hosted debug features and expects CPUs to
628 * support identical debug features. We presently need CTX_CMPs, WRPs,
629 * and BRPs to be identical.
630 * ID_AA64DFR1 is currently RES0.
632 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
633 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
634 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
635 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
637 * Even in big.LITTLE, processors should be identical instruction-set
640 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
641 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
642 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
643 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
646 * Differing PARange support is fine as long as all peripherals and
647 * memory are mapped within the minimum PARange of all CPUs.
648 * Linux should not care about secure memory.
650 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
651 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
652 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
653 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
654 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
655 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
658 * EL3 is not our concern.
659 * ID_AA64PFR1 is currently RES0.
661 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
662 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
663 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
664 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
666 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
667 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
670 * If we have AArch32, we care about 32-bit features for compat.
671 * If the system doesn't support AArch32, don't update them.
673 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
674 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
676 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
677 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
678 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
679 info
->reg_id_isar0
, boot
->reg_id_isar0
);
680 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
681 info
->reg_id_isar1
, boot
->reg_id_isar1
);
682 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
683 info
->reg_id_isar2
, boot
->reg_id_isar2
);
684 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
685 info
->reg_id_isar3
, boot
->reg_id_isar3
);
686 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
687 info
->reg_id_isar4
, boot
->reg_id_isar4
);
688 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
689 info
->reg_id_isar5
, boot
->reg_id_isar5
);
692 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
693 * ACTLR formats could differ across CPUs and therefore would have to
694 * be trapped for virtualization anyway.
696 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
697 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
698 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
699 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
700 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
701 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
702 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
703 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
704 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
705 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
706 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
707 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
708 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
709 info
->reg_mvfr0
, boot
->reg_mvfr0
);
710 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
711 info
->reg_mvfr1
, boot
->reg_mvfr1
);
712 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
713 info
->reg_mvfr2
, boot
->reg_mvfr2
);
716 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
717 taint
|= check_update_ftr_reg(SYS_ZCR_EL1
, cpu
,
718 info
->reg_zcr
, boot
->reg_zcr
);
720 /* Probe vector lengths, unless we already gave up on SVE */
721 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
722 !sys_caps_initialised
)
727 * Mismatched CPU features are a recipe for disaster. Don't even
728 * pretend to support them.
731 pr_warn_once("Unsupported CPU feature variation detected.\n");
732 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
736 u64
read_sanitised_ftr_reg(u32 id
)
738 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
740 /* We shouldn't get a request for an unsupported register */
742 return regp
->sys_val
;
745 #define read_sysreg_case(r) \
746 case r: return read_sysreg_s(r)
749 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
750 * Read the system register on the current CPU
752 static u64
__read_sysreg_by_encoding(u32 sys_id
)
755 read_sysreg_case(SYS_ID_PFR0_EL1
);
756 read_sysreg_case(SYS_ID_PFR1_EL1
);
757 read_sysreg_case(SYS_ID_DFR0_EL1
);
758 read_sysreg_case(SYS_ID_MMFR0_EL1
);
759 read_sysreg_case(SYS_ID_MMFR1_EL1
);
760 read_sysreg_case(SYS_ID_MMFR2_EL1
);
761 read_sysreg_case(SYS_ID_MMFR3_EL1
);
762 read_sysreg_case(SYS_ID_ISAR0_EL1
);
763 read_sysreg_case(SYS_ID_ISAR1_EL1
);
764 read_sysreg_case(SYS_ID_ISAR2_EL1
);
765 read_sysreg_case(SYS_ID_ISAR3_EL1
);
766 read_sysreg_case(SYS_ID_ISAR4_EL1
);
767 read_sysreg_case(SYS_ID_ISAR5_EL1
);
768 read_sysreg_case(SYS_MVFR0_EL1
);
769 read_sysreg_case(SYS_MVFR1_EL1
);
770 read_sysreg_case(SYS_MVFR2_EL1
);
772 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
773 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
774 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
775 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
776 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
777 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
778 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
779 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
780 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
782 read_sysreg_case(SYS_CNTFRQ_EL0
);
783 read_sysreg_case(SYS_CTR_EL0
);
784 read_sysreg_case(SYS_DCZID_EL0
);
792 #include <linux/irqchip/arm-gic-v3.h>
795 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
797 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
799 return val
>= entry
->min_field_value
;
803 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
807 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
808 if (scope
== SCOPE_SYSTEM
)
809 val
= read_sanitised_ftr_reg(entry
->sys_reg
);
811 val
= __read_sysreg_by_encoding(entry
->sys_reg
);
813 return feature_matches(val
, entry
);
816 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
820 if (!has_cpuid_feature(entry
, scope
))
823 has_sre
= gic_enable_sre();
825 pr_warn_once("%s present but disabled by higher exception level\n",
831 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
833 u32 midr
= read_cpuid_id();
835 /* Cavium ThunderX pass 1.x and 2.x */
836 return MIDR_IS_CPU_MODEL_RANGE(midr
, MIDR_THUNDERX
,
837 MIDR_CPU_VAR_REV(0, 0),
838 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
843 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
845 return cpuid_feature_extract_signed_field(pfr0
,
846 ID_AA64PFR0_FP_SHIFT
) < 0;
849 static bool has_cache_idc(const struct arm64_cpu_capabilities
*entry
,
852 return read_sanitised_ftr_reg(SYS_CTR_EL0
) & BIT(CTR_IDC_SHIFT
);
855 static bool has_cache_dic(const struct arm64_cpu_capabilities
*entry
,
858 return read_sanitised_ftr_reg(SYS_CTR_EL0
) & BIT(CTR_DIC_SHIFT
);
861 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
862 static int __kpti_forced
; /* 0: not forced, >0: forced on, <0: forced off */
864 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities
*entry
,
867 /* List of CPUs that are not vulnerable and don't need KPTI */
868 static const struct midr_range kpti_safe_list
[] = {
869 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2
),
870 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN
),
873 char const *str
= "command line option";
876 * For reasons that aren't entirely clear, enabling KPTI on Cavium
877 * ThunderX leads to apparent I-cache corruption of kernel text, which
878 * ends as well as you might imagine. Don't even try.
880 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456
)) {
881 str
= "ARM64_WORKAROUND_CAVIUM_27456";
887 pr_info_once("kernel page table isolation forced %s by %s\n",
888 __kpti_forced
> 0 ? "ON" : "OFF", str
);
889 return __kpti_forced
> 0;
892 /* Useful for KASLR robustness */
893 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
))
896 /* Don't force KPTI for CPUs that are not vulnerable */
897 if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list
))
900 /* Defer to CPU feature registers */
901 return !has_cpuid_feature(entry
, scope
);
905 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
907 typedef void (kpti_remap_fn
)(int, int, phys_addr_t
);
908 extern kpti_remap_fn idmap_kpti_install_ng_mappings
;
909 kpti_remap_fn
*remap_fn
;
911 static bool kpti_applied
= false;
912 int cpu
= smp_processor_id();
917 remap_fn
= (void *)__pa_symbol(idmap_kpti_install_ng_mappings
);
920 remap_fn(cpu
, num_online_cpus(), __pa_symbol(swapper_pg_dir
));
921 cpu_uninstall_idmap();
929 static int __init
parse_kpti(char *str
)
932 int ret
= strtobool(str
, &enabled
);
937 __kpti_forced
= enabled
? 1 : -1;
940 early_param("kpti", parse_kpti
);
941 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
943 #ifdef CONFIG_ARM64_HW_AFDBM
944 static inline void __cpu_enable_hw_dbm(void)
946 u64 tcr
= read_sysreg(tcr_el1
) | TCR_HD
;
948 write_sysreg(tcr
, tcr_el1
);
952 static bool cpu_has_broken_dbm(void)
954 /* List of CPUs which have broken DBM support. */
955 static const struct midr_range cpus
[] = {
956 #ifdef CONFIG_ARM64_ERRATUM_1024718
957 MIDR_RANGE(MIDR_CORTEX_A55
, 0, 0, 1, 0), // A55 r0p0 -r1p0
962 return is_midr_in_range_list(read_cpuid_id(), cpus
);
965 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities
*cap
)
967 return has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
) &&
968 !cpu_has_broken_dbm();
971 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities
const *cap
)
973 if (cpu_can_use_dbm(cap
))
974 __cpu_enable_hw_dbm();
977 static bool has_hw_dbm(const struct arm64_cpu_capabilities
*cap
,
980 static bool detected
= false;
982 * DBM is a non-conflicting feature. i.e, the kernel can safely
983 * run a mix of CPUs with and without the feature. So, we
984 * unconditionally enable the capability to allow any late CPU
985 * to use the feature. We only enable the control bits on the
986 * CPU, if it actually supports.
988 * We have to make sure we print the "feature" detection only
989 * when at least one CPU actually uses it. So check if this CPU
990 * can actually use it and print the message exactly once.
992 * This is safe as all CPUs (including secondary CPUs - due to the
993 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
994 * goes through the "matches" check exactly once. Also if a CPU
995 * matches the criteria, it is guaranteed that the CPU will turn
996 * the DBM on, as the capability is unconditionally enabled.
998 if (!detected
&& cpu_can_use_dbm(cap
)) {
1000 pr_info("detected: Hardware dirty bit management\n");
1008 #ifdef CONFIG_ARM64_VHE
1009 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1011 return is_kernel_in_hyp_mode();
1014 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities
*__unused
)
1017 * Copy register values that aren't redirected by hardware.
1019 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1020 * this value to tpidr_el2 before we patch the code. Once we've done
1021 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1024 if (!alternatives_applied
)
1025 write_sysreg(read_sysreg(tpidr_el1
), tpidr_el2
);
1029 static const struct arm64_cpu_capabilities arm64_features
[] = {
1031 .desc
= "GIC system register CPU interface",
1032 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
1033 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1034 .matches
= has_useable_gicv3_cpuif
,
1035 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1036 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1037 .sign
= FTR_UNSIGNED
,
1038 .min_field_value
= 1,
1040 #ifdef CONFIG_ARM64_PAN
1042 .desc
= "Privileged Access Never",
1043 .capability
= ARM64_HAS_PAN
,
1044 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1045 .matches
= has_cpuid_feature
,
1046 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1047 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
1048 .sign
= FTR_UNSIGNED
,
1049 .min_field_value
= 1,
1050 .cpu_enable
= cpu_enable_pan
,
1052 #endif /* CONFIG_ARM64_PAN */
1053 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1055 .desc
= "LSE atomic instructions",
1056 .capability
= ARM64_HAS_LSE_ATOMICS
,
1057 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1058 .matches
= has_cpuid_feature
,
1059 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1060 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
1061 .sign
= FTR_UNSIGNED
,
1062 .min_field_value
= 2,
1064 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1066 .desc
= "Software prefetching using PRFM",
1067 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
1068 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1069 .matches
= has_no_hw_prefetch
,
1071 #ifdef CONFIG_ARM64_UAO
1073 .desc
= "User Access Override",
1074 .capability
= ARM64_HAS_UAO
,
1075 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1076 .matches
= has_cpuid_feature
,
1077 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1078 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
1079 .min_field_value
= 1,
1081 * We rely on stop_machine() calling uao_thread_switch() to set
1082 * UAO immediately after patching.
1085 #endif /* CONFIG_ARM64_UAO */
1086 #ifdef CONFIG_ARM64_PAN
1088 .capability
= ARM64_ALT_PAN_NOT_UAO
,
1089 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1090 .matches
= cpufeature_pan_not_uao
,
1092 #endif /* CONFIG_ARM64_PAN */
1093 #ifdef CONFIG_ARM64_VHE
1095 .desc
= "Virtualization Host Extensions",
1096 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
1097 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1098 .matches
= runs_at_el2
,
1099 .cpu_enable
= cpu_copy_el2regs
,
1101 #endif /* CONFIG_ARM64_VHE */
1103 .desc
= "32-bit EL0 Support",
1104 .capability
= ARM64_HAS_32BIT_EL0
,
1105 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1106 .matches
= has_cpuid_feature
,
1107 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1108 .sign
= FTR_UNSIGNED
,
1109 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
1110 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
1112 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1114 .desc
= "Kernel page table isolation (KPTI)",
1115 .capability
= ARM64_UNMAP_KERNEL_AT_EL0
,
1116 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
1118 * The ID feature fields below are used to indicate that
1119 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1122 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1123 .field_pos
= ID_AA64PFR0_CSV3_SHIFT
,
1124 .min_field_value
= 1,
1125 .matches
= unmap_kernel_at_el0
,
1126 .cpu_enable
= kpti_install_ng_mappings
,
1130 /* FP/SIMD is not implemented */
1131 .capability
= ARM64_HAS_NO_FPSIMD
,
1132 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1133 .min_field_value
= 0,
1134 .matches
= has_no_fpsimd
,
1136 #ifdef CONFIG_ARM64_PMEM
1138 .desc
= "Data cache clean to Point of Persistence",
1139 .capability
= ARM64_HAS_DCPOP
,
1140 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1141 .matches
= has_cpuid_feature
,
1142 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1143 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1144 .min_field_value
= 1,
1147 #ifdef CONFIG_ARM64_SVE
1149 .desc
= "Scalable Vector Extension",
1150 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1151 .capability
= ARM64_SVE
,
1152 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1153 .sign
= FTR_UNSIGNED
,
1154 .field_pos
= ID_AA64PFR0_SVE_SHIFT
,
1155 .min_field_value
= ID_AA64PFR0_SVE
,
1156 .matches
= has_cpuid_feature
,
1157 .cpu_enable
= sve_kernel_enable
,
1159 #endif /* CONFIG_ARM64_SVE */
1160 #ifdef CONFIG_ARM64_RAS_EXTN
1162 .desc
= "RAS Extension Support",
1163 .capability
= ARM64_HAS_RAS_EXTN
,
1164 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1165 .matches
= has_cpuid_feature
,
1166 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1167 .sign
= FTR_UNSIGNED
,
1168 .field_pos
= ID_AA64PFR0_RAS_SHIFT
,
1169 .min_field_value
= ID_AA64PFR0_RAS_V1
,
1170 .cpu_enable
= cpu_clear_disr
,
1172 #endif /* CONFIG_ARM64_RAS_EXTN */
1174 .desc
= "Data cache clean to the PoU not required for I/D coherence",
1175 .capability
= ARM64_HAS_CACHE_IDC
,
1176 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1177 .matches
= has_cache_idc
,
1180 .desc
= "Instruction cache invalidation not required for I/D coherence",
1181 .capability
= ARM64_HAS_CACHE_DIC
,
1182 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1183 .matches
= has_cache_dic
,
1185 #ifdef CONFIG_ARM64_HW_AFDBM
1188 * Since we turn this on always, we don't want the user to
1189 * think that the feature is available when it may not be.
1190 * So hide the description.
1192 * .desc = "Hardware pagetable Dirty Bit Management",
1195 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1196 .capability
= ARM64_HW_DBM
,
1197 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1198 .sign
= FTR_UNSIGNED
,
1199 .field_pos
= ID_AA64MMFR1_HADBS_SHIFT
,
1200 .min_field_value
= 2,
1201 .matches
= has_hw_dbm
,
1202 .cpu_enable
= cpu_enable_hw_dbm
,
1208 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1211 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1212 .matches = has_cpuid_feature, \
1214 .field_pos = field, \
1216 .min_field_value = min_value, \
1217 .hwcap_type = cap_type, \
1221 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
1222 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_PMULL
),
1223 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_AES
),
1224 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA1
),
1225 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA2
),
1226 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_SHA512
),
1227 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_CRC32
),
1228 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_ATOMICS
),
1229 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDRDM
),
1230 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SHA3
),
1231 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SM3
),
1232 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM4_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_SM4
),
1233 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_DP_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDDP
),
1234 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_FHM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDFHM
),
1235 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_TS_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_FLAGM
),
1236 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_FP
),
1237 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_FPHP
),
1238 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, HWCAP_ASIMD
),
1239 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_ASIMDHP
),
1240 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_DIT_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, HWCAP_DIT
),
1241 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_DCPOP
),
1242 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_JSCVT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_JSCVT
),
1243 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FCMA_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_FCMA
),
1244 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_LRCPC
),
1245 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, HWCAP_ILRCPC
),
1246 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1
, ID_AA64MMFR2_AT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, HWCAP_USCAT
),
1247 #ifdef CONFIG_ARM64_SVE
1248 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_SVE_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR0_SVE
, CAP_HWCAP
, HWCAP_SVE
),
1253 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
1254 #ifdef CONFIG_COMPAT
1255 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
1256 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
1257 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
1258 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
1259 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
1264 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1266 switch (cap
->hwcap_type
) {
1268 elf_hwcap
|= cap
->hwcap
;
1270 #ifdef CONFIG_COMPAT
1271 case CAP_COMPAT_HWCAP
:
1272 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
1274 case CAP_COMPAT_HWCAP2
:
1275 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
1284 /* Check if we have a particular HWCAP enabled */
1285 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1289 switch (cap
->hwcap_type
) {
1291 rc
= (elf_hwcap
& cap
->hwcap
) != 0;
1293 #ifdef CONFIG_COMPAT
1294 case CAP_COMPAT_HWCAP
:
1295 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
1297 case CAP_COMPAT_HWCAP2
:
1298 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
1309 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
1311 /* We support emulation of accesses to CPU ID feature registers */
1312 elf_hwcap
|= HWCAP_CPUID
;
1313 for (; hwcaps
->matches
; hwcaps
++)
1314 if (hwcaps
->matches(hwcaps
, cpucap_default_scope(hwcaps
)))
1315 cap_set_elf_hwcap(hwcaps
);
1319 * Check if the current CPU has a given feature capability.
1320 * Should be called from non-preemptible context.
1322 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities
*cap_array
,
1325 const struct arm64_cpu_capabilities
*caps
;
1327 if (WARN_ON(preemptible()))
1330 for (caps
= cap_array
; caps
->matches
; caps
++)
1331 if (caps
->capability
== cap
)
1332 return caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1337 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
1338 u16 scope_mask
, const char *info
)
1340 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1341 for (; caps
->matches
; caps
++) {
1342 if (!(caps
->type
& scope_mask
) ||
1343 !caps
->matches(caps
, cpucap_default_scope(caps
)))
1346 if (!cpus_have_cap(caps
->capability
) && caps
->desc
)
1347 pr_info("%s %s\n", info
, caps
->desc
);
1348 cpus_set_cap(caps
->capability
);
1352 static void update_cpu_capabilities(u16 scope_mask
)
1354 __update_cpu_capabilities(arm64_errata
, scope_mask
,
1355 "enabling workaround for");
1356 __update_cpu_capabilities(arm64_features
, scope_mask
, "detected:");
1359 static int __enable_cpu_capability(void *arg
)
1361 const struct arm64_cpu_capabilities
*cap
= arg
;
1363 cap
->cpu_enable(cap
);
1368 * Run through the enabled capabilities and enable() it on all active
1372 __enable_cpu_capabilities(const struct arm64_cpu_capabilities
*caps
,
1375 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1376 for (; caps
->matches
; caps
++) {
1377 unsigned int num
= caps
->capability
;
1379 if (!(caps
->type
& scope_mask
) || !cpus_have_cap(num
))
1382 /* Ensure cpus_have_const_cap(num) works */
1383 static_branch_enable(&cpu_hwcap_keys
[num
]);
1385 if (caps
->cpu_enable
) {
1387 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1388 * before any secondary CPU boots. Thus, each secondary
1389 * will enable the capability as appropriate via
1390 * check_local_cpu_capabilities(). The only exception is
1391 * the boot CPU, for which the capability must be
1392 * enabled here. This approach avoids costly
1393 * stop_machine() calls for this case.
1395 * Otherwise, use stop_machine() as it schedules the
1396 * work allowing us to modify PSTATE, instead of
1397 * on_each_cpu() which uses an IPI, giving us a PSTATE
1398 * that disappears when we return.
1400 if (scope_mask
& SCOPE_BOOT_CPU
)
1401 caps
->cpu_enable(caps
);
1403 stop_machine(__enable_cpu_capability
,
1404 (void *)caps
, cpu_online_mask
);
1409 static void __init
enable_cpu_capabilities(u16 scope_mask
)
1411 __enable_cpu_capabilities(arm64_errata
, scope_mask
);
1412 __enable_cpu_capabilities(arm64_features
, scope_mask
);
1416 * Run through the list of capabilities to check for conflicts.
1417 * If the system has already detected a capability, take necessary
1418 * action on this CPU.
1420 * Returns "false" on conflicts.
1423 __verify_local_cpu_caps(const struct arm64_cpu_capabilities
*caps
,
1426 bool cpu_has_cap
, system_has_cap
;
1428 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1430 for (; caps
->matches
; caps
++) {
1431 if (!(caps
->type
& scope_mask
))
1434 cpu_has_cap
= caps
->matches(caps
, SCOPE_LOCAL_CPU
);
1435 system_has_cap
= cpus_have_cap(caps
->capability
);
1437 if (system_has_cap
) {
1439 * Check if the new CPU misses an advertised feature,
1440 * which is not safe to miss.
1442 if (!cpu_has_cap
&& !cpucap_late_cpu_optional(caps
))
1445 * We have to issue cpu_enable() irrespective of
1446 * whether the CPU has it or not, as it is enabeld
1447 * system wide. It is upto the call back to take
1448 * appropriate action on this CPU.
1450 if (caps
->cpu_enable
)
1451 caps
->cpu_enable(caps
);
1454 * Check if the CPU has this capability if it isn't
1455 * safe to have when the system doesn't.
1457 if (cpu_has_cap
&& !cpucap_late_cpu_permitted(caps
))
1462 if (caps
->matches
) {
1463 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1464 smp_processor_id(), caps
->capability
,
1465 caps
->desc
, system_has_cap
, cpu_has_cap
);
1472 static bool verify_local_cpu_caps(u16 scope_mask
)
1474 return __verify_local_cpu_caps(arm64_errata
, scope_mask
) &&
1475 __verify_local_cpu_caps(arm64_features
, scope_mask
);
1479 * Check for CPU features that are used in early boot
1480 * based on the Boot CPU value.
1482 static void check_early_cpu_features(void)
1484 verify_cpu_asid_bits();
1486 * Early features are used by the kernel already. If there
1487 * is a conflict, we cannot proceed further.
1489 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU
))
1494 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
1497 for (; caps
->matches
; caps
++)
1498 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
1499 pr_crit("CPU%d: missing HWCAP: %s\n",
1500 smp_processor_id(), caps
->desc
);
1505 static void verify_sve_features(void)
1507 u64 safe_zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
1508 u64 zcr
= read_zcr_features();
1510 unsigned int safe_len
= safe_zcr
& ZCR_ELx_LEN_MASK
;
1511 unsigned int len
= zcr
& ZCR_ELx_LEN_MASK
;
1513 if (len
< safe_len
|| sve_verify_vq_map()) {
1514 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1515 smp_processor_id());
1519 /* Add checks on other ZCR bits here if necessary */
1524 * Run through the enabled system capabilities and enable() it on this CPU.
1525 * The capabilities were decided based on the available CPUs at the boot time.
1526 * Any new CPU should match the system wide status of the capability. If the
1527 * new CPU doesn't have a capability which the system now has enabled, we
1528 * cannot do anything to fix it up and could cause unexpected failures. So
1531 static void verify_local_cpu_capabilities(void)
1534 * The capabilities with SCOPE_BOOT_CPU are checked from
1535 * check_early_cpu_features(), as they need to be verified
1536 * on all secondary CPUs.
1538 if (!verify_local_cpu_caps(SCOPE_ALL
& ~SCOPE_BOOT_CPU
))
1541 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
1543 if (system_supports_32bit_el0())
1544 verify_local_elf_hwcaps(compat_elf_hwcaps
);
1546 if (system_supports_sve())
1547 verify_sve_features();
1550 void check_local_cpu_capabilities(void)
1553 * All secondary CPUs should conform to the early CPU features
1554 * in use by the kernel based on boot CPU.
1556 check_early_cpu_features();
1559 * If we haven't finalised the system capabilities, this CPU gets
1560 * a chance to update the errata work arounds and local features.
1561 * Otherwise, this CPU should verify that it has all the system
1562 * advertised capabilities.
1564 if (!sys_caps_initialised
)
1565 update_cpu_capabilities(SCOPE_LOCAL_CPU
);
1567 verify_local_cpu_capabilities();
1570 static void __init
setup_boot_cpu_capabilities(void)
1572 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1573 update_cpu_capabilities(SCOPE_BOOT_CPU
| SCOPE_LOCAL_CPU
);
1574 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1575 enable_cpu_capabilities(SCOPE_BOOT_CPU
);
1578 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready
);
1579 EXPORT_SYMBOL(arm64_const_caps_ready
);
1581 static void __init
mark_const_caps_ready(void)
1583 static_branch_enable(&arm64_const_caps_ready
);
1586 extern const struct arm64_cpu_capabilities arm64_errata
[];
1588 bool this_cpu_has_cap(unsigned int cap
)
1590 return (__this_cpu_has_cap(arm64_features
, cap
) ||
1591 __this_cpu_has_cap(arm64_errata
, cap
));
1594 static void __init
setup_system_capabilities(void)
1597 * We have finalised the system-wide safe feature
1598 * registers, finalise the capabilities that depend
1599 * on it. Also enable all the available capabilities,
1600 * that are not enabled already.
1602 update_cpu_capabilities(SCOPE_SYSTEM
);
1603 enable_cpu_capabilities(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
1606 void __init
setup_cpu_features(void)
1610 setup_system_capabilities();
1611 mark_const_caps_ready();
1612 setup_elf_hwcaps(arm64_elf_hwcaps
);
1614 if (system_supports_32bit_el0())
1615 setup_elf_hwcaps(compat_elf_hwcaps
);
1617 if (system_uses_ttbr0_pan())
1618 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1621 minsigstksz_setup();
1623 /* Advertise that we have computed the system capabilities */
1624 set_sys_caps_initialised();
1627 * Check for sane CTR_EL0.CWG value.
1629 cwg
= cache_type_cwg();
1631 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1635 static bool __maybe_unused
1636 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1638 return (cpus_have_const_cap(ARM64_HAS_PAN
) && !cpus_have_const_cap(ARM64_HAS_UAO
));
1642 * We emulate only the following system register space.
1643 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1644 * See Table C5-6 System instruction encodings for System register accesses,
1645 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1647 static inline bool __attribute_const__
is_emulated(u32 id
)
1649 return (sys_reg_Op0(id
) == 0x3 &&
1650 sys_reg_CRn(id
) == 0x0 &&
1651 sys_reg_Op1(id
) == 0x0 &&
1652 (sys_reg_CRm(id
) == 0 ||
1653 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
1657 * With CRm == 0, reg should be one of :
1658 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1660 static inline int emulate_id_reg(u32 id
, u64
*valp
)
1664 *valp
= read_cpuid_id();
1667 *valp
= SYS_MPIDR_SAFE_VAL
;
1669 case SYS_REVIDR_EL1
:
1670 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1680 static int emulate_sys_reg(u32 id
, u64
*valp
)
1682 struct arm64_ftr_reg
*regp
;
1684 if (!is_emulated(id
))
1687 if (sys_reg_CRm(id
) == 0)
1688 return emulate_id_reg(id
, valp
);
1690 regp
= get_arm64_ftr_reg(id
);
1692 *valp
= arm64_ftr_reg_user_value(regp
);
1695 * The untracked registers are either IMPLEMENTATION DEFINED
1696 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1702 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
1709 * sys_reg values are defined as used in mrs/msr instruction.
1710 * shift the imm value to get the encoding.
1712 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
1713 rc
= emulate_sys_reg(sys_reg
, &val
);
1715 dst
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
1716 pt_regs_write_reg(regs
, dst
, val
);
1717 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
1723 static struct undef_hook mrs_hook
= {
1724 .instr_mask
= 0xfff00000,
1725 .instr_val
= 0xd5300000,
1726 .pstate_mask
= COMPAT_PSR_MODE_MASK
,
1727 .pstate_val
= PSR_MODE_EL0t
,
1731 static int __init
enable_mrs_emulation(void)
1733 register_undef_hook(&mrs_hook
);
1737 core_initcall(enable_mrs_emulation
);
1739 void cpu_clear_disr(const struct arm64_cpu_capabilities
*__unused
)
1741 /* Firmware may have left a deferred SError in this register. */
1742 write_sysreg_s(0, SYS_DISR_EL1
);