usbnet: do not pretend to support SG/TSO
[linux/fpc-iii.git] / arch / alpha / kernel / perf_event.c
blobd821b17047e0abbe54dd82871d3cd9e324d28df8
1 /*
2 * Hardware performance events for the Alpha.
4 * We implement HW counts on the EV67 and subsequent CPUs only.
6 * (C) 2010 Michael J. Cree
8 * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and
9 * ARM code, which are copyright by their respective authors.
12 #include <linux/perf_event.h>
13 #include <linux/kprobes.h>
14 #include <linux/kernel.h>
15 #include <linux/kdebug.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
19 #include <asm/hwrpb.h>
20 #include <linux/atomic.h>
21 #include <asm/irq.h>
22 #include <asm/irq_regs.h>
23 #include <asm/pal.h>
24 #include <asm/wrperfmon.h>
25 #include <asm/hw_irq.h>
28 /* The maximum number of PMCs on any Alpha CPU whatsoever. */
29 #define MAX_HWEVENTS 3
30 #define PMC_NO_INDEX -1
32 /* For tracking PMCs and the hw events they monitor on each CPU. */
33 struct cpu_hw_events {
34 int enabled;
35 /* Number of events scheduled; also number entries valid in arrays below. */
36 int n_events;
37 /* Number events added since last hw_perf_disable(). */
38 int n_added;
39 /* Events currently scheduled. */
40 struct perf_event *event[MAX_HWEVENTS];
41 /* Event type of each scheduled event. */
42 unsigned long evtype[MAX_HWEVENTS];
43 /* Current index of each scheduled event; if not yet determined
44 * contains PMC_NO_INDEX.
46 int current_idx[MAX_HWEVENTS];
47 /* The active PMCs' config for easy use with wrperfmon(). */
48 unsigned long config;
49 /* The active counters' indices for easy use with wrperfmon(). */
50 unsigned long idx_mask;
52 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
57 * A structure to hold the description of the PMCs available on a particular
58 * type of Alpha CPU.
60 struct alpha_pmu_t {
61 /* Mapping of the perf system hw event types to indigenous event types */
62 const int *event_map;
63 /* The number of entries in the event_map */
64 int max_events;
65 /* The number of PMCs on this Alpha */
66 int num_pmcs;
68 * All PMC counters reside in the IBOX register PCTR. This is the
69 * LSB of the counter.
71 int pmc_count_shift[MAX_HWEVENTS];
73 * The mask that isolates the PMC bits when the LSB of the counter
74 * is shifted to bit 0.
76 unsigned long pmc_count_mask[MAX_HWEVENTS];
77 /* The maximum period the PMC can count. */
78 unsigned long pmc_max_period[MAX_HWEVENTS];
80 * The maximum value that may be written to the counter due to
81 * hardware restrictions is pmc_max_period - pmc_left.
83 long pmc_left[3];
84 /* Subroutine for allocation of PMCs. Enforces constraints. */
85 int (*check_constraints)(struct perf_event **, unsigned long *, int);
89 * The Alpha CPU PMU description currently in operation. This is set during
90 * the boot process to the specific CPU of the machine.
92 static const struct alpha_pmu_t *alpha_pmu;
95 #define HW_OP_UNSUPPORTED -1
98 * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs
99 * follow. Since they are identical we refer to them collectively as the
100 * EV67 henceforth.
104 * EV67 PMC event types
106 * There is no one-to-one mapping of the possible hw event types to the
107 * actual codes that are used to program the PMCs hence we introduce our
108 * own hw event type identifiers.
110 enum ev67_pmc_event_type {
111 EV67_CYCLES = 1,
112 EV67_INSTRUCTIONS,
113 EV67_BCACHEMISS,
114 EV67_MBOXREPLAY,
115 EV67_LAST_ET
117 #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES)
120 /* Mapping of the hw event types to the perf tool interface */
121 static const int ev67_perfmon_event_map[] = {
122 [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES,
123 [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS,
124 [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
125 [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS,
128 struct ev67_mapping_t {
129 int config;
130 int idx;
134 * The mapping used for one event only - these must be in same order as enum
135 * ev67_pmc_event_type definition.
137 static const struct ev67_mapping_t ev67_mapping[] = {
138 {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */
139 {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */
140 {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */
141 {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */
146 * Check that a group of events can be simultaneously scheduled on to the
147 * EV67 PMU. Also allocate counter indices and config.
149 static int ev67_check_constraints(struct perf_event **event,
150 unsigned long *evtype, int n_ev)
152 int idx0;
153 unsigned long config;
155 idx0 = ev67_mapping[evtype[0]-1].idx;
156 config = ev67_mapping[evtype[0]-1].config;
157 if (n_ev == 1)
158 goto success;
160 BUG_ON(n_ev != 2);
162 if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) {
163 /* MBOX replay traps must be on PMC 1 */
164 idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0;
165 /* Only cycles can accompany MBOX replay traps */
166 if (evtype[idx0] == EV67_CYCLES) {
167 config = EV67_PCTR_CYCLES_MBOX;
168 goto success;
172 if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) {
173 /* Bcache misses must be on PMC 1 */
174 idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0;
175 /* Only instructions can accompany Bcache misses */
176 if (evtype[idx0] == EV67_INSTRUCTIONS) {
177 config = EV67_PCTR_INSTR_BCACHEMISS;
178 goto success;
182 if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) {
183 /* Instructions must be on PMC 0 */
184 idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1;
185 /* By this point only cycles can accompany instructions */
186 if (evtype[idx0^1] == EV67_CYCLES) {
187 config = EV67_PCTR_INSTR_CYCLES;
188 goto success;
192 /* Otherwise, darn it, there is a conflict. */
193 return -1;
195 success:
196 event[0]->hw.idx = idx0;
197 event[0]->hw.config_base = config;
198 if (n_ev == 2) {
199 event[1]->hw.idx = idx0 ^ 1;
200 event[1]->hw.config_base = config;
202 return 0;
206 static const struct alpha_pmu_t ev67_pmu = {
207 .event_map = ev67_perfmon_event_map,
208 .max_events = ARRAY_SIZE(ev67_perfmon_event_map),
209 .num_pmcs = 2,
210 .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0},
211 .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0},
212 .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0},
213 .pmc_left = {16, 4, 0},
214 .check_constraints = ev67_check_constraints
220 * Helper routines to ensure that we read/write only the correct PMC bits
221 * when calling the wrperfmon PALcall.
223 static inline void alpha_write_pmc(int idx, unsigned long val)
225 val &= alpha_pmu->pmc_count_mask[idx];
226 val <<= alpha_pmu->pmc_count_shift[idx];
227 val |= (1<<idx);
228 wrperfmon(PERFMON_CMD_WRITE, val);
231 static inline unsigned long alpha_read_pmc(int idx)
233 unsigned long val;
235 val = wrperfmon(PERFMON_CMD_READ, 0);
236 val >>= alpha_pmu->pmc_count_shift[idx];
237 val &= alpha_pmu->pmc_count_mask[idx];
238 return val;
241 /* Set a new period to sample over */
242 static int alpha_perf_event_set_period(struct perf_event *event,
243 struct hw_perf_event *hwc, int idx)
245 long left = local64_read(&hwc->period_left);
246 long period = hwc->sample_period;
247 int ret = 0;
249 if (unlikely(left <= -period)) {
250 left = period;
251 local64_set(&hwc->period_left, left);
252 hwc->last_period = period;
253 ret = 1;
256 if (unlikely(left <= 0)) {
257 left += period;
258 local64_set(&hwc->period_left, left);
259 hwc->last_period = period;
260 ret = 1;
264 * Hardware restrictions require that the counters must not be
265 * written with values that are too close to the maximum period.
267 if (unlikely(left < alpha_pmu->pmc_left[idx]))
268 left = alpha_pmu->pmc_left[idx];
270 if (left > (long)alpha_pmu->pmc_max_period[idx])
271 left = alpha_pmu->pmc_max_period[idx];
273 local64_set(&hwc->prev_count, (unsigned long)(-left));
275 alpha_write_pmc(idx, (unsigned long)(-left));
277 perf_event_update_userpage(event);
279 return ret;
284 * Calculates the count (the 'delta') since the last time the PMC was read.
286 * As the PMCs' full period can easily be exceeded within the perf system
287 * sampling period we cannot use any high order bits as a guard bit in the
288 * PMCs to detect overflow as is done by other architectures. The code here
289 * calculates the delta on the basis that there is no overflow when ovf is
290 * zero. The value passed via ovf by the interrupt handler corrects for
291 * overflow.
293 * This can be racey on rare occasions -- a call to this routine can occur
294 * with an overflowed counter just before the PMI service routine is called.
295 * The check for delta negative hopefully always rectifies this situation.
297 static unsigned long alpha_perf_event_update(struct perf_event *event,
298 struct hw_perf_event *hwc, int idx, long ovf)
300 long prev_raw_count, new_raw_count;
301 long delta;
303 again:
304 prev_raw_count = local64_read(&hwc->prev_count);
305 new_raw_count = alpha_read_pmc(idx);
307 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
308 new_raw_count) != prev_raw_count)
309 goto again;
311 delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf;
313 /* It is possible on very rare occasions that the PMC has overflowed
314 * but the interrupt is yet to come. Detect and fix this situation.
316 if (unlikely(delta < 0)) {
317 delta += alpha_pmu->pmc_max_period[idx] + 1;
320 local64_add(delta, &event->count);
321 local64_sub(delta, &hwc->period_left);
323 return new_raw_count;
328 * Collect all HW events into the array event[].
330 static int collect_events(struct perf_event *group, int max_count,
331 struct perf_event *event[], unsigned long *evtype,
332 int *current_idx)
334 struct perf_event *pe;
335 int n = 0;
337 if (!is_software_event(group)) {
338 if (n >= max_count)
339 return -1;
340 event[n] = group;
341 evtype[n] = group->hw.event_base;
342 current_idx[n++] = PMC_NO_INDEX;
344 list_for_each_entry(pe, &group->sibling_list, group_entry) {
345 if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) {
346 if (n >= max_count)
347 return -1;
348 event[n] = pe;
349 evtype[n] = pe->hw.event_base;
350 current_idx[n++] = PMC_NO_INDEX;
353 return n;
359 * Check that a group of events can be simultaneously scheduled on to the PMU.
361 static int alpha_check_constraints(struct perf_event **events,
362 unsigned long *evtypes, int n_ev)
365 /* No HW events is possible from hw_perf_group_sched_in(). */
366 if (n_ev == 0)
367 return 0;
369 if (n_ev > alpha_pmu->num_pmcs)
370 return -1;
372 return alpha_pmu->check_constraints(events, evtypes, n_ev);
377 * If new events have been scheduled then update cpuc with the new
378 * configuration. This may involve shifting cycle counts from one PMC to
379 * another.
381 static void maybe_change_configuration(struct cpu_hw_events *cpuc)
383 int j;
385 if (cpuc->n_added == 0)
386 return;
388 /* Find counters that are moving to another PMC and update */
389 for (j = 0; j < cpuc->n_events; j++) {
390 struct perf_event *pe = cpuc->event[j];
392 if (cpuc->current_idx[j] != PMC_NO_INDEX &&
393 cpuc->current_idx[j] != pe->hw.idx) {
394 alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0);
395 cpuc->current_idx[j] = PMC_NO_INDEX;
399 /* Assign to counters all unassigned events. */
400 cpuc->idx_mask = 0;
401 for (j = 0; j < cpuc->n_events; j++) {
402 struct perf_event *pe = cpuc->event[j];
403 struct hw_perf_event *hwc = &pe->hw;
404 int idx = hwc->idx;
406 if (cpuc->current_idx[j] == PMC_NO_INDEX) {
407 alpha_perf_event_set_period(pe, hwc, idx);
408 cpuc->current_idx[j] = idx;
411 if (!(hwc->state & PERF_HES_STOPPED))
412 cpuc->idx_mask |= (1<<cpuc->current_idx[j]);
414 cpuc->config = cpuc->event[0]->hw.config_base;
419 /* Schedule perf HW event on to PMU.
420 * - this function is called from outside this module via the pmu struct
421 * returned from perf event initialisation.
423 static int alpha_pmu_add(struct perf_event *event, int flags)
425 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
426 struct hw_perf_event *hwc = &event->hw;
427 int n0;
428 int ret;
429 unsigned long irq_flags;
432 * The Sparc code has the IRQ disable first followed by the perf
433 * disable, however this can lead to an overflowed counter with the
434 * PMI disabled on rare occasions. The alpha_perf_event_update()
435 * routine should detect this situation by noting a negative delta,
436 * nevertheless we disable the PMCs first to enable a potential
437 * final PMI to occur before we disable interrupts.
439 perf_pmu_disable(event->pmu);
440 local_irq_save(irq_flags);
442 /* Default to error to be returned */
443 ret = -EAGAIN;
445 /* Insert event on to PMU and if successful modify ret to valid return */
446 n0 = cpuc->n_events;
447 if (n0 < alpha_pmu->num_pmcs) {
448 cpuc->event[n0] = event;
449 cpuc->evtype[n0] = event->hw.event_base;
450 cpuc->current_idx[n0] = PMC_NO_INDEX;
452 if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) {
453 cpuc->n_events++;
454 cpuc->n_added++;
455 ret = 0;
459 hwc->state = PERF_HES_UPTODATE;
460 if (!(flags & PERF_EF_START))
461 hwc->state |= PERF_HES_STOPPED;
463 local_irq_restore(irq_flags);
464 perf_pmu_enable(event->pmu);
466 return ret;
471 /* Disable performance monitoring unit
472 * - this function is called from outside this module via the pmu struct
473 * returned from perf event initialisation.
475 static void alpha_pmu_del(struct perf_event *event, int flags)
477 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
478 struct hw_perf_event *hwc = &event->hw;
479 unsigned long irq_flags;
480 int j;
482 perf_pmu_disable(event->pmu);
483 local_irq_save(irq_flags);
485 for (j = 0; j < cpuc->n_events; j++) {
486 if (event == cpuc->event[j]) {
487 int idx = cpuc->current_idx[j];
489 /* Shift remaining entries down into the existing
490 * slot.
492 while (++j < cpuc->n_events) {
493 cpuc->event[j - 1] = cpuc->event[j];
494 cpuc->evtype[j - 1] = cpuc->evtype[j];
495 cpuc->current_idx[j - 1] =
496 cpuc->current_idx[j];
499 /* Absorb the final count and turn off the event. */
500 alpha_perf_event_update(event, hwc, idx, 0);
501 perf_event_update_userpage(event);
503 cpuc->idx_mask &= ~(1UL<<idx);
504 cpuc->n_events--;
505 break;
509 local_irq_restore(irq_flags);
510 perf_pmu_enable(event->pmu);
514 static void alpha_pmu_read(struct perf_event *event)
516 struct hw_perf_event *hwc = &event->hw;
518 alpha_perf_event_update(event, hwc, hwc->idx, 0);
522 static void alpha_pmu_stop(struct perf_event *event, int flags)
524 struct hw_perf_event *hwc = &event->hw;
525 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
527 if (!(hwc->state & PERF_HES_STOPPED)) {
528 cpuc->idx_mask &= ~(1UL<<hwc->idx);
529 hwc->state |= PERF_HES_STOPPED;
532 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
533 alpha_perf_event_update(event, hwc, hwc->idx, 0);
534 hwc->state |= PERF_HES_UPTODATE;
537 if (cpuc->enabled)
538 wrperfmon(PERFMON_CMD_DISABLE, (1UL<<hwc->idx));
542 static void alpha_pmu_start(struct perf_event *event, int flags)
544 struct hw_perf_event *hwc = &event->hw;
545 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
547 if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
548 return;
550 if (flags & PERF_EF_RELOAD) {
551 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
552 alpha_perf_event_set_period(event, hwc, hwc->idx);
555 hwc->state = 0;
557 cpuc->idx_mask |= 1UL<<hwc->idx;
558 if (cpuc->enabled)
559 wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx));
564 * Check that CPU performance counters are supported.
565 * - currently support EV67 and later CPUs.
566 * - actually some later revisions of the EV6 have the same PMC model as the
567 * EV67 but we don't do suffiently deep CPU detection to detect them.
568 * Bad luck to the very few people who might have one, I guess.
570 static int supported_cpu(void)
572 struct percpu_struct *cpu;
573 unsigned long cputype;
575 /* Get cpu type from HW */
576 cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset);
577 cputype = cpu->type & 0xffffffff;
578 /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */
579 return (cputype >= EV67_CPU) && (cputype <= EV69_CPU);
584 static void hw_perf_event_destroy(struct perf_event *event)
586 /* Nothing to be done! */
587 return;
592 static int __hw_perf_event_init(struct perf_event *event)
594 struct perf_event_attr *attr = &event->attr;
595 struct hw_perf_event *hwc = &event->hw;
596 struct perf_event *evts[MAX_HWEVENTS];
597 unsigned long evtypes[MAX_HWEVENTS];
598 int idx_rubbish_bin[MAX_HWEVENTS];
599 int ev;
600 int n;
602 /* We only support a limited range of HARDWARE event types with one
603 * only programmable via a RAW event type.
605 if (attr->type == PERF_TYPE_HARDWARE) {
606 if (attr->config >= alpha_pmu->max_events)
607 return -EINVAL;
608 ev = alpha_pmu->event_map[attr->config];
609 } else if (attr->type == PERF_TYPE_HW_CACHE) {
610 return -EOPNOTSUPP;
611 } else if (attr->type == PERF_TYPE_RAW) {
612 ev = attr->config & 0xff;
613 } else {
614 return -EOPNOTSUPP;
617 if (ev < 0) {
618 return ev;
621 /* The EV67 does not support mode exclusion */
622 if (attr->exclude_kernel || attr->exclude_user
623 || attr->exclude_hv || attr->exclude_idle) {
624 return -EPERM;
628 * We place the event type in event_base here and leave calculation
629 * of the codes to programme the PMU for alpha_pmu_enable() because
630 * it is only then we will know what HW events are actually
631 * scheduled on to the PMU. At that point the code to programme the
632 * PMU is put into config_base and the PMC to use is placed into
633 * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that
634 * it is yet to be determined.
636 hwc->event_base = ev;
638 /* Collect events in a group together suitable for calling
639 * alpha_check_constraints() to verify that the group as a whole can
640 * be scheduled on to the PMU.
642 n = 0;
643 if (event->group_leader != event) {
644 n = collect_events(event->group_leader,
645 alpha_pmu->num_pmcs - 1,
646 evts, evtypes, idx_rubbish_bin);
647 if (n < 0)
648 return -EINVAL;
650 evtypes[n] = hwc->event_base;
651 evts[n] = event;
653 if (alpha_check_constraints(evts, evtypes, n + 1))
654 return -EINVAL;
656 /* Indicate that PMU config and idx are yet to be determined. */
657 hwc->config_base = 0;
658 hwc->idx = PMC_NO_INDEX;
660 event->destroy = hw_perf_event_destroy;
663 * Most architectures reserve the PMU for their use at this point.
664 * As there is no existing mechanism to arbitrate usage and there
665 * appears to be no other user of the Alpha PMU we just assume
666 * that we can just use it, hence a NO-OP here.
668 * Maybe an alpha_reserve_pmu() routine should be implemented but is
669 * anything else ever going to use it?
672 if (!hwc->sample_period) {
673 hwc->sample_period = alpha_pmu->pmc_max_period[0];
674 hwc->last_period = hwc->sample_period;
675 local64_set(&hwc->period_left, hwc->sample_period);
678 return 0;
682 * Main entry point to initialise a HW performance event.
684 static int alpha_pmu_event_init(struct perf_event *event)
686 int err;
688 /* does not support taken branch sampling */
689 if (has_branch_stack(event))
690 return -EOPNOTSUPP;
692 switch (event->attr.type) {
693 case PERF_TYPE_RAW:
694 case PERF_TYPE_HARDWARE:
695 case PERF_TYPE_HW_CACHE:
696 break;
698 default:
699 return -ENOENT;
702 if (!alpha_pmu)
703 return -ENODEV;
705 /* Do the real initialisation work. */
706 err = __hw_perf_event_init(event);
708 return err;
712 * Main entry point - enable HW performance counters.
714 static void alpha_pmu_enable(struct pmu *pmu)
716 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
718 if (cpuc->enabled)
719 return;
721 cpuc->enabled = 1;
722 barrier();
724 if (cpuc->n_events > 0) {
725 /* Update cpuc with information from any new scheduled events. */
726 maybe_change_configuration(cpuc);
728 /* Start counting the desired events. */
729 wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE);
730 wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config);
731 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
737 * Main entry point - disable HW performance counters.
740 static void alpha_pmu_disable(struct pmu *pmu)
742 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
744 if (!cpuc->enabled)
745 return;
747 cpuc->enabled = 0;
748 cpuc->n_added = 0;
750 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
753 static struct pmu pmu = {
754 .pmu_enable = alpha_pmu_enable,
755 .pmu_disable = alpha_pmu_disable,
756 .event_init = alpha_pmu_event_init,
757 .add = alpha_pmu_add,
758 .del = alpha_pmu_del,
759 .start = alpha_pmu_start,
760 .stop = alpha_pmu_stop,
761 .read = alpha_pmu_read,
766 * Main entry point - don't know when this is called but it
767 * obviously dumps debug info.
769 void perf_event_print_debug(void)
771 unsigned long flags;
772 unsigned long pcr;
773 int pcr0, pcr1;
774 int cpu;
776 if (!supported_cpu())
777 return;
779 local_irq_save(flags);
781 cpu = smp_processor_id();
783 pcr = wrperfmon(PERFMON_CMD_READ, 0);
784 pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0];
785 pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1];
787 pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1);
789 local_irq_restore(flags);
794 * Performance Monitoring Interrupt Service Routine called when a PMC
795 * overflows. The PMC that overflowed is passed in la_ptr.
797 static void alpha_perf_event_irq_handler(unsigned long la_ptr,
798 struct pt_regs *regs)
800 struct cpu_hw_events *cpuc;
801 struct perf_sample_data data;
802 struct perf_event *event;
803 struct hw_perf_event *hwc;
804 int idx, j;
806 __get_cpu_var(irq_pmi_count)++;
807 cpuc = &__get_cpu_var(cpu_hw_events);
809 /* Completely counting through the PMC's period to trigger a new PMC
810 * overflow interrupt while in this interrupt routine is utterly
811 * disastrous! The EV6 and EV67 counters are sufficiently large to
812 * prevent this but to be really sure disable the PMCs.
814 wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask);
816 /* la_ptr is the counter that overflowed. */
817 if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) {
818 /* This should never occur! */
819 irq_err_count++;
820 pr_warning("PMI: silly index %ld\n", la_ptr);
821 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
822 return;
825 idx = la_ptr;
827 for (j = 0; j < cpuc->n_events; j++) {
828 if (cpuc->current_idx[j] == idx)
829 break;
832 if (unlikely(j == cpuc->n_events)) {
833 /* This can occur if the event is disabled right on a PMC overflow. */
834 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
835 return;
838 event = cpuc->event[j];
840 if (unlikely(!event)) {
841 /* This should never occur! */
842 irq_err_count++;
843 pr_warning("PMI: No event at index %d!\n", idx);
844 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
845 return;
848 hwc = &event->hw;
849 alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1);
850 perf_sample_data_init(&data, 0, hwc->last_period);
852 if (alpha_perf_event_set_period(event, hwc, idx)) {
853 if (perf_event_overflow(event, &data, regs)) {
854 /* Interrupts coming too quickly; "throttle" the
855 * counter, i.e., disable it for a little while.
857 alpha_pmu_stop(event, 0);
860 wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask);
862 return;
868 * Init call to initialise performance events at kernel startup.
870 int __init init_hw_perf_events(void)
872 pr_info("Performance events: ");
874 if (!supported_cpu()) {
875 pr_cont("No support for your CPU.\n");
876 return 0;
879 pr_cont("Supported CPU type!\n");
881 /* Override performance counter IRQ vector */
883 perf_irq = alpha_perf_event_irq_handler;
885 /* And set up PMU specification */
886 alpha_pmu = &ev67_pmu;
888 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
890 return 0;
892 early_initcall(init_hw_perf_events);