media: cpia2_usb: drop bogus interface-release call
[linux/fpc-iii.git] / fs / f2fs / segment.c
blobb16a8e6625aaee740b8232ac63dabe5c5fcc3e33
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
36 static unsigned long __reverse_ulong(unsigned char *str)
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
48 return tmp;
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
55 static inline unsigned long __reverse_ffs(unsigned long word)
57 int num = 0;
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
106 if (offset >= size)
107 return size;
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
112 while (1) {
113 if (*p == 0)
114 goto pass;
116 tmp = __reverse_ulong((unsigned char *)p);
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
142 if (offset >= size)
143 return size;
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
152 tmp = __reverse_ulong((unsigned char *)p);
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
172 bool need_SSR(struct f2fs_sb_info *sbi)
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
187 void register_inmem_page(struct inode *inode, struct page *page)
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
193 f2fs_trace_pid(page);
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
215 trace_f2fs_register_inmem_page(page, INMEM);
218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
231 lock_page(page);
233 if (recover) {
234 struct dnode_of_data dn;
235 struct node_info ni;
237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 if (err) {
242 if (err == -ENOMEM) {
243 congestion_wait(BLK_RW_ASYNC, HZ/50);
244 cond_resched();
245 goto retry;
247 err = -EAGAIN;
248 goto next;
250 get_node_info(sbi, dn.nid, &ni);
251 if (cur->old_addr == NEW_ADDR) {
252 invalidate_blocks(sbi, dn.data_blkaddr);
253 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 } else
255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 cur->old_addr, ni.version, true, true);
257 f2fs_put_dnode(&dn);
259 next:
260 /* we don't need to invalidate this in the sccessful status */
261 if (drop || recover)
262 ClearPageUptodate(page);
263 set_page_private(page, 0);
264 ClearPagePrivate(page);
265 f2fs_put_page(page, 1);
267 list_del(&cur->list);
268 kmem_cache_free(inmem_entry_slab, cur);
269 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
271 return err;
274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
276 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 struct inode *inode;
278 struct f2fs_inode_info *fi;
279 next:
280 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 if (list_empty(head)) {
282 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 return;
285 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 inode = igrab(&fi->vfs_inode);
287 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
289 if (inode) {
290 drop_inmem_pages(inode);
291 iput(inode);
293 congestion_wait(BLK_RW_ASYNC, HZ/50);
294 cond_resched();
295 goto next;
298 void drop_inmem_pages(struct inode *inode)
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
303 mutex_lock(&fi->inmem_lock);
304 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 if (!list_empty(&fi->inmem_ilist))
307 list_del_init(&fi->inmem_ilist);
308 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 mutex_unlock(&fi->inmem_lock);
311 clear_inode_flag(inode, FI_ATOMIC_FILE);
312 clear_inode_flag(inode, FI_HOT_DATA);
313 stat_dec_atomic_write(inode);
316 void drop_inmem_page(struct inode *inode, struct page *page)
318 struct f2fs_inode_info *fi = F2FS_I(inode);
319 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 struct list_head *head = &fi->inmem_pages;
321 struct inmem_pages *cur = NULL;
323 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
325 mutex_lock(&fi->inmem_lock);
326 list_for_each_entry(cur, head, list) {
327 if (cur->page == page)
328 break;
331 f2fs_bug_on(sbi, !cur || cur->page != page);
332 list_del(&cur->list);
333 mutex_unlock(&fi->inmem_lock);
335 dec_page_count(sbi, F2FS_INMEM_PAGES);
336 kmem_cache_free(inmem_entry_slab, cur);
338 ClearPageUptodate(page);
339 set_page_private(page, 0);
340 ClearPagePrivate(page);
341 f2fs_put_page(page, 0);
343 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
346 static int __commit_inmem_pages(struct inode *inode,
347 struct list_head *revoke_list)
349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct inmem_pages *cur, *tmp;
352 struct f2fs_io_info fio = {
353 .sbi = sbi,
354 .ino = inode->i_ino,
355 .type = DATA,
356 .op = REQ_OP_WRITE,
357 .op_flags = REQ_SYNC | REQ_PRIO,
358 .io_type = FS_DATA_IO,
360 pgoff_t last_idx = ULONG_MAX;
361 int err = 0;
363 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 struct page *page = cur->page;
366 lock_page(page);
367 if (page->mapping == inode->i_mapping) {
368 trace_f2fs_commit_inmem_page(page, INMEM);
370 set_page_dirty(page);
371 f2fs_wait_on_page_writeback(page, DATA, true);
372 if (clear_page_dirty_for_io(page)) {
373 inode_dec_dirty_pages(inode);
374 remove_dirty_inode(inode);
376 retry:
377 fio.page = page;
378 fio.old_blkaddr = NULL_ADDR;
379 fio.encrypted_page = NULL;
380 fio.need_lock = LOCK_DONE;
381 err = do_write_data_page(&fio);
382 if (err) {
383 if (err == -ENOMEM) {
384 congestion_wait(BLK_RW_ASYNC, HZ/50);
385 cond_resched();
386 goto retry;
388 unlock_page(page);
389 break;
391 /* record old blkaddr for revoking */
392 cur->old_addr = fio.old_blkaddr;
393 last_idx = page->index;
395 unlock_page(page);
396 list_move_tail(&cur->list, revoke_list);
399 if (last_idx != ULONG_MAX)
400 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
402 if (!err)
403 __revoke_inmem_pages(inode, revoke_list, false, false);
405 return err;
408 int commit_inmem_pages(struct inode *inode)
410 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 struct f2fs_inode_info *fi = F2FS_I(inode);
412 struct list_head revoke_list;
413 int err;
415 INIT_LIST_HEAD(&revoke_list);
416 f2fs_balance_fs(sbi, true);
417 f2fs_lock_op(sbi);
419 set_inode_flag(inode, FI_ATOMIC_COMMIT);
421 mutex_lock(&fi->inmem_lock);
422 err = __commit_inmem_pages(inode, &revoke_list);
423 if (err) {
424 int ret;
426 * try to revoke all committed pages, but still we could fail
427 * due to no memory or other reason, if that happened, EAGAIN
428 * will be returned, which means in such case, transaction is
429 * already not integrity, caller should use journal to do the
430 * recovery or rewrite & commit last transaction. For other
431 * error number, revoking was done by filesystem itself.
433 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 if (ret)
435 err = ret;
437 /* drop all uncommitted pages */
438 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
440 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 if (!list_empty(&fi->inmem_ilist))
442 list_del_init(&fi->inmem_ilist);
443 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 mutex_unlock(&fi->inmem_lock);
446 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
448 f2fs_unlock_op(sbi);
449 return err;
453 * This function balances dirty node and dentry pages.
454 * In addition, it controls garbage collection.
456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 f2fs_show_injection_info(FAULT_CHECKPOINT);
461 f2fs_stop_checkpoint(sbi, false);
463 #endif
465 /* balance_fs_bg is able to be pending */
466 if (need && excess_cached_nats(sbi))
467 f2fs_balance_fs_bg(sbi);
470 * We should do GC or end up with checkpoint, if there are so many dirty
471 * dir/node pages without enough free segments.
473 if (has_not_enough_free_secs(sbi, 0, 0)) {
474 mutex_lock(&sbi->gc_mutex);
475 f2fs_gc(sbi, false, false, NULL_SEGNO);
479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
481 /* try to shrink extent cache when there is no enough memory */
482 if (!available_free_memory(sbi, EXTENT_CACHE))
483 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
485 /* check the # of cached NAT entries */
486 if (!available_free_memory(sbi, NAT_ENTRIES))
487 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
489 if (!available_free_memory(sbi, FREE_NIDS))
490 try_to_free_nids(sbi, MAX_FREE_NIDS);
491 else
492 build_free_nids(sbi, false, false);
494 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495 return;
497 /* checkpoint is the only way to shrink partial cached entries */
498 if (!available_free_memory(sbi, NAT_ENTRIES) ||
499 !available_free_memory(sbi, INO_ENTRIES) ||
500 excess_prefree_segs(sbi) ||
501 excess_dirty_nats(sbi) ||
502 f2fs_time_over(sbi, CP_TIME)) {
503 if (test_opt(sbi, DATA_FLUSH)) {
504 struct blk_plug plug;
506 blk_start_plug(&plug);
507 sync_dirty_inodes(sbi, FILE_INODE);
508 blk_finish_plug(&plug);
510 f2fs_sync_fs(sbi->sb, true);
511 stat_inc_bg_cp_count(sbi->stat_info);
515 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516 struct block_device *bdev)
518 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519 int ret;
521 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522 bio_set_dev(bio, bdev);
523 ret = submit_bio_wait(bio);
524 bio_put(bio);
526 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527 test_opt(sbi, FLUSH_MERGE), ret);
528 return ret;
531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
533 int ret = 0;
534 int i;
536 if (!sbi->s_ndevs)
537 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
539 for (i = 0; i < sbi->s_ndevs; i++) {
540 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541 continue;
542 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 if (ret)
544 break;
546 return ret;
549 static int issue_flush_thread(void *data)
551 struct f2fs_sb_info *sbi = data;
552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 wait_queue_head_t *q = &fcc->flush_wait_queue;
554 repeat:
555 if (kthread_should_stop())
556 return 0;
558 sb_start_intwrite(sbi->sb);
560 if (!llist_empty(&fcc->issue_list)) {
561 struct flush_cmd *cmd, *next;
562 int ret;
564 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
567 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
569 ret = submit_flush_wait(sbi, cmd->ino);
570 atomic_inc(&fcc->issued_flush);
572 llist_for_each_entry_safe(cmd, next,
573 fcc->dispatch_list, llnode) {
574 cmd->ret = ret;
575 complete(&cmd->wait);
577 fcc->dispatch_list = NULL;
580 sb_end_intwrite(sbi->sb);
582 wait_event_interruptible(*q,
583 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 goto repeat;
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 struct flush_cmd cmd;
591 int ret;
593 if (test_opt(sbi, NOBARRIER))
594 return 0;
596 if (!test_opt(sbi, FLUSH_MERGE)) {
597 ret = submit_flush_wait(sbi, ino);
598 atomic_inc(&fcc->issued_flush);
599 return ret;
602 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603 ret = submit_flush_wait(sbi, ino);
604 atomic_dec(&fcc->issing_flush);
606 atomic_inc(&fcc->issued_flush);
607 return ret;
610 cmd.ino = ino;
611 init_completion(&cmd.wait);
613 llist_add(&cmd.llnode, &fcc->issue_list);
615 /* update issue_list before we wake up issue_flush thread */
616 smp_mb();
618 if (waitqueue_active(&fcc->flush_wait_queue))
619 wake_up(&fcc->flush_wait_queue);
621 if (fcc->f2fs_issue_flush) {
622 wait_for_completion(&cmd.wait);
623 atomic_dec(&fcc->issing_flush);
624 } else {
625 struct llist_node *list;
627 list = llist_del_all(&fcc->issue_list);
628 if (!list) {
629 wait_for_completion(&cmd.wait);
630 atomic_dec(&fcc->issing_flush);
631 } else {
632 struct flush_cmd *tmp, *next;
634 ret = submit_flush_wait(sbi, ino);
636 llist_for_each_entry_safe(tmp, next, list, llnode) {
637 if (tmp == &cmd) {
638 cmd.ret = ret;
639 atomic_dec(&fcc->issing_flush);
640 continue;
642 tmp->ret = ret;
643 complete(&tmp->wait);
648 return cmd.ret;
651 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
653 dev_t dev = sbi->sb->s_bdev->bd_dev;
654 struct flush_cmd_control *fcc;
655 int err = 0;
657 if (SM_I(sbi)->fcc_info) {
658 fcc = SM_I(sbi)->fcc_info;
659 if (fcc->f2fs_issue_flush)
660 return err;
661 goto init_thread;
664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 if (!fcc)
666 return -ENOMEM;
667 atomic_set(&fcc->issued_flush, 0);
668 atomic_set(&fcc->issing_flush, 0);
669 init_waitqueue_head(&fcc->flush_wait_queue);
670 init_llist_head(&fcc->issue_list);
671 SM_I(sbi)->fcc_info = fcc;
672 if (!test_opt(sbi, FLUSH_MERGE))
673 return err;
675 init_thread:
676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 if (IS_ERR(fcc->f2fs_issue_flush)) {
679 err = PTR_ERR(fcc->f2fs_issue_flush);
680 kfree(fcc);
681 SM_I(sbi)->fcc_info = NULL;
682 return err;
685 return err;
688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
692 if (fcc && fcc->f2fs_issue_flush) {
693 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
695 fcc->f2fs_issue_flush = NULL;
696 kthread_stop(flush_thread);
698 if (free) {
699 kfree(fcc);
700 SM_I(sbi)->fcc_info = NULL;
704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
706 int ret = 0, i;
708 if (!sbi->s_ndevs)
709 return 0;
711 for (i = 1; i < sbi->s_ndevs; i++) {
712 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713 continue;
714 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 if (ret)
716 break;
718 spin_lock(&sbi->dev_lock);
719 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 spin_unlock(&sbi->dev_lock);
723 return ret;
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 enum dirty_type dirty_type)
729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
731 /* need not be added */
732 if (IS_CURSEG(sbi, segno))
733 return;
735 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 dirty_i->nr_dirty[dirty_type]++;
738 if (dirty_type == DIRTY) {
739 struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 enum dirty_type t = sentry->type;
742 if (unlikely(t >= DIRTY)) {
743 f2fs_bug_on(sbi, 1);
744 return;
746 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 dirty_i->nr_dirty[t]++;
751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752 enum dirty_type dirty_type)
754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
756 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757 dirty_i->nr_dirty[dirty_type]--;
759 if (dirty_type == DIRTY) {
760 struct seg_entry *sentry = get_seg_entry(sbi, segno);
761 enum dirty_type t = sentry->type;
763 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764 dirty_i->nr_dirty[t]--;
766 if (get_valid_blocks(sbi, segno, true) == 0)
767 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768 dirty_i->victim_secmap);
773 * Should not occur error such as -ENOMEM.
774 * Adding dirty entry into seglist is not critical operation.
775 * If a given segment is one of current working segments, it won't be added.
777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 unsigned short valid_blocks;
782 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783 return;
785 mutex_lock(&dirty_i->seglist_lock);
787 valid_blocks = get_valid_blocks(sbi, segno, false);
789 if (valid_blocks == 0) {
790 __locate_dirty_segment(sbi, segno, PRE);
791 __remove_dirty_segment(sbi, segno, DIRTY);
792 } else if (valid_blocks < sbi->blocks_per_seg) {
793 __locate_dirty_segment(sbi, segno, DIRTY);
794 } else {
795 /* Recovery routine with SSR needs this */
796 __remove_dirty_segment(sbi, segno, DIRTY);
799 mutex_unlock(&dirty_i->seglist_lock);
802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803 struct block_device *bdev, block_t lstart,
804 block_t start, block_t len)
806 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807 struct list_head *pend_list;
808 struct discard_cmd *dc;
810 f2fs_bug_on(sbi, !len);
812 pend_list = &dcc->pend_list[plist_idx(len)];
814 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815 INIT_LIST_HEAD(&dc->list);
816 dc->bdev = bdev;
817 dc->lstart = lstart;
818 dc->start = start;
819 dc->len = len;
820 dc->ref = 0;
821 dc->state = D_PREP;
822 dc->error = 0;
823 init_completion(&dc->wait);
824 list_add_tail(&dc->list, pend_list);
825 atomic_inc(&dcc->discard_cmd_cnt);
826 dcc->undiscard_blks += len;
828 return dc;
831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832 struct block_device *bdev, block_t lstart,
833 block_t start, block_t len,
834 struct rb_node *parent, struct rb_node **p)
836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837 struct discard_cmd *dc;
839 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
841 rb_link_node(&dc->rb_node, parent, p);
842 rb_insert_color(&dc->rb_node, &dcc->root);
844 return dc;
847 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848 struct discard_cmd *dc)
850 if (dc->state == D_DONE)
851 atomic_dec(&dcc->issing_discard);
853 list_del(&dc->list);
854 rb_erase(&dc->rb_node, &dcc->root);
855 dcc->undiscard_blks -= dc->len;
857 kmem_cache_free(discard_cmd_slab, dc);
859 atomic_dec(&dcc->discard_cmd_cnt);
862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863 struct discard_cmd *dc)
865 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
867 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
869 f2fs_bug_on(sbi, dc->ref);
871 if (dc->error == -EOPNOTSUPP)
872 dc->error = 0;
874 if (dc->error)
875 f2fs_msg(sbi->sb, KERN_INFO,
876 "Issue discard(%u, %u, %u) failed, ret: %d",
877 dc->lstart, dc->start, dc->len, dc->error);
878 __detach_discard_cmd(dcc, dc);
881 static void f2fs_submit_discard_endio(struct bio *bio)
883 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
885 dc->error = blk_status_to_errno(bio->bi_status);
886 dc->state = D_DONE;
887 complete_all(&dc->wait);
888 bio_put(bio);
891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892 block_t start, block_t end)
894 #ifdef CONFIG_F2FS_CHECK_FS
895 struct seg_entry *sentry;
896 unsigned int segno;
897 block_t blk = start;
898 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899 unsigned long *map;
901 while (blk < end) {
902 segno = GET_SEGNO(sbi, blk);
903 sentry = get_seg_entry(sbi, segno);
904 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
906 if (end < START_BLOCK(sbi, segno + 1))
907 size = GET_BLKOFF_FROM_SEG0(sbi, end);
908 else
909 size = max_blocks;
910 map = (unsigned long *)(sentry->cur_valid_map);
911 offset = __find_rev_next_bit(map, size, offset);
912 f2fs_bug_on(sbi, offset != size);
913 blk = START_BLOCK(sbi, segno + 1);
915 #endif
918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920 struct discard_policy *dpolicy,
921 struct discard_cmd *dc)
923 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925 &(dcc->fstrim_list) : &(dcc->wait_list);
926 struct bio *bio = NULL;
927 int flag = dpolicy->sync ? REQ_SYNC : 0;
929 if (dc->state != D_PREP)
930 return;
932 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
934 dc->error = __blkdev_issue_discard(dc->bdev,
935 SECTOR_FROM_BLOCK(dc->start),
936 SECTOR_FROM_BLOCK(dc->len),
937 GFP_NOFS, 0, &bio);
938 if (!dc->error) {
939 /* should keep before submission to avoid D_DONE right away */
940 dc->state = D_SUBMIT;
941 atomic_inc(&dcc->issued_discard);
942 atomic_inc(&dcc->issing_discard);
943 if (bio) {
944 bio->bi_private = dc;
945 bio->bi_end_io = f2fs_submit_discard_endio;
946 bio->bi_opf |= flag;
947 submit_bio(bio);
948 list_move_tail(&dc->list, wait_list);
949 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
951 f2fs_update_iostat(sbi, FS_DISCARD, 1);
953 } else {
954 __remove_discard_cmd(sbi, dc);
958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959 struct block_device *bdev, block_t lstart,
960 block_t start, block_t len,
961 struct rb_node **insert_p,
962 struct rb_node *insert_parent)
964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965 struct rb_node **p;
966 struct rb_node *parent = NULL;
967 struct discard_cmd *dc = NULL;
969 if (insert_p && insert_parent) {
970 parent = insert_parent;
971 p = insert_p;
972 goto do_insert;
975 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976 do_insert:
977 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978 if (!dc)
979 return NULL;
981 return dc;
984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985 struct discard_cmd *dc)
987 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991 struct discard_cmd *dc, block_t blkaddr)
993 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 struct discard_info di = dc->di;
995 bool modified = false;
997 if (dc->state == D_DONE || dc->len == 1) {
998 __remove_discard_cmd(sbi, dc);
999 return;
1002 dcc->undiscard_blks -= di.len;
1004 if (blkaddr > di.lstart) {
1005 dc->len = blkaddr - dc->lstart;
1006 dcc->undiscard_blks += dc->len;
1007 __relocate_discard_cmd(dcc, dc);
1008 modified = true;
1011 if (blkaddr < di.lstart + di.len - 1) {
1012 if (modified) {
1013 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014 di.start + blkaddr + 1 - di.lstart,
1015 di.lstart + di.len - 1 - blkaddr,
1016 NULL, NULL);
1017 } else {
1018 dc->lstart++;
1019 dc->len--;
1020 dc->start++;
1021 dcc->undiscard_blks += dc->len;
1022 __relocate_discard_cmd(dcc, dc);
1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028 struct block_device *bdev, block_t lstart,
1029 block_t start, block_t len)
1031 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033 struct discard_cmd *dc;
1034 struct discard_info di = {0};
1035 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036 block_t end = lstart + len;
1038 mutex_lock(&dcc->cmd_lock);
1040 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041 NULL, lstart,
1042 (struct rb_entry **)&prev_dc,
1043 (struct rb_entry **)&next_dc,
1044 &insert_p, &insert_parent, true);
1045 if (dc)
1046 prev_dc = dc;
1048 if (!prev_dc) {
1049 di.lstart = lstart;
1050 di.len = next_dc ? next_dc->lstart - lstart : len;
1051 di.len = min(di.len, len);
1052 di.start = start;
1055 while (1) {
1056 struct rb_node *node;
1057 bool merged = false;
1058 struct discard_cmd *tdc = NULL;
1060 if (prev_dc) {
1061 di.lstart = prev_dc->lstart + prev_dc->len;
1062 if (di.lstart < lstart)
1063 di.lstart = lstart;
1064 if (di.lstart >= end)
1065 break;
1067 if (!next_dc || next_dc->lstart > end)
1068 di.len = end - di.lstart;
1069 else
1070 di.len = next_dc->lstart - di.lstart;
1071 di.start = start + di.lstart - lstart;
1074 if (!di.len)
1075 goto next;
1077 if (prev_dc && prev_dc->state == D_PREP &&
1078 prev_dc->bdev == bdev &&
1079 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1080 prev_dc->di.len += di.len;
1081 dcc->undiscard_blks += di.len;
1082 __relocate_discard_cmd(dcc, prev_dc);
1083 di = prev_dc->di;
1084 tdc = prev_dc;
1085 merged = true;
1088 if (next_dc && next_dc->state == D_PREP &&
1089 next_dc->bdev == bdev &&
1090 __is_discard_front_mergeable(&di, &next_dc->di)) {
1091 next_dc->di.lstart = di.lstart;
1092 next_dc->di.len += di.len;
1093 next_dc->di.start = di.start;
1094 dcc->undiscard_blks += di.len;
1095 __relocate_discard_cmd(dcc, next_dc);
1096 if (tdc)
1097 __remove_discard_cmd(sbi, tdc);
1098 merged = true;
1101 if (!merged) {
1102 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103 di.len, NULL, NULL);
1105 next:
1106 prev_dc = next_dc;
1107 if (!prev_dc)
1108 break;
1110 node = rb_next(&prev_dc->rb_node);
1111 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1114 mutex_unlock(&dcc->cmd_lock);
1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118 struct block_device *bdev, block_t blkstart, block_t blklen)
1120 block_t lblkstart = blkstart;
1122 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1124 if (sbi->s_ndevs) {
1125 int devi = f2fs_target_device_index(sbi, blkstart);
1127 blkstart -= FDEV(devi).start_blk;
1129 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130 return 0;
1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134 struct discard_policy *dpolicy,
1135 unsigned int start, unsigned int end)
1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140 struct discard_cmd *dc;
1141 struct blk_plug plug;
1142 int issued;
1144 next:
1145 issued = 0;
1147 mutex_lock(&dcc->cmd_lock);
1148 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1150 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151 NULL, start,
1152 (struct rb_entry **)&prev_dc,
1153 (struct rb_entry **)&next_dc,
1154 &insert_p, &insert_parent, true);
1155 if (!dc)
1156 dc = next_dc;
1158 blk_start_plug(&plug);
1160 while (dc && dc->lstart <= end) {
1161 struct rb_node *node;
1163 if (dc->len < dpolicy->granularity)
1164 goto skip;
1166 if (dc->state != D_PREP) {
1167 list_move_tail(&dc->list, &dcc->fstrim_list);
1168 goto skip;
1171 __submit_discard_cmd(sbi, dpolicy, dc);
1173 if (++issued >= dpolicy->max_requests) {
1174 start = dc->lstart + dc->len;
1176 blk_finish_plug(&plug);
1177 mutex_unlock(&dcc->cmd_lock);
1179 schedule();
1181 goto next;
1183 skip:
1184 node = rb_next(&dc->rb_node);
1185 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1187 if (fatal_signal_pending(current))
1188 break;
1191 blk_finish_plug(&plug);
1192 mutex_unlock(&dcc->cmd_lock);
1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196 struct discard_policy *dpolicy)
1198 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199 struct list_head *pend_list;
1200 struct discard_cmd *dc, *tmp;
1201 struct blk_plug plug;
1202 int i, iter = 0, issued = 0;
1203 bool io_interrupted = false;
1205 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206 if (i + 1 < dpolicy->granularity)
1207 break;
1208 pend_list = &dcc->pend_list[i];
1210 mutex_lock(&dcc->cmd_lock);
1211 if (list_empty(pend_list))
1212 goto next;
1213 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214 blk_start_plug(&plug);
1215 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216 f2fs_bug_on(sbi, dc->state != D_PREP);
1218 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219 !is_idle(sbi)) {
1220 io_interrupted = true;
1221 goto skip;
1224 __submit_discard_cmd(sbi, dpolicy, dc);
1225 issued++;
1226 skip:
1227 if (++iter >= dpolicy->max_requests)
1228 break;
1230 blk_finish_plug(&plug);
1231 next:
1232 mutex_unlock(&dcc->cmd_lock);
1234 if (iter >= dpolicy->max_requests)
1235 break;
1238 if (!issued && io_interrupted)
1239 issued = -1;
1241 return issued;
1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 struct list_head *pend_list;
1248 struct discard_cmd *dc, *tmp;
1249 int i;
1250 bool dropped = false;
1252 mutex_lock(&dcc->cmd_lock);
1253 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254 pend_list = &dcc->pend_list[i];
1255 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256 f2fs_bug_on(sbi, dc->state != D_PREP);
1257 __remove_discard_cmd(sbi, dc);
1258 dropped = true;
1261 mutex_unlock(&dcc->cmd_lock);
1263 return dropped;
1266 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1268 __drop_discard_cmd(sbi);
1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272 struct discard_cmd *dc)
1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 unsigned int len = 0;
1277 wait_for_completion_io(&dc->wait);
1278 mutex_lock(&dcc->cmd_lock);
1279 f2fs_bug_on(sbi, dc->state != D_DONE);
1280 dc->ref--;
1281 if (!dc->ref) {
1282 if (!dc->error)
1283 len = dc->len;
1284 __remove_discard_cmd(sbi, dc);
1286 mutex_unlock(&dcc->cmd_lock);
1288 return len;
1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292 struct discard_policy *dpolicy,
1293 block_t start, block_t end)
1295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297 &(dcc->fstrim_list) : &(dcc->wait_list);
1298 struct discard_cmd *dc, *tmp;
1299 bool need_wait;
1300 unsigned int trimmed = 0;
1302 next:
1303 need_wait = false;
1305 mutex_lock(&dcc->cmd_lock);
1306 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308 continue;
1309 if (dc->len < dpolicy->granularity)
1310 continue;
1311 if (dc->state == D_DONE && !dc->ref) {
1312 wait_for_completion_io(&dc->wait);
1313 if (!dc->error)
1314 trimmed += dc->len;
1315 __remove_discard_cmd(sbi, dc);
1316 } else {
1317 dc->ref++;
1318 need_wait = true;
1319 break;
1322 mutex_unlock(&dcc->cmd_lock);
1324 if (need_wait) {
1325 trimmed += __wait_one_discard_bio(sbi, dc);
1326 goto next;
1329 return trimmed;
1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333 struct discard_policy *dpolicy)
1335 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1338 /* This should be covered by global mutex, &sit_i->sentry_lock */
1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1341 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342 struct discard_cmd *dc;
1343 bool need_wait = false;
1345 mutex_lock(&dcc->cmd_lock);
1346 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347 if (dc) {
1348 if (dc->state == D_PREP) {
1349 __punch_discard_cmd(sbi, dc, blkaddr);
1350 } else {
1351 dc->ref++;
1352 need_wait = true;
1355 mutex_unlock(&dcc->cmd_lock);
1357 if (need_wait)
1358 __wait_one_discard_bio(sbi, dc);
1361 void stop_discard_thread(struct f2fs_sb_info *sbi)
1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1365 if (dcc && dcc->f2fs_issue_discard) {
1366 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1368 dcc->f2fs_issue_discard = NULL;
1369 kthread_stop(discard_thread);
1373 /* This comes from f2fs_put_super */
1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 struct discard_policy dpolicy;
1378 bool dropped;
1380 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381 __issue_discard_cmd(sbi, &dpolicy);
1382 dropped = __drop_discard_cmd(sbi);
1383 __wait_all_discard_cmd(sbi, &dpolicy);
1385 return dropped;
1388 static int issue_discard_thread(void *data)
1390 struct f2fs_sb_info *sbi = data;
1391 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 wait_queue_head_t *q = &dcc->discard_wait_queue;
1393 struct discard_policy dpolicy;
1394 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395 int issued;
1397 set_freezable();
1399 do {
1400 init_discard_policy(&dpolicy, DPOLICY_BG,
1401 dcc->discard_granularity);
1403 wait_event_interruptible_timeout(*q,
1404 kthread_should_stop() || freezing(current) ||
1405 dcc->discard_wake,
1406 msecs_to_jiffies(wait_ms));
1407 if (try_to_freeze())
1408 continue;
1409 if (f2fs_readonly(sbi->sb))
1410 continue;
1411 if (kthread_should_stop())
1412 return 0;
1414 if (dcc->discard_wake) {
1415 dcc->discard_wake = 0;
1416 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1417 init_discard_policy(&dpolicy,
1418 DPOLICY_FORCE, 1);
1421 sb_start_intwrite(sbi->sb);
1423 issued = __issue_discard_cmd(sbi, &dpolicy);
1424 if (issued) {
1425 __wait_all_discard_cmd(sbi, &dpolicy);
1426 wait_ms = dpolicy.min_interval;
1427 } else {
1428 wait_ms = dpolicy.max_interval;
1431 sb_end_intwrite(sbi->sb);
1433 } while (!kthread_should_stop());
1434 return 0;
1437 #ifdef CONFIG_BLK_DEV_ZONED
1438 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1439 struct block_device *bdev, block_t blkstart, block_t blklen)
1441 sector_t sector, nr_sects;
1442 block_t lblkstart = blkstart;
1443 int devi = 0;
1445 if (sbi->s_ndevs) {
1446 devi = f2fs_target_device_index(sbi, blkstart);
1447 blkstart -= FDEV(devi).start_blk;
1451 * We need to know the type of the zone: for conventional zones,
1452 * use regular discard if the drive supports it. For sequential
1453 * zones, reset the zone write pointer.
1455 switch (get_blkz_type(sbi, bdev, blkstart)) {
1457 case BLK_ZONE_TYPE_CONVENTIONAL:
1458 if (!blk_queue_discard(bdev_get_queue(bdev)))
1459 return 0;
1460 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1461 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1462 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1463 sector = SECTOR_FROM_BLOCK(blkstart);
1464 nr_sects = SECTOR_FROM_BLOCK(blklen);
1466 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1467 nr_sects != bdev_zone_sectors(bdev)) {
1468 f2fs_msg(sbi->sb, KERN_INFO,
1469 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1470 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1471 blkstart, blklen);
1472 return -EIO;
1474 trace_f2fs_issue_reset_zone(bdev, blkstart);
1475 return blkdev_reset_zones(bdev, sector,
1476 nr_sects, GFP_NOFS);
1477 default:
1478 /* Unknown zone type: broken device ? */
1479 return -EIO;
1482 #endif
1484 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1485 struct block_device *bdev, block_t blkstart, block_t blklen)
1487 #ifdef CONFIG_BLK_DEV_ZONED
1488 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1489 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1490 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1491 #endif
1492 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1495 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1496 block_t blkstart, block_t blklen)
1498 sector_t start = blkstart, len = 0;
1499 struct block_device *bdev;
1500 struct seg_entry *se;
1501 unsigned int offset;
1502 block_t i;
1503 int err = 0;
1505 bdev = f2fs_target_device(sbi, blkstart, NULL);
1507 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1508 if (i != start) {
1509 struct block_device *bdev2 =
1510 f2fs_target_device(sbi, i, NULL);
1512 if (bdev2 != bdev) {
1513 err = __issue_discard_async(sbi, bdev,
1514 start, len);
1515 if (err)
1516 return err;
1517 bdev = bdev2;
1518 start = i;
1519 len = 0;
1523 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1524 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1526 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1527 sbi->discard_blks--;
1530 if (len)
1531 err = __issue_discard_async(sbi, bdev, start, len);
1532 return err;
1535 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1536 bool check_only)
1538 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1539 int max_blocks = sbi->blocks_per_seg;
1540 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1541 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1542 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1543 unsigned long *discard_map = (unsigned long *)se->discard_map;
1544 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1545 unsigned int start = 0, end = -1;
1546 bool force = (cpc->reason & CP_DISCARD);
1547 struct discard_entry *de = NULL;
1548 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1549 int i;
1551 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1552 return false;
1554 if (!force) {
1555 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1556 SM_I(sbi)->dcc_info->nr_discards >=
1557 SM_I(sbi)->dcc_info->max_discards)
1558 return false;
1561 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1562 for (i = 0; i < entries; i++)
1563 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1564 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1566 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1567 SM_I(sbi)->dcc_info->max_discards) {
1568 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1569 if (start >= max_blocks)
1570 break;
1572 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1573 if (force && start && end != max_blocks
1574 && (end - start) < cpc->trim_minlen)
1575 continue;
1577 if (check_only)
1578 return true;
1580 if (!de) {
1581 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1582 GFP_F2FS_ZERO);
1583 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1584 list_add_tail(&de->list, head);
1587 for (i = start; i < end; i++)
1588 __set_bit_le(i, (void *)de->discard_map);
1590 SM_I(sbi)->dcc_info->nr_discards += end - start;
1592 return false;
1595 void release_discard_addrs(struct f2fs_sb_info *sbi)
1597 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1598 struct discard_entry *entry, *this;
1600 /* drop caches */
1601 list_for_each_entry_safe(entry, this, head, list) {
1602 list_del(&entry->list);
1603 kmem_cache_free(discard_entry_slab, entry);
1608 * Should call clear_prefree_segments after checkpoint is done.
1610 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1612 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613 unsigned int segno;
1615 mutex_lock(&dirty_i->seglist_lock);
1616 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1617 __set_test_and_free(sbi, segno);
1618 mutex_unlock(&dirty_i->seglist_lock);
1621 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624 struct list_head *head = &dcc->entry_list;
1625 struct discard_entry *entry, *this;
1626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1627 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1628 unsigned int start = 0, end = -1;
1629 unsigned int secno, start_segno;
1630 bool force = (cpc->reason & CP_DISCARD);
1632 mutex_lock(&dirty_i->seglist_lock);
1634 while (1) {
1635 int i;
1636 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1637 if (start >= MAIN_SEGS(sbi))
1638 break;
1639 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1640 start + 1);
1642 for (i = start; i < end; i++)
1643 clear_bit(i, prefree_map);
1645 dirty_i->nr_dirty[PRE] -= end - start;
1647 if (!test_opt(sbi, DISCARD))
1648 continue;
1650 if (force && start >= cpc->trim_start &&
1651 (end - 1) <= cpc->trim_end)
1652 continue;
1654 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1655 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1656 (end - start) << sbi->log_blocks_per_seg);
1657 continue;
1659 next:
1660 secno = GET_SEC_FROM_SEG(sbi, start);
1661 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1662 if (!IS_CURSEC(sbi, secno) &&
1663 !get_valid_blocks(sbi, start, true))
1664 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1665 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1667 start = start_segno + sbi->segs_per_sec;
1668 if (start < end)
1669 goto next;
1670 else
1671 end = start - 1;
1673 mutex_unlock(&dirty_i->seglist_lock);
1675 /* send small discards */
1676 list_for_each_entry_safe(entry, this, head, list) {
1677 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1678 bool is_valid = test_bit_le(0, entry->discard_map);
1680 find_next:
1681 if (is_valid) {
1682 next_pos = find_next_zero_bit_le(entry->discard_map,
1683 sbi->blocks_per_seg, cur_pos);
1684 len = next_pos - cur_pos;
1686 if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1687 (force && len < cpc->trim_minlen))
1688 goto skip;
1690 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1691 len);
1692 total_len += len;
1693 } else {
1694 next_pos = find_next_bit_le(entry->discard_map,
1695 sbi->blocks_per_seg, cur_pos);
1697 skip:
1698 cur_pos = next_pos;
1699 is_valid = !is_valid;
1701 if (cur_pos < sbi->blocks_per_seg)
1702 goto find_next;
1704 list_del(&entry->list);
1705 dcc->nr_discards -= total_len;
1706 kmem_cache_free(discard_entry_slab, entry);
1709 wake_up_discard_thread(sbi, false);
1712 void init_discard_policy(struct discard_policy *dpolicy,
1713 int discard_type, unsigned int granularity)
1715 /* common policy */
1716 dpolicy->type = discard_type;
1717 dpolicy->sync = true;
1718 dpolicy->granularity = granularity;
1720 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1721 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1723 if (discard_type == DPOLICY_BG) {
1724 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1725 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1726 dpolicy->io_aware = true;
1727 } else if (discard_type == DPOLICY_FORCE) {
1728 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1729 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1730 dpolicy->io_aware = true;
1731 } else if (discard_type == DPOLICY_FSTRIM) {
1732 dpolicy->io_aware = false;
1733 } else if (discard_type == DPOLICY_UMOUNT) {
1734 dpolicy->io_aware = false;
1738 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1740 dev_t dev = sbi->sb->s_bdev->bd_dev;
1741 struct discard_cmd_control *dcc;
1742 int err = 0, i;
1744 if (SM_I(sbi)->dcc_info) {
1745 dcc = SM_I(sbi)->dcc_info;
1746 goto init_thread;
1749 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1750 if (!dcc)
1751 return -ENOMEM;
1753 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1754 INIT_LIST_HEAD(&dcc->entry_list);
1755 for (i = 0; i < MAX_PLIST_NUM; i++)
1756 INIT_LIST_HEAD(&dcc->pend_list[i]);
1757 INIT_LIST_HEAD(&dcc->wait_list);
1758 INIT_LIST_HEAD(&dcc->fstrim_list);
1759 mutex_init(&dcc->cmd_lock);
1760 atomic_set(&dcc->issued_discard, 0);
1761 atomic_set(&dcc->issing_discard, 0);
1762 atomic_set(&dcc->discard_cmd_cnt, 0);
1763 dcc->nr_discards = 0;
1764 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1765 dcc->undiscard_blks = 0;
1766 dcc->root = RB_ROOT;
1768 init_waitqueue_head(&dcc->discard_wait_queue);
1769 SM_I(sbi)->dcc_info = dcc;
1770 init_thread:
1771 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1772 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1773 if (IS_ERR(dcc->f2fs_issue_discard)) {
1774 err = PTR_ERR(dcc->f2fs_issue_discard);
1775 kfree(dcc);
1776 SM_I(sbi)->dcc_info = NULL;
1777 return err;
1780 return err;
1783 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1785 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1787 if (!dcc)
1788 return;
1790 stop_discard_thread(sbi);
1792 kfree(dcc);
1793 SM_I(sbi)->dcc_info = NULL;
1796 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1798 struct sit_info *sit_i = SIT_I(sbi);
1800 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1801 sit_i->dirty_sentries++;
1802 return false;
1805 return true;
1808 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1809 unsigned int segno, int modified)
1811 struct seg_entry *se = get_seg_entry(sbi, segno);
1812 se->type = type;
1813 if (modified)
1814 __mark_sit_entry_dirty(sbi, segno);
1817 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1819 struct seg_entry *se;
1820 unsigned int segno, offset;
1821 long int new_vblocks;
1822 bool exist;
1823 #ifdef CONFIG_F2FS_CHECK_FS
1824 bool mir_exist;
1825 #endif
1827 segno = GET_SEGNO(sbi, blkaddr);
1829 se = get_seg_entry(sbi, segno);
1830 new_vblocks = se->valid_blocks + del;
1831 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1833 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1834 (new_vblocks > sbi->blocks_per_seg)));
1836 se->valid_blocks = new_vblocks;
1837 se->mtime = get_mtime(sbi);
1838 SIT_I(sbi)->max_mtime = se->mtime;
1840 /* Update valid block bitmap */
1841 if (del > 0) {
1842 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1843 #ifdef CONFIG_F2FS_CHECK_FS
1844 mir_exist = f2fs_test_and_set_bit(offset,
1845 se->cur_valid_map_mir);
1846 if (unlikely(exist != mir_exist)) {
1847 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1848 "when setting bitmap, blk:%u, old bit:%d",
1849 blkaddr, exist);
1850 f2fs_bug_on(sbi, 1);
1852 #endif
1853 if (unlikely(exist)) {
1854 f2fs_msg(sbi->sb, KERN_ERR,
1855 "Bitmap was wrongly set, blk:%u", blkaddr);
1856 f2fs_bug_on(sbi, 1);
1857 se->valid_blocks--;
1858 del = 0;
1861 if (f2fs_discard_en(sbi) &&
1862 !f2fs_test_and_set_bit(offset, se->discard_map))
1863 sbi->discard_blks--;
1865 /* don't overwrite by SSR to keep node chain */
1866 if (se->type == CURSEG_WARM_NODE) {
1867 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1868 se->ckpt_valid_blocks++;
1870 } else {
1871 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1872 #ifdef CONFIG_F2FS_CHECK_FS
1873 mir_exist = f2fs_test_and_clear_bit(offset,
1874 se->cur_valid_map_mir);
1875 if (unlikely(exist != mir_exist)) {
1876 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1877 "when clearing bitmap, blk:%u, old bit:%d",
1878 blkaddr, exist);
1879 f2fs_bug_on(sbi, 1);
1881 #endif
1882 if (unlikely(!exist)) {
1883 f2fs_msg(sbi->sb, KERN_ERR,
1884 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1885 f2fs_bug_on(sbi, 1);
1886 se->valid_blocks++;
1887 del = 0;
1890 if (f2fs_discard_en(sbi) &&
1891 f2fs_test_and_clear_bit(offset, se->discard_map))
1892 sbi->discard_blks++;
1894 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1895 se->ckpt_valid_blocks += del;
1897 __mark_sit_entry_dirty(sbi, segno);
1899 /* update total number of valid blocks to be written in ckpt area */
1900 SIT_I(sbi)->written_valid_blocks += del;
1902 if (sbi->segs_per_sec > 1)
1903 get_sec_entry(sbi, segno)->valid_blocks += del;
1906 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1908 unsigned int segno = GET_SEGNO(sbi, addr);
1909 struct sit_info *sit_i = SIT_I(sbi);
1911 f2fs_bug_on(sbi, addr == NULL_ADDR);
1912 if (addr == NEW_ADDR)
1913 return;
1915 /* add it into sit main buffer */
1916 down_write(&sit_i->sentry_lock);
1918 update_sit_entry(sbi, addr, -1);
1920 /* add it into dirty seglist */
1921 locate_dirty_segment(sbi, segno);
1923 up_write(&sit_i->sentry_lock);
1926 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1928 struct sit_info *sit_i = SIT_I(sbi);
1929 unsigned int segno, offset;
1930 struct seg_entry *se;
1931 bool is_cp = false;
1933 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1934 return true;
1936 down_read(&sit_i->sentry_lock);
1938 segno = GET_SEGNO(sbi, blkaddr);
1939 se = get_seg_entry(sbi, segno);
1940 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1942 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1943 is_cp = true;
1945 up_read(&sit_i->sentry_lock);
1947 return is_cp;
1951 * This function should be resided under the curseg_mutex lock
1953 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1954 struct f2fs_summary *sum)
1956 struct curseg_info *curseg = CURSEG_I(sbi, type);
1957 void *addr = curseg->sum_blk;
1958 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1959 memcpy(addr, sum, sizeof(struct f2fs_summary));
1963 * Calculate the number of current summary pages for writing
1965 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1967 int valid_sum_count = 0;
1968 int i, sum_in_page;
1970 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1971 if (sbi->ckpt->alloc_type[i] == SSR)
1972 valid_sum_count += sbi->blocks_per_seg;
1973 else {
1974 if (for_ra)
1975 valid_sum_count += le16_to_cpu(
1976 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1977 else
1978 valid_sum_count += curseg_blkoff(sbi, i);
1982 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1983 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1984 if (valid_sum_count <= sum_in_page)
1985 return 1;
1986 else if ((valid_sum_count - sum_in_page) <=
1987 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1988 return 2;
1989 return 3;
1993 * Caller should put this summary page
1995 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1997 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
2000 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2002 struct page *page = grab_meta_page(sbi, blk_addr);
2004 memcpy(page_address(page), src, PAGE_SIZE);
2005 set_page_dirty(page);
2006 f2fs_put_page(page, 1);
2009 static void write_sum_page(struct f2fs_sb_info *sbi,
2010 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2012 update_meta_page(sbi, (void *)sum_blk, blk_addr);
2015 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2016 int type, block_t blk_addr)
2018 struct curseg_info *curseg = CURSEG_I(sbi, type);
2019 struct page *page = grab_meta_page(sbi, blk_addr);
2020 struct f2fs_summary_block *src = curseg->sum_blk;
2021 struct f2fs_summary_block *dst;
2023 dst = (struct f2fs_summary_block *)page_address(page);
2025 mutex_lock(&curseg->curseg_mutex);
2027 down_read(&curseg->journal_rwsem);
2028 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2029 up_read(&curseg->journal_rwsem);
2031 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2032 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2034 mutex_unlock(&curseg->curseg_mutex);
2036 set_page_dirty(page);
2037 f2fs_put_page(page, 1);
2040 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2042 struct curseg_info *curseg = CURSEG_I(sbi, type);
2043 unsigned int segno = curseg->segno + 1;
2044 struct free_segmap_info *free_i = FREE_I(sbi);
2046 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2047 return !test_bit(segno, free_i->free_segmap);
2048 return 0;
2052 * Find a new segment from the free segments bitmap to right order
2053 * This function should be returned with success, otherwise BUG
2055 static void get_new_segment(struct f2fs_sb_info *sbi,
2056 unsigned int *newseg, bool new_sec, int dir)
2058 struct free_segmap_info *free_i = FREE_I(sbi);
2059 unsigned int segno, secno, zoneno;
2060 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2061 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2062 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2063 unsigned int left_start = hint;
2064 bool init = true;
2065 int go_left = 0;
2066 int i;
2068 spin_lock(&free_i->segmap_lock);
2070 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2071 segno = find_next_zero_bit(free_i->free_segmap,
2072 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2073 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2074 goto got_it;
2076 find_other_zone:
2077 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2078 if (secno >= MAIN_SECS(sbi)) {
2079 if (dir == ALLOC_RIGHT) {
2080 secno = find_next_zero_bit(free_i->free_secmap,
2081 MAIN_SECS(sbi), 0);
2082 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2083 } else {
2084 go_left = 1;
2085 left_start = hint - 1;
2088 if (go_left == 0)
2089 goto skip_left;
2091 while (test_bit(left_start, free_i->free_secmap)) {
2092 if (left_start > 0) {
2093 left_start--;
2094 continue;
2096 left_start = find_next_zero_bit(free_i->free_secmap,
2097 MAIN_SECS(sbi), 0);
2098 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2099 break;
2101 secno = left_start;
2102 skip_left:
2103 segno = GET_SEG_FROM_SEC(sbi, secno);
2104 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2106 /* give up on finding another zone */
2107 if (!init)
2108 goto got_it;
2109 if (sbi->secs_per_zone == 1)
2110 goto got_it;
2111 if (zoneno == old_zoneno)
2112 goto got_it;
2113 if (dir == ALLOC_LEFT) {
2114 if (!go_left && zoneno + 1 >= total_zones)
2115 goto got_it;
2116 if (go_left && zoneno == 0)
2117 goto got_it;
2119 for (i = 0; i < NR_CURSEG_TYPE; i++)
2120 if (CURSEG_I(sbi, i)->zone == zoneno)
2121 break;
2123 if (i < NR_CURSEG_TYPE) {
2124 /* zone is in user, try another */
2125 if (go_left)
2126 hint = zoneno * sbi->secs_per_zone - 1;
2127 else if (zoneno + 1 >= total_zones)
2128 hint = 0;
2129 else
2130 hint = (zoneno + 1) * sbi->secs_per_zone;
2131 init = false;
2132 goto find_other_zone;
2134 got_it:
2135 /* set it as dirty segment in free segmap */
2136 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2137 __set_inuse(sbi, segno);
2138 *newseg = segno;
2139 spin_unlock(&free_i->segmap_lock);
2142 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2144 struct curseg_info *curseg = CURSEG_I(sbi, type);
2145 struct summary_footer *sum_footer;
2147 curseg->segno = curseg->next_segno;
2148 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2149 curseg->next_blkoff = 0;
2150 curseg->next_segno = NULL_SEGNO;
2152 sum_footer = &(curseg->sum_blk->footer);
2153 memset(sum_footer, 0, sizeof(struct summary_footer));
2154 if (IS_DATASEG(type))
2155 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2156 if (IS_NODESEG(type))
2157 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2158 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2161 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2163 /* if segs_per_sec is large than 1, we need to keep original policy. */
2164 if (sbi->segs_per_sec != 1)
2165 return CURSEG_I(sbi, type)->segno;
2167 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2168 return 0;
2170 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2171 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2172 return CURSEG_I(sbi, type)->segno;
2176 * Allocate a current working segment.
2177 * This function always allocates a free segment in LFS manner.
2179 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2181 struct curseg_info *curseg = CURSEG_I(sbi, type);
2182 unsigned int segno = curseg->segno;
2183 int dir = ALLOC_LEFT;
2185 write_sum_page(sbi, curseg->sum_blk,
2186 GET_SUM_BLOCK(sbi, segno));
2187 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2188 dir = ALLOC_RIGHT;
2190 if (test_opt(sbi, NOHEAP))
2191 dir = ALLOC_RIGHT;
2193 segno = __get_next_segno(sbi, type);
2194 get_new_segment(sbi, &segno, new_sec, dir);
2195 curseg->next_segno = segno;
2196 reset_curseg(sbi, type, 1);
2197 curseg->alloc_type = LFS;
2200 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2201 struct curseg_info *seg, block_t start)
2203 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2204 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2205 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2206 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2207 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2208 int i, pos;
2210 for (i = 0; i < entries; i++)
2211 target_map[i] = ckpt_map[i] | cur_map[i];
2213 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2215 seg->next_blkoff = pos;
2219 * If a segment is written by LFS manner, next block offset is just obtained
2220 * by increasing the current block offset. However, if a segment is written by
2221 * SSR manner, next block offset obtained by calling __next_free_blkoff
2223 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2224 struct curseg_info *seg)
2226 if (seg->alloc_type == SSR)
2227 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2228 else
2229 seg->next_blkoff++;
2233 * This function always allocates a used segment(from dirty seglist) by SSR
2234 * manner, so it should recover the existing segment information of valid blocks
2236 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2238 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2239 struct curseg_info *curseg = CURSEG_I(sbi, type);
2240 unsigned int new_segno = curseg->next_segno;
2241 struct f2fs_summary_block *sum_node;
2242 struct page *sum_page;
2244 write_sum_page(sbi, curseg->sum_blk,
2245 GET_SUM_BLOCK(sbi, curseg->segno));
2246 __set_test_and_inuse(sbi, new_segno);
2248 mutex_lock(&dirty_i->seglist_lock);
2249 __remove_dirty_segment(sbi, new_segno, PRE);
2250 __remove_dirty_segment(sbi, new_segno, DIRTY);
2251 mutex_unlock(&dirty_i->seglist_lock);
2253 reset_curseg(sbi, type, 1);
2254 curseg->alloc_type = SSR;
2255 __next_free_blkoff(sbi, curseg, 0);
2257 sum_page = get_sum_page(sbi, new_segno);
2258 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2259 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2260 f2fs_put_page(sum_page, 1);
2263 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2265 struct curseg_info *curseg = CURSEG_I(sbi, type);
2266 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2267 unsigned segno = NULL_SEGNO;
2268 int i, cnt;
2269 bool reversed = false;
2271 /* need_SSR() already forces to do this */
2272 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2273 curseg->next_segno = segno;
2274 return 1;
2277 /* For node segments, let's do SSR more intensively */
2278 if (IS_NODESEG(type)) {
2279 if (type >= CURSEG_WARM_NODE) {
2280 reversed = true;
2281 i = CURSEG_COLD_NODE;
2282 } else {
2283 i = CURSEG_HOT_NODE;
2285 cnt = NR_CURSEG_NODE_TYPE;
2286 } else {
2287 if (type >= CURSEG_WARM_DATA) {
2288 reversed = true;
2289 i = CURSEG_COLD_DATA;
2290 } else {
2291 i = CURSEG_HOT_DATA;
2293 cnt = NR_CURSEG_DATA_TYPE;
2296 for (; cnt-- > 0; reversed ? i-- : i++) {
2297 if (i == type)
2298 continue;
2299 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2300 curseg->next_segno = segno;
2301 return 1;
2304 return 0;
2308 * flush out current segment and replace it with new segment
2309 * This function should be returned with success, otherwise BUG
2311 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2312 int type, bool force)
2314 struct curseg_info *curseg = CURSEG_I(sbi, type);
2316 if (force)
2317 new_curseg(sbi, type, true);
2318 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2319 type == CURSEG_WARM_NODE)
2320 new_curseg(sbi, type, false);
2321 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2322 new_curseg(sbi, type, false);
2323 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2324 change_curseg(sbi, type);
2325 else
2326 new_curseg(sbi, type, false);
2328 stat_inc_seg_type(sbi, curseg);
2331 void allocate_new_segments(struct f2fs_sb_info *sbi)
2333 struct curseg_info *curseg;
2334 unsigned int old_segno;
2335 int i;
2337 down_write(&SIT_I(sbi)->sentry_lock);
2339 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2340 curseg = CURSEG_I(sbi, i);
2341 old_segno = curseg->segno;
2342 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2343 locate_dirty_segment(sbi, old_segno);
2346 up_write(&SIT_I(sbi)->sentry_lock);
2349 static const struct segment_allocation default_salloc_ops = {
2350 .allocate_segment = allocate_segment_by_default,
2353 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2355 __u64 trim_start = cpc->trim_start;
2356 bool has_candidate = false;
2358 down_write(&SIT_I(sbi)->sentry_lock);
2359 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2360 if (add_discard_addrs(sbi, cpc, true)) {
2361 has_candidate = true;
2362 break;
2365 up_write(&SIT_I(sbi)->sentry_lock);
2367 cpc->trim_start = trim_start;
2368 return has_candidate;
2371 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2373 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2374 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2375 unsigned int start_segno, end_segno, cur_segno;
2376 block_t start_block, end_block;
2377 struct cp_control cpc;
2378 struct discard_policy dpolicy;
2379 unsigned long long trimmed = 0;
2380 int err = 0;
2382 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2383 return -EINVAL;
2385 if (end <= MAIN_BLKADDR(sbi))
2386 goto out;
2388 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2389 f2fs_msg(sbi->sb, KERN_WARNING,
2390 "Found FS corruption, run fsck to fix.");
2391 goto out;
2394 /* start/end segment number in main_area */
2395 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2396 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2397 GET_SEGNO(sbi, end);
2399 cpc.reason = CP_DISCARD;
2400 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2402 /* do checkpoint to issue discard commands safely */
2403 for (cur_segno = start_segno; cur_segno <= end_segno;
2404 cur_segno = cpc.trim_end + 1) {
2405 cpc.trim_start = cur_segno;
2407 if (sbi->discard_blks == 0)
2408 break;
2409 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2410 cpc.trim_end = end_segno;
2411 else
2412 cpc.trim_end = min_t(unsigned int,
2413 rounddown(cur_segno +
2414 BATCHED_TRIM_SEGMENTS(sbi),
2415 sbi->segs_per_sec) - 1, end_segno);
2417 mutex_lock(&sbi->gc_mutex);
2418 err = write_checkpoint(sbi, &cpc);
2419 mutex_unlock(&sbi->gc_mutex);
2420 if (err)
2421 break;
2423 schedule();
2426 start_block = START_BLOCK(sbi, start_segno);
2427 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2429 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2430 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2431 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2432 start_block, end_block);
2433 out:
2434 range->len = F2FS_BLK_TO_BYTES(trimmed);
2435 return err;
2438 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2440 struct curseg_info *curseg = CURSEG_I(sbi, type);
2441 if (curseg->next_blkoff < sbi->blocks_per_seg)
2442 return true;
2443 return false;
2446 int rw_hint_to_seg_type(enum rw_hint hint)
2448 switch (hint) {
2449 case WRITE_LIFE_SHORT:
2450 return CURSEG_HOT_DATA;
2451 case WRITE_LIFE_EXTREME:
2452 return CURSEG_COLD_DATA;
2453 default:
2454 return CURSEG_WARM_DATA;
2458 static int __get_segment_type_2(struct f2fs_io_info *fio)
2460 if (fio->type == DATA)
2461 return CURSEG_HOT_DATA;
2462 else
2463 return CURSEG_HOT_NODE;
2466 static int __get_segment_type_4(struct f2fs_io_info *fio)
2468 if (fio->type == DATA) {
2469 struct inode *inode = fio->page->mapping->host;
2471 if (S_ISDIR(inode->i_mode))
2472 return CURSEG_HOT_DATA;
2473 else
2474 return CURSEG_COLD_DATA;
2475 } else {
2476 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2477 return CURSEG_WARM_NODE;
2478 else
2479 return CURSEG_COLD_NODE;
2483 static int __get_segment_type_6(struct f2fs_io_info *fio)
2485 if (fio->type == DATA) {
2486 struct inode *inode = fio->page->mapping->host;
2488 if (is_cold_data(fio->page) || file_is_cold(inode))
2489 return CURSEG_COLD_DATA;
2490 if (is_inode_flag_set(inode, FI_HOT_DATA))
2491 return CURSEG_HOT_DATA;
2492 return rw_hint_to_seg_type(inode->i_write_hint);
2493 } else {
2494 if (IS_DNODE(fio->page))
2495 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2496 CURSEG_HOT_NODE;
2497 return CURSEG_COLD_NODE;
2501 static int __get_segment_type(struct f2fs_io_info *fio)
2503 int type = 0;
2505 switch (fio->sbi->active_logs) {
2506 case 2:
2507 type = __get_segment_type_2(fio);
2508 break;
2509 case 4:
2510 type = __get_segment_type_4(fio);
2511 break;
2512 case 6:
2513 type = __get_segment_type_6(fio);
2514 break;
2515 default:
2516 f2fs_bug_on(fio->sbi, true);
2519 if (IS_HOT(type))
2520 fio->temp = HOT;
2521 else if (IS_WARM(type))
2522 fio->temp = WARM;
2523 else
2524 fio->temp = COLD;
2525 return type;
2528 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2529 block_t old_blkaddr, block_t *new_blkaddr,
2530 struct f2fs_summary *sum, int type,
2531 struct f2fs_io_info *fio, bool add_list)
2533 struct sit_info *sit_i = SIT_I(sbi);
2534 struct curseg_info *curseg = CURSEG_I(sbi, type);
2536 down_read(&SM_I(sbi)->curseg_lock);
2538 mutex_lock(&curseg->curseg_mutex);
2539 down_write(&sit_i->sentry_lock);
2541 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2543 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2546 * __add_sum_entry should be resided under the curseg_mutex
2547 * because, this function updates a summary entry in the
2548 * current summary block.
2550 __add_sum_entry(sbi, type, sum);
2552 __refresh_next_blkoff(sbi, curseg);
2554 stat_inc_block_count(sbi, curseg);
2557 * SIT information should be updated before segment allocation,
2558 * since SSR needs latest valid block information.
2560 update_sit_entry(sbi, *new_blkaddr, 1);
2561 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2562 update_sit_entry(sbi, old_blkaddr, -1);
2564 if (!__has_curseg_space(sbi, type))
2565 sit_i->s_ops->allocate_segment(sbi, type, false);
2568 * segment dirty status should be updated after segment allocation,
2569 * so we just need to update status only one time after previous
2570 * segment being closed.
2572 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2573 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2575 up_write(&sit_i->sentry_lock);
2577 if (page && IS_NODESEG(type)) {
2578 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2580 f2fs_inode_chksum_set(sbi, page);
2583 if (add_list) {
2584 struct f2fs_bio_info *io;
2586 INIT_LIST_HEAD(&fio->list);
2587 fio->in_list = true;
2588 io = sbi->write_io[fio->type] + fio->temp;
2589 spin_lock(&io->io_lock);
2590 list_add_tail(&fio->list, &io->io_list);
2591 spin_unlock(&io->io_lock);
2594 mutex_unlock(&curseg->curseg_mutex);
2596 up_read(&SM_I(sbi)->curseg_lock);
2599 static void update_device_state(struct f2fs_io_info *fio)
2601 struct f2fs_sb_info *sbi = fio->sbi;
2602 unsigned int devidx;
2604 if (!sbi->s_ndevs)
2605 return;
2607 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2609 /* update device state for fsync */
2610 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2612 /* update device state for checkpoint */
2613 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2614 spin_lock(&sbi->dev_lock);
2615 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2616 spin_unlock(&sbi->dev_lock);
2620 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2622 int type = __get_segment_type(fio);
2623 int err;
2625 reallocate:
2626 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2627 &fio->new_blkaddr, sum, type, fio, true);
2629 /* writeout dirty page into bdev */
2630 err = f2fs_submit_page_write(fio);
2631 if (err == -EAGAIN) {
2632 fio->old_blkaddr = fio->new_blkaddr;
2633 goto reallocate;
2634 } else if (!err) {
2635 update_device_state(fio);
2639 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2640 enum iostat_type io_type)
2642 struct f2fs_io_info fio = {
2643 .sbi = sbi,
2644 .type = META,
2645 .op = REQ_OP_WRITE,
2646 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2647 .old_blkaddr = page->index,
2648 .new_blkaddr = page->index,
2649 .page = page,
2650 .encrypted_page = NULL,
2651 .in_list = false,
2654 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2655 fio.op_flags &= ~REQ_META;
2657 set_page_writeback(page);
2658 f2fs_submit_page_write(&fio);
2660 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2663 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2665 struct f2fs_summary sum;
2667 set_summary(&sum, nid, 0, 0);
2668 do_write_page(&sum, fio);
2670 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2673 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2675 struct f2fs_sb_info *sbi = fio->sbi;
2676 struct f2fs_summary sum;
2677 struct node_info ni;
2679 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2680 get_node_info(sbi, dn->nid, &ni);
2681 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2682 do_write_page(&sum, fio);
2683 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2685 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2688 int rewrite_data_page(struct f2fs_io_info *fio)
2690 int err;
2692 fio->new_blkaddr = fio->old_blkaddr;
2693 stat_inc_inplace_blocks(fio->sbi);
2695 err = f2fs_submit_page_bio(fio);
2696 if (!err)
2697 update_device_state(fio);
2699 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2701 return err;
2704 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2705 unsigned int segno)
2707 int i;
2709 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2710 if (CURSEG_I(sbi, i)->segno == segno)
2711 break;
2713 return i;
2716 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2717 block_t old_blkaddr, block_t new_blkaddr,
2718 bool recover_curseg, bool recover_newaddr)
2720 struct sit_info *sit_i = SIT_I(sbi);
2721 struct curseg_info *curseg;
2722 unsigned int segno, old_cursegno;
2723 struct seg_entry *se;
2724 int type;
2725 unsigned short old_blkoff;
2727 segno = GET_SEGNO(sbi, new_blkaddr);
2728 se = get_seg_entry(sbi, segno);
2729 type = se->type;
2731 down_write(&SM_I(sbi)->curseg_lock);
2733 if (!recover_curseg) {
2734 /* for recovery flow */
2735 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2736 if (old_blkaddr == NULL_ADDR)
2737 type = CURSEG_COLD_DATA;
2738 else
2739 type = CURSEG_WARM_DATA;
2741 } else {
2742 if (IS_CURSEG(sbi, segno)) {
2743 /* se->type is volatile as SSR allocation */
2744 type = __f2fs_get_curseg(sbi, segno);
2745 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2746 } else {
2747 type = CURSEG_WARM_DATA;
2751 f2fs_bug_on(sbi, !IS_DATASEG(type));
2752 curseg = CURSEG_I(sbi, type);
2754 mutex_lock(&curseg->curseg_mutex);
2755 down_write(&sit_i->sentry_lock);
2757 old_cursegno = curseg->segno;
2758 old_blkoff = curseg->next_blkoff;
2760 /* change the current segment */
2761 if (segno != curseg->segno) {
2762 curseg->next_segno = segno;
2763 change_curseg(sbi, type);
2766 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2767 __add_sum_entry(sbi, type, sum);
2769 if (!recover_curseg || recover_newaddr)
2770 update_sit_entry(sbi, new_blkaddr, 1);
2771 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2772 update_sit_entry(sbi, old_blkaddr, -1);
2774 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2775 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2777 locate_dirty_segment(sbi, old_cursegno);
2779 if (recover_curseg) {
2780 if (old_cursegno != curseg->segno) {
2781 curseg->next_segno = old_cursegno;
2782 change_curseg(sbi, type);
2784 curseg->next_blkoff = old_blkoff;
2787 up_write(&sit_i->sentry_lock);
2788 mutex_unlock(&curseg->curseg_mutex);
2789 up_write(&SM_I(sbi)->curseg_lock);
2792 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2793 block_t old_addr, block_t new_addr,
2794 unsigned char version, bool recover_curseg,
2795 bool recover_newaddr)
2797 struct f2fs_summary sum;
2799 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2801 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2802 recover_curseg, recover_newaddr);
2804 f2fs_update_data_blkaddr(dn, new_addr);
2807 void f2fs_wait_on_page_writeback(struct page *page,
2808 enum page_type type, bool ordered)
2810 if (PageWriteback(page)) {
2811 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2813 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2814 0, page->index, type);
2815 if (ordered)
2816 wait_on_page_writeback(page);
2817 else
2818 wait_for_stable_page(page);
2822 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2824 struct page *cpage;
2826 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2827 return;
2829 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2830 if (cpage) {
2831 f2fs_wait_on_page_writeback(cpage, DATA, true);
2832 f2fs_put_page(cpage, 1);
2836 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2838 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2839 struct curseg_info *seg_i;
2840 unsigned char *kaddr;
2841 struct page *page;
2842 block_t start;
2843 int i, j, offset;
2845 start = start_sum_block(sbi);
2847 page = get_meta_page(sbi, start++);
2848 kaddr = (unsigned char *)page_address(page);
2850 /* Step 1: restore nat cache */
2851 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2852 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2854 /* Step 2: restore sit cache */
2855 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2856 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2857 offset = 2 * SUM_JOURNAL_SIZE;
2859 /* Step 3: restore summary entries */
2860 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2861 unsigned short blk_off;
2862 unsigned int segno;
2864 seg_i = CURSEG_I(sbi, i);
2865 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2866 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2867 seg_i->next_segno = segno;
2868 reset_curseg(sbi, i, 0);
2869 seg_i->alloc_type = ckpt->alloc_type[i];
2870 seg_i->next_blkoff = blk_off;
2872 if (seg_i->alloc_type == SSR)
2873 blk_off = sbi->blocks_per_seg;
2875 for (j = 0; j < blk_off; j++) {
2876 struct f2fs_summary *s;
2877 s = (struct f2fs_summary *)(kaddr + offset);
2878 seg_i->sum_blk->entries[j] = *s;
2879 offset += SUMMARY_SIZE;
2880 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2881 SUM_FOOTER_SIZE)
2882 continue;
2884 f2fs_put_page(page, 1);
2885 page = NULL;
2887 page = get_meta_page(sbi, start++);
2888 kaddr = (unsigned char *)page_address(page);
2889 offset = 0;
2892 f2fs_put_page(page, 1);
2895 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2897 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2898 struct f2fs_summary_block *sum;
2899 struct curseg_info *curseg;
2900 struct page *new;
2901 unsigned short blk_off;
2902 unsigned int segno = 0;
2903 block_t blk_addr = 0;
2905 /* get segment number and block addr */
2906 if (IS_DATASEG(type)) {
2907 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2908 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2909 CURSEG_HOT_DATA]);
2910 if (__exist_node_summaries(sbi))
2911 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2912 else
2913 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2914 } else {
2915 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2916 CURSEG_HOT_NODE]);
2917 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2918 CURSEG_HOT_NODE]);
2919 if (__exist_node_summaries(sbi))
2920 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2921 type - CURSEG_HOT_NODE);
2922 else
2923 blk_addr = GET_SUM_BLOCK(sbi, segno);
2926 new = get_meta_page(sbi, blk_addr);
2927 sum = (struct f2fs_summary_block *)page_address(new);
2929 if (IS_NODESEG(type)) {
2930 if (__exist_node_summaries(sbi)) {
2931 struct f2fs_summary *ns = &sum->entries[0];
2932 int i;
2933 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2934 ns->version = 0;
2935 ns->ofs_in_node = 0;
2937 } else {
2938 restore_node_summary(sbi, segno, sum);
2942 /* set uncompleted segment to curseg */
2943 curseg = CURSEG_I(sbi, type);
2944 mutex_lock(&curseg->curseg_mutex);
2946 /* update journal info */
2947 down_write(&curseg->journal_rwsem);
2948 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2949 up_write(&curseg->journal_rwsem);
2951 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2952 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2953 curseg->next_segno = segno;
2954 reset_curseg(sbi, type, 0);
2955 curseg->alloc_type = ckpt->alloc_type[type];
2956 curseg->next_blkoff = blk_off;
2957 mutex_unlock(&curseg->curseg_mutex);
2958 f2fs_put_page(new, 1);
2959 return 0;
2962 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2964 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2965 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2966 int type = CURSEG_HOT_DATA;
2967 int err;
2969 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2970 int npages = npages_for_summary_flush(sbi, true);
2972 if (npages >= 2)
2973 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2974 META_CP, true);
2976 /* restore for compacted data summary */
2977 read_compacted_summaries(sbi);
2978 type = CURSEG_HOT_NODE;
2981 if (__exist_node_summaries(sbi))
2982 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2983 NR_CURSEG_TYPE - type, META_CP, true);
2985 for (; type <= CURSEG_COLD_NODE; type++) {
2986 err = read_normal_summaries(sbi, type);
2987 if (err)
2988 return err;
2991 /* sanity check for summary blocks */
2992 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2993 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2994 return -EINVAL;
2996 return 0;
2999 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3001 struct page *page;
3002 unsigned char *kaddr;
3003 struct f2fs_summary *summary;
3004 struct curseg_info *seg_i;
3005 int written_size = 0;
3006 int i, j;
3008 page = grab_meta_page(sbi, blkaddr++);
3009 kaddr = (unsigned char *)page_address(page);
3011 /* Step 1: write nat cache */
3012 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3013 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3014 written_size += SUM_JOURNAL_SIZE;
3016 /* Step 2: write sit cache */
3017 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3018 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3019 written_size += SUM_JOURNAL_SIZE;
3021 /* Step 3: write summary entries */
3022 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3023 unsigned short blkoff;
3024 seg_i = CURSEG_I(sbi, i);
3025 if (sbi->ckpt->alloc_type[i] == SSR)
3026 blkoff = sbi->blocks_per_seg;
3027 else
3028 blkoff = curseg_blkoff(sbi, i);
3030 for (j = 0; j < blkoff; j++) {
3031 if (!page) {
3032 page = grab_meta_page(sbi, blkaddr++);
3033 kaddr = (unsigned char *)page_address(page);
3034 written_size = 0;
3036 summary = (struct f2fs_summary *)(kaddr + written_size);
3037 *summary = seg_i->sum_blk->entries[j];
3038 written_size += SUMMARY_SIZE;
3040 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3041 SUM_FOOTER_SIZE)
3042 continue;
3044 set_page_dirty(page);
3045 f2fs_put_page(page, 1);
3046 page = NULL;
3049 if (page) {
3050 set_page_dirty(page);
3051 f2fs_put_page(page, 1);
3055 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3056 block_t blkaddr, int type)
3058 int i, end;
3059 if (IS_DATASEG(type))
3060 end = type + NR_CURSEG_DATA_TYPE;
3061 else
3062 end = type + NR_CURSEG_NODE_TYPE;
3064 for (i = type; i < end; i++)
3065 write_current_sum_page(sbi, i, blkaddr + (i - type));
3068 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3070 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3071 write_compacted_summaries(sbi, start_blk);
3072 else
3073 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3076 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3078 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3081 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3082 unsigned int val, int alloc)
3084 int i;
3086 if (type == NAT_JOURNAL) {
3087 for (i = 0; i < nats_in_cursum(journal); i++) {
3088 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3089 return i;
3091 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3092 return update_nats_in_cursum(journal, 1);
3093 } else if (type == SIT_JOURNAL) {
3094 for (i = 0; i < sits_in_cursum(journal); i++)
3095 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3096 return i;
3097 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3098 return update_sits_in_cursum(journal, 1);
3100 return -1;
3103 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3104 unsigned int segno)
3106 return get_meta_page(sbi, current_sit_addr(sbi, segno));
3109 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3110 unsigned int start)
3112 struct sit_info *sit_i = SIT_I(sbi);
3113 struct page *page;
3114 pgoff_t src_off, dst_off;
3116 src_off = current_sit_addr(sbi, start);
3117 dst_off = next_sit_addr(sbi, src_off);
3119 page = grab_meta_page(sbi, dst_off);
3120 seg_info_to_sit_page(sbi, page, start);
3122 set_page_dirty(page);
3123 set_to_next_sit(sit_i, start);
3125 return page;
3128 static struct sit_entry_set *grab_sit_entry_set(void)
3130 struct sit_entry_set *ses =
3131 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3133 ses->entry_cnt = 0;
3134 INIT_LIST_HEAD(&ses->set_list);
3135 return ses;
3138 static void release_sit_entry_set(struct sit_entry_set *ses)
3140 list_del(&ses->set_list);
3141 kmem_cache_free(sit_entry_set_slab, ses);
3144 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3145 struct list_head *head)
3147 struct sit_entry_set *next = ses;
3149 if (list_is_last(&ses->set_list, head))
3150 return;
3152 list_for_each_entry_continue(next, head, set_list)
3153 if (ses->entry_cnt <= next->entry_cnt)
3154 break;
3156 list_move_tail(&ses->set_list, &next->set_list);
3159 static void add_sit_entry(unsigned int segno, struct list_head *head)
3161 struct sit_entry_set *ses;
3162 unsigned int start_segno = START_SEGNO(segno);
3164 list_for_each_entry(ses, head, set_list) {
3165 if (ses->start_segno == start_segno) {
3166 ses->entry_cnt++;
3167 adjust_sit_entry_set(ses, head);
3168 return;
3172 ses = grab_sit_entry_set();
3174 ses->start_segno = start_segno;
3175 ses->entry_cnt++;
3176 list_add(&ses->set_list, head);
3179 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3181 struct f2fs_sm_info *sm_info = SM_I(sbi);
3182 struct list_head *set_list = &sm_info->sit_entry_set;
3183 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3184 unsigned int segno;
3186 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3187 add_sit_entry(segno, set_list);
3190 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3192 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3193 struct f2fs_journal *journal = curseg->journal;
3194 int i;
3196 down_write(&curseg->journal_rwsem);
3197 for (i = 0; i < sits_in_cursum(journal); i++) {
3198 unsigned int segno;
3199 bool dirtied;
3201 segno = le32_to_cpu(segno_in_journal(journal, i));
3202 dirtied = __mark_sit_entry_dirty(sbi, segno);
3204 if (!dirtied)
3205 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3207 update_sits_in_cursum(journal, -i);
3208 up_write(&curseg->journal_rwsem);
3212 * CP calls this function, which flushes SIT entries including sit_journal,
3213 * and moves prefree segs to free segs.
3215 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3217 struct sit_info *sit_i = SIT_I(sbi);
3218 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3219 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3220 struct f2fs_journal *journal = curseg->journal;
3221 struct sit_entry_set *ses, *tmp;
3222 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3223 bool to_journal = true;
3224 struct seg_entry *se;
3226 down_write(&sit_i->sentry_lock);
3228 if (!sit_i->dirty_sentries)
3229 goto out;
3232 * add and account sit entries of dirty bitmap in sit entry
3233 * set temporarily
3235 add_sits_in_set(sbi);
3238 * if there are no enough space in journal to store dirty sit
3239 * entries, remove all entries from journal and add and account
3240 * them in sit entry set.
3242 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3243 remove_sits_in_journal(sbi);
3246 * there are two steps to flush sit entries:
3247 * #1, flush sit entries to journal in current cold data summary block.
3248 * #2, flush sit entries to sit page.
3250 list_for_each_entry_safe(ses, tmp, head, set_list) {
3251 struct page *page = NULL;
3252 struct f2fs_sit_block *raw_sit = NULL;
3253 unsigned int start_segno = ses->start_segno;
3254 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3255 (unsigned long)MAIN_SEGS(sbi));
3256 unsigned int segno = start_segno;
3258 if (to_journal &&
3259 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3260 to_journal = false;
3262 if (to_journal) {
3263 down_write(&curseg->journal_rwsem);
3264 } else {
3265 page = get_next_sit_page(sbi, start_segno);
3266 raw_sit = page_address(page);
3269 /* flush dirty sit entries in region of current sit set */
3270 for_each_set_bit_from(segno, bitmap, end) {
3271 int offset, sit_offset;
3273 se = get_seg_entry(sbi, segno);
3275 /* add discard candidates */
3276 if (!(cpc->reason & CP_DISCARD)) {
3277 cpc->trim_start = segno;
3278 add_discard_addrs(sbi, cpc, false);
3281 if (to_journal) {
3282 offset = lookup_journal_in_cursum(journal,
3283 SIT_JOURNAL, segno, 1);
3284 f2fs_bug_on(sbi, offset < 0);
3285 segno_in_journal(journal, offset) =
3286 cpu_to_le32(segno);
3287 seg_info_to_raw_sit(se,
3288 &sit_in_journal(journal, offset));
3289 } else {
3290 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3291 seg_info_to_raw_sit(se,
3292 &raw_sit->entries[sit_offset]);
3295 __clear_bit(segno, bitmap);
3296 sit_i->dirty_sentries--;
3297 ses->entry_cnt--;
3300 if (to_journal)
3301 up_write(&curseg->journal_rwsem);
3302 else
3303 f2fs_put_page(page, 1);
3305 f2fs_bug_on(sbi, ses->entry_cnt);
3306 release_sit_entry_set(ses);
3309 f2fs_bug_on(sbi, !list_empty(head));
3310 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3311 out:
3312 if (cpc->reason & CP_DISCARD) {
3313 __u64 trim_start = cpc->trim_start;
3315 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3316 add_discard_addrs(sbi, cpc, false);
3318 cpc->trim_start = trim_start;
3320 up_write(&sit_i->sentry_lock);
3322 set_prefree_as_free_segments(sbi);
3325 static int build_sit_info(struct f2fs_sb_info *sbi)
3327 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3328 struct sit_info *sit_i;
3329 unsigned int sit_segs, start;
3330 char *src_bitmap;
3331 unsigned int bitmap_size;
3333 /* allocate memory for SIT information */
3334 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3335 if (!sit_i)
3336 return -ENOMEM;
3338 SM_I(sbi)->sit_info = sit_i;
3340 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3341 sizeof(struct seg_entry), GFP_KERNEL);
3342 if (!sit_i->sentries)
3343 return -ENOMEM;
3345 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3346 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3347 GFP_KERNEL);
3348 if (!sit_i->dirty_sentries_bitmap)
3349 return -ENOMEM;
3351 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3352 sit_i->sentries[start].cur_valid_map
3353 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3354 sit_i->sentries[start].ckpt_valid_map
3355 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3356 if (!sit_i->sentries[start].cur_valid_map ||
3357 !sit_i->sentries[start].ckpt_valid_map)
3358 return -ENOMEM;
3360 #ifdef CONFIG_F2FS_CHECK_FS
3361 sit_i->sentries[start].cur_valid_map_mir
3362 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3363 if (!sit_i->sentries[start].cur_valid_map_mir)
3364 return -ENOMEM;
3365 #endif
3367 if (f2fs_discard_en(sbi)) {
3368 sit_i->sentries[start].discard_map
3369 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3370 GFP_KERNEL);
3371 if (!sit_i->sentries[start].discard_map)
3372 return -ENOMEM;
3376 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3377 if (!sit_i->tmp_map)
3378 return -ENOMEM;
3380 if (sbi->segs_per_sec > 1) {
3381 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3382 sizeof(struct sec_entry), GFP_KERNEL);
3383 if (!sit_i->sec_entries)
3384 return -ENOMEM;
3387 /* get information related with SIT */
3388 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3390 /* setup SIT bitmap from ckeckpoint pack */
3391 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3392 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3394 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3395 if (!sit_i->sit_bitmap)
3396 return -ENOMEM;
3398 #ifdef CONFIG_F2FS_CHECK_FS
3399 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3400 if (!sit_i->sit_bitmap_mir)
3401 return -ENOMEM;
3402 #endif
3404 /* init SIT information */
3405 sit_i->s_ops = &default_salloc_ops;
3407 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3408 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3409 sit_i->written_valid_blocks = 0;
3410 sit_i->bitmap_size = bitmap_size;
3411 sit_i->dirty_sentries = 0;
3412 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3413 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3414 sit_i->mounted_time = ktime_get_real_seconds();
3415 init_rwsem(&sit_i->sentry_lock);
3416 return 0;
3419 static int build_free_segmap(struct f2fs_sb_info *sbi)
3421 struct free_segmap_info *free_i;
3422 unsigned int bitmap_size, sec_bitmap_size;
3424 /* allocate memory for free segmap information */
3425 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3426 if (!free_i)
3427 return -ENOMEM;
3429 SM_I(sbi)->free_info = free_i;
3431 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3432 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3433 if (!free_i->free_segmap)
3434 return -ENOMEM;
3436 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3437 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3438 if (!free_i->free_secmap)
3439 return -ENOMEM;
3441 /* set all segments as dirty temporarily */
3442 memset(free_i->free_segmap, 0xff, bitmap_size);
3443 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3445 /* init free segmap information */
3446 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3447 free_i->free_segments = 0;
3448 free_i->free_sections = 0;
3449 spin_lock_init(&free_i->segmap_lock);
3450 return 0;
3453 static int build_curseg(struct f2fs_sb_info *sbi)
3455 struct curseg_info *array;
3456 int i;
3458 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3459 if (!array)
3460 return -ENOMEM;
3462 SM_I(sbi)->curseg_array = array;
3464 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3465 mutex_init(&array[i].curseg_mutex);
3466 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3467 if (!array[i].sum_blk)
3468 return -ENOMEM;
3469 init_rwsem(&array[i].journal_rwsem);
3470 array[i].journal = f2fs_kzalloc(sbi,
3471 sizeof(struct f2fs_journal), GFP_KERNEL);
3472 if (!array[i].journal)
3473 return -ENOMEM;
3474 array[i].segno = NULL_SEGNO;
3475 array[i].next_blkoff = 0;
3477 return restore_curseg_summaries(sbi);
3480 static int build_sit_entries(struct f2fs_sb_info *sbi)
3482 struct sit_info *sit_i = SIT_I(sbi);
3483 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3484 struct f2fs_journal *journal = curseg->journal;
3485 struct seg_entry *se;
3486 struct f2fs_sit_entry sit;
3487 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3488 unsigned int i, start, end;
3489 unsigned int readed, start_blk = 0;
3490 int err = 0;
3492 do {
3493 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3494 META_SIT, true);
3496 start = start_blk * sit_i->sents_per_block;
3497 end = (start_blk + readed) * sit_i->sents_per_block;
3499 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3500 struct f2fs_sit_block *sit_blk;
3501 struct page *page;
3503 se = &sit_i->sentries[start];
3504 page = get_current_sit_page(sbi, start);
3505 sit_blk = (struct f2fs_sit_block *)page_address(page);
3506 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3507 f2fs_put_page(page, 1);
3509 err = check_block_count(sbi, start, &sit);
3510 if (err)
3511 return err;
3512 seg_info_from_raw_sit(se, &sit);
3514 /* build discard map only one time */
3515 if (f2fs_discard_en(sbi)) {
3516 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3517 memset(se->discard_map, 0xff,
3518 SIT_VBLOCK_MAP_SIZE);
3519 } else {
3520 memcpy(se->discard_map,
3521 se->cur_valid_map,
3522 SIT_VBLOCK_MAP_SIZE);
3523 sbi->discard_blks +=
3524 sbi->blocks_per_seg -
3525 se->valid_blocks;
3529 if (sbi->segs_per_sec > 1)
3530 get_sec_entry(sbi, start)->valid_blocks +=
3531 se->valid_blocks;
3533 start_blk += readed;
3534 } while (start_blk < sit_blk_cnt);
3536 down_read(&curseg->journal_rwsem);
3537 for (i = 0; i < sits_in_cursum(journal); i++) {
3538 unsigned int old_valid_blocks;
3540 start = le32_to_cpu(segno_in_journal(journal, i));
3541 se = &sit_i->sentries[start];
3542 sit = sit_in_journal(journal, i);
3544 old_valid_blocks = se->valid_blocks;
3546 err = check_block_count(sbi, start, &sit);
3547 if (err)
3548 break;
3549 seg_info_from_raw_sit(se, &sit);
3551 if (f2fs_discard_en(sbi)) {
3552 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3553 memset(se->discard_map, 0xff,
3554 SIT_VBLOCK_MAP_SIZE);
3555 } else {
3556 memcpy(se->discard_map, se->cur_valid_map,
3557 SIT_VBLOCK_MAP_SIZE);
3558 sbi->discard_blks += old_valid_blocks -
3559 se->valid_blocks;
3563 if (sbi->segs_per_sec > 1)
3564 get_sec_entry(sbi, start)->valid_blocks +=
3565 se->valid_blocks - old_valid_blocks;
3567 up_read(&curseg->journal_rwsem);
3568 return err;
3571 static void init_free_segmap(struct f2fs_sb_info *sbi)
3573 unsigned int start;
3574 int type;
3576 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3577 struct seg_entry *sentry = get_seg_entry(sbi, start);
3578 if (!sentry->valid_blocks)
3579 __set_free(sbi, start);
3580 else
3581 SIT_I(sbi)->written_valid_blocks +=
3582 sentry->valid_blocks;
3585 /* set use the current segments */
3586 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3587 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3588 __set_test_and_inuse(sbi, curseg_t->segno);
3592 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3594 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3595 struct free_segmap_info *free_i = FREE_I(sbi);
3596 unsigned int segno = 0, offset = 0;
3597 unsigned short valid_blocks;
3599 while (1) {
3600 /* find dirty segment based on free segmap */
3601 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3602 if (segno >= MAIN_SEGS(sbi))
3603 break;
3604 offset = segno + 1;
3605 valid_blocks = get_valid_blocks(sbi, segno, false);
3606 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3607 continue;
3608 if (valid_blocks > sbi->blocks_per_seg) {
3609 f2fs_bug_on(sbi, 1);
3610 continue;
3612 mutex_lock(&dirty_i->seglist_lock);
3613 __locate_dirty_segment(sbi, segno, DIRTY);
3614 mutex_unlock(&dirty_i->seglist_lock);
3618 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3620 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3621 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3623 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3624 if (!dirty_i->victim_secmap)
3625 return -ENOMEM;
3626 return 0;
3629 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3631 struct dirty_seglist_info *dirty_i;
3632 unsigned int bitmap_size, i;
3634 /* allocate memory for dirty segments list information */
3635 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3636 GFP_KERNEL);
3637 if (!dirty_i)
3638 return -ENOMEM;
3640 SM_I(sbi)->dirty_info = dirty_i;
3641 mutex_init(&dirty_i->seglist_lock);
3643 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3645 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3646 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3647 GFP_KERNEL);
3648 if (!dirty_i->dirty_segmap[i])
3649 return -ENOMEM;
3652 init_dirty_segmap(sbi);
3653 return init_victim_secmap(sbi);
3657 * Update min, max modified time for cost-benefit GC algorithm
3659 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3661 struct sit_info *sit_i = SIT_I(sbi);
3662 unsigned int segno;
3664 down_write(&sit_i->sentry_lock);
3666 sit_i->min_mtime = LLONG_MAX;
3668 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3669 unsigned int i;
3670 unsigned long long mtime = 0;
3672 for (i = 0; i < sbi->segs_per_sec; i++)
3673 mtime += get_seg_entry(sbi, segno + i)->mtime;
3675 mtime = div_u64(mtime, sbi->segs_per_sec);
3677 if (sit_i->min_mtime > mtime)
3678 sit_i->min_mtime = mtime;
3680 sit_i->max_mtime = get_mtime(sbi);
3681 up_write(&sit_i->sentry_lock);
3684 int build_segment_manager(struct f2fs_sb_info *sbi)
3686 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3687 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3688 struct f2fs_sm_info *sm_info;
3689 int err;
3691 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3692 if (!sm_info)
3693 return -ENOMEM;
3695 /* init sm info */
3696 sbi->sm_info = sm_info;
3697 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3698 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3699 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3700 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3701 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3702 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3703 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3704 sm_info->rec_prefree_segments = sm_info->main_segments *
3705 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3706 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3707 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3709 if (!test_opt(sbi, LFS))
3710 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3711 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3712 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3713 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3714 sm_info->min_ssr_sections = reserved_sections(sbi);
3716 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3718 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3720 init_rwsem(&sm_info->curseg_lock);
3722 if (!f2fs_readonly(sbi->sb)) {
3723 err = create_flush_cmd_control(sbi);
3724 if (err)
3725 return err;
3728 err = create_discard_cmd_control(sbi);
3729 if (err)
3730 return err;
3732 err = build_sit_info(sbi);
3733 if (err)
3734 return err;
3735 err = build_free_segmap(sbi);
3736 if (err)
3737 return err;
3738 err = build_curseg(sbi);
3739 if (err)
3740 return err;
3742 /* reinit free segmap based on SIT */
3743 err = build_sit_entries(sbi);
3744 if (err)
3745 return err;
3747 init_free_segmap(sbi);
3748 err = build_dirty_segmap(sbi);
3749 if (err)
3750 return err;
3752 init_min_max_mtime(sbi);
3753 return 0;
3756 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3757 enum dirty_type dirty_type)
3759 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3761 mutex_lock(&dirty_i->seglist_lock);
3762 kvfree(dirty_i->dirty_segmap[dirty_type]);
3763 dirty_i->nr_dirty[dirty_type] = 0;
3764 mutex_unlock(&dirty_i->seglist_lock);
3767 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3770 kvfree(dirty_i->victim_secmap);
3773 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3775 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3776 int i;
3778 if (!dirty_i)
3779 return;
3781 /* discard pre-free/dirty segments list */
3782 for (i = 0; i < NR_DIRTY_TYPE; i++)
3783 discard_dirty_segmap(sbi, i);
3785 destroy_victim_secmap(sbi);
3786 SM_I(sbi)->dirty_info = NULL;
3787 kfree(dirty_i);
3790 static void destroy_curseg(struct f2fs_sb_info *sbi)
3792 struct curseg_info *array = SM_I(sbi)->curseg_array;
3793 int i;
3795 if (!array)
3796 return;
3797 SM_I(sbi)->curseg_array = NULL;
3798 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3799 kfree(array[i].sum_blk);
3800 kfree(array[i].journal);
3802 kfree(array);
3805 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3807 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3808 if (!free_i)
3809 return;
3810 SM_I(sbi)->free_info = NULL;
3811 kvfree(free_i->free_segmap);
3812 kvfree(free_i->free_secmap);
3813 kfree(free_i);
3816 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3818 struct sit_info *sit_i = SIT_I(sbi);
3819 unsigned int start;
3821 if (!sit_i)
3822 return;
3824 if (sit_i->sentries) {
3825 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3826 kfree(sit_i->sentries[start].cur_valid_map);
3827 #ifdef CONFIG_F2FS_CHECK_FS
3828 kfree(sit_i->sentries[start].cur_valid_map_mir);
3829 #endif
3830 kfree(sit_i->sentries[start].ckpt_valid_map);
3831 kfree(sit_i->sentries[start].discard_map);
3834 kfree(sit_i->tmp_map);
3836 kvfree(sit_i->sentries);
3837 kvfree(sit_i->sec_entries);
3838 kvfree(sit_i->dirty_sentries_bitmap);
3840 SM_I(sbi)->sit_info = NULL;
3841 kfree(sit_i->sit_bitmap);
3842 #ifdef CONFIG_F2FS_CHECK_FS
3843 kfree(sit_i->sit_bitmap_mir);
3844 #endif
3845 kfree(sit_i);
3848 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3850 struct f2fs_sm_info *sm_info = SM_I(sbi);
3852 if (!sm_info)
3853 return;
3854 destroy_flush_cmd_control(sbi, true);
3855 destroy_discard_cmd_control(sbi);
3856 destroy_dirty_segmap(sbi);
3857 destroy_curseg(sbi);
3858 destroy_free_segmap(sbi);
3859 destroy_sit_info(sbi);
3860 sbi->sm_info = NULL;
3861 kfree(sm_info);
3864 int __init create_segment_manager_caches(void)
3866 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3867 sizeof(struct discard_entry));
3868 if (!discard_entry_slab)
3869 goto fail;
3871 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3872 sizeof(struct discard_cmd));
3873 if (!discard_cmd_slab)
3874 goto destroy_discard_entry;
3876 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3877 sizeof(struct sit_entry_set));
3878 if (!sit_entry_set_slab)
3879 goto destroy_discard_cmd;
3881 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3882 sizeof(struct inmem_pages));
3883 if (!inmem_entry_slab)
3884 goto destroy_sit_entry_set;
3885 return 0;
3887 destroy_sit_entry_set:
3888 kmem_cache_destroy(sit_entry_set_slab);
3889 destroy_discard_cmd:
3890 kmem_cache_destroy(discard_cmd_slab);
3891 destroy_discard_entry:
3892 kmem_cache_destroy(discard_entry_slab);
3893 fail:
3894 return -ENOMEM;
3897 void destroy_segment_manager_caches(void)
3899 kmem_cache_destroy(sit_entry_set_slab);
3900 kmem_cache_destroy(discard_cmd_slab);
3901 kmem_cache_destroy(discard_entry_slab);
3902 kmem_cache_destroy(inmem_entry_slab);