media: cpia2_usb: drop bogus interface-release call
[linux/fpc-iii.git] / fs / jbd2 / revoke.c
blob696ef15ec9428ab63e025786e7075c180ad6f8ad
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/revoke.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
7 * Copyright 2000 Red Hat corp --- All Rights Reserved
9 * Journal revoke routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
12 * Revoke is the mechanism used to prevent old log records for deleted
13 * metadata from being replayed on top of newer data using the same
14 * blocks. The revoke mechanism is used in two separate places:
16 * + Commit: during commit we write the entire list of the current
17 * transaction's revoked blocks to the journal
19 * + Recovery: during recovery we record the transaction ID of all
20 * revoked blocks. If there are multiple revoke records in the log
21 * for a single block, only the last one counts, and if there is a log
22 * entry for a block beyond the last revoke, then that log entry still
23 * gets replayed.
25 * We can get interactions between revokes and new log data within a
26 * single transaction:
28 * Block is revoked and then journaled:
29 * The desired end result is the journaling of the new block, so we
30 * cancel the revoke before the transaction commits.
32 * Block is journaled and then revoked:
33 * The revoke must take precedence over the write of the block, so we
34 * need either to cancel the journal entry or to write the revoke
35 * later in the log than the log block. In this case, we choose the
36 * latter: journaling a block cancels any revoke record for that block
37 * in the current transaction, so any revoke for that block in the
38 * transaction must have happened after the block was journaled and so
39 * the revoke must take precedence.
41 * Block is revoked and then written as data:
42 * The data write is allowed to succeed, but the revoke is _not_
43 * cancelled. We still need to prevent old log records from
44 * overwriting the new data. We don't even need to clear the revoke
45 * bit here.
47 * We cache revoke status of a buffer in the current transaction in b_states
48 * bits. As the name says, revokevalid flag indicates that the cached revoke
49 * status of a buffer is valid and we can rely on the cached status.
51 * Revoke information on buffers is a tri-state value:
53 * RevokeValid clear: no cached revoke status, need to look it up
54 * RevokeValid set, Revoked clear:
55 * buffer has not been revoked, and cancel_revoke
56 * need do nothing.
57 * RevokeValid set, Revoked set:
58 * buffer has been revoked.
60 * Locking rules:
61 * We keep two hash tables of revoke records. One hashtable belongs to the
62 * running transaction (is pointed to by journal->j_revoke), the other one
63 * belongs to the committing transaction. Accesses to the second hash table
64 * happen only from the kjournald and no other thread touches this table. Also
65 * journal_switch_revoke_table() which switches which hashtable belongs to the
66 * running and which to the committing transaction is called only from
67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
68 * to the committing transaction.
70 * All users operating on the hash table belonging to the running transaction
71 * have a handle to the transaction. Therefore they are safe from kjournald
72 * switching hash tables under them. For operations on the lists of entries in
73 * the hash table j_revoke_lock is used.
75 * Finally, also replay code uses the hash tables but at this moment no one else
76 * can touch them (filesystem isn't mounted yet) and hence no locking is
77 * needed.
80 #ifndef __KERNEL__
81 #include "jfs_user.h"
82 #else
83 #include <linux/time.h>
84 #include <linux/fs.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
93 #endif
95 static struct kmem_cache *jbd2_revoke_record_cache;
96 static struct kmem_cache *jbd2_revoke_table_cache;
98 /* Each revoke record represents one single revoked block. During
99 journal replay, this involves recording the transaction ID of the
100 last transaction to revoke this block. */
102 struct jbd2_revoke_record_s
104 struct list_head hash;
105 tid_t sequence; /* Used for recovery only */
106 unsigned long long blocknr;
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
113 /* It is conceivable that we might want a larger hash table
114 * for recovery. Must be a power of two. */
115 int hash_size;
116 int hash_shift;
117 struct list_head *hash_table;
121 #ifdef __KERNEL__
122 static void write_one_revoke_record(transaction_t *,
123 struct list_head *,
124 struct buffer_head **, int *,
125 struct jbd2_revoke_record_s *);
126 static void flush_descriptor(journal_t *, struct buffer_head *, int);
127 #endif
129 /* Utility functions to maintain the revoke table */
131 static inline int hash(journal_t *journal, unsigned long long block)
133 return hash_64(block, journal->j_revoke->hash_shift);
136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137 tid_t seq)
139 struct list_head *hash_list;
140 struct jbd2_revoke_record_s *record;
141 gfp_t gfp_mask = GFP_NOFS;
143 if (journal_oom_retry)
144 gfp_mask |= __GFP_NOFAIL;
145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146 if (!record)
147 return -ENOMEM;
149 record->sequence = seq;
150 record->blocknr = blocknr;
151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 spin_lock(&journal->j_revoke_lock);
153 list_add(&record->hash, hash_list);
154 spin_unlock(&journal->j_revoke_lock);
155 return 0;
158 /* Find a revoke record in the journal's hash table. */
160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161 unsigned long long blocknr)
163 struct list_head *hash_list;
164 struct jbd2_revoke_record_s *record;
166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
168 spin_lock(&journal->j_revoke_lock);
169 record = (struct jbd2_revoke_record_s *) hash_list->next;
170 while (&(record->hash) != hash_list) {
171 if (record->blocknr == blocknr) {
172 spin_unlock(&journal->j_revoke_lock);
173 return record;
175 record = (struct jbd2_revoke_record_s *) record->hash.next;
177 spin_unlock(&journal->j_revoke_lock);
178 return NULL;
181 void jbd2_journal_destroy_revoke_caches(void)
183 if (jbd2_revoke_record_cache) {
184 kmem_cache_destroy(jbd2_revoke_record_cache);
185 jbd2_revoke_record_cache = NULL;
187 if (jbd2_revoke_table_cache) {
188 kmem_cache_destroy(jbd2_revoke_table_cache);
189 jbd2_revoke_table_cache = NULL;
193 int __init jbd2_journal_init_revoke_caches(void)
195 J_ASSERT(!jbd2_revoke_record_cache);
196 J_ASSERT(!jbd2_revoke_table_cache);
198 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
199 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
200 if (!jbd2_revoke_record_cache)
201 goto record_cache_failure;
203 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
204 SLAB_TEMPORARY);
205 if (!jbd2_revoke_table_cache)
206 goto table_cache_failure;
207 return 0;
208 table_cache_failure:
209 jbd2_journal_destroy_revoke_caches();
210 record_cache_failure:
211 return -ENOMEM;
214 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
216 int shift = 0;
217 int tmp = hash_size;
218 struct jbd2_revoke_table_s *table;
220 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
221 if (!table)
222 goto out;
224 while((tmp >>= 1UL) != 0UL)
225 shift++;
227 table->hash_size = hash_size;
228 table->hash_shift = shift;
229 table->hash_table =
230 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
231 if (!table->hash_table) {
232 kmem_cache_free(jbd2_revoke_table_cache, table);
233 table = NULL;
234 goto out;
237 for (tmp = 0; tmp < hash_size; tmp++)
238 INIT_LIST_HEAD(&table->hash_table[tmp]);
240 out:
241 return table;
244 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
246 int i;
247 struct list_head *hash_list;
249 for (i = 0; i < table->hash_size; i++) {
250 hash_list = &table->hash_table[i];
251 J_ASSERT(list_empty(hash_list));
254 kfree(table->hash_table);
255 kmem_cache_free(jbd2_revoke_table_cache, table);
258 /* Initialise the revoke table for a given journal to a given size. */
259 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
261 J_ASSERT(journal->j_revoke_table[0] == NULL);
262 J_ASSERT(is_power_of_2(hash_size));
264 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
265 if (!journal->j_revoke_table[0])
266 goto fail0;
268 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
269 if (!journal->j_revoke_table[1])
270 goto fail1;
272 journal->j_revoke = journal->j_revoke_table[1];
274 spin_lock_init(&journal->j_revoke_lock);
276 return 0;
278 fail1:
279 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
280 journal->j_revoke_table[0] = NULL;
281 fail0:
282 return -ENOMEM;
285 /* Destroy a journal's revoke table. The table must already be empty! */
286 void jbd2_journal_destroy_revoke(journal_t *journal)
288 journal->j_revoke = NULL;
289 if (journal->j_revoke_table[0])
290 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
291 if (journal->j_revoke_table[1])
292 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
296 #ifdef __KERNEL__
299 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
300 * prevents the block from being replayed during recovery if we take a
301 * crash after this current transaction commits. Any subsequent
302 * metadata writes of the buffer in this transaction cancel the
303 * revoke.
305 * Note that this call may block --- it is up to the caller to make
306 * sure that there are no further calls to journal_write_metadata
307 * before the revoke is complete. In ext3, this implies calling the
308 * revoke before clearing the block bitmap when we are deleting
309 * metadata.
311 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
312 * parameter, but does _not_ forget the buffer_head if the bh was only
313 * found implicitly.
315 * bh_in may not be a journalled buffer - it may have come off
316 * the hash tables without an attached journal_head.
318 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
319 * by one.
322 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
323 struct buffer_head *bh_in)
325 struct buffer_head *bh = NULL;
326 journal_t *journal;
327 struct block_device *bdev;
328 int err;
330 might_sleep();
331 if (bh_in)
332 BUFFER_TRACE(bh_in, "enter");
334 journal = handle->h_transaction->t_journal;
335 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
336 J_ASSERT (!"Cannot set revoke feature!");
337 return -EINVAL;
340 bdev = journal->j_fs_dev;
341 bh = bh_in;
343 if (!bh) {
344 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
345 if (bh)
346 BUFFER_TRACE(bh, "found on hash");
348 #ifdef JBD2_EXPENSIVE_CHECKING
349 else {
350 struct buffer_head *bh2;
352 /* If there is a different buffer_head lying around in
353 * memory anywhere... */
354 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
355 if (bh2) {
356 /* ... and it has RevokeValid status... */
357 if (bh2 != bh && buffer_revokevalid(bh2))
358 /* ...then it better be revoked too,
359 * since it's illegal to create a revoke
360 * record against a buffer_head which is
361 * not marked revoked --- that would
362 * risk missing a subsequent revoke
363 * cancel. */
364 J_ASSERT_BH(bh2, buffer_revoked(bh2));
365 put_bh(bh2);
368 #endif
370 /* We really ought not ever to revoke twice in a row without
371 first having the revoke cancelled: it's illegal to free a
372 block twice without allocating it in between! */
373 if (bh) {
374 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
375 "inconsistent data on disk")) {
376 if (!bh_in)
377 brelse(bh);
378 return -EIO;
380 set_buffer_revoked(bh);
381 set_buffer_revokevalid(bh);
382 if (bh_in) {
383 BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
384 jbd2_journal_forget(handle, bh_in);
385 } else {
386 BUFFER_TRACE(bh, "call brelse");
387 __brelse(bh);
391 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
392 err = insert_revoke_hash(journal, blocknr,
393 handle->h_transaction->t_tid);
394 BUFFER_TRACE(bh_in, "exit");
395 return err;
399 * Cancel an outstanding revoke. For use only internally by the
400 * journaling code (called from jbd2_journal_get_write_access).
402 * We trust buffer_revoked() on the buffer if the buffer is already
403 * being journaled: if there is no revoke pending on the buffer, then we
404 * don't do anything here.
406 * This would break if it were possible for a buffer to be revoked and
407 * discarded, and then reallocated within the same transaction. In such
408 * a case we would have lost the revoked bit, but when we arrived here
409 * the second time we would still have a pending revoke to cancel. So,
410 * do not trust the Revoked bit on buffers unless RevokeValid is also
411 * set.
413 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
415 struct jbd2_revoke_record_s *record;
416 journal_t *journal = handle->h_transaction->t_journal;
417 int need_cancel;
418 int did_revoke = 0; /* akpm: debug */
419 struct buffer_head *bh = jh2bh(jh);
421 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
423 /* Is the existing Revoke bit valid? If so, we trust it, and
424 * only perform the full cancel if the revoke bit is set. If
425 * not, we can't trust the revoke bit, and we need to do the
426 * full search for a revoke record. */
427 if (test_set_buffer_revokevalid(bh)) {
428 need_cancel = test_clear_buffer_revoked(bh);
429 } else {
430 need_cancel = 1;
431 clear_buffer_revoked(bh);
434 if (need_cancel) {
435 record = find_revoke_record(journal, bh->b_blocknr);
436 if (record) {
437 jbd_debug(4, "cancelled existing revoke on "
438 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
439 spin_lock(&journal->j_revoke_lock);
440 list_del(&record->hash);
441 spin_unlock(&journal->j_revoke_lock);
442 kmem_cache_free(jbd2_revoke_record_cache, record);
443 did_revoke = 1;
447 #ifdef JBD2_EXPENSIVE_CHECKING
448 /* There better not be one left behind by now! */
449 record = find_revoke_record(journal, bh->b_blocknr);
450 J_ASSERT_JH(jh, record == NULL);
451 #endif
453 /* Finally, have we just cleared revoke on an unhashed
454 * buffer_head? If so, we'd better make sure we clear the
455 * revoked status on any hashed alias too, otherwise the revoke
456 * state machine will get very upset later on. */
457 if (need_cancel) {
458 struct buffer_head *bh2;
459 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
460 if (bh2) {
461 if (bh2 != bh)
462 clear_buffer_revoked(bh2);
463 __brelse(bh2);
466 return did_revoke;
470 * journal_clear_revoked_flag clears revoked flag of buffers in
471 * revoke table to reflect there is no revoked buffers in the next
472 * transaction which is going to be started.
474 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
476 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
477 int i = 0;
479 for (i = 0; i < revoke->hash_size; i++) {
480 struct list_head *hash_list;
481 struct list_head *list_entry;
482 hash_list = &revoke->hash_table[i];
484 list_for_each(list_entry, hash_list) {
485 struct jbd2_revoke_record_s *record;
486 struct buffer_head *bh;
487 record = (struct jbd2_revoke_record_s *)list_entry;
488 bh = __find_get_block(journal->j_fs_dev,
489 record->blocknr,
490 journal->j_blocksize);
491 if (bh) {
492 clear_buffer_revoked(bh);
493 __brelse(bh);
499 /* journal_switch_revoke table select j_revoke for next transaction
500 * we do not want to suspend any processing until all revokes are
501 * written -bzzz
503 void jbd2_journal_switch_revoke_table(journal_t *journal)
505 int i;
507 if (journal->j_revoke == journal->j_revoke_table[0])
508 journal->j_revoke = journal->j_revoke_table[1];
509 else
510 journal->j_revoke = journal->j_revoke_table[0];
512 for (i = 0; i < journal->j_revoke->hash_size; i++)
513 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
517 * Write revoke records to the journal for all entries in the current
518 * revoke hash, deleting the entries as we go.
520 void jbd2_journal_write_revoke_records(transaction_t *transaction,
521 struct list_head *log_bufs)
523 journal_t *journal = transaction->t_journal;
524 struct buffer_head *descriptor;
525 struct jbd2_revoke_record_s *record;
526 struct jbd2_revoke_table_s *revoke;
527 struct list_head *hash_list;
528 int i, offset, count;
530 descriptor = NULL;
531 offset = 0;
532 count = 0;
534 /* select revoke table for committing transaction */
535 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
536 journal->j_revoke_table[1] : journal->j_revoke_table[0];
538 for (i = 0; i < revoke->hash_size; i++) {
539 hash_list = &revoke->hash_table[i];
541 while (!list_empty(hash_list)) {
542 record = (struct jbd2_revoke_record_s *)
543 hash_list->next;
544 write_one_revoke_record(transaction, log_bufs,
545 &descriptor, &offset, record);
546 count++;
547 list_del(&record->hash);
548 kmem_cache_free(jbd2_revoke_record_cache, record);
551 if (descriptor)
552 flush_descriptor(journal, descriptor, offset);
553 jbd_debug(1, "Wrote %d revoke records\n", count);
557 * Write out one revoke record. We need to create a new descriptor
558 * block if the old one is full or if we have not already created one.
561 static void write_one_revoke_record(transaction_t *transaction,
562 struct list_head *log_bufs,
563 struct buffer_head **descriptorp,
564 int *offsetp,
565 struct jbd2_revoke_record_s *record)
567 journal_t *journal = transaction->t_journal;
568 int csum_size = 0;
569 struct buffer_head *descriptor;
570 int sz, offset;
572 /* If we are already aborting, this all becomes a noop. We
573 still need to go round the loop in
574 jbd2_journal_write_revoke_records in order to free all of the
575 revoke records: only the IO to the journal is omitted. */
576 if (is_journal_aborted(journal))
577 return;
579 descriptor = *descriptorp;
580 offset = *offsetp;
582 /* Do we need to leave space at the end for a checksum? */
583 if (jbd2_journal_has_csum_v2or3(journal))
584 csum_size = sizeof(struct jbd2_journal_block_tail);
586 if (jbd2_has_feature_64bit(journal))
587 sz = 8;
588 else
589 sz = 4;
591 /* Make sure we have a descriptor with space left for the record */
592 if (descriptor) {
593 if (offset + sz > journal->j_blocksize - csum_size) {
594 flush_descriptor(journal, descriptor, offset);
595 descriptor = NULL;
599 if (!descriptor) {
600 descriptor = jbd2_journal_get_descriptor_buffer(transaction,
601 JBD2_REVOKE_BLOCK);
602 if (!descriptor)
603 return;
605 /* Record it so that we can wait for IO completion later */
606 BUFFER_TRACE(descriptor, "file in log_bufs");
607 jbd2_file_log_bh(log_bufs, descriptor);
609 offset = sizeof(jbd2_journal_revoke_header_t);
610 *descriptorp = descriptor;
613 if (jbd2_has_feature_64bit(journal))
614 * ((__be64 *)(&descriptor->b_data[offset])) =
615 cpu_to_be64(record->blocknr);
616 else
617 * ((__be32 *)(&descriptor->b_data[offset])) =
618 cpu_to_be32(record->blocknr);
619 offset += sz;
621 *offsetp = offset;
625 * Flush a revoke descriptor out to the journal. If we are aborting,
626 * this is a noop; otherwise we are generating a buffer which needs to
627 * be waited for during commit, so it has to go onto the appropriate
628 * journal buffer list.
631 static void flush_descriptor(journal_t *journal,
632 struct buffer_head *descriptor,
633 int offset)
635 jbd2_journal_revoke_header_t *header;
637 if (is_journal_aborted(journal)) {
638 put_bh(descriptor);
639 return;
642 header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
643 header->r_count = cpu_to_be32(offset);
644 jbd2_descriptor_block_csum_set(journal, descriptor);
646 set_buffer_jwrite(descriptor);
647 BUFFER_TRACE(descriptor, "write");
648 set_buffer_dirty(descriptor);
649 write_dirty_buffer(descriptor, REQ_SYNC);
651 #endif
654 * Revoke support for recovery.
656 * Recovery needs to be able to:
658 * record all revoke records, including the tid of the latest instance
659 * of each revoke in the journal
661 * check whether a given block in a given transaction should be replayed
662 * (ie. has not been revoked by a revoke record in that or a subsequent
663 * transaction)
665 * empty the revoke table after recovery.
669 * First, setting revoke records. We create a new revoke record for
670 * every block ever revoked in the log as we scan it for recovery, and
671 * we update the existing records if we find multiple revokes for a
672 * single block.
675 int jbd2_journal_set_revoke(journal_t *journal,
676 unsigned long long blocknr,
677 tid_t sequence)
679 struct jbd2_revoke_record_s *record;
681 record = find_revoke_record(journal, blocknr);
682 if (record) {
683 /* If we have multiple occurrences, only record the
684 * latest sequence number in the hashed record */
685 if (tid_gt(sequence, record->sequence))
686 record->sequence = sequence;
687 return 0;
689 return insert_revoke_hash(journal, blocknr, sequence);
693 * Test revoke records. For a given block referenced in the log, has
694 * that block been revoked? A revoke record with a given transaction
695 * sequence number revokes all blocks in that transaction and earlier
696 * ones, but later transactions still need replayed.
699 int jbd2_journal_test_revoke(journal_t *journal,
700 unsigned long long blocknr,
701 tid_t sequence)
703 struct jbd2_revoke_record_s *record;
705 record = find_revoke_record(journal, blocknr);
706 if (!record)
707 return 0;
708 if (tid_gt(sequence, record->sequence))
709 return 0;
710 return 1;
714 * Finally, once recovery is over, we need to clear the revoke table so
715 * that it can be reused by the running filesystem.
718 void jbd2_journal_clear_revoke(journal_t *journal)
720 int i;
721 struct list_head *hash_list;
722 struct jbd2_revoke_record_s *record;
723 struct jbd2_revoke_table_s *revoke;
725 revoke = journal->j_revoke;
727 for (i = 0; i < revoke->hash_size; i++) {
728 hash_list = &revoke->hash_table[i];
729 while (!list_empty(hash_list)) {
730 record = (struct jbd2_revoke_record_s*) hash_list->next;
731 list_del(&record->hash);
732 kmem_cache_free(jbd2_revoke_record_cache, record);