2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/cpufreq.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/notifier.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
26 #include "cpufreq_governor.h"
28 /* Conservative governor macors */
29 #define DEF_FREQUENCY_UP_THRESHOLD (80)
30 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
31 #define DEF_SAMPLING_DOWN_FACTOR (1)
32 #define MAX_SAMPLING_DOWN_FACTOR (10)
34 static struct dbs_data cs_dbs_data
;
35 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s
, cs_cpu_dbs_info
);
37 static struct cs_dbs_tuners cs_tuners
= {
38 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
39 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
40 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
46 * Every sampling_rate, we check, if current idle time is less than 20%
47 * (default), then we try to increase frequency Every sampling_rate *
48 * sampling_down_factor, we check, if current idle time is more than 80%, then
49 * we try to decrease frequency
51 * Any frequency increase takes it to the maximum frequency. Frequency reduction
52 * happens at minimum steps of 5% (default) of maximum frequency
54 static void cs_check_cpu(int cpu
, unsigned int load
)
56 struct cs_cpu_dbs_info_s
*dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
57 struct cpufreq_policy
*policy
= dbs_info
->cdbs
.cur_policy
;
58 unsigned int freq_target
;
61 * break out if we 'cannot' reduce the speed as the user might
62 * want freq_step to be zero
64 if (cs_tuners
.freq_step
== 0)
67 /* Check for frequency increase */
68 if (load
> cs_tuners
.up_threshold
) {
69 dbs_info
->down_skip
= 0;
71 /* if we are already at full speed then break out early */
72 if (dbs_info
->requested_freq
== policy
->max
)
75 freq_target
= (cs_tuners
.freq_step
* policy
->max
) / 100;
77 /* max freq cannot be less than 100. But who knows.... */
78 if (unlikely(freq_target
== 0))
81 dbs_info
->requested_freq
+= freq_target
;
82 if (dbs_info
->requested_freq
> policy
->max
)
83 dbs_info
->requested_freq
= policy
->max
;
85 __cpufreq_driver_target(policy
, dbs_info
->requested_freq
,
91 * The optimal frequency is the frequency that is the lowest that can
92 * support the current CPU usage without triggering the up policy. To be
93 * safe, we focus 10 points under the threshold.
95 if (load
< (cs_tuners
.down_threshold
- 10)) {
96 freq_target
= (cs_tuners
.freq_step
* policy
->max
) / 100;
98 dbs_info
->requested_freq
-= freq_target
;
99 if (dbs_info
->requested_freq
< policy
->min
)
100 dbs_info
->requested_freq
= policy
->min
;
103 * if we cannot reduce the frequency anymore, break out early
105 if (policy
->cur
== policy
->min
)
108 __cpufreq_driver_target(policy
, dbs_info
->requested_freq
,
114 static void cs_dbs_timer(struct work_struct
*work
)
116 struct cs_cpu_dbs_info_s
*dbs_info
= container_of(work
,
117 struct cs_cpu_dbs_info_s
, cdbs
.work
.work
);
118 unsigned int cpu
= dbs_info
->cdbs
.cpu
;
119 int delay
= delay_for_sampling_rate(cs_tuners
.sampling_rate
);
121 mutex_lock(&dbs_info
->cdbs
.timer_mutex
);
123 dbs_check_cpu(&cs_dbs_data
, cpu
);
125 schedule_delayed_work_on(cpu
, &dbs_info
->cdbs
.work
, delay
);
126 mutex_unlock(&dbs_info
->cdbs
.timer_mutex
);
129 static int dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
132 struct cpufreq_freqs
*freq
= data
;
133 struct cs_cpu_dbs_info_s
*dbs_info
=
134 &per_cpu(cs_cpu_dbs_info
, freq
->cpu
);
135 struct cpufreq_policy
*policy
;
137 if (!dbs_info
->enable
)
140 policy
= dbs_info
->cdbs
.cur_policy
;
143 * we only care if our internally tracked freq moves outside the 'valid'
144 * ranges of freqency available to us otherwise we do not change it
146 if (dbs_info
->requested_freq
> policy
->max
147 || dbs_info
->requested_freq
< policy
->min
)
148 dbs_info
->requested_freq
= freq
->new;
153 /************************** sysfs interface ************************/
154 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
155 struct attribute
*attr
, char *buf
)
157 return sprintf(buf
, "%u\n", cs_dbs_data
.min_sampling_rate
);
160 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
162 const char *buf
, size_t count
)
166 ret
= sscanf(buf
, "%u", &input
);
168 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
171 cs_tuners
.sampling_down_factor
= input
;
175 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
176 const char *buf
, size_t count
)
180 ret
= sscanf(buf
, "%u", &input
);
185 cs_tuners
.sampling_rate
= max(input
, cs_dbs_data
.min_sampling_rate
);
189 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
190 const char *buf
, size_t count
)
194 ret
= sscanf(buf
, "%u", &input
);
196 if (ret
!= 1 || input
> 100 || input
<= cs_tuners
.down_threshold
)
199 cs_tuners
.up_threshold
= input
;
203 static ssize_t
store_down_threshold(struct kobject
*a
, struct attribute
*b
,
204 const char *buf
, size_t count
)
208 ret
= sscanf(buf
, "%u", &input
);
210 /* cannot be lower than 11 otherwise freq will not fall */
211 if (ret
!= 1 || input
< 11 || input
> 100 ||
212 input
>= cs_tuners
.up_threshold
)
215 cs_tuners
.down_threshold
= input
;
219 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
220 const char *buf
, size_t count
)
222 unsigned int input
, j
;
225 ret
= sscanf(buf
, "%u", &input
);
232 if (input
== cs_tuners
.ignore_nice
) /* nothing to do */
235 cs_tuners
.ignore_nice
= input
;
237 /* we need to re-evaluate prev_cpu_idle */
238 for_each_online_cpu(j
) {
239 struct cs_cpu_dbs_info_s
*dbs_info
;
240 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
241 dbs_info
->cdbs
.prev_cpu_idle
= get_cpu_idle_time(j
,
242 &dbs_info
->cdbs
.prev_cpu_wall
);
243 if (cs_tuners
.ignore_nice
)
244 dbs_info
->cdbs
.prev_cpu_nice
=
245 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
250 static ssize_t
store_freq_step(struct kobject
*a
, struct attribute
*b
,
251 const char *buf
, size_t count
)
255 ret
= sscanf(buf
, "%u", &input
);
264 * no need to test here if freq_step is zero as the user might actually
265 * want this, they would be crazy though :)
267 cs_tuners
.freq_step
= input
;
271 show_one(cs
, sampling_rate
, sampling_rate
);
272 show_one(cs
, sampling_down_factor
, sampling_down_factor
);
273 show_one(cs
, up_threshold
, up_threshold
);
274 show_one(cs
, down_threshold
, down_threshold
);
275 show_one(cs
, ignore_nice_load
, ignore_nice
);
276 show_one(cs
, freq_step
, freq_step
);
278 define_one_global_rw(sampling_rate
);
279 define_one_global_rw(sampling_down_factor
);
280 define_one_global_rw(up_threshold
);
281 define_one_global_rw(down_threshold
);
282 define_one_global_rw(ignore_nice_load
);
283 define_one_global_rw(freq_step
);
284 define_one_global_ro(sampling_rate_min
);
286 static struct attribute
*dbs_attributes
[] = {
287 &sampling_rate_min
.attr
,
289 &sampling_down_factor
.attr
,
291 &down_threshold
.attr
,
292 &ignore_nice_load
.attr
,
297 static struct attribute_group cs_attr_group
= {
298 .attrs
= dbs_attributes
,
299 .name
= "conservative",
302 /************************** sysfs end ************************/
304 define_get_cpu_dbs_routines(cs_cpu_dbs_info
);
306 static struct notifier_block cs_cpufreq_notifier_block
= {
307 .notifier_call
= dbs_cpufreq_notifier
,
310 static struct cs_ops cs_ops
= {
311 .notifier_block
= &cs_cpufreq_notifier_block
,
314 static struct dbs_data cs_dbs_data
= {
315 .governor
= GOV_CONSERVATIVE
,
316 .attr_group
= &cs_attr_group
,
317 .tuners
= &cs_tuners
,
318 .get_cpu_cdbs
= get_cpu_cdbs
,
319 .get_cpu_dbs_info_s
= get_cpu_dbs_info_s
,
320 .gov_dbs_timer
= cs_dbs_timer
,
321 .gov_check_cpu
= cs_check_cpu
,
325 static int cs_cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
328 return cpufreq_governor_dbs(&cs_dbs_data
, policy
, event
);
331 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
334 struct cpufreq_governor cpufreq_gov_conservative
= {
335 .name
= "conservative",
336 .governor
= cs_cpufreq_governor_dbs
,
337 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
338 .owner
= THIS_MODULE
,
341 static int __init
cpufreq_gov_dbs_init(void)
343 mutex_init(&cs_dbs_data
.mutex
);
344 return cpufreq_register_governor(&cpufreq_gov_conservative
);
347 static void __exit
cpufreq_gov_dbs_exit(void)
349 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
352 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
353 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
354 "Low Latency Frequency Transition capable processors "
355 "optimised for use in a battery environment");
356 MODULE_LICENSE("GPL");
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
359 fs_initcall(cpufreq_gov_dbs_init
);
361 module_init(cpufreq_gov_dbs_init
);
363 module_exit(cpufreq_gov_dbs_exit
);