s390/mm: fix page table upgrade vs 2ndary address mode accesses
[linux/fpc-iii.git] / net / socket.c
blob1030a612423be3eb0924a86380c2ec2850d7d0c4
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
213 int err;
214 int len;
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
234 return __put_user(klen, ulen);
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 ei->socket.wq = wq;
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
270 ei = container_of(inode, struct socket_alloc, vfs_inode);
271 kfree_rcu(ei->socket.wq, rcu);
272 kmem_cache_free(sock_inode_cachep, ei);
275 static void init_once(void *foo)
277 struct socket_alloc *ei = (struct socket_alloc *)foo;
279 inode_init_once(&ei->vfs_inode);
282 static void init_inodecache(void)
284 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc),
287 (SLAB_HWCACHE_ALIGN |
288 SLAB_RECLAIM_ACCOUNT |
289 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 init_once);
291 BUG_ON(sock_inode_cachep == NULL);
294 static const struct super_operations sockfs_ops = {
295 .alloc_inode = sock_alloc_inode,
296 .destroy_inode = sock_destroy_inode,
297 .statfs = simple_statfs,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 d_inode(dentry)->i_ino);
309 static const struct dentry_operations sockfs_dentry_operations = {
310 .d_dname = sockfs_dname,
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 struct dentry *dentry, struct inode *inode,
315 const char *suffix, void *value, size_t size)
317 if (value) {
318 if (dentry->d_name.len + 1 > size)
319 return -ERANGE;
320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 return dentry->d_name.len + 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler = {
330 .name = XATTR_NAME_SOCKPROTONAME,
331 .get = sockfs_xattr_get,
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 struct dentry *dentry, struct inode *inode,
336 const char *suffix, const void *value,
337 size_t size, int flags)
339 /* Handled by LSM. */
340 return -EAGAIN;
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 .prefix = XATTR_SECURITY_PREFIX,
345 .set = sockfs_security_xattr_set,
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 &sockfs_xattr_handler,
350 &sockfs_security_xattr_handler,
351 NULL
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 int flags, const char *dev_name, void *data)
357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 sockfs_xattr_handlers,
359 &sockfs_dentry_operations, SOCKFS_MAGIC);
362 static struct vfsmount *sock_mnt __read_mostly;
364 static struct file_system_type sock_fs_type = {
365 .name = "sockfs",
366 .mount = sockfs_mount,
367 .kill_sb = kill_anon_super,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
389 struct file *file;
391 if (!dname)
392 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
394 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
395 O_RDWR | (flags & O_NONBLOCK),
396 &socket_file_ops);
397 if (IS_ERR(file)) {
398 sock_release(sock);
399 return file;
402 sock->file = file;
403 file->private_data = sock;
404 return file;
406 EXPORT_SYMBOL(sock_alloc_file);
408 static int sock_map_fd(struct socket *sock, int flags)
410 struct file *newfile;
411 int fd = get_unused_fd_flags(flags);
412 if (unlikely(fd < 0)) {
413 sock_release(sock);
414 return fd;
417 newfile = sock_alloc_file(sock, flags, NULL);
418 if (likely(!IS_ERR(newfile))) {
419 fd_install(fd, newfile);
420 return fd;
423 put_unused_fd(fd);
424 return PTR_ERR(newfile);
427 struct socket *sock_from_file(struct file *file, int *err)
429 if (file->f_op == &socket_file_ops)
430 return file->private_data; /* set in sock_map_fd */
432 *err = -ENOTSOCK;
433 return NULL;
435 EXPORT_SYMBOL(sock_from_file);
438 * sockfd_lookup - Go from a file number to its socket slot
439 * @fd: file handle
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket *sockfd_lookup(int fd, int *err)
452 struct file *file;
453 struct socket *sock;
455 file = fget(fd);
456 if (!file) {
457 *err = -EBADF;
458 return NULL;
461 sock = sock_from_file(file, err);
462 if (!sock)
463 fput(file);
464 return sock;
466 EXPORT_SYMBOL(sockfd_lookup);
468 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
470 struct fd f = fdget(fd);
471 struct socket *sock;
473 *err = -EBADF;
474 if (f.file) {
475 sock = sock_from_file(f.file, err);
476 if (likely(sock)) {
477 *fput_needed = f.flags;
478 return sock;
480 fdput(f);
482 return NULL;
485 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
486 size_t size)
488 ssize_t len;
489 ssize_t used = 0;
491 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
492 if (len < 0)
493 return len;
494 used += len;
495 if (buffer) {
496 if (size < used)
497 return -ERANGE;
498 buffer += len;
501 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
502 used += len;
503 if (buffer) {
504 if (size < used)
505 return -ERANGE;
506 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
507 buffer += len;
510 return used;
513 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
515 int err = simple_setattr(dentry, iattr);
517 if (!err && (iattr->ia_valid & ATTR_UID)) {
518 struct socket *sock = SOCKET_I(d_inode(dentry));
520 if (sock->sk)
521 sock->sk->sk_uid = iattr->ia_uid;
522 else
523 err = -ENOENT;
526 return err;
529 static const struct inode_operations sockfs_inode_ops = {
530 .listxattr = sockfs_listxattr,
531 .setattr = sockfs_setattr,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
539 * NULL is returned.
542 struct socket *sock_alloc(void)
544 struct inode *inode;
545 struct socket *sock;
547 inode = new_inode_pseudo(sock_mnt->mnt_sb);
548 if (!inode)
549 return NULL;
551 sock = SOCKET_I(inode);
553 inode->i_ino = get_next_ino();
554 inode->i_mode = S_IFSOCK | S_IRWXUGO;
555 inode->i_uid = current_fsuid();
556 inode->i_gid = current_fsgid();
557 inode->i_op = &sockfs_inode_ops;
559 return sock;
561 EXPORT_SYMBOL(sock_alloc);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket *sock, struct inode *inode)
574 if (sock->ops) {
575 struct module *owner = sock->ops->owner;
577 if (inode)
578 inode_lock(inode);
579 sock->ops->release(sock);
580 sock->sk = NULL;
581 if (inode)
582 inode_unlock(inode);
583 sock->ops = NULL;
584 module_put(owner);
587 if (sock->wq->fasync_list)
588 pr_err("%s: fasync list not empty!\n", __func__);
590 if (!sock->file) {
591 iput(SOCK_INODE(sock));
592 return;
594 sock->file = NULL;
597 void sock_release(struct socket *sock)
599 __sock_release(sock, NULL);
601 EXPORT_SYMBOL(sock_release);
603 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
605 u8 flags = *tx_flags;
607 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
608 flags |= SKBTX_HW_TSTAMP;
610 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
611 flags |= SKBTX_SW_TSTAMP;
613 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
614 flags |= SKBTX_SCHED_TSTAMP;
616 *tx_flags = flags;
618 EXPORT_SYMBOL(__sock_tx_timestamp);
620 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
622 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
623 BUG_ON(ret == -EIOCBQUEUED);
624 return ret;
627 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
629 int err = security_socket_sendmsg(sock, msg,
630 msg_data_left(msg));
632 return err ?: sock_sendmsg_nosec(sock, msg);
634 EXPORT_SYMBOL(sock_sendmsg);
636 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
637 struct kvec *vec, size_t num, size_t size)
639 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
640 return sock_sendmsg(sock, msg);
642 EXPORT_SYMBOL(kernel_sendmsg);
644 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
645 struct kvec *vec, size_t num, size_t size)
647 struct socket *sock = sk->sk_socket;
649 if (!sock->ops->sendmsg_locked)
650 return sock_no_sendmsg_locked(sk, msg, size);
652 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
654 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
656 EXPORT_SYMBOL(kernel_sendmsg_locked);
658 static bool skb_is_err_queue(const struct sk_buff *skb)
660 /* pkt_type of skbs enqueued on the error queue are set to
661 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
662 * in recvmsg, since skbs received on a local socket will never
663 * have a pkt_type of PACKET_OUTGOING.
665 return skb->pkt_type == PACKET_OUTGOING;
668 /* On transmit, software and hardware timestamps are returned independently.
669 * As the two skb clones share the hardware timestamp, which may be updated
670 * before the software timestamp is received, a hardware TX timestamp may be
671 * returned only if there is no software TX timestamp. Ignore false software
672 * timestamps, which may be made in the __sock_recv_timestamp() call when the
673 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
674 * hardware timestamp.
676 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
678 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
681 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
683 struct scm_ts_pktinfo ts_pktinfo;
684 struct net_device *orig_dev;
686 if (!skb_mac_header_was_set(skb))
687 return;
689 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
691 rcu_read_lock();
692 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
693 if (orig_dev)
694 ts_pktinfo.if_index = orig_dev->ifindex;
695 rcu_read_unlock();
697 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
698 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
699 sizeof(ts_pktinfo), &ts_pktinfo);
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
705 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706 struct sk_buff *skb)
708 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709 struct scm_timestamping tss;
710 int empty = 1, false_tstamp = 0;
711 struct skb_shared_hwtstamps *shhwtstamps =
712 skb_hwtstamps(skb);
714 /* Race occurred between timestamp enabling and packet
715 receiving. Fill in the current time for now. */
716 if (need_software_tstamp && skb->tstamp == 0) {
717 __net_timestamp(skb);
718 false_tstamp = 1;
721 if (need_software_tstamp) {
722 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
723 struct timeval tv;
724 skb_get_timestamp(skb, &tv);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
726 sizeof(tv), &tv);
727 } else {
728 struct timespec ts;
729 skb_get_timestampns(skb, &ts);
730 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
731 sizeof(ts), &ts);
735 memset(&tss, 0, sizeof(tss));
736 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
737 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
738 empty = 0;
739 if (shhwtstamps &&
740 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
741 !skb_is_swtx_tstamp(skb, false_tstamp) &&
742 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
743 empty = 0;
744 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
745 !skb_is_err_queue(skb))
746 put_ts_pktinfo(msg, skb);
748 if (!empty) {
749 put_cmsg(msg, SOL_SOCKET,
750 SCM_TIMESTAMPING, sizeof(tss), &tss);
752 if (skb_is_err_queue(skb) && skb->len &&
753 SKB_EXT_ERR(skb)->opt_stats)
754 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
755 skb->len, skb->data);
758 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
760 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
761 struct sk_buff *skb)
763 int ack;
765 if (!sock_flag(sk, SOCK_WIFI_STATUS))
766 return;
767 if (!skb->wifi_acked_valid)
768 return;
770 ack = skb->wifi_acked;
772 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
774 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
776 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
777 struct sk_buff *skb)
779 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
780 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
781 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
784 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
785 struct sk_buff *skb)
787 sock_recv_timestamp(msg, sk, skb);
788 sock_recv_drops(msg, sk, skb);
790 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
792 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
793 int flags)
795 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
798 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
800 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
802 return err ?: sock_recvmsg_nosec(sock, msg, flags);
804 EXPORT_SYMBOL(sock_recvmsg);
807 * kernel_recvmsg - Receive a message from a socket (kernel space)
808 * @sock: The socket to receive the message from
809 * @msg: Received message
810 * @vec: Input s/g array for message data
811 * @num: Size of input s/g array
812 * @size: Number of bytes to read
813 * @flags: Message flags (MSG_DONTWAIT, etc...)
815 * On return the msg structure contains the scatter/gather array passed in the
816 * vec argument. The array is modified so that it consists of the unfilled
817 * portion of the original array.
819 * The returned value is the total number of bytes received, or an error.
821 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
822 struct kvec *vec, size_t num, size_t size, int flags)
824 mm_segment_t oldfs = get_fs();
825 int result;
827 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
828 set_fs(KERNEL_DS);
829 result = sock_recvmsg(sock, msg, flags);
830 set_fs(oldfs);
831 return result;
833 EXPORT_SYMBOL(kernel_recvmsg);
835 static ssize_t sock_sendpage(struct file *file, struct page *page,
836 int offset, size_t size, loff_t *ppos, int more)
838 struct socket *sock;
839 int flags;
841 sock = file->private_data;
843 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
844 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
845 flags |= more;
847 return kernel_sendpage(sock, page, offset, size, flags);
850 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
851 struct pipe_inode_info *pipe, size_t len,
852 unsigned int flags)
854 struct socket *sock = file->private_data;
856 if (unlikely(!sock->ops->splice_read))
857 return -EINVAL;
859 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
862 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
864 struct file *file = iocb->ki_filp;
865 struct socket *sock = file->private_data;
866 struct msghdr msg = {.msg_iter = *to,
867 .msg_iocb = iocb};
868 ssize_t res;
870 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
871 msg.msg_flags = MSG_DONTWAIT;
873 if (iocb->ki_pos != 0)
874 return -ESPIPE;
876 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
877 return 0;
879 res = sock_recvmsg(sock, &msg, msg.msg_flags);
880 *to = msg.msg_iter;
881 return res;
884 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
886 struct file *file = iocb->ki_filp;
887 struct socket *sock = file->private_data;
888 struct msghdr msg = {.msg_iter = *from,
889 .msg_iocb = iocb};
890 ssize_t res;
892 if (iocb->ki_pos != 0)
893 return -ESPIPE;
895 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
896 msg.msg_flags = MSG_DONTWAIT;
898 if (sock->type == SOCK_SEQPACKET)
899 msg.msg_flags |= MSG_EOR;
901 res = sock_sendmsg(sock, &msg);
902 *from = msg.msg_iter;
903 return res;
907 * Atomic setting of ioctl hooks to avoid race
908 * with module unload.
911 static DEFINE_MUTEX(br_ioctl_mutex);
912 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
914 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
916 mutex_lock(&br_ioctl_mutex);
917 br_ioctl_hook = hook;
918 mutex_unlock(&br_ioctl_mutex);
920 EXPORT_SYMBOL(brioctl_set);
922 static DEFINE_MUTEX(vlan_ioctl_mutex);
923 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
925 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
927 mutex_lock(&vlan_ioctl_mutex);
928 vlan_ioctl_hook = hook;
929 mutex_unlock(&vlan_ioctl_mutex);
931 EXPORT_SYMBOL(vlan_ioctl_set);
933 static DEFINE_MUTEX(dlci_ioctl_mutex);
934 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
936 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
938 mutex_lock(&dlci_ioctl_mutex);
939 dlci_ioctl_hook = hook;
940 mutex_unlock(&dlci_ioctl_mutex);
942 EXPORT_SYMBOL(dlci_ioctl_set);
944 static long sock_do_ioctl(struct net *net, struct socket *sock,
945 unsigned int cmd, unsigned long arg)
947 int err;
948 void __user *argp = (void __user *)arg;
950 err = sock->ops->ioctl(sock, cmd, arg);
953 * If this ioctl is unknown try to hand it down
954 * to the NIC driver.
956 if (err != -ENOIOCTLCMD)
957 return err;
959 if (cmd == SIOCGIFCONF) {
960 struct ifconf ifc;
961 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
962 return -EFAULT;
963 rtnl_lock();
964 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
965 rtnl_unlock();
966 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
967 err = -EFAULT;
968 } else {
969 struct ifreq ifr;
970 bool need_copyout;
971 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
972 return -EFAULT;
973 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
974 if (!err && need_copyout)
975 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
976 return -EFAULT;
978 return err;
982 * With an ioctl, arg may well be a user mode pointer, but we don't know
983 * what to do with it - that's up to the protocol still.
986 struct ns_common *get_net_ns(struct ns_common *ns)
988 return &get_net(container_of(ns, struct net, ns))->ns;
990 EXPORT_SYMBOL_GPL(get_net_ns);
992 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
994 struct socket *sock;
995 struct sock *sk;
996 void __user *argp = (void __user *)arg;
997 int pid, err;
998 struct net *net;
1000 sock = file->private_data;
1001 sk = sock->sk;
1002 net = sock_net(sk);
1003 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1004 struct ifreq ifr;
1005 bool need_copyout;
1006 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1007 return -EFAULT;
1008 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1009 if (!err && need_copyout)
1010 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1011 return -EFAULT;
1012 } else
1013 #ifdef CONFIG_WEXT_CORE
1014 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1015 err = wext_handle_ioctl(net, cmd, argp);
1016 } else
1017 #endif
1018 switch (cmd) {
1019 case FIOSETOWN:
1020 case SIOCSPGRP:
1021 err = -EFAULT;
1022 if (get_user(pid, (int __user *)argp))
1023 break;
1024 err = f_setown(sock->file, pid, 1);
1025 break;
1026 case FIOGETOWN:
1027 case SIOCGPGRP:
1028 err = put_user(f_getown(sock->file),
1029 (int __user *)argp);
1030 break;
1031 case SIOCGIFBR:
1032 case SIOCSIFBR:
1033 case SIOCBRADDBR:
1034 case SIOCBRDELBR:
1035 err = -ENOPKG;
1036 if (!br_ioctl_hook)
1037 request_module("bridge");
1039 mutex_lock(&br_ioctl_mutex);
1040 if (br_ioctl_hook)
1041 err = br_ioctl_hook(net, cmd, argp);
1042 mutex_unlock(&br_ioctl_mutex);
1043 break;
1044 case SIOCGIFVLAN:
1045 case SIOCSIFVLAN:
1046 err = -ENOPKG;
1047 if (!vlan_ioctl_hook)
1048 request_module("8021q");
1050 mutex_lock(&vlan_ioctl_mutex);
1051 if (vlan_ioctl_hook)
1052 err = vlan_ioctl_hook(net, argp);
1053 mutex_unlock(&vlan_ioctl_mutex);
1054 break;
1055 case SIOCADDDLCI:
1056 case SIOCDELDLCI:
1057 err = -ENOPKG;
1058 if (!dlci_ioctl_hook)
1059 request_module("dlci");
1061 mutex_lock(&dlci_ioctl_mutex);
1062 if (dlci_ioctl_hook)
1063 err = dlci_ioctl_hook(cmd, argp);
1064 mutex_unlock(&dlci_ioctl_mutex);
1065 break;
1066 case SIOCGSKNS:
1067 err = -EPERM;
1068 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1069 break;
1071 err = open_related_ns(&net->ns, get_net_ns);
1072 break;
1073 default:
1074 err = sock_do_ioctl(net, sock, cmd, arg);
1075 break;
1077 return err;
1080 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1082 int err;
1083 struct socket *sock = NULL;
1085 err = security_socket_create(family, type, protocol, 1);
1086 if (err)
1087 goto out;
1089 sock = sock_alloc();
1090 if (!sock) {
1091 err = -ENOMEM;
1092 goto out;
1095 sock->type = type;
1096 err = security_socket_post_create(sock, family, type, protocol, 1);
1097 if (err)
1098 goto out_release;
1100 out:
1101 *res = sock;
1102 return err;
1103 out_release:
1104 sock_release(sock);
1105 sock = NULL;
1106 goto out;
1108 EXPORT_SYMBOL(sock_create_lite);
1110 /* No kernel lock held - perfect */
1111 static __poll_t sock_poll(struct file *file, poll_table *wait)
1113 struct socket *sock = file->private_data;
1114 __poll_t events = poll_requested_events(wait), flag = 0;
1116 if (!sock->ops->poll)
1117 return 0;
1119 if (sk_can_busy_loop(sock->sk)) {
1120 /* poll once if requested by the syscall */
1121 if (events & POLL_BUSY_LOOP)
1122 sk_busy_loop(sock->sk, 1);
1124 /* if this socket can poll_ll, tell the system call */
1125 flag = POLL_BUSY_LOOP;
1128 return sock->ops->poll(file, sock, wait) | flag;
1131 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1133 struct socket *sock = file->private_data;
1135 return sock->ops->mmap(file, sock, vma);
1138 static int sock_close(struct inode *inode, struct file *filp)
1140 __sock_release(SOCKET_I(inode), inode);
1141 return 0;
1145 * Update the socket async list
1147 * Fasync_list locking strategy.
1149 * 1. fasync_list is modified only under process context socket lock
1150 * i.e. under semaphore.
1151 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1152 * or under socket lock
1155 static int sock_fasync(int fd, struct file *filp, int on)
1157 struct socket *sock = filp->private_data;
1158 struct sock *sk = sock->sk;
1159 struct socket_wq *wq;
1161 if (sk == NULL)
1162 return -EINVAL;
1164 lock_sock(sk);
1165 wq = sock->wq;
1166 fasync_helper(fd, filp, on, &wq->fasync_list);
1168 if (!wq->fasync_list)
1169 sock_reset_flag(sk, SOCK_FASYNC);
1170 else
1171 sock_set_flag(sk, SOCK_FASYNC);
1173 release_sock(sk);
1174 return 0;
1177 /* This function may be called only under rcu_lock */
1179 int sock_wake_async(struct socket_wq *wq, int how, int band)
1181 if (!wq || !wq->fasync_list)
1182 return -1;
1184 switch (how) {
1185 case SOCK_WAKE_WAITD:
1186 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1187 break;
1188 goto call_kill;
1189 case SOCK_WAKE_SPACE:
1190 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1191 break;
1192 /* fall through */
1193 case SOCK_WAKE_IO:
1194 call_kill:
1195 kill_fasync(&wq->fasync_list, SIGIO, band);
1196 break;
1197 case SOCK_WAKE_URG:
1198 kill_fasync(&wq->fasync_list, SIGURG, band);
1201 return 0;
1203 EXPORT_SYMBOL(sock_wake_async);
1205 int __sock_create(struct net *net, int family, int type, int protocol,
1206 struct socket **res, int kern)
1208 int err;
1209 struct socket *sock;
1210 const struct net_proto_family *pf;
1213 * Check protocol is in range
1215 if (family < 0 || family >= NPROTO)
1216 return -EAFNOSUPPORT;
1217 if (type < 0 || type >= SOCK_MAX)
1218 return -EINVAL;
1220 /* Compatibility.
1222 This uglymoron is moved from INET layer to here to avoid
1223 deadlock in module load.
1225 if (family == PF_INET && type == SOCK_PACKET) {
1226 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1227 current->comm);
1228 family = PF_PACKET;
1231 err = security_socket_create(family, type, protocol, kern);
1232 if (err)
1233 return err;
1236 * Allocate the socket and allow the family to set things up. if
1237 * the protocol is 0, the family is instructed to select an appropriate
1238 * default.
1240 sock = sock_alloc();
1241 if (!sock) {
1242 net_warn_ratelimited("socket: no more sockets\n");
1243 return -ENFILE; /* Not exactly a match, but its the
1244 closest posix thing */
1247 sock->type = type;
1249 #ifdef CONFIG_MODULES
1250 /* Attempt to load a protocol module if the find failed.
1252 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1253 * requested real, full-featured networking support upon configuration.
1254 * Otherwise module support will break!
1256 if (rcu_access_pointer(net_families[family]) == NULL)
1257 request_module("net-pf-%d", family);
1258 #endif
1260 rcu_read_lock();
1261 pf = rcu_dereference(net_families[family]);
1262 err = -EAFNOSUPPORT;
1263 if (!pf)
1264 goto out_release;
1267 * We will call the ->create function, that possibly is in a loadable
1268 * module, so we have to bump that loadable module refcnt first.
1270 if (!try_module_get(pf->owner))
1271 goto out_release;
1273 /* Now protected by module ref count */
1274 rcu_read_unlock();
1276 err = pf->create(net, sock, protocol, kern);
1277 if (err < 0)
1278 goto out_module_put;
1281 * Now to bump the refcnt of the [loadable] module that owns this
1282 * socket at sock_release time we decrement its refcnt.
1284 if (!try_module_get(sock->ops->owner))
1285 goto out_module_busy;
1288 * Now that we're done with the ->create function, the [loadable]
1289 * module can have its refcnt decremented
1291 module_put(pf->owner);
1292 err = security_socket_post_create(sock, family, type, protocol, kern);
1293 if (err)
1294 goto out_sock_release;
1295 *res = sock;
1297 return 0;
1299 out_module_busy:
1300 err = -EAFNOSUPPORT;
1301 out_module_put:
1302 sock->ops = NULL;
1303 module_put(pf->owner);
1304 out_sock_release:
1305 sock_release(sock);
1306 return err;
1308 out_release:
1309 rcu_read_unlock();
1310 goto out_sock_release;
1312 EXPORT_SYMBOL(__sock_create);
1314 int sock_create(int family, int type, int protocol, struct socket **res)
1316 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1318 EXPORT_SYMBOL(sock_create);
1320 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1322 return __sock_create(net, family, type, protocol, res, 1);
1324 EXPORT_SYMBOL(sock_create_kern);
1326 int __sys_socket(int family, int type, int protocol)
1328 int retval;
1329 struct socket *sock;
1330 int flags;
1332 /* Check the SOCK_* constants for consistency. */
1333 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1334 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1335 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1336 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1338 flags = type & ~SOCK_TYPE_MASK;
1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1340 return -EINVAL;
1341 type &= SOCK_TYPE_MASK;
1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1346 retval = sock_create(family, type, protocol, &sock);
1347 if (retval < 0)
1348 return retval;
1350 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1353 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1355 return __sys_socket(family, type, protocol);
1359 * Create a pair of connected sockets.
1362 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1364 struct socket *sock1, *sock2;
1365 int fd1, fd2, err;
1366 struct file *newfile1, *newfile2;
1367 int flags;
1369 flags = type & ~SOCK_TYPE_MASK;
1370 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1371 return -EINVAL;
1372 type &= SOCK_TYPE_MASK;
1374 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1375 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1378 * reserve descriptors and make sure we won't fail
1379 * to return them to userland.
1381 fd1 = get_unused_fd_flags(flags);
1382 if (unlikely(fd1 < 0))
1383 return fd1;
1385 fd2 = get_unused_fd_flags(flags);
1386 if (unlikely(fd2 < 0)) {
1387 put_unused_fd(fd1);
1388 return fd2;
1391 err = put_user(fd1, &usockvec[0]);
1392 if (err)
1393 goto out;
1395 err = put_user(fd2, &usockvec[1]);
1396 if (err)
1397 goto out;
1400 * Obtain the first socket and check if the underlying protocol
1401 * supports the socketpair call.
1404 err = sock_create(family, type, protocol, &sock1);
1405 if (unlikely(err < 0))
1406 goto out;
1408 err = sock_create(family, type, protocol, &sock2);
1409 if (unlikely(err < 0)) {
1410 sock_release(sock1);
1411 goto out;
1414 err = security_socket_socketpair(sock1, sock2);
1415 if (unlikely(err)) {
1416 sock_release(sock2);
1417 sock_release(sock1);
1418 goto out;
1421 err = sock1->ops->socketpair(sock1, sock2);
1422 if (unlikely(err < 0)) {
1423 sock_release(sock2);
1424 sock_release(sock1);
1425 goto out;
1428 newfile1 = sock_alloc_file(sock1, flags, NULL);
1429 if (IS_ERR(newfile1)) {
1430 err = PTR_ERR(newfile1);
1431 sock_release(sock2);
1432 goto out;
1435 newfile2 = sock_alloc_file(sock2, flags, NULL);
1436 if (IS_ERR(newfile2)) {
1437 err = PTR_ERR(newfile2);
1438 fput(newfile1);
1439 goto out;
1442 audit_fd_pair(fd1, fd2);
1444 fd_install(fd1, newfile1);
1445 fd_install(fd2, newfile2);
1446 return 0;
1448 out:
1449 put_unused_fd(fd2);
1450 put_unused_fd(fd1);
1451 return err;
1454 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1455 int __user *, usockvec)
1457 return __sys_socketpair(family, type, protocol, usockvec);
1461 * Bind a name to a socket. Nothing much to do here since it's
1462 * the protocol's responsibility to handle the local address.
1464 * We move the socket address to kernel space before we call
1465 * the protocol layer (having also checked the address is ok).
1468 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1470 struct socket *sock;
1471 struct sockaddr_storage address;
1472 int err, fput_needed;
1474 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1475 if (sock) {
1476 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1477 if (err >= 0) {
1478 err = security_socket_bind(sock,
1479 (struct sockaddr *)&address,
1480 addrlen);
1481 if (!err)
1482 err = sock->ops->bind(sock,
1483 (struct sockaddr *)
1484 &address, addrlen);
1486 fput_light(sock->file, fput_needed);
1488 return err;
1491 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1493 return __sys_bind(fd, umyaddr, addrlen);
1497 * Perform a listen. Basically, we allow the protocol to do anything
1498 * necessary for a listen, and if that works, we mark the socket as
1499 * ready for listening.
1502 int __sys_listen(int fd, int backlog)
1504 struct socket *sock;
1505 int err, fput_needed;
1506 int somaxconn;
1508 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 if (sock) {
1510 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1511 if ((unsigned int)backlog > somaxconn)
1512 backlog = somaxconn;
1514 err = security_socket_listen(sock, backlog);
1515 if (!err)
1516 err = sock->ops->listen(sock, backlog);
1518 fput_light(sock->file, fput_needed);
1520 return err;
1523 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1525 return __sys_listen(fd, backlog);
1529 * For accept, we attempt to create a new socket, set up the link
1530 * with the client, wake up the client, then return the new
1531 * connected fd. We collect the address of the connector in kernel
1532 * space and move it to user at the very end. This is unclean because
1533 * we open the socket then return an error.
1535 * 1003.1g adds the ability to recvmsg() to query connection pending
1536 * status to recvmsg. We need to add that support in a way thats
1537 * clean when we restructure accept also.
1540 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1541 int __user *upeer_addrlen, int flags)
1543 struct socket *sock, *newsock;
1544 struct file *newfile;
1545 int err, len, newfd, fput_needed;
1546 struct sockaddr_storage address;
1548 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1549 return -EINVAL;
1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1554 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 if (!sock)
1556 goto out;
1558 err = -ENFILE;
1559 newsock = sock_alloc();
1560 if (!newsock)
1561 goto out_put;
1563 newsock->type = sock->type;
1564 newsock->ops = sock->ops;
1567 * We don't need try_module_get here, as the listening socket (sock)
1568 * has the protocol module (sock->ops->owner) held.
1570 __module_get(newsock->ops->owner);
1572 newfd = get_unused_fd_flags(flags);
1573 if (unlikely(newfd < 0)) {
1574 err = newfd;
1575 sock_release(newsock);
1576 goto out_put;
1578 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1579 if (IS_ERR(newfile)) {
1580 err = PTR_ERR(newfile);
1581 put_unused_fd(newfd);
1582 goto out_put;
1585 err = security_socket_accept(sock, newsock);
1586 if (err)
1587 goto out_fd;
1589 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1590 if (err < 0)
1591 goto out_fd;
1593 if (upeer_sockaddr) {
1594 len = newsock->ops->getname(newsock,
1595 (struct sockaddr *)&address, 2);
1596 if (len < 0) {
1597 err = -ECONNABORTED;
1598 goto out_fd;
1600 err = move_addr_to_user(&address,
1601 len, upeer_sockaddr, upeer_addrlen);
1602 if (err < 0)
1603 goto out_fd;
1606 /* File flags are not inherited via accept() unlike another OSes. */
1608 fd_install(newfd, newfile);
1609 err = newfd;
1611 out_put:
1612 fput_light(sock->file, fput_needed);
1613 out:
1614 return err;
1615 out_fd:
1616 fput(newfile);
1617 put_unused_fd(newfd);
1618 goto out_put;
1621 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1622 int __user *, upeer_addrlen, int, flags)
1624 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1627 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1628 int __user *, upeer_addrlen)
1630 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1634 * Attempt to connect to a socket with the server address. The address
1635 * is in user space so we verify it is OK and move it to kernel space.
1637 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1638 * break bindings
1640 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1641 * other SEQPACKET protocols that take time to connect() as it doesn't
1642 * include the -EINPROGRESS status for such sockets.
1645 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1647 struct socket *sock;
1648 struct sockaddr_storage address;
1649 int err, fput_needed;
1651 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1652 if (!sock)
1653 goto out;
1654 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1655 if (err < 0)
1656 goto out_put;
1658 err =
1659 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1660 if (err)
1661 goto out_put;
1663 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1664 sock->file->f_flags);
1665 out_put:
1666 fput_light(sock->file, fput_needed);
1667 out:
1668 return err;
1671 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1672 int, addrlen)
1674 return __sys_connect(fd, uservaddr, addrlen);
1678 * Get the local address ('name') of a socket object. Move the obtained
1679 * name to user space.
1682 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1683 int __user *usockaddr_len)
1685 struct socket *sock;
1686 struct sockaddr_storage address;
1687 int err, fput_needed;
1689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690 if (!sock)
1691 goto out;
1693 err = security_socket_getsockname(sock);
1694 if (err)
1695 goto out_put;
1697 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1698 if (err < 0)
1699 goto out_put;
1700 /* "err" is actually length in this case */
1701 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1703 out_put:
1704 fput_light(sock->file, fput_needed);
1705 out:
1706 return err;
1709 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1710 int __user *, usockaddr_len)
1712 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1716 * Get the remote address ('name') of a socket object. Move the obtained
1717 * name to user space.
1720 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1721 int __user *usockaddr_len)
1723 struct socket *sock;
1724 struct sockaddr_storage address;
1725 int err, fput_needed;
1727 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728 if (sock != NULL) {
1729 err = security_socket_getpeername(sock);
1730 if (err) {
1731 fput_light(sock->file, fput_needed);
1732 return err;
1735 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1736 if (err >= 0)
1737 /* "err" is actually length in this case */
1738 err = move_addr_to_user(&address, err, usockaddr,
1739 usockaddr_len);
1740 fput_light(sock->file, fput_needed);
1742 return err;
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746 int __user *, usockaddr_len)
1748 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1752 * Send a datagram to a given address. We move the address into kernel
1753 * space and check the user space data area is readable before invoking
1754 * the protocol.
1756 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1757 struct sockaddr __user *addr, int addr_len)
1759 struct socket *sock;
1760 struct sockaddr_storage address;
1761 int err;
1762 struct msghdr msg;
1763 struct iovec iov;
1764 int fput_needed;
1766 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1767 if (unlikely(err))
1768 return err;
1769 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 if (!sock)
1771 goto out;
1773 msg.msg_name = NULL;
1774 msg.msg_control = NULL;
1775 msg.msg_controllen = 0;
1776 msg.msg_namelen = 0;
1777 if (addr) {
1778 err = move_addr_to_kernel(addr, addr_len, &address);
1779 if (err < 0)
1780 goto out_put;
1781 msg.msg_name = (struct sockaddr *)&address;
1782 msg.msg_namelen = addr_len;
1784 if (sock->file->f_flags & O_NONBLOCK)
1785 flags |= MSG_DONTWAIT;
1786 msg.msg_flags = flags;
1787 err = sock_sendmsg(sock, &msg);
1789 out_put:
1790 fput_light(sock->file, fput_needed);
1791 out:
1792 return err;
1795 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1796 unsigned int, flags, struct sockaddr __user *, addr,
1797 int, addr_len)
1799 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1803 * Send a datagram down a socket.
1806 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1807 unsigned int, flags)
1809 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1813 * Receive a frame from the socket and optionally record the address of the
1814 * sender. We verify the buffers are writable and if needed move the
1815 * sender address from kernel to user space.
1817 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1818 struct sockaddr __user *addr, int __user *addr_len)
1820 struct socket *sock;
1821 struct iovec iov;
1822 struct msghdr msg;
1823 struct sockaddr_storage address;
1824 int err, err2;
1825 int fput_needed;
1827 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1828 if (unlikely(err))
1829 return err;
1830 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1831 if (!sock)
1832 goto out;
1834 msg.msg_control = NULL;
1835 msg.msg_controllen = 0;
1836 /* Save some cycles and don't copy the address if not needed */
1837 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1838 /* We assume all kernel code knows the size of sockaddr_storage */
1839 msg.msg_namelen = 0;
1840 msg.msg_iocb = NULL;
1841 msg.msg_flags = 0;
1842 if (sock->file->f_flags & O_NONBLOCK)
1843 flags |= MSG_DONTWAIT;
1844 err = sock_recvmsg(sock, &msg, flags);
1846 if (err >= 0 && addr != NULL) {
1847 err2 = move_addr_to_user(&address,
1848 msg.msg_namelen, addr, addr_len);
1849 if (err2 < 0)
1850 err = err2;
1853 fput_light(sock->file, fput_needed);
1854 out:
1855 return err;
1858 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1859 unsigned int, flags, struct sockaddr __user *, addr,
1860 int __user *, addr_len)
1862 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1866 * Receive a datagram from a socket.
1869 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1870 unsigned int, flags)
1872 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1876 * Set a socket option. Because we don't know the option lengths we have
1877 * to pass the user mode parameter for the protocols to sort out.
1880 static int __sys_setsockopt(int fd, int level, int optname,
1881 char __user *optval, int optlen)
1883 int err, fput_needed;
1884 struct socket *sock;
1886 if (optlen < 0)
1887 return -EINVAL;
1889 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1890 if (sock != NULL) {
1891 err = security_socket_setsockopt(sock, level, optname);
1892 if (err)
1893 goto out_put;
1895 if (level == SOL_SOCKET)
1896 err =
1897 sock_setsockopt(sock, level, optname, optval,
1898 optlen);
1899 else
1900 err =
1901 sock->ops->setsockopt(sock, level, optname, optval,
1902 optlen);
1903 out_put:
1904 fput_light(sock->file, fput_needed);
1906 return err;
1909 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1910 char __user *, optval, int, optlen)
1912 return __sys_setsockopt(fd, level, optname, optval, optlen);
1916 * Get a socket option. Because we don't know the option lengths we have
1917 * to pass a user mode parameter for the protocols to sort out.
1920 static int __sys_getsockopt(int fd, int level, int optname,
1921 char __user *optval, int __user *optlen)
1923 int err, fput_needed;
1924 struct socket *sock;
1926 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1927 if (sock != NULL) {
1928 err = security_socket_getsockopt(sock, level, optname);
1929 if (err)
1930 goto out_put;
1932 if (level == SOL_SOCKET)
1933 err =
1934 sock_getsockopt(sock, level, optname, optval,
1935 optlen);
1936 else
1937 err =
1938 sock->ops->getsockopt(sock, level, optname, optval,
1939 optlen);
1940 out_put:
1941 fput_light(sock->file, fput_needed);
1943 return err;
1946 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1947 char __user *, optval, int __user *, optlen)
1949 return __sys_getsockopt(fd, level, optname, optval, optlen);
1953 * Shutdown a socket.
1956 int __sys_shutdown(int fd, int how)
1958 int err, fput_needed;
1959 struct socket *sock;
1961 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962 if (sock != NULL) {
1963 err = security_socket_shutdown(sock, how);
1964 if (!err)
1965 err = sock->ops->shutdown(sock, how);
1966 fput_light(sock->file, fput_needed);
1968 return err;
1971 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1973 return __sys_shutdown(fd, how);
1976 /* A couple of helpful macros for getting the address of the 32/64 bit
1977 * fields which are the same type (int / unsigned) on our platforms.
1979 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1980 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1981 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1983 struct used_address {
1984 struct sockaddr_storage name;
1985 unsigned int name_len;
1988 static int copy_msghdr_from_user(struct msghdr *kmsg,
1989 struct user_msghdr __user *umsg,
1990 struct sockaddr __user **save_addr,
1991 struct iovec **iov)
1993 struct user_msghdr msg;
1994 ssize_t err;
1996 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1997 return -EFAULT;
1999 kmsg->msg_control = (void __force *)msg.msg_control;
2000 kmsg->msg_controllen = msg.msg_controllen;
2001 kmsg->msg_flags = msg.msg_flags;
2003 kmsg->msg_namelen = msg.msg_namelen;
2004 if (!msg.msg_name)
2005 kmsg->msg_namelen = 0;
2007 if (kmsg->msg_namelen < 0)
2008 return -EINVAL;
2010 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2011 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2013 if (save_addr)
2014 *save_addr = msg.msg_name;
2016 if (msg.msg_name && kmsg->msg_namelen) {
2017 if (!save_addr) {
2018 err = move_addr_to_kernel(msg.msg_name,
2019 kmsg->msg_namelen,
2020 kmsg->msg_name);
2021 if (err < 0)
2022 return err;
2024 } else {
2025 kmsg->msg_name = NULL;
2026 kmsg->msg_namelen = 0;
2029 if (msg.msg_iovlen > UIO_MAXIOV)
2030 return -EMSGSIZE;
2032 kmsg->msg_iocb = NULL;
2034 return import_iovec(save_addr ? READ : WRITE,
2035 msg.msg_iov, msg.msg_iovlen,
2036 UIO_FASTIOV, iov, &kmsg->msg_iter);
2039 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2040 struct msghdr *msg_sys, unsigned int flags,
2041 struct used_address *used_address,
2042 unsigned int allowed_msghdr_flags)
2044 struct compat_msghdr __user *msg_compat =
2045 (struct compat_msghdr __user *)msg;
2046 struct sockaddr_storage address;
2047 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2048 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2049 __aligned(sizeof(__kernel_size_t));
2050 /* 20 is size of ipv6_pktinfo */
2051 unsigned char *ctl_buf = ctl;
2052 int ctl_len;
2053 ssize_t err;
2055 msg_sys->msg_name = &address;
2057 if (MSG_CMSG_COMPAT & flags)
2058 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2059 else
2060 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2061 if (err < 0)
2062 return err;
2064 err = -ENOBUFS;
2066 if (msg_sys->msg_controllen > INT_MAX)
2067 goto out_freeiov;
2068 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2069 ctl_len = msg_sys->msg_controllen;
2070 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2071 err =
2072 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2073 sizeof(ctl));
2074 if (err)
2075 goto out_freeiov;
2076 ctl_buf = msg_sys->msg_control;
2077 ctl_len = msg_sys->msg_controllen;
2078 } else if (ctl_len) {
2079 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2080 CMSG_ALIGN(sizeof(struct cmsghdr)));
2081 if (ctl_len > sizeof(ctl)) {
2082 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2083 if (ctl_buf == NULL)
2084 goto out_freeiov;
2086 err = -EFAULT;
2088 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2089 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2090 * checking falls down on this.
2092 if (copy_from_user(ctl_buf,
2093 (void __user __force *)msg_sys->msg_control,
2094 ctl_len))
2095 goto out_freectl;
2096 msg_sys->msg_control = ctl_buf;
2098 msg_sys->msg_flags = flags;
2100 if (sock->file->f_flags & O_NONBLOCK)
2101 msg_sys->msg_flags |= MSG_DONTWAIT;
2103 * If this is sendmmsg() and current destination address is same as
2104 * previously succeeded address, omit asking LSM's decision.
2105 * used_address->name_len is initialized to UINT_MAX so that the first
2106 * destination address never matches.
2108 if (used_address && msg_sys->msg_name &&
2109 used_address->name_len == msg_sys->msg_namelen &&
2110 !memcmp(&used_address->name, msg_sys->msg_name,
2111 used_address->name_len)) {
2112 err = sock_sendmsg_nosec(sock, msg_sys);
2113 goto out_freectl;
2115 err = sock_sendmsg(sock, msg_sys);
2117 * If this is sendmmsg() and sending to current destination address was
2118 * successful, remember it.
2120 if (used_address && err >= 0) {
2121 used_address->name_len = msg_sys->msg_namelen;
2122 if (msg_sys->msg_name)
2123 memcpy(&used_address->name, msg_sys->msg_name,
2124 used_address->name_len);
2127 out_freectl:
2128 if (ctl_buf != ctl)
2129 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2130 out_freeiov:
2131 kfree(iov);
2132 return err;
2136 * BSD sendmsg interface
2139 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2140 bool forbid_cmsg_compat)
2142 int fput_needed, err;
2143 struct msghdr msg_sys;
2144 struct socket *sock;
2146 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2147 return -EINVAL;
2149 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2150 if (!sock)
2151 goto out;
2153 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2155 fput_light(sock->file, fput_needed);
2156 out:
2157 return err;
2160 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2162 return __sys_sendmsg(fd, msg, flags, true);
2166 * Linux sendmmsg interface
2169 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170 unsigned int flags, bool forbid_cmsg_compat)
2172 int fput_needed, err, datagrams;
2173 struct socket *sock;
2174 struct mmsghdr __user *entry;
2175 struct compat_mmsghdr __user *compat_entry;
2176 struct msghdr msg_sys;
2177 struct used_address used_address;
2178 unsigned int oflags = flags;
2180 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2181 return -EINVAL;
2183 if (vlen > UIO_MAXIOV)
2184 vlen = UIO_MAXIOV;
2186 datagrams = 0;
2188 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2189 if (!sock)
2190 return err;
2192 used_address.name_len = UINT_MAX;
2193 entry = mmsg;
2194 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2195 err = 0;
2196 flags |= MSG_BATCH;
2198 while (datagrams < vlen) {
2199 if (datagrams == vlen - 1)
2200 flags = oflags;
2202 if (MSG_CMSG_COMPAT & flags) {
2203 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2204 &msg_sys, flags, &used_address, MSG_EOR);
2205 if (err < 0)
2206 break;
2207 err = __put_user(err, &compat_entry->msg_len);
2208 ++compat_entry;
2209 } else {
2210 err = ___sys_sendmsg(sock,
2211 (struct user_msghdr __user *)entry,
2212 &msg_sys, flags, &used_address, MSG_EOR);
2213 if (err < 0)
2214 break;
2215 err = put_user(err, &entry->msg_len);
2216 ++entry;
2219 if (err)
2220 break;
2221 ++datagrams;
2222 if (msg_data_left(&msg_sys))
2223 break;
2224 cond_resched();
2227 fput_light(sock->file, fput_needed);
2229 /* We only return an error if no datagrams were able to be sent */
2230 if (datagrams != 0)
2231 return datagrams;
2233 return err;
2236 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2237 unsigned int, vlen, unsigned int, flags)
2239 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2242 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2243 struct msghdr *msg_sys, unsigned int flags, int nosec)
2245 struct compat_msghdr __user *msg_compat =
2246 (struct compat_msghdr __user *)msg;
2247 struct iovec iovstack[UIO_FASTIOV];
2248 struct iovec *iov = iovstack;
2249 unsigned long cmsg_ptr;
2250 int len;
2251 ssize_t err;
2253 /* kernel mode address */
2254 struct sockaddr_storage addr;
2256 /* user mode address pointers */
2257 struct sockaddr __user *uaddr;
2258 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2260 msg_sys->msg_name = &addr;
2262 if (MSG_CMSG_COMPAT & flags)
2263 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2264 else
2265 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2266 if (err < 0)
2267 return err;
2269 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2270 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272 /* We assume all kernel code knows the size of sockaddr_storage */
2273 msg_sys->msg_namelen = 0;
2275 if (sock->file->f_flags & O_NONBLOCK)
2276 flags |= MSG_DONTWAIT;
2277 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2278 if (err < 0)
2279 goto out_freeiov;
2280 len = err;
2282 if (uaddr != NULL) {
2283 err = move_addr_to_user(&addr,
2284 msg_sys->msg_namelen, uaddr,
2285 uaddr_len);
2286 if (err < 0)
2287 goto out_freeiov;
2289 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290 COMPAT_FLAGS(msg));
2291 if (err)
2292 goto out_freeiov;
2293 if (MSG_CMSG_COMPAT & flags)
2294 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295 &msg_compat->msg_controllen);
2296 else
2297 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298 &msg->msg_controllen);
2299 if (err)
2300 goto out_freeiov;
2301 err = len;
2303 out_freeiov:
2304 kfree(iov);
2305 return err;
2309 * BSD recvmsg interface
2312 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2313 bool forbid_cmsg_compat)
2315 int fput_needed, err;
2316 struct msghdr msg_sys;
2317 struct socket *sock;
2319 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2320 return -EINVAL;
2322 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323 if (!sock)
2324 goto out;
2326 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2328 fput_light(sock->file, fput_needed);
2329 out:
2330 return err;
2333 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2334 unsigned int, flags)
2336 return __sys_recvmsg(fd, msg, flags, true);
2340 * Linux recvmmsg interface
2343 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344 unsigned int flags, struct timespec *timeout)
2346 int fput_needed, err, datagrams;
2347 struct socket *sock;
2348 struct mmsghdr __user *entry;
2349 struct compat_mmsghdr __user *compat_entry;
2350 struct msghdr msg_sys;
2351 struct timespec64 end_time;
2352 struct timespec64 timeout64;
2354 if (timeout &&
2355 poll_select_set_timeout(&end_time, timeout->tv_sec,
2356 timeout->tv_nsec))
2357 return -EINVAL;
2359 datagrams = 0;
2361 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2362 if (!sock)
2363 return err;
2365 if (likely(!(flags & MSG_ERRQUEUE))) {
2366 err = sock_error(sock->sk);
2367 if (err) {
2368 datagrams = err;
2369 goto out_put;
2373 entry = mmsg;
2374 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2376 while (datagrams < vlen) {
2378 * No need to ask LSM for more than the first datagram.
2380 if (MSG_CMSG_COMPAT & flags) {
2381 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2382 &msg_sys, flags & ~MSG_WAITFORONE,
2383 datagrams);
2384 if (err < 0)
2385 break;
2386 err = __put_user(err, &compat_entry->msg_len);
2387 ++compat_entry;
2388 } else {
2389 err = ___sys_recvmsg(sock,
2390 (struct user_msghdr __user *)entry,
2391 &msg_sys, flags & ~MSG_WAITFORONE,
2392 datagrams);
2393 if (err < 0)
2394 break;
2395 err = put_user(err, &entry->msg_len);
2396 ++entry;
2399 if (err)
2400 break;
2401 ++datagrams;
2403 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2404 if (flags & MSG_WAITFORONE)
2405 flags |= MSG_DONTWAIT;
2407 if (timeout) {
2408 ktime_get_ts64(&timeout64);
2409 *timeout = timespec64_to_timespec(
2410 timespec64_sub(end_time, timeout64));
2411 if (timeout->tv_sec < 0) {
2412 timeout->tv_sec = timeout->tv_nsec = 0;
2413 break;
2416 /* Timeout, return less than vlen datagrams */
2417 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2418 break;
2421 /* Out of band data, return right away */
2422 if (msg_sys.msg_flags & MSG_OOB)
2423 break;
2424 cond_resched();
2427 if (err == 0)
2428 goto out_put;
2430 if (datagrams == 0) {
2431 datagrams = err;
2432 goto out_put;
2436 * We may return less entries than requested (vlen) if the
2437 * sock is non block and there aren't enough datagrams...
2439 if (err != -EAGAIN) {
2441 * ... or if recvmsg returns an error after we
2442 * received some datagrams, where we record the
2443 * error to return on the next call or if the
2444 * app asks about it using getsockopt(SO_ERROR).
2446 sock->sk->sk_err = -err;
2448 out_put:
2449 fput_light(sock->file, fput_needed);
2451 return datagrams;
2454 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2455 unsigned int vlen, unsigned int flags,
2456 struct timespec __user *timeout)
2458 int datagrams;
2459 struct timespec timeout_sys;
2461 if (flags & MSG_CMSG_COMPAT)
2462 return -EINVAL;
2464 if (!timeout)
2465 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2467 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2468 return -EFAULT;
2470 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2472 if (datagrams > 0 &&
2473 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2474 datagrams = -EFAULT;
2476 return datagrams;
2479 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2480 unsigned int, vlen, unsigned int, flags,
2481 struct timespec __user *, timeout)
2483 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2486 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2487 /* Argument list sizes for sys_socketcall */
2488 #define AL(x) ((x) * sizeof(unsigned long))
2489 static const unsigned char nargs[21] = {
2490 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2491 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2492 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2493 AL(4), AL(5), AL(4)
2496 #undef AL
2499 * System call vectors.
2501 * Argument checking cleaned up. Saved 20% in size.
2502 * This function doesn't need to set the kernel lock because
2503 * it is set by the callees.
2506 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2508 unsigned long a[AUDITSC_ARGS];
2509 unsigned long a0, a1;
2510 int err;
2511 unsigned int len;
2513 if (call < 1 || call > SYS_SENDMMSG)
2514 return -EINVAL;
2515 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2517 len = nargs[call];
2518 if (len > sizeof(a))
2519 return -EINVAL;
2521 /* copy_from_user should be SMP safe. */
2522 if (copy_from_user(a, args, len))
2523 return -EFAULT;
2525 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2526 if (err)
2527 return err;
2529 a0 = a[0];
2530 a1 = a[1];
2532 switch (call) {
2533 case SYS_SOCKET:
2534 err = __sys_socket(a0, a1, a[2]);
2535 break;
2536 case SYS_BIND:
2537 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2538 break;
2539 case SYS_CONNECT:
2540 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2541 break;
2542 case SYS_LISTEN:
2543 err = __sys_listen(a0, a1);
2544 break;
2545 case SYS_ACCEPT:
2546 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2547 (int __user *)a[2], 0);
2548 break;
2549 case SYS_GETSOCKNAME:
2550 err =
2551 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2552 (int __user *)a[2]);
2553 break;
2554 case SYS_GETPEERNAME:
2555 err =
2556 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2557 (int __user *)a[2]);
2558 break;
2559 case SYS_SOCKETPAIR:
2560 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2561 break;
2562 case SYS_SEND:
2563 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2564 NULL, 0);
2565 break;
2566 case SYS_SENDTO:
2567 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2568 (struct sockaddr __user *)a[4], a[5]);
2569 break;
2570 case SYS_RECV:
2571 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2572 NULL, NULL);
2573 break;
2574 case SYS_RECVFROM:
2575 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2576 (struct sockaddr __user *)a[4],
2577 (int __user *)a[5]);
2578 break;
2579 case SYS_SHUTDOWN:
2580 err = __sys_shutdown(a0, a1);
2581 break;
2582 case SYS_SETSOCKOPT:
2583 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2584 a[4]);
2585 break;
2586 case SYS_GETSOCKOPT:
2587 err =
2588 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2589 (int __user *)a[4]);
2590 break;
2591 case SYS_SENDMSG:
2592 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2593 a[2], true);
2594 break;
2595 case SYS_SENDMMSG:
2596 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2597 a[3], true);
2598 break;
2599 case SYS_RECVMSG:
2600 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2601 a[2], true);
2602 break;
2603 case SYS_RECVMMSG:
2604 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2605 a[3], (struct timespec __user *)a[4]);
2606 break;
2607 case SYS_ACCEPT4:
2608 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2609 (int __user *)a[2], a[3]);
2610 break;
2611 default:
2612 err = -EINVAL;
2613 break;
2615 return err;
2618 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2621 * sock_register - add a socket protocol handler
2622 * @ops: description of protocol
2624 * This function is called by a protocol handler that wants to
2625 * advertise its address family, and have it linked into the
2626 * socket interface. The value ops->family corresponds to the
2627 * socket system call protocol family.
2629 int sock_register(const struct net_proto_family *ops)
2631 int err;
2633 if (ops->family >= NPROTO) {
2634 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2635 return -ENOBUFS;
2638 spin_lock(&net_family_lock);
2639 if (rcu_dereference_protected(net_families[ops->family],
2640 lockdep_is_held(&net_family_lock)))
2641 err = -EEXIST;
2642 else {
2643 rcu_assign_pointer(net_families[ops->family], ops);
2644 err = 0;
2646 spin_unlock(&net_family_lock);
2648 pr_info("NET: Registered protocol family %d\n", ops->family);
2649 return err;
2651 EXPORT_SYMBOL(sock_register);
2654 * sock_unregister - remove a protocol handler
2655 * @family: protocol family to remove
2657 * This function is called by a protocol handler that wants to
2658 * remove its address family, and have it unlinked from the
2659 * new socket creation.
2661 * If protocol handler is a module, then it can use module reference
2662 * counts to protect against new references. If protocol handler is not
2663 * a module then it needs to provide its own protection in
2664 * the ops->create routine.
2666 void sock_unregister(int family)
2668 BUG_ON(family < 0 || family >= NPROTO);
2670 spin_lock(&net_family_lock);
2671 RCU_INIT_POINTER(net_families[family], NULL);
2672 spin_unlock(&net_family_lock);
2674 synchronize_rcu();
2676 pr_info("NET: Unregistered protocol family %d\n", family);
2678 EXPORT_SYMBOL(sock_unregister);
2680 bool sock_is_registered(int family)
2682 return family < NPROTO && rcu_access_pointer(net_families[family]);
2685 static int __init sock_init(void)
2687 int err;
2689 * Initialize the network sysctl infrastructure.
2691 err = net_sysctl_init();
2692 if (err)
2693 goto out;
2696 * Initialize skbuff SLAB cache
2698 skb_init();
2701 * Initialize the protocols module.
2704 init_inodecache();
2706 err = register_filesystem(&sock_fs_type);
2707 if (err)
2708 goto out_fs;
2709 sock_mnt = kern_mount(&sock_fs_type);
2710 if (IS_ERR(sock_mnt)) {
2711 err = PTR_ERR(sock_mnt);
2712 goto out_mount;
2715 /* The real protocol initialization is performed in later initcalls.
2718 #ifdef CONFIG_NETFILTER
2719 err = netfilter_init();
2720 if (err)
2721 goto out;
2722 #endif
2724 ptp_classifier_init();
2726 out:
2727 return err;
2729 out_mount:
2730 unregister_filesystem(&sock_fs_type);
2731 out_fs:
2732 goto out;
2735 core_initcall(sock_init); /* early initcall */
2737 #ifdef CONFIG_PROC_FS
2738 void socket_seq_show(struct seq_file *seq)
2740 seq_printf(seq, "sockets: used %d\n",
2741 sock_inuse_get(seq->private));
2743 #endif /* CONFIG_PROC_FS */
2745 #ifdef CONFIG_COMPAT
2746 static int do_siocgstamp(struct net *net, struct socket *sock,
2747 unsigned int cmd, void __user *up)
2749 mm_segment_t old_fs = get_fs();
2750 struct timeval ktv;
2751 int err;
2753 set_fs(KERNEL_DS);
2754 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2755 set_fs(old_fs);
2756 if (!err)
2757 err = compat_put_timeval(&ktv, up);
2759 return err;
2762 static int do_siocgstampns(struct net *net, struct socket *sock,
2763 unsigned int cmd, void __user *up)
2765 mm_segment_t old_fs = get_fs();
2766 struct timespec kts;
2767 int err;
2769 set_fs(KERNEL_DS);
2770 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2771 set_fs(old_fs);
2772 if (!err)
2773 err = compat_put_timespec(&kts, up);
2775 return err;
2778 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2780 struct compat_ifconf ifc32;
2781 struct ifconf ifc;
2782 int err;
2784 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2785 return -EFAULT;
2787 ifc.ifc_len = ifc32.ifc_len;
2788 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2790 rtnl_lock();
2791 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2792 rtnl_unlock();
2793 if (err)
2794 return err;
2796 ifc32.ifc_len = ifc.ifc_len;
2797 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2798 return -EFAULT;
2800 return 0;
2803 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2805 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2806 bool convert_in = false, convert_out = false;
2807 size_t buf_size = 0;
2808 struct ethtool_rxnfc __user *rxnfc = NULL;
2809 struct ifreq ifr;
2810 u32 rule_cnt = 0, actual_rule_cnt;
2811 u32 ethcmd;
2812 u32 data;
2813 int ret;
2815 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2816 return -EFAULT;
2818 compat_rxnfc = compat_ptr(data);
2820 if (get_user(ethcmd, &compat_rxnfc->cmd))
2821 return -EFAULT;
2823 /* Most ethtool structures are defined without padding.
2824 * Unfortunately struct ethtool_rxnfc is an exception.
2826 switch (ethcmd) {
2827 default:
2828 break;
2829 case ETHTOOL_GRXCLSRLALL:
2830 /* Buffer size is variable */
2831 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2832 return -EFAULT;
2833 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2834 return -ENOMEM;
2835 buf_size += rule_cnt * sizeof(u32);
2836 /* fall through */
2837 case ETHTOOL_GRXRINGS:
2838 case ETHTOOL_GRXCLSRLCNT:
2839 case ETHTOOL_GRXCLSRULE:
2840 case ETHTOOL_SRXCLSRLINS:
2841 convert_out = true;
2842 /* fall through */
2843 case ETHTOOL_SRXCLSRLDEL:
2844 buf_size += sizeof(struct ethtool_rxnfc);
2845 convert_in = true;
2846 rxnfc = compat_alloc_user_space(buf_size);
2847 break;
2850 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2851 return -EFAULT;
2853 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2855 if (convert_in) {
2856 /* We expect there to be holes between fs.m_ext and
2857 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2860 sizeof(compat_rxnfc->fs.m_ext) !=
2861 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2862 sizeof(rxnfc->fs.m_ext));
2863 BUILD_BUG_ON(
2864 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2865 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2866 offsetof(struct ethtool_rxnfc, fs.location) -
2867 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2869 if (copy_in_user(rxnfc, compat_rxnfc,
2870 (void __user *)(&rxnfc->fs.m_ext + 1) -
2871 (void __user *)rxnfc) ||
2872 copy_in_user(&rxnfc->fs.ring_cookie,
2873 &compat_rxnfc->fs.ring_cookie,
2874 (void __user *)(&rxnfc->fs.location + 1) -
2875 (void __user *)&rxnfc->fs.ring_cookie))
2876 return -EFAULT;
2877 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2878 if (put_user(rule_cnt, &rxnfc->rule_cnt))
2879 return -EFAULT;
2880 } else if (copy_in_user(&rxnfc->rule_cnt,
2881 &compat_rxnfc->rule_cnt,
2882 sizeof(rxnfc->rule_cnt)))
2883 return -EFAULT;
2886 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2887 if (ret)
2888 return ret;
2890 if (convert_out) {
2891 if (copy_in_user(compat_rxnfc, rxnfc,
2892 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2893 (const void __user *)rxnfc) ||
2894 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2895 &rxnfc->fs.ring_cookie,
2896 (const void __user *)(&rxnfc->fs.location + 1) -
2897 (const void __user *)&rxnfc->fs.ring_cookie) ||
2898 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2899 sizeof(rxnfc->rule_cnt)))
2900 return -EFAULT;
2902 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2903 /* As an optimisation, we only copy the actual
2904 * number of rules that the underlying
2905 * function returned. Since Mallory might
2906 * change the rule count in user memory, we
2907 * check that it is less than the rule count
2908 * originally given (as the user buffer size),
2909 * which has been range-checked.
2911 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2912 return -EFAULT;
2913 if (actual_rule_cnt < rule_cnt)
2914 rule_cnt = actual_rule_cnt;
2915 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2916 &rxnfc->rule_locs[0],
2917 rule_cnt * sizeof(u32)))
2918 return -EFAULT;
2922 return 0;
2925 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2927 compat_uptr_t uptr32;
2928 struct ifreq ifr;
2929 void __user *saved;
2930 int err;
2932 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2933 return -EFAULT;
2935 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2936 return -EFAULT;
2938 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2939 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2941 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2942 if (!err) {
2943 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2944 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2945 err = -EFAULT;
2947 return err;
2950 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2951 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2952 struct compat_ifreq __user *u_ifreq32)
2954 struct ifreq ifreq;
2955 u32 data32;
2957 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2958 return -EFAULT;
2959 if (get_user(data32, &u_ifreq32->ifr_data))
2960 return -EFAULT;
2961 ifreq.ifr_data = compat_ptr(data32);
2963 return dev_ioctl(net, cmd, &ifreq, NULL);
2966 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
2967 unsigned int cmd,
2968 struct compat_ifreq __user *uifr32)
2970 struct ifreq __user *uifr;
2971 int err;
2973 /* Handle the fact that while struct ifreq has the same *layout* on
2974 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2975 * which are handled elsewhere, it still has different *size* due to
2976 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2977 * resulting in struct ifreq being 32 and 40 bytes respectively).
2978 * As a result, if the struct happens to be at the end of a page and
2979 * the next page isn't readable/writable, we get a fault. To prevent
2980 * that, copy back and forth to the full size.
2983 uifr = compat_alloc_user_space(sizeof(*uifr));
2984 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2985 return -EFAULT;
2987 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2989 if (!err) {
2990 switch (cmd) {
2991 case SIOCGIFFLAGS:
2992 case SIOCGIFMETRIC:
2993 case SIOCGIFMTU:
2994 case SIOCGIFMEM:
2995 case SIOCGIFHWADDR:
2996 case SIOCGIFINDEX:
2997 case SIOCGIFADDR:
2998 case SIOCGIFBRDADDR:
2999 case SIOCGIFDSTADDR:
3000 case SIOCGIFNETMASK:
3001 case SIOCGIFPFLAGS:
3002 case SIOCGIFTXQLEN:
3003 case SIOCGMIIPHY:
3004 case SIOCGMIIREG:
3005 case SIOCGIFNAME:
3006 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3007 err = -EFAULT;
3008 break;
3011 return err;
3014 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3015 struct compat_ifreq __user *uifr32)
3017 struct ifreq ifr;
3018 struct compat_ifmap __user *uifmap32;
3019 int err;
3021 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3022 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3023 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3024 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3025 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3026 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3027 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3028 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3029 if (err)
3030 return -EFAULT;
3032 err = dev_ioctl(net, cmd, &ifr, NULL);
3034 if (cmd == SIOCGIFMAP && !err) {
3035 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3036 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3037 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3038 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3039 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3040 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3041 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3042 if (err)
3043 err = -EFAULT;
3045 return err;
3048 struct rtentry32 {
3049 u32 rt_pad1;
3050 struct sockaddr rt_dst; /* target address */
3051 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3052 struct sockaddr rt_genmask; /* target network mask (IP) */
3053 unsigned short rt_flags;
3054 short rt_pad2;
3055 u32 rt_pad3;
3056 unsigned char rt_tos;
3057 unsigned char rt_class;
3058 short rt_pad4;
3059 short rt_metric; /* +1 for binary compatibility! */
3060 /* char * */ u32 rt_dev; /* forcing the device at add */
3061 u32 rt_mtu; /* per route MTU/Window */
3062 u32 rt_window; /* Window clamping */
3063 unsigned short rt_irtt; /* Initial RTT */
3066 struct in6_rtmsg32 {
3067 struct in6_addr rtmsg_dst;
3068 struct in6_addr rtmsg_src;
3069 struct in6_addr rtmsg_gateway;
3070 u32 rtmsg_type;
3071 u16 rtmsg_dst_len;
3072 u16 rtmsg_src_len;
3073 u32 rtmsg_metric;
3074 u32 rtmsg_info;
3075 u32 rtmsg_flags;
3076 s32 rtmsg_ifindex;
3079 static int routing_ioctl(struct net *net, struct socket *sock,
3080 unsigned int cmd, void __user *argp)
3082 int ret;
3083 void *r = NULL;
3084 struct in6_rtmsg r6;
3085 struct rtentry r4;
3086 char devname[16];
3087 u32 rtdev;
3088 mm_segment_t old_fs = get_fs();
3090 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3091 struct in6_rtmsg32 __user *ur6 = argp;
3092 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3093 3 * sizeof(struct in6_addr));
3094 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3095 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3096 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3097 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3098 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3099 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3100 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3102 r = (void *) &r6;
3103 } else { /* ipv4 */
3104 struct rtentry32 __user *ur4 = argp;
3105 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3106 3 * sizeof(struct sockaddr));
3107 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3108 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3109 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3110 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3111 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3112 ret |= get_user(rtdev, &(ur4->rt_dev));
3113 if (rtdev) {
3114 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3115 r4.rt_dev = (char __user __force *)devname;
3116 devname[15] = 0;
3117 } else
3118 r4.rt_dev = NULL;
3120 r = (void *) &r4;
3123 if (ret) {
3124 ret = -EFAULT;
3125 goto out;
3128 set_fs(KERNEL_DS);
3129 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3130 set_fs(old_fs);
3132 out:
3133 return ret;
3136 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3137 * for some operations; this forces use of the newer bridge-utils that
3138 * use compatible ioctls
3140 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3142 compat_ulong_t tmp;
3144 if (get_user(tmp, argp))
3145 return -EFAULT;
3146 if (tmp == BRCTL_GET_VERSION)
3147 return BRCTL_VERSION + 1;
3148 return -EINVAL;
3151 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3152 unsigned int cmd, unsigned long arg)
3154 void __user *argp = compat_ptr(arg);
3155 struct sock *sk = sock->sk;
3156 struct net *net = sock_net(sk);
3158 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3159 return compat_ifr_data_ioctl(net, cmd, argp);
3161 switch (cmd) {
3162 case SIOCSIFBR:
3163 case SIOCGIFBR:
3164 return old_bridge_ioctl(argp);
3165 case SIOCGIFCONF:
3166 return compat_dev_ifconf(net, argp);
3167 case SIOCETHTOOL:
3168 return ethtool_ioctl(net, argp);
3169 case SIOCWANDEV:
3170 return compat_siocwandev(net, argp);
3171 case SIOCGIFMAP:
3172 case SIOCSIFMAP:
3173 return compat_sioc_ifmap(net, cmd, argp);
3174 case SIOCADDRT:
3175 case SIOCDELRT:
3176 return routing_ioctl(net, sock, cmd, argp);
3177 case SIOCGSTAMP:
3178 return do_siocgstamp(net, sock, cmd, argp);
3179 case SIOCGSTAMPNS:
3180 return do_siocgstampns(net, sock, cmd, argp);
3181 case SIOCBONDSLAVEINFOQUERY:
3182 case SIOCBONDINFOQUERY:
3183 case SIOCSHWTSTAMP:
3184 case SIOCGHWTSTAMP:
3185 return compat_ifr_data_ioctl(net, cmd, argp);
3187 case FIOSETOWN:
3188 case SIOCSPGRP:
3189 case FIOGETOWN:
3190 case SIOCGPGRP:
3191 case SIOCBRADDBR:
3192 case SIOCBRDELBR:
3193 case SIOCGIFVLAN:
3194 case SIOCSIFVLAN:
3195 case SIOCADDDLCI:
3196 case SIOCDELDLCI:
3197 case SIOCGSKNS:
3198 return sock_ioctl(file, cmd, arg);
3200 case SIOCGIFFLAGS:
3201 case SIOCSIFFLAGS:
3202 case SIOCGIFMETRIC:
3203 case SIOCSIFMETRIC:
3204 case SIOCGIFMTU:
3205 case SIOCSIFMTU:
3206 case SIOCGIFMEM:
3207 case SIOCSIFMEM:
3208 case SIOCGIFHWADDR:
3209 case SIOCSIFHWADDR:
3210 case SIOCADDMULTI:
3211 case SIOCDELMULTI:
3212 case SIOCGIFINDEX:
3213 case SIOCGIFADDR:
3214 case SIOCSIFADDR:
3215 case SIOCSIFHWBROADCAST:
3216 case SIOCDIFADDR:
3217 case SIOCGIFBRDADDR:
3218 case SIOCSIFBRDADDR:
3219 case SIOCGIFDSTADDR:
3220 case SIOCSIFDSTADDR:
3221 case SIOCGIFNETMASK:
3222 case SIOCSIFNETMASK:
3223 case SIOCSIFPFLAGS:
3224 case SIOCGIFPFLAGS:
3225 case SIOCGIFTXQLEN:
3226 case SIOCSIFTXQLEN:
3227 case SIOCBRADDIF:
3228 case SIOCBRDELIF:
3229 case SIOCGIFNAME:
3230 case SIOCSIFNAME:
3231 case SIOCGMIIPHY:
3232 case SIOCGMIIREG:
3233 case SIOCSMIIREG:
3234 case SIOCBONDENSLAVE:
3235 case SIOCBONDRELEASE:
3236 case SIOCBONDSETHWADDR:
3237 case SIOCBONDCHANGEACTIVE:
3238 return compat_ifreq_ioctl(net, sock, cmd, argp);
3240 case SIOCSARP:
3241 case SIOCGARP:
3242 case SIOCDARP:
3243 case SIOCOUTQNSD:
3244 case SIOCATMARK:
3245 return sock_do_ioctl(net, sock, cmd, arg);
3248 return -ENOIOCTLCMD;
3251 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3252 unsigned long arg)
3254 struct socket *sock = file->private_data;
3255 int ret = -ENOIOCTLCMD;
3256 struct sock *sk;
3257 struct net *net;
3259 sk = sock->sk;
3260 net = sock_net(sk);
3262 if (sock->ops->compat_ioctl)
3263 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3265 if (ret == -ENOIOCTLCMD &&
3266 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3267 ret = compat_wext_handle_ioctl(net, cmd, arg);
3269 if (ret == -ENOIOCTLCMD)
3270 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3272 return ret;
3274 #endif
3276 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3278 return sock->ops->bind(sock, addr, addrlen);
3280 EXPORT_SYMBOL(kernel_bind);
3282 int kernel_listen(struct socket *sock, int backlog)
3284 return sock->ops->listen(sock, backlog);
3286 EXPORT_SYMBOL(kernel_listen);
3288 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3290 struct sock *sk = sock->sk;
3291 int err;
3293 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3294 newsock);
3295 if (err < 0)
3296 goto done;
3298 err = sock->ops->accept(sock, *newsock, flags, true);
3299 if (err < 0) {
3300 sock_release(*newsock);
3301 *newsock = NULL;
3302 goto done;
3305 (*newsock)->ops = sock->ops;
3306 __module_get((*newsock)->ops->owner);
3308 done:
3309 return err;
3311 EXPORT_SYMBOL(kernel_accept);
3313 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3314 int flags)
3316 return sock->ops->connect(sock, addr, addrlen, flags);
3318 EXPORT_SYMBOL(kernel_connect);
3320 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3322 return sock->ops->getname(sock, addr, 0);
3324 EXPORT_SYMBOL(kernel_getsockname);
3326 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3328 return sock->ops->getname(sock, addr, 1);
3330 EXPORT_SYMBOL(kernel_getpeername);
3332 int kernel_getsockopt(struct socket *sock, int level, int optname,
3333 char *optval, int *optlen)
3335 mm_segment_t oldfs = get_fs();
3336 char __user *uoptval;
3337 int __user *uoptlen;
3338 int err;
3340 uoptval = (char __user __force *) optval;
3341 uoptlen = (int __user __force *) optlen;
3343 set_fs(KERNEL_DS);
3344 if (level == SOL_SOCKET)
3345 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3346 else
3347 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3348 uoptlen);
3349 set_fs(oldfs);
3350 return err;
3352 EXPORT_SYMBOL(kernel_getsockopt);
3354 int kernel_setsockopt(struct socket *sock, int level, int optname,
3355 char *optval, unsigned int optlen)
3357 mm_segment_t oldfs = get_fs();
3358 char __user *uoptval;
3359 int err;
3361 uoptval = (char __user __force *) optval;
3363 set_fs(KERNEL_DS);
3364 if (level == SOL_SOCKET)
3365 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3366 else
3367 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3368 optlen);
3369 set_fs(oldfs);
3370 return err;
3372 EXPORT_SYMBOL(kernel_setsockopt);
3374 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3375 size_t size, int flags)
3377 if (sock->ops->sendpage)
3378 return sock->ops->sendpage(sock, page, offset, size, flags);
3380 return sock_no_sendpage(sock, page, offset, size, flags);
3382 EXPORT_SYMBOL(kernel_sendpage);
3384 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3385 size_t size, int flags)
3387 struct socket *sock = sk->sk_socket;
3389 if (sock->ops->sendpage_locked)
3390 return sock->ops->sendpage_locked(sk, page, offset, size,
3391 flags);
3393 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3395 EXPORT_SYMBOL(kernel_sendpage_locked);
3397 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3399 return sock->ops->shutdown(sock, how);
3401 EXPORT_SYMBOL(kernel_sock_shutdown);
3403 /* This routine returns the IP overhead imposed by a socket i.e.
3404 * the length of the underlying IP header, depending on whether
3405 * this is an IPv4 or IPv6 socket and the length from IP options turned
3406 * on at the socket. Assumes that the caller has a lock on the socket.
3408 u32 kernel_sock_ip_overhead(struct sock *sk)
3410 struct inet_sock *inet;
3411 struct ip_options_rcu *opt;
3412 u32 overhead = 0;
3413 #if IS_ENABLED(CONFIG_IPV6)
3414 struct ipv6_pinfo *np;
3415 struct ipv6_txoptions *optv6 = NULL;
3416 #endif /* IS_ENABLED(CONFIG_IPV6) */
3418 if (!sk)
3419 return overhead;
3421 switch (sk->sk_family) {
3422 case AF_INET:
3423 inet = inet_sk(sk);
3424 overhead += sizeof(struct iphdr);
3425 opt = rcu_dereference_protected(inet->inet_opt,
3426 sock_owned_by_user(sk));
3427 if (opt)
3428 overhead += opt->opt.optlen;
3429 return overhead;
3430 #if IS_ENABLED(CONFIG_IPV6)
3431 case AF_INET6:
3432 np = inet6_sk(sk);
3433 overhead += sizeof(struct ipv6hdr);
3434 if (np)
3435 optv6 = rcu_dereference_protected(np->opt,
3436 sock_owned_by_user(sk));
3437 if (optv6)
3438 overhead += (optv6->opt_flen + optv6->opt_nflen);
3439 return overhead;
3440 #endif /* IS_ENABLED(CONFIG_IPV6) */
3441 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3442 return overhead;
3445 EXPORT_SYMBOL(kernel_sock_ip_overhead);