2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static __poll_t
sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
184 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
188 if (copy_from_user(kaddr
, uaddr
, ulen
))
190 return audit_sockaddr(ulen
, kaddr
);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
211 void __user
*uaddr
, int __user
*ulen
)
216 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
217 err
= get_user(len
, ulen
);
225 if (audit_sockaddr(klen
, kaddr
))
227 if (copy_to_user(uaddr
, kaddr
, len
))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen
, ulen
);
237 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
239 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
241 struct socket_alloc
*ei
;
242 struct socket_wq
*wq
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
249 kmem_cache_free(sock_inode_cachep
, ei
);
252 init_waitqueue_head(&wq
->wait
);
253 wq
->fasync_list
= NULL
;
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
270 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
271 kfree_rcu(ei
->socket
.wq
, rcu
);
272 kmem_cache_free(sock_inode_cachep
, ei
);
275 static void init_once(void *foo
)
277 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
279 inode_init_once(&ei
->vfs_inode
);
282 static void init_inodecache(void)
284 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
285 sizeof(struct socket_alloc
),
287 (SLAB_HWCACHE_ALIGN
|
288 SLAB_RECLAIM_ACCOUNT
|
289 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
291 BUG_ON(sock_inode_cachep
== NULL
);
294 static const struct super_operations sockfs_ops
= {
295 .alloc_inode
= sock_alloc_inode
,
296 .destroy_inode
= sock_destroy_inode
,
297 .statfs
= simple_statfs
,
301 * sockfs_dname() is called from d_path().
303 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
305 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
306 d_inode(dentry
)->i_ino
);
309 static const struct dentry_operations sockfs_dentry_operations
= {
310 .d_dname
= sockfs_dname
,
313 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
314 struct dentry
*dentry
, struct inode
*inode
,
315 const char *suffix
, void *value
, size_t size
)
318 if (dentry
->d_name
.len
+ 1 > size
)
320 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
322 return dentry
->d_name
.len
+ 1;
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 static const struct xattr_handler sockfs_xattr_handler
= {
330 .name
= XATTR_NAME_SOCKPROTONAME
,
331 .get
= sockfs_xattr_get
,
334 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
335 struct dentry
*dentry
, struct inode
*inode
,
336 const char *suffix
, const void *value
,
337 size_t size
, int flags
)
339 /* Handled by LSM. */
343 static const struct xattr_handler sockfs_security_xattr_handler
= {
344 .prefix
= XATTR_SECURITY_PREFIX
,
345 .set
= sockfs_security_xattr_set
,
348 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
349 &sockfs_xattr_handler
,
350 &sockfs_security_xattr_handler
,
354 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
355 int flags
, const char *dev_name
, void *data
)
357 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
358 sockfs_xattr_handlers
,
359 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
362 static struct vfsmount
*sock_mnt __read_mostly
;
364 static struct file_system_type sock_fs_type
= {
366 .mount
= sockfs_mount
,
367 .kill_sb
= kill_anon_super
,
371 * Obtains the first available file descriptor and sets it up for use.
373 * These functions create file structures and maps them to fd space
374 * of the current process. On success it returns file descriptor
375 * and file struct implicitly stored in sock->file.
376 * Note that another thread may close file descriptor before we return
377 * from this function. We use the fact that now we do not refer
378 * to socket after mapping. If one day we will need it, this
379 * function will increment ref. count on file by 1.
381 * In any case returned fd MAY BE not valid!
382 * This race condition is unavoidable
383 * with shared fd spaces, we cannot solve it inside kernel,
384 * but we take care of internal coherence yet.
387 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
392 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
394 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
395 O_RDWR
| (flags
& O_NONBLOCK
),
403 file
->private_data
= sock
;
406 EXPORT_SYMBOL(sock_alloc_file
);
408 static int sock_map_fd(struct socket
*sock
, int flags
)
410 struct file
*newfile
;
411 int fd
= get_unused_fd_flags(flags
);
412 if (unlikely(fd
< 0)) {
417 newfile
= sock_alloc_file(sock
, flags
, NULL
);
418 if (likely(!IS_ERR(newfile
))) {
419 fd_install(fd
, newfile
);
424 return PTR_ERR(newfile
);
427 struct socket
*sock_from_file(struct file
*file
, int *err
)
429 if (file
->f_op
== &socket_file_ops
)
430 return file
->private_data
; /* set in sock_map_fd */
435 EXPORT_SYMBOL(sock_from_file
);
438 * sockfd_lookup - Go from a file number to its socket slot
440 * @err: pointer to an error code return
442 * The file handle passed in is locked and the socket it is bound
443 * to is returned. If an error occurs the err pointer is overwritten
444 * with a negative errno code and NULL is returned. The function checks
445 * for both invalid handles and passing a handle which is not a socket.
447 * On a success the socket object pointer is returned.
450 struct socket
*sockfd_lookup(int fd
, int *err
)
461 sock
= sock_from_file(file
, err
);
466 EXPORT_SYMBOL(sockfd_lookup
);
468 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
470 struct fd f
= fdget(fd
);
475 sock
= sock_from_file(f
.file
, err
);
477 *fput_needed
= f
.flags
;
485 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
491 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
501 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
506 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
513 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
515 int err
= simple_setattr(dentry
, iattr
);
517 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
518 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
521 sock
->sk
->sk_uid
= iattr
->ia_uid
;
529 static const struct inode_operations sockfs_inode_ops
= {
530 .listxattr
= sockfs_listxattr
,
531 .setattr
= sockfs_setattr
,
535 * sock_alloc - allocate a socket
537 * Allocate a new inode and socket object. The two are bound together
538 * and initialised. The socket is then returned. If we are out of inodes
542 struct socket
*sock_alloc(void)
547 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
551 sock
= SOCKET_I(inode
);
553 inode
->i_ino
= get_next_ino();
554 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
555 inode
->i_uid
= current_fsuid();
556 inode
->i_gid
= current_fsgid();
557 inode
->i_op
= &sockfs_inode_ops
;
561 EXPORT_SYMBOL(sock_alloc
);
564 * sock_release - close a socket
565 * @sock: socket to close
567 * The socket is released from the protocol stack if it has a release
568 * callback, and the inode is then released if the socket is bound to
569 * an inode not a file.
572 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
575 struct module
*owner
= sock
->ops
->owner
;
579 sock
->ops
->release(sock
);
587 if (sock
->wq
->fasync_list
)
588 pr_err("%s: fasync list not empty!\n", __func__
);
591 iput(SOCK_INODE(sock
));
597 void sock_release(struct socket
*sock
)
599 __sock_release(sock
, NULL
);
601 EXPORT_SYMBOL(sock_release
);
603 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
605 u8 flags
= *tx_flags
;
607 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
608 flags
|= SKBTX_HW_TSTAMP
;
610 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
611 flags
|= SKBTX_SW_TSTAMP
;
613 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
614 flags
|= SKBTX_SCHED_TSTAMP
;
618 EXPORT_SYMBOL(__sock_tx_timestamp
);
620 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
622 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
623 BUG_ON(ret
== -EIOCBQUEUED
);
627 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
629 int err
= security_socket_sendmsg(sock
, msg
,
632 return err
?: sock_sendmsg_nosec(sock
, msg
);
634 EXPORT_SYMBOL(sock_sendmsg
);
636 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
637 struct kvec
*vec
, size_t num
, size_t size
)
639 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
640 return sock_sendmsg(sock
, msg
);
642 EXPORT_SYMBOL(kernel_sendmsg
);
644 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
645 struct kvec
*vec
, size_t num
, size_t size
)
647 struct socket
*sock
= sk
->sk_socket
;
649 if (!sock
->ops
->sendmsg_locked
)
650 return sock_no_sendmsg_locked(sk
, msg
, size
);
652 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
654 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
656 EXPORT_SYMBOL(kernel_sendmsg_locked
);
658 static bool skb_is_err_queue(const struct sk_buff
*skb
)
660 /* pkt_type of skbs enqueued on the error queue are set to
661 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
662 * in recvmsg, since skbs received on a local socket will never
663 * have a pkt_type of PACKET_OUTGOING.
665 return skb
->pkt_type
== PACKET_OUTGOING
;
668 /* On transmit, software and hardware timestamps are returned independently.
669 * As the two skb clones share the hardware timestamp, which may be updated
670 * before the software timestamp is received, a hardware TX timestamp may be
671 * returned only if there is no software TX timestamp. Ignore false software
672 * timestamps, which may be made in the __sock_recv_timestamp() call when the
673 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
674 * hardware timestamp.
676 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
678 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
681 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
683 struct scm_ts_pktinfo ts_pktinfo
;
684 struct net_device
*orig_dev
;
686 if (!skb_mac_header_was_set(skb
))
689 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
692 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
694 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
697 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
698 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
699 sizeof(ts_pktinfo
), &ts_pktinfo
);
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
705 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
708 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
709 struct scm_timestamping tss
;
710 int empty
= 1, false_tstamp
= 0;
711 struct skb_shared_hwtstamps
*shhwtstamps
=
714 /* Race occurred between timestamp enabling and packet
715 receiving. Fill in the current time for now. */
716 if (need_software_tstamp
&& skb
->tstamp
== 0) {
717 __net_timestamp(skb
);
721 if (need_software_tstamp
) {
722 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
724 skb_get_timestamp(skb
, &tv
);
725 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
729 skb_get_timestampns(skb
, &ts
);
730 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
735 memset(&tss
, 0, sizeof(tss
));
736 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
737 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
740 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
741 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
742 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
744 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
745 !skb_is_err_queue(skb
))
746 put_ts_pktinfo(msg
, skb
);
749 put_cmsg(msg
, SOL_SOCKET
,
750 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
752 if (skb_is_err_queue(skb
) && skb
->len
&&
753 SKB_EXT_ERR(skb
)->opt_stats
)
754 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
755 skb
->len
, skb
->data
);
758 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
760 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
765 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
767 if (!skb
->wifi_acked_valid
)
770 ack
= skb
->wifi_acked
;
772 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
774 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
776 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
779 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
780 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
781 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
784 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
787 sock_recv_timestamp(msg
, sk
, skb
);
788 sock_recv_drops(msg
, sk
, skb
);
790 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
792 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
795 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
798 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
800 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
802 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
804 EXPORT_SYMBOL(sock_recvmsg
);
807 * kernel_recvmsg - Receive a message from a socket (kernel space)
808 * @sock: The socket to receive the message from
809 * @msg: Received message
810 * @vec: Input s/g array for message data
811 * @num: Size of input s/g array
812 * @size: Number of bytes to read
813 * @flags: Message flags (MSG_DONTWAIT, etc...)
815 * On return the msg structure contains the scatter/gather array passed in the
816 * vec argument. The array is modified so that it consists of the unfilled
817 * portion of the original array.
819 * The returned value is the total number of bytes received, or an error.
821 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
822 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
824 mm_segment_t oldfs
= get_fs();
827 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
829 result
= sock_recvmsg(sock
, msg
, flags
);
833 EXPORT_SYMBOL(kernel_recvmsg
);
835 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
836 int offset
, size_t size
, loff_t
*ppos
, int more
)
841 sock
= file
->private_data
;
843 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
844 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
847 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
850 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
851 struct pipe_inode_info
*pipe
, size_t len
,
854 struct socket
*sock
= file
->private_data
;
856 if (unlikely(!sock
->ops
->splice_read
))
859 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
862 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
864 struct file
*file
= iocb
->ki_filp
;
865 struct socket
*sock
= file
->private_data
;
866 struct msghdr msg
= {.msg_iter
= *to
,
870 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
871 msg
.msg_flags
= MSG_DONTWAIT
;
873 if (iocb
->ki_pos
!= 0)
876 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
879 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
884 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
886 struct file
*file
= iocb
->ki_filp
;
887 struct socket
*sock
= file
->private_data
;
888 struct msghdr msg
= {.msg_iter
= *from
,
892 if (iocb
->ki_pos
!= 0)
895 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
896 msg
.msg_flags
= MSG_DONTWAIT
;
898 if (sock
->type
== SOCK_SEQPACKET
)
899 msg
.msg_flags
|= MSG_EOR
;
901 res
= sock_sendmsg(sock
, &msg
);
902 *from
= msg
.msg_iter
;
907 * Atomic setting of ioctl hooks to avoid race
908 * with module unload.
911 static DEFINE_MUTEX(br_ioctl_mutex
);
912 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
914 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
916 mutex_lock(&br_ioctl_mutex
);
917 br_ioctl_hook
= hook
;
918 mutex_unlock(&br_ioctl_mutex
);
920 EXPORT_SYMBOL(brioctl_set
);
922 static DEFINE_MUTEX(vlan_ioctl_mutex
);
923 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
925 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
927 mutex_lock(&vlan_ioctl_mutex
);
928 vlan_ioctl_hook
= hook
;
929 mutex_unlock(&vlan_ioctl_mutex
);
931 EXPORT_SYMBOL(vlan_ioctl_set
);
933 static DEFINE_MUTEX(dlci_ioctl_mutex
);
934 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
936 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
938 mutex_lock(&dlci_ioctl_mutex
);
939 dlci_ioctl_hook
= hook
;
940 mutex_unlock(&dlci_ioctl_mutex
);
942 EXPORT_SYMBOL(dlci_ioctl_set
);
944 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
945 unsigned int cmd
, unsigned long arg
)
948 void __user
*argp
= (void __user
*)arg
;
950 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
953 * If this ioctl is unknown try to hand it down
956 if (err
!= -ENOIOCTLCMD
)
959 if (cmd
== SIOCGIFCONF
) {
961 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
964 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
966 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
971 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
973 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
974 if (!err
&& need_copyout
)
975 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
982 * With an ioctl, arg may well be a user mode pointer, but we don't know
983 * what to do with it - that's up to the protocol still.
986 struct ns_common
*get_net_ns(struct ns_common
*ns
)
988 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
990 EXPORT_SYMBOL_GPL(get_net_ns
);
992 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
996 void __user
*argp
= (void __user
*)arg
;
1000 sock
= file
->private_data
;
1003 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1006 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1008 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1009 if (!err
&& need_copyout
)
1010 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1013 #ifdef CONFIG_WEXT_CORE
1014 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1015 err
= wext_handle_ioctl(net
, cmd
, argp
);
1022 if (get_user(pid
, (int __user
*)argp
))
1024 err
= f_setown(sock
->file
, pid
, 1);
1028 err
= put_user(f_getown(sock
->file
),
1029 (int __user
*)argp
);
1037 request_module("bridge");
1039 mutex_lock(&br_ioctl_mutex
);
1041 err
= br_ioctl_hook(net
, cmd
, argp
);
1042 mutex_unlock(&br_ioctl_mutex
);
1047 if (!vlan_ioctl_hook
)
1048 request_module("8021q");
1050 mutex_lock(&vlan_ioctl_mutex
);
1051 if (vlan_ioctl_hook
)
1052 err
= vlan_ioctl_hook(net
, argp
);
1053 mutex_unlock(&vlan_ioctl_mutex
);
1058 if (!dlci_ioctl_hook
)
1059 request_module("dlci");
1061 mutex_lock(&dlci_ioctl_mutex
);
1062 if (dlci_ioctl_hook
)
1063 err
= dlci_ioctl_hook(cmd
, argp
);
1064 mutex_unlock(&dlci_ioctl_mutex
);
1068 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1071 err
= open_related_ns(&net
->ns
, get_net_ns
);
1074 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1080 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1083 struct socket
*sock
= NULL
;
1085 err
= security_socket_create(family
, type
, protocol
, 1);
1089 sock
= sock_alloc();
1096 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1108 EXPORT_SYMBOL(sock_create_lite
);
1110 /* No kernel lock held - perfect */
1111 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1113 struct socket
*sock
= file
->private_data
;
1114 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1116 if (!sock
->ops
->poll
)
1119 if (sk_can_busy_loop(sock
->sk
)) {
1120 /* poll once if requested by the syscall */
1121 if (events
& POLL_BUSY_LOOP
)
1122 sk_busy_loop(sock
->sk
, 1);
1124 /* if this socket can poll_ll, tell the system call */
1125 flag
= POLL_BUSY_LOOP
;
1128 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1131 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1133 struct socket
*sock
= file
->private_data
;
1135 return sock
->ops
->mmap(file
, sock
, vma
);
1138 static int sock_close(struct inode
*inode
, struct file
*filp
)
1140 __sock_release(SOCKET_I(inode
), inode
);
1145 * Update the socket async list
1147 * Fasync_list locking strategy.
1149 * 1. fasync_list is modified only under process context socket lock
1150 * i.e. under semaphore.
1151 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1152 * or under socket lock
1155 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1157 struct socket
*sock
= filp
->private_data
;
1158 struct sock
*sk
= sock
->sk
;
1159 struct socket_wq
*wq
;
1166 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1168 if (!wq
->fasync_list
)
1169 sock_reset_flag(sk
, SOCK_FASYNC
);
1171 sock_set_flag(sk
, SOCK_FASYNC
);
1177 /* This function may be called only under rcu_lock */
1179 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1181 if (!wq
|| !wq
->fasync_list
)
1185 case SOCK_WAKE_WAITD
:
1186 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1189 case SOCK_WAKE_SPACE
:
1190 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1195 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1198 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1203 EXPORT_SYMBOL(sock_wake_async
);
1205 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1206 struct socket
**res
, int kern
)
1209 struct socket
*sock
;
1210 const struct net_proto_family
*pf
;
1213 * Check protocol is in range
1215 if (family
< 0 || family
>= NPROTO
)
1216 return -EAFNOSUPPORT
;
1217 if (type
< 0 || type
>= SOCK_MAX
)
1222 This uglymoron is moved from INET layer to here to avoid
1223 deadlock in module load.
1225 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1226 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1231 err
= security_socket_create(family
, type
, protocol
, kern
);
1236 * Allocate the socket and allow the family to set things up. if
1237 * the protocol is 0, the family is instructed to select an appropriate
1240 sock
= sock_alloc();
1242 net_warn_ratelimited("socket: no more sockets\n");
1243 return -ENFILE
; /* Not exactly a match, but its the
1244 closest posix thing */
1249 #ifdef CONFIG_MODULES
1250 /* Attempt to load a protocol module if the find failed.
1252 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1253 * requested real, full-featured networking support upon configuration.
1254 * Otherwise module support will break!
1256 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1257 request_module("net-pf-%d", family
);
1261 pf
= rcu_dereference(net_families
[family
]);
1262 err
= -EAFNOSUPPORT
;
1267 * We will call the ->create function, that possibly is in a loadable
1268 * module, so we have to bump that loadable module refcnt first.
1270 if (!try_module_get(pf
->owner
))
1273 /* Now protected by module ref count */
1276 err
= pf
->create(net
, sock
, protocol
, kern
);
1278 goto out_module_put
;
1281 * Now to bump the refcnt of the [loadable] module that owns this
1282 * socket at sock_release time we decrement its refcnt.
1284 if (!try_module_get(sock
->ops
->owner
))
1285 goto out_module_busy
;
1288 * Now that we're done with the ->create function, the [loadable]
1289 * module can have its refcnt decremented
1291 module_put(pf
->owner
);
1292 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1294 goto out_sock_release
;
1300 err
= -EAFNOSUPPORT
;
1303 module_put(pf
->owner
);
1310 goto out_sock_release
;
1312 EXPORT_SYMBOL(__sock_create
);
1314 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1316 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1318 EXPORT_SYMBOL(sock_create
);
1320 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1322 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1324 EXPORT_SYMBOL(sock_create_kern
);
1326 int __sys_socket(int family
, int type
, int protocol
)
1329 struct socket
*sock
;
1332 /* Check the SOCK_* constants for consistency. */
1333 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1334 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1335 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1336 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1338 flags
= type
& ~SOCK_TYPE_MASK
;
1339 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1341 type
&= SOCK_TYPE_MASK
;
1343 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1344 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1346 retval
= sock_create(family
, type
, protocol
, &sock
);
1350 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1353 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1355 return __sys_socket(family
, type
, protocol
);
1359 * Create a pair of connected sockets.
1362 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1364 struct socket
*sock1
, *sock2
;
1366 struct file
*newfile1
, *newfile2
;
1369 flags
= type
& ~SOCK_TYPE_MASK
;
1370 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1372 type
&= SOCK_TYPE_MASK
;
1374 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1375 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1378 * reserve descriptors and make sure we won't fail
1379 * to return them to userland.
1381 fd1
= get_unused_fd_flags(flags
);
1382 if (unlikely(fd1
< 0))
1385 fd2
= get_unused_fd_flags(flags
);
1386 if (unlikely(fd2
< 0)) {
1391 err
= put_user(fd1
, &usockvec
[0]);
1395 err
= put_user(fd2
, &usockvec
[1]);
1400 * Obtain the first socket and check if the underlying protocol
1401 * supports the socketpair call.
1404 err
= sock_create(family
, type
, protocol
, &sock1
);
1405 if (unlikely(err
< 0))
1408 err
= sock_create(family
, type
, protocol
, &sock2
);
1409 if (unlikely(err
< 0)) {
1410 sock_release(sock1
);
1414 err
= security_socket_socketpair(sock1
, sock2
);
1415 if (unlikely(err
)) {
1416 sock_release(sock2
);
1417 sock_release(sock1
);
1421 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1422 if (unlikely(err
< 0)) {
1423 sock_release(sock2
);
1424 sock_release(sock1
);
1428 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1429 if (IS_ERR(newfile1
)) {
1430 err
= PTR_ERR(newfile1
);
1431 sock_release(sock2
);
1435 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1436 if (IS_ERR(newfile2
)) {
1437 err
= PTR_ERR(newfile2
);
1442 audit_fd_pair(fd1
, fd2
);
1444 fd_install(fd1
, newfile1
);
1445 fd_install(fd2
, newfile2
);
1454 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1455 int __user
*, usockvec
)
1457 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1461 * Bind a name to a socket. Nothing much to do here since it's
1462 * the protocol's responsibility to handle the local address.
1464 * We move the socket address to kernel space before we call
1465 * the protocol layer (having also checked the address is ok).
1468 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1470 struct socket
*sock
;
1471 struct sockaddr_storage address
;
1472 int err
, fput_needed
;
1474 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1476 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1478 err
= security_socket_bind(sock
,
1479 (struct sockaddr
*)&address
,
1482 err
= sock
->ops
->bind(sock
,
1486 fput_light(sock
->file
, fput_needed
);
1491 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1493 return __sys_bind(fd
, umyaddr
, addrlen
);
1497 * Perform a listen. Basically, we allow the protocol to do anything
1498 * necessary for a listen, and if that works, we mark the socket as
1499 * ready for listening.
1502 int __sys_listen(int fd
, int backlog
)
1504 struct socket
*sock
;
1505 int err
, fput_needed
;
1508 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1510 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1511 if ((unsigned int)backlog
> somaxconn
)
1512 backlog
= somaxconn
;
1514 err
= security_socket_listen(sock
, backlog
);
1516 err
= sock
->ops
->listen(sock
, backlog
);
1518 fput_light(sock
->file
, fput_needed
);
1523 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1525 return __sys_listen(fd
, backlog
);
1529 * For accept, we attempt to create a new socket, set up the link
1530 * with the client, wake up the client, then return the new
1531 * connected fd. We collect the address of the connector in kernel
1532 * space and move it to user at the very end. This is unclean because
1533 * we open the socket then return an error.
1535 * 1003.1g adds the ability to recvmsg() to query connection pending
1536 * status to recvmsg. We need to add that support in a way thats
1537 * clean when we restructure accept also.
1540 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1541 int __user
*upeer_addrlen
, int flags
)
1543 struct socket
*sock
, *newsock
;
1544 struct file
*newfile
;
1545 int err
, len
, newfd
, fput_needed
;
1546 struct sockaddr_storage address
;
1548 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1551 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1552 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1554 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1559 newsock
= sock_alloc();
1563 newsock
->type
= sock
->type
;
1564 newsock
->ops
= sock
->ops
;
1567 * We don't need try_module_get here, as the listening socket (sock)
1568 * has the protocol module (sock->ops->owner) held.
1570 __module_get(newsock
->ops
->owner
);
1572 newfd
= get_unused_fd_flags(flags
);
1573 if (unlikely(newfd
< 0)) {
1575 sock_release(newsock
);
1578 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1579 if (IS_ERR(newfile
)) {
1580 err
= PTR_ERR(newfile
);
1581 put_unused_fd(newfd
);
1585 err
= security_socket_accept(sock
, newsock
);
1589 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1593 if (upeer_sockaddr
) {
1594 len
= newsock
->ops
->getname(newsock
,
1595 (struct sockaddr
*)&address
, 2);
1597 err
= -ECONNABORTED
;
1600 err
= move_addr_to_user(&address
,
1601 len
, upeer_sockaddr
, upeer_addrlen
);
1606 /* File flags are not inherited via accept() unlike another OSes. */
1608 fd_install(newfd
, newfile
);
1612 fput_light(sock
->file
, fput_needed
);
1617 put_unused_fd(newfd
);
1621 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1622 int __user
*, upeer_addrlen
, int, flags
)
1624 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1627 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1628 int __user
*, upeer_addrlen
)
1630 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1634 * Attempt to connect to a socket with the server address. The address
1635 * is in user space so we verify it is OK and move it to kernel space.
1637 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1640 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1641 * other SEQPACKET protocols that take time to connect() as it doesn't
1642 * include the -EINPROGRESS status for such sockets.
1645 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1647 struct socket
*sock
;
1648 struct sockaddr_storage address
;
1649 int err
, fput_needed
;
1651 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1654 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1659 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1663 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1664 sock
->file
->f_flags
);
1666 fput_light(sock
->file
, fput_needed
);
1671 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1674 return __sys_connect(fd
, uservaddr
, addrlen
);
1678 * Get the local address ('name') of a socket object. Move the obtained
1679 * name to user space.
1682 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1683 int __user
*usockaddr_len
)
1685 struct socket
*sock
;
1686 struct sockaddr_storage address
;
1687 int err
, fput_needed
;
1689 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1693 err
= security_socket_getsockname(sock
);
1697 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1700 /* "err" is actually length in this case */
1701 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1704 fput_light(sock
->file
, fput_needed
);
1709 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1710 int __user
*, usockaddr_len
)
1712 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1716 * Get the remote address ('name') of a socket object. Move the obtained
1717 * name to user space.
1720 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1721 int __user
*usockaddr_len
)
1723 struct socket
*sock
;
1724 struct sockaddr_storage address
;
1725 int err
, fput_needed
;
1727 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1729 err
= security_socket_getpeername(sock
);
1731 fput_light(sock
->file
, fput_needed
);
1735 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1737 /* "err" is actually length in this case */
1738 err
= move_addr_to_user(&address
, err
, usockaddr
,
1740 fput_light(sock
->file
, fput_needed
);
1745 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1746 int __user
*, usockaddr_len
)
1748 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1752 * Send a datagram to a given address. We move the address into kernel
1753 * space and check the user space data area is readable before invoking
1756 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1757 struct sockaddr __user
*addr
, int addr_len
)
1759 struct socket
*sock
;
1760 struct sockaddr_storage address
;
1766 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1769 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1773 msg
.msg_name
= NULL
;
1774 msg
.msg_control
= NULL
;
1775 msg
.msg_controllen
= 0;
1776 msg
.msg_namelen
= 0;
1778 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1781 msg
.msg_name
= (struct sockaddr
*)&address
;
1782 msg
.msg_namelen
= addr_len
;
1784 if (sock
->file
->f_flags
& O_NONBLOCK
)
1785 flags
|= MSG_DONTWAIT
;
1786 msg
.msg_flags
= flags
;
1787 err
= sock_sendmsg(sock
, &msg
);
1790 fput_light(sock
->file
, fput_needed
);
1795 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1796 unsigned int, flags
, struct sockaddr __user
*, addr
,
1799 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1803 * Send a datagram down a socket.
1806 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1807 unsigned int, flags
)
1809 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1813 * Receive a frame from the socket and optionally record the address of the
1814 * sender. We verify the buffers are writable and if needed move the
1815 * sender address from kernel to user space.
1817 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1818 struct sockaddr __user
*addr
, int __user
*addr_len
)
1820 struct socket
*sock
;
1823 struct sockaddr_storage address
;
1827 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1830 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1834 msg
.msg_control
= NULL
;
1835 msg
.msg_controllen
= 0;
1836 /* Save some cycles and don't copy the address if not needed */
1837 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1838 /* We assume all kernel code knows the size of sockaddr_storage */
1839 msg
.msg_namelen
= 0;
1840 msg
.msg_iocb
= NULL
;
1842 if (sock
->file
->f_flags
& O_NONBLOCK
)
1843 flags
|= MSG_DONTWAIT
;
1844 err
= sock_recvmsg(sock
, &msg
, flags
);
1846 if (err
>= 0 && addr
!= NULL
) {
1847 err2
= move_addr_to_user(&address
,
1848 msg
.msg_namelen
, addr
, addr_len
);
1853 fput_light(sock
->file
, fput_needed
);
1858 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1859 unsigned int, flags
, struct sockaddr __user
*, addr
,
1860 int __user
*, addr_len
)
1862 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
1866 * Receive a datagram from a socket.
1869 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1870 unsigned int, flags
)
1872 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1876 * Set a socket option. Because we don't know the option lengths we have
1877 * to pass the user mode parameter for the protocols to sort out.
1880 static int __sys_setsockopt(int fd
, int level
, int optname
,
1881 char __user
*optval
, int optlen
)
1883 int err
, fput_needed
;
1884 struct socket
*sock
;
1889 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1891 err
= security_socket_setsockopt(sock
, level
, optname
);
1895 if (level
== SOL_SOCKET
)
1897 sock_setsockopt(sock
, level
, optname
, optval
,
1901 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1904 fput_light(sock
->file
, fput_needed
);
1909 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1910 char __user
*, optval
, int, optlen
)
1912 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
1916 * Get a socket option. Because we don't know the option lengths we have
1917 * to pass a user mode parameter for the protocols to sort out.
1920 static int __sys_getsockopt(int fd
, int level
, int optname
,
1921 char __user
*optval
, int __user
*optlen
)
1923 int err
, fput_needed
;
1924 struct socket
*sock
;
1926 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1928 err
= security_socket_getsockopt(sock
, level
, optname
);
1932 if (level
== SOL_SOCKET
)
1934 sock_getsockopt(sock
, level
, optname
, optval
,
1938 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1941 fput_light(sock
->file
, fput_needed
);
1946 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1947 char __user
*, optval
, int __user
*, optlen
)
1949 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
1953 * Shutdown a socket.
1956 int __sys_shutdown(int fd
, int how
)
1958 int err
, fput_needed
;
1959 struct socket
*sock
;
1961 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1963 err
= security_socket_shutdown(sock
, how
);
1965 err
= sock
->ops
->shutdown(sock
, how
);
1966 fput_light(sock
->file
, fput_needed
);
1971 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1973 return __sys_shutdown(fd
, how
);
1976 /* A couple of helpful macros for getting the address of the 32/64 bit
1977 * fields which are the same type (int / unsigned) on our platforms.
1979 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1980 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1981 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1983 struct used_address
{
1984 struct sockaddr_storage name
;
1985 unsigned int name_len
;
1988 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1989 struct user_msghdr __user
*umsg
,
1990 struct sockaddr __user
**save_addr
,
1993 struct user_msghdr msg
;
1996 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
1999 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2000 kmsg
->msg_controllen
= msg
.msg_controllen
;
2001 kmsg
->msg_flags
= msg
.msg_flags
;
2003 kmsg
->msg_namelen
= msg
.msg_namelen
;
2005 kmsg
->msg_namelen
= 0;
2007 if (kmsg
->msg_namelen
< 0)
2010 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2011 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2014 *save_addr
= msg
.msg_name
;
2016 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2018 err
= move_addr_to_kernel(msg
.msg_name
,
2025 kmsg
->msg_name
= NULL
;
2026 kmsg
->msg_namelen
= 0;
2029 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2032 kmsg
->msg_iocb
= NULL
;
2034 return import_iovec(save_addr
? READ
: WRITE
,
2035 msg
.msg_iov
, msg
.msg_iovlen
,
2036 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2039 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2040 struct msghdr
*msg_sys
, unsigned int flags
,
2041 struct used_address
*used_address
,
2042 unsigned int allowed_msghdr_flags
)
2044 struct compat_msghdr __user
*msg_compat
=
2045 (struct compat_msghdr __user
*)msg
;
2046 struct sockaddr_storage address
;
2047 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2048 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2049 __aligned(sizeof(__kernel_size_t
));
2050 /* 20 is size of ipv6_pktinfo */
2051 unsigned char *ctl_buf
= ctl
;
2055 msg_sys
->msg_name
= &address
;
2057 if (MSG_CMSG_COMPAT
& flags
)
2058 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2060 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2066 if (msg_sys
->msg_controllen
> INT_MAX
)
2068 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2069 ctl_len
= msg_sys
->msg_controllen
;
2070 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2072 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2076 ctl_buf
= msg_sys
->msg_control
;
2077 ctl_len
= msg_sys
->msg_controllen
;
2078 } else if (ctl_len
) {
2079 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2080 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2081 if (ctl_len
> sizeof(ctl
)) {
2082 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2083 if (ctl_buf
== NULL
)
2088 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2089 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2090 * checking falls down on this.
2092 if (copy_from_user(ctl_buf
,
2093 (void __user __force
*)msg_sys
->msg_control
,
2096 msg_sys
->msg_control
= ctl_buf
;
2098 msg_sys
->msg_flags
= flags
;
2100 if (sock
->file
->f_flags
& O_NONBLOCK
)
2101 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2103 * If this is sendmmsg() and current destination address is same as
2104 * previously succeeded address, omit asking LSM's decision.
2105 * used_address->name_len is initialized to UINT_MAX so that the first
2106 * destination address never matches.
2108 if (used_address
&& msg_sys
->msg_name
&&
2109 used_address
->name_len
== msg_sys
->msg_namelen
&&
2110 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2111 used_address
->name_len
)) {
2112 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2115 err
= sock_sendmsg(sock
, msg_sys
);
2117 * If this is sendmmsg() and sending to current destination address was
2118 * successful, remember it.
2120 if (used_address
&& err
>= 0) {
2121 used_address
->name_len
= msg_sys
->msg_namelen
;
2122 if (msg_sys
->msg_name
)
2123 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2124 used_address
->name_len
);
2129 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2136 * BSD sendmsg interface
2139 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2140 bool forbid_cmsg_compat
)
2142 int fput_needed
, err
;
2143 struct msghdr msg_sys
;
2144 struct socket
*sock
;
2146 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2149 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2153 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2155 fput_light(sock
->file
, fput_needed
);
2160 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2162 return __sys_sendmsg(fd
, msg
, flags
, true);
2166 * Linux sendmmsg interface
2169 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2170 unsigned int flags
, bool forbid_cmsg_compat
)
2172 int fput_needed
, err
, datagrams
;
2173 struct socket
*sock
;
2174 struct mmsghdr __user
*entry
;
2175 struct compat_mmsghdr __user
*compat_entry
;
2176 struct msghdr msg_sys
;
2177 struct used_address used_address
;
2178 unsigned int oflags
= flags
;
2180 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2183 if (vlen
> UIO_MAXIOV
)
2188 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2192 used_address
.name_len
= UINT_MAX
;
2194 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2198 while (datagrams
< vlen
) {
2199 if (datagrams
== vlen
- 1)
2202 if (MSG_CMSG_COMPAT
& flags
) {
2203 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2204 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2207 err
= __put_user(err
, &compat_entry
->msg_len
);
2210 err
= ___sys_sendmsg(sock
,
2211 (struct user_msghdr __user
*)entry
,
2212 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2215 err
= put_user(err
, &entry
->msg_len
);
2222 if (msg_data_left(&msg_sys
))
2227 fput_light(sock
->file
, fput_needed
);
2229 /* We only return an error if no datagrams were able to be sent */
2236 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2237 unsigned int, vlen
, unsigned int, flags
)
2239 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2242 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2243 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2245 struct compat_msghdr __user
*msg_compat
=
2246 (struct compat_msghdr __user
*)msg
;
2247 struct iovec iovstack
[UIO_FASTIOV
];
2248 struct iovec
*iov
= iovstack
;
2249 unsigned long cmsg_ptr
;
2253 /* kernel mode address */
2254 struct sockaddr_storage addr
;
2256 /* user mode address pointers */
2257 struct sockaddr __user
*uaddr
;
2258 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2260 msg_sys
->msg_name
= &addr
;
2262 if (MSG_CMSG_COMPAT
& flags
)
2263 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2265 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2269 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2270 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2272 /* We assume all kernel code knows the size of sockaddr_storage */
2273 msg_sys
->msg_namelen
= 0;
2275 if (sock
->file
->f_flags
& O_NONBLOCK
)
2276 flags
|= MSG_DONTWAIT
;
2277 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2282 if (uaddr
!= NULL
) {
2283 err
= move_addr_to_user(&addr
,
2284 msg_sys
->msg_namelen
, uaddr
,
2289 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2293 if (MSG_CMSG_COMPAT
& flags
)
2294 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2295 &msg_compat
->msg_controllen
);
2297 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2298 &msg
->msg_controllen
);
2309 * BSD recvmsg interface
2312 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2313 bool forbid_cmsg_compat
)
2315 int fput_needed
, err
;
2316 struct msghdr msg_sys
;
2317 struct socket
*sock
;
2319 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2322 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2326 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2328 fput_light(sock
->file
, fput_needed
);
2333 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2334 unsigned int, flags
)
2336 return __sys_recvmsg(fd
, msg
, flags
, true);
2340 * Linux recvmmsg interface
2343 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2344 unsigned int flags
, struct timespec
*timeout
)
2346 int fput_needed
, err
, datagrams
;
2347 struct socket
*sock
;
2348 struct mmsghdr __user
*entry
;
2349 struct compat_mmsghdr __user
*compat_entry
;
2350 struct msghdr msg_sys
;
2351 struct timespec64 end_time
;
2352 struct timespec64 timeout64
;
2355 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2361 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2365 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2366 err
= sock_error(sock
->sk
);
2374 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2376 while (datagrams
< vlen
) {
2378 * No need to ask LSM for more than the first datagram.
2380 if (MSG_CMSG_COMPAT
& flags
) {
2381 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2382 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2386 err
= __put_user(err
, &compat_entry
->msg_len
);
2389 err
= ___sys_recvmsg(sock
,
2390 (struct user_msghdr __user
*)entry
,
2391 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2395 err
= put_user(err
, &entry
->msg_len
);
2403 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2404 if (flags
& MSG_WAITFORONE
)
2405 flags
|= MSG_DONTWAIT
;
2408 ktime_get_ts64(&timeout64
);
2409 *timeout
= timespec64_to_timespec(
2410 timespec64_sub(end_time
, timeout64
));
2411 if (timeout
->tv_sec
< 0) {
2412 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2416 /* Timeout, return less than vlen datagrams */
2417 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2421 /* Out of band data, return right away */
2422 if (msg_sys
.msg_flags
& MSG_OOB
)
2430 if (datagrams
== 0) {
2436 * We may return less entries than requested (vlen) if the
2437 * sock is non block and there aren't enough datagrams...
2439 if (err
!= -EAGAIN
) {
2441 * ... or if recvmsg returns an error after we
2442 * received some datagrams, where we record the
2443 * error to return on the next call or if the
2444 * app asks about it using getsockopt(SO_ERROR).
2446 sock
->sk
->sk_err
= -err
;
2449 fput_light(sock
->file
, fput_needed
);
2454 static int do_sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2455 unsigned int vlen
, unsigned int flags
,
2456 struct timespec __user
*timeout
)
2459 struct timespec timeout_sys
;
2461 if (flags
& MSG_CMSG_COMPAT
)
2465 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2467 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2470 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2472 if (datagrams
> 0 &&
2473 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2474 datagrams
= -EFAULT
;
2479 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2480 unsigned int, vlen
, unsigned int, flags
,
2481 struct timespec __user
*, timeout
)
2483 return do_sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
);
2486 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2487 /* Argument list sizes for sys_socketcall */
2488 #define AL(x) ((x) * sizeof(unsigned long))
2489 static const unsigned char nargs
[21] = {
2490 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2491 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2492 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2499 * System call vectors.
2501 * Argument checking cleaned up. Saved 20% in size.
2502 * This function doesn't need to set the kernel lock because
2503 * it is set by the callees.
2506 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2508 unsigned long a
[AUDITSC_ARGS
];
2509 unsigned long a0
, a1
;
2513 if (call
< 1 || call
> SYS_SENDMMSG
)
2515 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2518 if (len
> sizeof(a
))
2521 /* copy_from_user should be SMP safe. */
2522 if (copy_from_user(a
, args
, len
))
2525 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2534 err
= __sys_socket(a0
, a1
, a
[2]);
2537 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2540 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2543 err
= __sys_listen(a0
, a1
);
2546 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2547 (int __user
*)a
[2], 0);
2549 case SYS_GETSOCKNAME
:
2551 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2552 (int __user
*)a
[2]);
2554 case SYS_GETPEERNAME
:
2556 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2557 (int __user
*)a
[2]);
2559 case SYS_SOCKETPAIR
:
2560 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2563 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2567 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2568 (struct sockaddr __user
*)a
[4], a
[5]);
2571 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2575 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2576 (struct sockaddr __user
*)a
[4],
2577 (int __user
*)a
[5]);
2580 err
= __sys_shutdown(a0
, a1
);
2582 case SYS_SETSOCKOPT
:
2583 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2586 case SYS_GETSOCKOPT
:
2588 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2589 (int __user
*)a
[4]);
2592 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2596 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2600 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2604 err
= do_sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2605 a
[3], (struct timespec __user
*)a
[4]);
2608 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2609 (int __user
*)a
[2], a
[3]);
2618 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2621 * sock_register - add a socket protocol handler
2622 * @ops: description of protocol
2624 * This function is called by a protocol handler that wants to
2625 * advertise its address family, and have it linked into the
2626 * socket interface. The value ops->family corresponds to the
2627 * socket system call protocol family.
2629 int sock_register(const struct net_proto_family
*ops
)
2633 if (ops
->family
>= NPROTO
) {
2634 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2638 spin_lock(&net_family_lock
);
2639 if (rcu_dereference_protected(net_families
[ops
->family
],
2640 lockdep_is_held(&net_family_lock
)))
2643 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2646 spin_unlock(&net_family_lock
);
2648 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2651 EXPORT_SYMBOL(sock_register
);
2654 * sock_unregister - remove a protocol handler
2655 * @family: protocol family to remove
2657 * This function is called by a protocol handler that wants to
2658 * remove its address family, and have it unlinked from the
2659 * new socket creation.
2661 * If protocol handler is a module, then it can use module reference
2662 * counts to protect against new references. If protocol handler is not
2663 * a module then it needs to provide its own protection in
2664 * the ops->create routine.
2666 void sock_unregister(int family
)
2668 BUG_ON(family
< 0 || family
>= NPROTO
);
2670 spin_lock(&net_family_lock
);
2671 RCU_INIT_POINTER(net_families
[family
], NULL
);
2672 spin_unlock(&net_family_lock
);
2676 pr_info("NET: Unregistered protocol family %d\n", family
);
2678 EXPORT_SYMBOL(sock_unregister
);
2680 bool sock_is_registered(int family
)
2682 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
2685 static int __init
sock_init(void)
2689 * Initialize the network sysctl infrastructure.
2691 err
= net_sysctl_init();
2696 * Initialize skbuff SLAB cache
2701 * Initialize the protocols module.
2706 err
= register_filesystem(&sock_fs_type
);
2709 sock_mnt
= kern_mount(&sock_fs_type
);
2710 if (IS_ERR(sock_mnt
)) {
2711 err
= PTR_ERR(sock_mnt
);
2715 /* The real protocol initialization is performed in later initcalls.
2718 #ifdef CONFIG_NETFILTER
2719 err
= netfilter_init();
2724 ptp_classifier_init();
2730 unregister_filesystem(&sock_fs_type
);
2735 core_initcall(sock_init
); /* early initcall */
2737 #ifdef CONFIG_PROC_FS
2738 void socket_seq_show(struct seq_file
*seq
)
2740 seq_printf(seq
, "sockets: used %d\n",
2741 sock_inuse_get(seq
->private));
2743 #endif /* CONFIG_PROC_FS */
2745 #ifdef CONFIG_COMPAT
2746 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2747 unsigned int cmd
, void __user
*up
)
2749 mm_segment_t old_fs
= get_fs();
2754 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2757 err
= compat_put_timeval(&ktv
, up
);
2762 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2763 unsigned int cmd
, void __user
*up
)
2765 mm_segment_t old_fs
= get_fs();
2766 struct timespec kts
;
2770 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2773 err
= compat_put_timespec(&kts
, up
);
2778 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2780 struct compat_ifconf ifc32
;
2784 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2787 ifc
.ifc_len
= ifc32
.ifc_len
;
2788 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2791 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2796 ifc32
.ifc_len
= ifc
.ifc_len
;
2797 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2803 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2805 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2806 bool convert_in
= false, convert_out
= false;
2807 size_t buf_size
= 0;
2808 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2810 u32 rule_cnt
= 0, actual_rule_cnt
;
2815 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2818 compat_rxnfc
= compat_ptr(data
);
2820 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2823 /* Most ethtool structures are defined without padding.
2824 * Unfortunately struct ethtool_rxnfc is an exception.
2829 case ETHTOOL_GRXCLSRLALL
:
2830 /* Buffer size is variable */
2831 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2833 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2835 buf_size
+= rule_cnt
* sizeof(u32
);
2837 case ETHTOOL_GRXRINGS
:
2838 case ETHTOOL_GRXCLSRLCNT
:
2839 case ETHTOOL_GRXCLSRULE
:
2840 case ETHTOOL_SRXCLSRLINS
:
2843 case ETHTOOL_SRXCLSRLDEL
:
2844 buf_size
+= sizeof(struct ethtool_rxnfc
);
2846 rxnfc
= compat_alloc_user_space(buf_size
);
2850 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2853 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
2856 /* We expect there to be holes between fs.m_ext and
2857 * fs.ring_cookie and at the end of fs, but nowhere else.
2859 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2860 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2861 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2862 sizeof(rxnfc
->fs
.m_ext
));
2864 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2865 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2866 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2867 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2869 if (copy_in_user(rxnfc
, compat_rxnfc
,
2870 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2871 (void __user
*)rxnfc
) ||
2872 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2873 &compat_rxnfc
->fs
.ring_cookie
,
2874 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2875 (void __user
*)&rxnfc
->fs
.ring_cookie
))
2877 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2878 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
2880 } else if (copy_in_user(&rxnfc
->rule_cnt
,
2881 &compat_rxnfc
->rule_cnt
,
2882 sizeof(rxnfc
->rule_cnt
)))
2886 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
2891 if (copy_in_user(compat_rxnfc
, rxnfc
,
2892 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2893 (const void __user
*)rxnfc
) ||
2894 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2895 &rxnfc
->fs
.ring_cookie
,
2896 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2897 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2898 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2899 sizeof(rxnfc
->rule_cnt
)))
2902 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2903 /* As an optimisation, we only copy the actual
2904 * number of rules that the underlying
2905 * function returned. Since Mallory might
2906 * change the rule count in user memory, we
2907 * check that it is less than the rule count
2908 * originally given (as the user buffer size),
2909 * which has been range-checked.
2911 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2913 if (actual_rule_cnt
< rule_cnt
)
2914 rule_cnt
= actual_rule_cnt
;
2915 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2916 &rxnfc
->rule_locs
[0],
2917 rule_cnt
* sizeof(u32
)))
2925 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2927 compat_uptr_t uptr32
;
2932 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
2935 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2938 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
2939 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
2941 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
2943 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
2944 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
2950 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2951 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2952 struct compat_ifreq __user
*u_ifreq32
)
2957 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
2959 if (get_user(data32
, &u_ifreq32
->ifr_data
))
2961 ifreq
.ifr_data
= compat_ptr(data32
);
2963 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
2966 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
2968 struct compat_ifreq __user
*uifr32
)
2970 struct ifreq __user
*uifr
;
2973 /* Handle the fact that while struct ifreq has the same *layout* on
2974 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
2975 * which are handled elsewhere, it still has different *size* due to
2976 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
2977 * resulting in struct ifreq being 32 and 40 bytes respectively).
2978 * As a result, if the struct happens to be at the end of a page and
2979 * the next page isn't readable/writable, we get a fault. To prevent
2980 * that, copy back and forth to the full size.
2983 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2984 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2987 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2998 case SIOCGIFBRDADDR
:
2999 case SIOCGIFDSTADDR
:
3000 case SIOCGIFNETMASK
:
3006 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3014 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3015 struct compat_ifreq __user
*uifr32
)
3018 struct compat_ifmap __user
*uifmap32
;
3021 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3022 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3023 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3024 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3025 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3026 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3027 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3028 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3032 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3034 if (cmd
== SIOCGIFMAP
&& !err
) {
3035 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3036 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3037 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3038 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3039 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3040 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3041 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3050 struct sockaddr rt_dst
; /* target address */
3051 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3052 struct sockaddr rt_genmask
; /* target network mask (IP) */
3053 unsigned short rt_flags
;
3056 unsigned char rt_tos
;
3057 unsigned char rt_class
;
3059 short rt_metric
; /* +1 for binary compatibility! */
3060 /* char * */ u32 rt_dev
; /* forcing the device at add */
3061 u32 rt_mtu
; /* per route MTU/Window */
3062 u32 rt_window
; /* Window clamping */
3063 unsigned short rt_irtt
; /* Initial RTT */
3066 struct in6_rtmsg32
{
3067 struct in6_addr rtmsg_dst
;
3068 struct in6_addr rtmsg_src
;
3069 struct in6_addr rtmsg_gateway
;
3079 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3080 unsigned int cmd
, void __user
*argp
)
3084 struct in6_rtmsg r6
;
3088 mm_segment_t old_fs
= get_fs();
3090 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3091 struct in6_rtmsg32 __user
*ur6
= argp
;
3092 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3093 3 * sizeof(struct in6_addr
));
3094 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3095 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3096 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3097 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3098 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3099 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3100 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3104 struct rtentry32 __user
*ur4
= argp
;
3105 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3106 3 * sizeof(struct sockaddr
));
3107 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3108 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3109 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3110 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3111 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3112 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3114 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3115 r4
.rt_dev
= (char __user __force
*)devname
;
3129 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3136 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3137 * for some operations; this forces use of the newer bridge-utils that
3138 * use compatible ioctls
3140 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3144 if (get_user(tmp
, argp
))
3146 if (tmp
== BRCTL_GET_VERSION
)
3147 return BRCTL_VERSION
+ 1;
3151 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3152 unsigned int cmd
, unsigned long arg
)
3154 void __user
*argp
= compat_ptr(arg
);
3155 struct sock
*sk
= sock
->sk
;
3156 struct net
*net
= sock_net(sk
);
3158 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3159 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3164 return old_bridge_ioctl(argp
);
3166 return compat_dev_ifconf(net
, argp
);
3168 return ethtool_ioctl(net
, argp
);
3170 return compat_siocwandev(net
, argp
);
3173 return compat_sioc_ifmap(net
, cmd
, argp
);
3176 return routing_ioctl(net
, sock
, cmd
, argp
);
3178 return do_siocgstamp(net
, sock
, cmd
, argp
);
3180 return do_siocgstampns(net
, sock
, cmd
, argp
);
3181 case SIOCBONDSLAVEINFOQUERY
:
3182 case SIOCBONDINFOQUERY
:
3185 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3198 return sock_ioctl(file
, cmd
, arg
);
3215 case SIOCSIFHWBROADCAST
:
3217 case SIOCGIFBRDADDR
:
3218 case SIOCSIFBRDADDR
:
3219 case SIOCGIFDSTADDR
:
3220 case SIOCSIFDSTADDR
:
3221 case SIOCGIFNETMASK
:
3222 case SIOCSIFNETMASK
:
3234 case SIOCBONDENSLAVE
:
3235 case SIOCBONDRELEASE
:
3236 case SIOCBONDSETHWADDR
:
3237 case SIOCBONDCHANGEACTIVE
:
3238 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3245 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3248 return -ENOIOCTLCMD
;
3251 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3254 struct socket
*sock
= file
->private_data
;
3255 int ret
= -ENOIOCTLCMD
;
3262 if (sock
->ops
->compat_ioctl
)
3263 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3265 if (ret
== -ENOIOCTLCMD
&&
3266 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3267 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3269 if (ret
== -ENOIOCTLCMD
)
3270 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3276 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3278 return sock
->ops
->bind(sock
, addr
, addrlen
);
3280 EXPORT_SYMBOL(kernel_bind
);
3282 int kernel_listen(struct socket
*sock
, int backlog
)
3284 return sock
->ops
->listen(sock
, backlog
);
3286 EXPORT_SYMBOL(kernel_listen
);
3288 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3290 struct sock
*sk
= sock
->sk
;
3293 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3298 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3300 sock_release(*newsock
);
3305 (*newsock
)->ops
= sock
->ops
;
3306 __module_get((*newsock
)->ops
->owner
);
3311 EXPORT_SYMBOL(kernel_accept
);
3313 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3316 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3318 EXPORT_SYMBOL(kernel_connect
);
3320 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3322 return sock
->ops
->getname(sock
, addr
, 0);
3324 EXPORT_SYMBOL(kernel_getsockname
);
3326 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3328 return sock
->ops
->getname(sock
, addr
, 1);
3330 EXPORT_SYMBOL(kernel_getpeername
);
3332 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3333 char *optval
, int *optlen
)
3335 mm_segment_t oldfs
= get_fs();
3336 char __user
*uoptval
;
3337 int __user
*uoptlen
;
3340 uoptval
= (char __user __force
*) optval
;
3341 uoptlen
= (int __user __force
*) optlen
;
3344 if (level
== SOL_SOCKET
)
3345 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3347 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3352 EXPORT_SYMBOL(kernel_getsockopt
);
3354 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3355 char *optval
, unsigned int optlen
)
3357 mm_segment_t oldfs
= get_fs();
3358 char __user
*uoptval
;
3361 uoptval
= (char __user __force
*) optval
;
3364 if (level
== SOL_SOCKET
)
3365 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3367 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3372 EXPORT_SYMBOL(kernel_setsockopt
);
3374 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3375 size_t size
, int flags
)
3377 if (sock
->ops
->sendpage
)
3378 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3380 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3382 EXPORT_SYMBOL(kernel_sendpage
);
3384 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3385 size_t size
, int flags
)
3387 struct socket
*sock
= sk
->sk_socket
;
3389 if (sock
->ops
->sendpage_locked
)
3390 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3393 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3395 EXPORT_SYMBOL(kernel_sendpage_locked
);
3397 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3399 return sock
->ops
->shutdown(sock
, how
);
3401 EXPORT_SYMBOL(kernel_sock_shutdown
);
3403 /* This routine returns the IP overhead imposed by a socket i.e.
3404 * the length of the underlying IP header, depending on whether
3405 * this is an IPv4 or IPv6 socket and the length from IP options turned
3406 * on at the socket. Assumes that the caller has a lock on the socket.
3408 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3410 struct inet_sock
*inet
;
3411 struct ip_options_rcu
*opt
;
3413 #if IS_ENABLED(CONFIG_IPV6)
3414 struct ipv6_pinfo
*np
;
3415 struct ipv6_txoptions
*optv6
= NULL
;
3416 #endif /* IS_ENABLED(CONFIG_IPV6) */
3421 switch (sk
->sk_family
) {
3424 overhead
+= sizeof(struct iphdr
);
3425 opt
= rcu_dereference_protected(inet
->inet_opt
,
3426 sock_owned_by_user(sk
));
3428 overhead
+= opt
->opt
.optlen
;
3430 #if IS_ENABLED(CONFIG_IPV6)
3433 overhead
+= sizeof(struct ipv6hdr
);
3435 optv6
= rcu_dereference_protected(np
->opt
,
3436 sock_owned_by_user(sk
));
3438 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3440 #endif /* IS_ENABLED(CONFIG_IPV6) */
3441 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3445 EXPORT_SYMBOL(kernel_sock_ip_overhead
);