1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
14 * The following locks and mutexes are used by kmemleak:
16 * - kmemleak_lock (rwlock): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26 * the metadata (e.g. count) are protected by this lock. Note that some
27 * members of this structure may be protected by other means (atomic or
28 * kmemleak_lock). This lock is also held when scanning the corresponding
29 * memory block to avoid the kernel freeing it via the kmemleak_free()
30 * callback. This is less heavyweight than holding a global lock like
31 * kmemleak_lock during scanning
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
43 * Locks and mutexes are acquired/nested in the following order:
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
104 * Kmemleak configuration and common defines.
106 #define MAX_TRACE 16 /* stack trace length */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112 #define BYTES_PER_POINTER sizeof(void *)
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 __GFP_NOWARN | __GFP_NOFAIL)
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area
{
121 struct hlist_node node
;
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
137 struct kmemleak_object
{
139 unsigned int flags
; /* object status flags */
140 struct list_head object_list
;
141 struct list_head gray_list
;
142 struct rb_node rb_node
;
143 struct rcu_head rcu
; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
146 unsigned long pointer
;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref
;
150 /* minimum number of a pointers found before it is considered leak */
152 /* the total number of pointers found pointing to this object */
154 /* checksum for detecting modified objects */
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list
;
158 unsigned long trace
[MAX_TRACE
];
159 unsigned int trace_len
;
160 unsigned long jiffies
; /* creation timestamp */
161 pid_t pid
; /* pid of the current task */
162 char comm
[TASK_COMM_LEN
]; /* executable name */
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
172 #define HEX_PREFIX " "
173 /* number of bytes to print per line; must be 16 or 32 */
174 #define HEX_ROW_SIZE 16
175 /* number of bytes to print at a time (1, 2, 4, 8) */
176 #define HEX_GROUP_SIZE 1
177 /* include ASCII after the hex output */
179 /* max number of lines to be printed */
180 #define HEX_MAX_LINES 2
182 /* the list of all allocated objects */
183 static LIST_HEAD(object_list
);
184 /* the list of gray-colored objects (see color_gray comment below) */
185 static LIST_HEAD(gray_list
);
186 /* search tree for object boundaries */
187 static struct rb_root object_tree_root
= RB_ROOT
;
188 /* rw_lock protecting the access to object_list and object_tree_root */
189 static DEFINE_RWLOCK(kmemleak_lock
);
191 /* allocation caches for kmemleak internal data */
192 static struct kmem_cache
*object_cache
;
193 static struct kmem_cache
*scan_area_cache
;
195 /* set if tracing memory operations is enabled */
196 static int kmemleak_enabled
;
197 /* same as above but only for the kmemleak_free() callback */
198 static int kmemleak_free_enabled
;
199 /* set in the late_initcall if there were no errors */
200 static int kmemleak_initialized
;
201 /* enables or disables early logging of the memory operations */
202 static int kmemleak_early_log
= 1;
203 /* set if a kmemleak warning was issued */
204 static int kmemleak_warning
;
205 /* set if a fatal kmemleak error has occurred */
206 static int kmemleak_error
;
208 /* minimum and maximum address that may be valid pointers */
209 static unsigned long min_addr
= ULONG_MAX
;
210 static unsigned long max_addr
;
212 static struct task_struct
*scan_thread
;
213 /* used to avoid reporting of recently allocated objects */
214 static unsigned long jiffies_min_age
;
215 static unsigned long jiffies_last_scan
;
216 /* delay between automatic memory scannings */
217 static signed long jiffies_scan_wait
;
218 /* enables or disables the task stacks scanning */
219 static int kmemleak_stack_scan
= 1;
220 /* protects the memory scanning, parameters and debug/kmemleak file access */
221 static DEFINE_MUTEX(scan_mutex
);
222 /* setting kmemleak=on, will set this var, skipping the disable */
223 static int kmemleak_skip_disable
;
224 /* If there are leaks that can be reported */
225 static bool kmemleak_found_leaks
;
227 static bool kmemleak_verbose
;
228 module_param_named(verbose
, kmemleak_verbose
, bool, 0600);
231 * Early object allocation/freeing logging. Kmemleak is initialized after the
232 * kernel allocator. However, both the kernel allocator and kmemleak may
233 * allocate memory blocks which need to be tracked. Kmemleak defines an
234 * arbitrary buffer to hold the allocation/freeing information before it is
238 /* kmemleak operation type for early logging */
241 KMEMLEAK_ALLOC_PERCPU
,
244 KMEMLEAK_FREE_PERCPU
,
249 KMEMLEAK_SET_EXCESS_REF
253 * Structure holding the information passed to kmemleak callbacks during the
257 int op_type
; /* kmemleak operation type */
258 int min_count
; /* minimum reference count */
259 const void *ptr
; /* allocated/freed memory block */
261 size_t size
; /* memory block size */
262 unsigned long excess_ref
; /* surplus reference passing */
264 unsigned long trace
[MAX_TRACE
]; /* stack trace */
265 unsigned int trace_len
; /* stack trace length */
268 /* early logging buffer and current position */
269 static struct early_log
270 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
271 static int crt_early_log __initdata
;
273 static void kmemleak_disable(void);
276 * Print a warning and dump the stack trace.
278 #define kmemleak_warn(x...) do { \
281 kmemleak_warning = 1; \
285 * Macro invoked when a serious kmemleak condition occurred and cannot be
286 * recovered from. Kmemleak will be disabled and further allocation/freeing
287 * tracing no longer available.
289 #define kmemleak_stop(x...) do { \
291 kmemleak_disable(); \
294 #define warn_or_seq_printf(seq, fmt, ...) do { \
296 seq_printf(seq, fmt, ##__VA_ARGS__); \
298 pr_warn(fmt, ##__VA_ARGS__); \
301 static void warn_or_seq_hex_dump(struct seq_file
*seq
, int prefix_type
,
302 int rowsize
, int groupsize
, const void *buf
,
303 size_t len
, bool ascii
)
306 seq_hex_dump(seq
, HEX_PREFIX
, prefix_type
, rowsize
, groupsize
,
309 print_hex_dump(KERN_WARNING
, pr_fmt(HEX_PREFIX
), prefix_type
,
310 rowsize
, groupsize
, buf
, len
, ascii
);
314 * Printing of the objects hex dump to the seq file. The number of lines to be
315 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
316 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
317 * with the object->lock held.
319 static void hex_dump_object(struct seq_file
*seq
,
320 struct kmemleak_object
*object
)
322 const u8
*ptr
= (const u8
*)object
->pointer
;
325 /* limit the number of lines to HEX_MAX_LINES */
326 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
328 warn_or_seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
329 kasan_disable_current();
330 warn_or_seq_hex_dump(seq
, DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
331 HEX_GROUP_SIZE
, ptr
, len
, HEX_ASCII
);
332 kasan_enable_current();
336 * Object colors, encoded with count and min_count:
337 * - white - orphan object, not enough references to it (count < min_count)
338 * - gray - not orphan, not marked as false positive (min_count == 0) or
339 * sufficient references to it (count >= min_count)
340 * - black - ignore, it doesn't contain references (e.g. text section)
341 * (min_count == -1). No function defined for this color.
342 * Newly created objects don't have any color assigned (object->count == -1)
343 * before the next memory scan when they become white.
345 static bool color_white(const struct kmemleak_object
*object
)
347 return object
->count
!= KMEMLEAK_BLACK
&&
348 object
->count
< object
->min_count
;
351 static bool color_gray(const struct kmemleak_object
*object
)
353 return object
->min_count
!= KMEMLEAK_BLACK
&&
354 object
->count
>= object
->min_count
;
358 * Objects are considered unreferenced only if their color is white, they have
359 * not be deleted and have a minimum age to avoid false positives caused by
360 * pointers temporarily stored in CPU registers.
362 static bool unreferenced_object(struct kmemleak_object
*object
)
364 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
365 time_before_eq(object
->jiffies
+ jiffies_min_age
,
370 * Printing of the unreferenced objects information to the seq file. The
371 * print_unreferenced function must be called with the object->lock held.
373 static void print_unreferenced(struct seq_file
*seq
,
374 struct kmemleak_object
*object
)
377 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
379 warn_or_seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
380 object
->pointer
, object
->size
);
381 warn_or_seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
382 object
->comm
, object
->pid
, object
->jiffies
,
383 msecs_age
/ 1000, msecs_age
% 1000);
384 hex_dump_object(seq
, object
);
385 warn_or_seq_printf(seq
, " backtrace:\n");
387 for (i
= 0; i
< object
->trace_len
; i
++) {
388 void *ptr
= (void *)object
->trace
[i
];
389 warn_or_seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
394 * Print the kmemleak_object information. This function is used mainly for
395 * debugging special cases when kmemleak operations. It must be called with
396 * the object->lock held.
398 static void dump_object_info(struct kmemleak_object
*object
)
400 pr_notice("Object 0x%08lx (size %zu):\n",
401 object
->pointer
, object
->size
);
402 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
403 object
->comm
, object
->pid
, object
->jiffies
);
404 pr_notice(" min_count = %d\n", object
->min_count
);
405 pr_notice(" count = %d\n", object
->count
);
406 pr_notice(" flags = 0x%x\n", object
->flags
);
407 pr_notice(" checksum = %u\n", object
->checksum
);
408 pr_notice(" backtrace:\n");
409 stack_trace_print(object
->trace
, object
->trace_len
, 4);
413 * Look-up a memory block metadata (kmemleak_object) in the object search
414 * tree based on a pointer value. If alias is 0, only values pointing to the
415 * beginning of the memory block are allowed. The kmemleak_lock must be held
416 * when calling this function.
418 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
420 struct rb_node
*rb
= object_tree_root
.rb_node
;
423 struct kmemleak_object
*object
=
424 rb_entry(rb
, struct kmemleak_object
, rb_node
);
425 if (ptr
< object
->pointer
)
426 rb
= object
->rb_node
.rb_left
;
427 else if (object
->pointer
+ object
->size
<= ptr
)
428 rb
= object
->rb_node
.rb_right
;
429 else if (object
->pointer
== ptr
|| alias
)
432 kmemleak_warn("Found object by alias at 0x%08lx\n",
434 dump_object_info(object
);
442 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
443 * that once an object's use_count reached 0, the RCU freeing was already
444 * registered and the object should no longer be used. This function must be
445 * called under the protection of rcu_read_lock().
447 static int get_object(struct kmemleak_object
*object
)
449 return atomic_inc_not_zero(&object
->use_count
);
453 * RCU callback to free a kmemleak_object.
455 static void free_object_rcu(struct rcu_head
*rcu
)
457 struct hlist_node
*tmp
;
458 struct kmemleak_scan_area
*area
;
459 struct kmemleak_object
*object
=
460 container_of(rcu
, struct kmemleak_object
, rcu
);
463 * Once use_count is 0 (guaranteed by put_object), there is no other
464 * code accessing this object, hence no need for locking.
466 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
467 hlist_del(&area
->node
);
468 kmem_cache_free(scan_area_cache
, area
);
470 kmem_cache_free(object_cache
, object
);
474 * Decrement the object use_count. Once the count is 0, free the object using
475 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
476 * delete_object() path, the delayed RCU freeing ensures that there is no
477 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
480 static void put_object(struct kmemleak_object
*object
)
482 if (!atomic_dec_and_test(&object
->use_count
))
485 /* should only get here after delete_object was called */
486 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
488 call_rcu(&object
->rcu
, free_object_rcu
);
492 * Look up an object in the object search tree and increase its use_count.
494 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
497 struct kmemleak_object
*object
;
500 read_lock_irqsave(&kmemleak_lock
, flags
);
501 object
= lookup_object(ptr
, alias
);
502 read_unlock_irqrestore(&kmemleak_lock
, flags
);
504 /* check whether the object is still available */
505 if (object
&& !get_object(object
))
513 * Look up an object in the object search tree and remove it from both
514 * object_tree_root and object_list. The returned object's use_count should be
515 * at least 1, as initially set by create_object().
517 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
)
520 struct kmemleak_object
*object
;
522 write_lock_irqsave(&kmemleak_lock
, flags
);
523 object
= lookup_object(ptr
, alias
);
525 rb_erase(&object
->rb_node
, &object_tree_root
);
526 list_del_rcu(&object
->object_list
);
528 write_unlock_irqrestore(&kmemleak_lock
, flags
);
534 * Save stack trace to the given array of MAX_TRACE size.
536 static int __save_stack_trace(unsigned long *trace
)
538 return stack_trace_save(trace
, MAX_TRACE
, 2);
542 * Create the metadata (struct kmemleak_object) corresponding to an allocated
543 * memory block and add it to the object_list and object_tree_root.
545 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
546 int min_count
, gfp_t gfp
)
549 struct kmemleak_object
*object
, *parent
;
550 struct rb_node
**link
, *rb_parent
;
551 unsigned long untagged_ptr
;
553 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
555 pr_warn("Cannot allocate a kmemleak_object structure\n");
560 INIT_LIST_HEAD(&object
->object_list
);
561 INIT_LIST_HEAD(&object
->gray_list
);
562 INIT_HLIST_HEAD(&object
->area_list
);
563 spin_lock_init(&object
->lock
);
564 atomic_set(&object
->use_count
, 1);
565 object
->flags
= OBJECT_ALLOCATED
;
566 object
->pointer
= ptr
;
568 object
->excess_ref
= 0;
569 object
->min_count
= min_count
;
570 object
->count
= 0; /* white color initially */
571 object
->jiffies
= jiffies
;
572 object
->checksum
= 0;
574 /* task information */
577 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
578 } else if (in_serving_softirq()) {
580 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
582 object
->pid
= current
->pid
;
584 * There is a small chance of a race with set_task_comm(),
585 * however using get_task_comm() here may cause locking
586 * dependency issues with current->alloc_lock. In the worst
587 * case, the command line is not correct.
589 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
592 /* kernel backtrace */
593 object
->trace_len
= __save_stack_trace(object
->trace
);
595 write_lock_irqsave(&kmemleak_lock
, flags
);
597 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)ptr
);
598 min_addr
= min(min_addr
, untagged_ptr
);
599 max_addr
= max(max_addr
, untagged_ptr
+ size
);
600 link
= &object_tree_root
.rb_node
;
604 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
605 if (ptr
+ size
<= parent
->pointer
)
606 link
= &parent
->rb_node
.rb_left
;
607 else if (parent
->pointer
+ parent
->size
<= ptr
)
608 link
= &parent
->rb_node
.rb_right
;
610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
613 * No need for parent->lock here since "parent" cannot
614 * be freed while the kmemleak_lock is held.
616 dump_object_info(parent
);
617 kmem_cache_free(object_cache
, object
);
622 rb_link_node(&object
->rb_node
, rb_parent
, link
);
623 rb_insert_color(&object
->rb_node
, &object_tree_root
);
625 list_add_tail_rcu(&object
->object_list
, &object_list
);
627 write_unlock_irqrestore(&kmemleak_lock
, flags
);
632 * Mark the object as not allocated and schedule RCU freeing via put_object().
634 static void __delete_object(struct kmemleak_object
*object
)
638 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
639 WARN_ON(atomic_read(&object
->use_count
) < 1);
642 * Locking here also ensures that the corresponding memory block
643 * cannot be freed when it is being scanned.
645 spin_lock_irqsave(&object
->lock
, flags
);
646 object
->flags
&= ~OBJECT_ALLOCATED
;
647 spin_unlock_irqrestore(&object
->lock
, flags
);
652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
655 static void delete_object_full(unsigned long ptr
)
657 struct kmemleak_object
*object
;
659 object
= find_and_remove_object(ptr
, 0);
662 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
667 __delete_object(object
);
671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672 * delete it. If the memory block is partially freed, the function may create
673 * additional metadata for the remaining parts of the block.
675 static void delete_object_part(unsigned long ptr
, size_t size
)
677 struct kmemleak_object
*object
;
678 unsigned long start
, end
;
680 object
= find_and_remove_object(ptr
, 1);
683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
690 * Create one or two objects that may result from the memory block
691 * split. Note that partial freeing is only done by free_bootmem() and
692 * this happens before kmemleak_init() is called. The path below is
693 * only executed during early log recording in kmemleak_init(), so
694 * GFP_KERNEL is enough.
696 start
= object
->pointer
;
697 end
= object
->pointer
+ object
->size
;
699 create_object(start
, ptr
- start
, object
->min_count
,
701 if (ptr
+ size
< end
)
702 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
705 __delete_object(object
);
708 static void __paint_it(struct kmemleak_object
*object
, int color
)
710 object
->min_count
= color
;
711 if (color
== KMEMLEAK_BLACK
)
712 object
->flags
|= OBJECT_NO_SCAN
;
715 static void paint_it(struct kmemleak_object
*object
, int color
)
719 spin_lock_irqsave(&object
->lock
, flags
);
720 __paint_it(object
, color
);
721 spin_unlock_irqrestore(&object
->lock
, flags
);
724 static void paint_ptr(unsigned long ptr
, int color
)
726 struct kmemleak_object
*object
;
728 object
= find_and_get_object(ptr
, 0);
730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
732 (color
== KMEMLEAK_GREY
) ? "Grey" :
733 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
736 paint_it(object
, color
);
741 * Mark an object permanently as gray-colored so that it can no longer be
742 * reported as a leak. This is used in general to mark a false positive.
744 static void make_gray_object(unsigned long ptr
)
746 paint_ptr(ptr
, KMEMLEAK_GREY
);
750 * Mark the object as black-colored so that it is ignored from scans and
753 static void make_black_object(unsigned long ptr
)
755 paint_ptr(ptr
, KMEMLEAK_BLACK
);
759 * Add a scanning area to the object. If at least one such area is added,
760 * kmemleak will only scan these ranges rather than the whole memory block.
762 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
765 struct kmemleak_object
*object
;
766 struct kmemleak_scan_area
*area
;
768 object
= find_and_get_object(ptr
, 1);
770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
775 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
777 pr_warn("Cannot allocate a scan area\n");
781 spin_lock_irqsave(&object
->lock
, flags
);
782 if (size
== SIZE_MAX
) {
783 size
= object
->pointer
+ object
->size
- ptr
;
784 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
786 dump_object_info(object
);
787 kmem_cache_free(scan_area_cache
, area
);
791 INIT_HLIST_NODE(&area
->node
);
795 hlist_add_head(&area
->node
, &object
->area_list
);
797 spin_unlock_irqrestore(&object
->lock
, flags
);
803 * Any surplus references (object already gray) to 'ptr' are passed to
804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805 * vm_struct may be used as an alternative reference to the vmalloc'ed object
806 * (see free_thread_stack()).
808 static void object_set_excess_ref(unsigned long ptr
, unsigned long excess_ref
)
811 struct kmemleak_object
*object
;
813 object
= find_and_get_object(ptr
, 0);
815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
820 spin_lock_irqsave(&object
->lock
, flags
);
821 object
->excess_ref
= excess_ref
;
822 spin_unlock_irqrestore(&object
->lock
, flags
);
827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828 * pointer. Such object will not be scanned by kmemleak but references to it
831 static void object_no_scan(unsigned long ptr
)
834 struct kmemleak_object
*object
;
836 object
= find_and_get_object(ptr
, 0);
838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
842 spin_lock_irqsave(&object
->lock
, flags
);
843 object
->flags
|= OBJECT_NO_SCAN
;
844 spin_unlock_irqrestore(&object
->lock
, flags
);
849 * Log an early kmemleak_* call to the early_log buffer. These calls will be
850 * processed later once kmemleak is fully initialized.
852 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
856 struct early_log
*log
;
858 if (kmemleak_error
) {
859 /* kmemleak stopped recording, just count the requests */
864 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
871 * There is no need for locking since the kernel is still in UP mode
872 * at this stage. Disabling the IRQs is enough.
874 local_irq_save(flags
);
875 log
= &early_log
[crt_early_log
];
876 log
->op_type
= op_type
;
879 log
->min_count
= min_count
;
880 log
->trace_len
= __save_stack_trace(log
->trace
);
882 local_irq_restore(flags
);
886 * Log an early allocated block and populate the stack trace.
888 static void early_alloc(struct early_log
*log
)
890 struct kmemleak_object
*object
;
894 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
898 * RCU locking needed to ensure object is not freed via put_object().
901 object
= create_object((unsigned long)log
->ptr
, log
->size
,
902 log
->min_count
, GFP_ATOMIC
);
905 spin_lock_irqsave(&object
->lock
, flags
);
906 for (i
= 0; i
< log
->trace_len
; i
++)
907 object
->trace
[i
] = log
->trace
[i
];
908 object
->trace_len
= log
->trace_len
;
909 spin_unlock_irqrestore(&object
->lock
, flags
);
915 * Log an early allocated block and populate the stack trace.
917 static void early_alloc_percpu(struct early_log
*log
)
920 const void __percpu
*ptr
= log
->ptr
;
922 for_each_possible_cpu(cpu
) {
923 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
929 * kmemleak_alloc - register a newly allocated object
930 * @ptr: pointer to beginning of the object
931 * @size: size of the object
932 * @min_count: minimum number of references to this object. If during memory
933 * scanning a number of references less than @min_count is found,
934 * the object is reported as a memory leak. If @min_count is 0,
935 * the object is never reported as a leak. If @min_count is -1,
936 * the object is ignored (not scanned and not reported as a leak)
937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
939 * This function is called from the kernel allocators when a new object
940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
942 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
945 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
947 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
948 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
949 else if (kmemleak_early_log
)
950 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
952 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
955 * kmemleak_alloc_percpu - register a newly allocated __percpu object
956 * @ptr: __percpu pointer to beginning of the object
957 * @size: size of the object
958 * @gfp: flags used for kmemleak internal memory allocations
960 * This function is called from the kernel percpu allocator when a new object
961 * (memory block) is allocated (alloc_percpu).
963 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
968 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
971 * Percpu allocations are only scanned and not reported as leaks
972 * (min_count is set to 0).
974 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
975 for_each_possible_cpu(cpu
)
976 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
978 else if (kmemleak_early_log
)
979 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
984 * kmemleak_vmalloc - register a newly vmalloc'ed object
985 * @area: pointer to vm_struct
986 * @size: size of the object
987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
989 * This function is called from the vmalloc() kernel allocator when a new
990 * object (memory block) is allocated.
992 void __ref
kmemleak_vmalloc(const struct vm_struct
*area
, size_t size
, gfp_t gfp
)
994 pr_debug("%s(0x%p, %zu)\n", __func__
, area
, size
);
997 * A min_count = 2 is needed because vm_struct contains a reference to
998 * the virtual address of the vmalloc'ed block.
1000 if (kmemleak_enabled
) {
1001 create_object((unsigned long)area
->addr
, size
, 2, gfp
);
1002 object_set_excess_ref((unsigned long)area
,
1003 (unsigned long)area
->addr
);
1004 } else if (kmemleak_early_log
) {
1005 log_early(KMEMLEAK_ALLOC
, area
->addr
, size
, 2);
1006 /* reusing early_log.size for storing area->addr */
1007 log_early(KMEMLEAK_SET_EXCESS_REF
,
1008 area
, (unsigned long)area
->addr
, 0);
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc
);
1014 * kmemleak_free - unregister a previously registered object
1015 * @ptr: pointer to beginning of the object
1017 * This function is called from the kernel allocators when an object (memory
1018 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1020 void __ref
kmemleak_free(const void *ptr
)
1022 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1024 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1025 delete_object_full((unsigned long)ptr
);
1026 else if (kmemleak_early_log
)
1027 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
1029 EXPORT_SYMBOL_GPL(kmemleak_free
);
1032 * kmemleak_free_part - partially unregister a previously registered object
1033 * @ptr: pointer to the beginning or inside the object. This also
1034 * represents the start of the range to be freed
1035 * @size: size to be unregistered
1037 * This function is called when only a part of a memory block is freed
1038 * (usually from the bootmem allocator).
1040 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
1042 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1044 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1045 delete_object_part((unsigned long)ptr
, size
);
1046 else if (kmemleak_early_log
)
1047 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
1052 * kmemleak_free_percpu - unregister a previously registered __percpu object
1053 * @ptr: __percpu pointer to beginning of the object
1055 * This function is called from the kernel percpu allocator when an object
1056 * (memory block) is freed (free_percpu).
1058 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
1062 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1064 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1065 for_each_possible_cpu(cpu
)
1066 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
1068 else if (kmemleak_early_log
)
1069 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1074 * kmemleak_update_trace - update object allocation stack trace
1075 * @ptr: pointer to beginning of the object
1077 * Override the object allocation stack trace for cases where the actual
1078 * allocation place is not always useful.
1080 void __ref
kmemleak_update_trace(const void *ptr
)
1082 struct kmemleak_object
*object
;
1083 unsigned long flags
;
1085 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1087 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1090 object
= find_and_get_object((unsigned long)ptr
, 1);
1093 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1099 spin_lock_irqsave(&object
->lock
, flags
);
1100 object
->trace_len
= __save_stack_trace(object
->trace
);
1101 spin_unlock_irqrestore(&object
->lock
, flags
);
1105 EXPORT_SYMBOL(kmemleak_update_trace
);
1108 * kmemleak_not_leak - mark an allocated object as false positive
1109 * @ptr: pointer to beginning of the object
1111 * Calling this function on an object will cause the memory block to no longer
1112 * be reported as leak and always be scanned.
1114 void __ref
kmemleak_not_leak(const void *ptr
)
1116 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1118 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1119 make_gray_object((unsigned long)ptr
);
1120 else if (kmemleak_early_log
)
1121 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1123 EXPORT_SYMBOL(kmemleak_not_leak
);
1126 * kmemleak_ignore - ignore an allocated object
1127 * @ptr: pointer to beginning of the object
1129 * Calling this function on an object will cause the memory block to be
1130 * ignored (not scanned and not reported as a leak). This is usually done when
1131 * it is known that the corresponding block is not a leak and does not contain
1132 * any references to other allocated memory blocks.
1134 void __ref
kmemleak_ignore(const void *ptr
)
1136 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1138 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1139 make_black_object((unsigned long)ptr
);
1140 else if (kmemleak_early_log
)
1141 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1143 EXPORT_SYMBOL(kmemleak_ignore
);
1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147 * @ptr: pointer to beginning or inside the object. This also
1148 * represents the start of the scan area
1149 * @size: size of the scan area
1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1152 * This function is used when it is known that only certain parts of an object
1153 * contain references to other objects. Kmemleak will only scan these areas
1154 * reducing the number false negatives.
1156 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1158 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1160 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1161 add_scan_area((unsigned long)ptr
, size
, gfp
);
1162 else if (kmemleak_early_log
)
1163 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1165 EXPORT_SYMBOL(kmemleak_scan_area
);
1168 * kmemleak_no_scan - do not scan an allocated object
1169 * @ptr: pointer to beginning of the object
1171 * This function notifies kmemleak not to scan the given memory block. Useful
1172 * in situations where it is known that the given object does not contain any
1173 * references to other objects. Kmemleak will not scan such objects reducing
1174 * the number of false negatives.
1176 void __ref
kmemleak_no_scan(const void *ptr
)
1178 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1180 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1181 object_no_scan((unsigned long)ptr
);
1182 else if (kmemleak_early_log
)
1183 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1185 EXPORT_SYMBOL(kmemleak_no_scan
);
1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1190 * @phys: physical address of the object
1191 * @size: size of the object
1192 * @min_count: minimum number of references to this object.
1193 * See kmemleak_alloc()
1194 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1196 void __ref
kmemleak_alloc_phys(phys_addr_t phys
, size_t size
, int min_count
,
1199 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1200 kmemleak_alloc(__va(phys
), size
, min_count
, gfp
);
1202 EXPORT_SYMBOL(kmemleak_alloc_phys
);
1205 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206 * physical address argument
1207 * @phys: physical address if the beginning or inside an object. This
1208 * also represents the start of the range to be freed
1209 * @size: size to be unregistered
1211 void __ref
kmemleak_free_part_phys(phys_addr_t phys
, size_t size
)
1213 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1214 kmemleak_free_part(__va(phys
), size
);
1216 EXPORT_SYMBOL(kmemleak_free_part_phys
);
1219 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1221 * @phys: physical address of the object
1223 void __ref
kmemleak_not_leak_phys(phys_addr_t phys
)
1225 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1226 kmemleak_not_leak(__va(phys
));
1228 EXPORT_SYMBOL(kmemleak_not_leak_phys
);
1231 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1233 * @phys: physical address of the object
1235 void __ref
kmemleak_ignore_phys(phys_addr_t phys
)
1237 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1238 kmemleak_ignore(__va(phys
));
1240 EXPORT_SYMBOL(kmemleak_ignore_phys
);
1243 * Update an object's checksum and return true if it was modified.
1245 static bool update_checksum(struct kmemleak_object
*object
)
1247 u32 old_csum
= object
->checksum
;
1249 kasan_disable_current();
1250 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1251 kasan_enable_current();
1253 return object
->checksum
!= old_csum
;
1257 * Update an object's references. object->lock must be held by the caller.
1259 static void update_refs(struct kmemleak_object
*object
)
1261 if (!color_white(object
)) {
1262 /* non-orphan, ignored or new */
1267 * Increase the object's reference count (number of pointers to the
1268 * memory block). If this count reaches the required minimum, the
1269 * object's color will become gray and it will be added to the
1273 if (color_gray(object
)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object
));
1276 list_add_tail(&object
->gray_list
, &gray_list
);
1281 * Memory scanning is a long process and it needs to be interruptable. This
1282 * function checks whether such interrupt condition occurred.
1284 static int scan_should_stop(void)
1286 if (!kmemleak_enabled
)
1290 * This function may be called from either process or kthread context,
1291 * hence the need to check for both stop conditions.
1294 return signal_pending(current
);
1296 return kthread_should_stop();
1302 * Scan a memory block (exclusive range) for valid pointers and add those
1303 * found to the gray list.
1305 static void scan_block(void *_start
, void *_end
,
1306 struct kmemleak_object
*scanned
)
1309 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1310 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1311 unsigned long flags
;
1312 unsigned long untagged_ptr
;
1314 read_lock_irqsave(&kmemleak_lock
, flags
);
1315 for (ptr
= start
; ptr
< end
; ptr
++) {
1316 struct kmemleak_object
*object
;
1317 unsigned long pointer
;
1318 unsigned long excess_ref
;
1320 if (scan_should_stop())
1323 kasan_disable_current();
1325 kasan_enable_current();
1327 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)pointer
);
1328 if (untagged_ptr
< min_addr
|| untagged_ptr
>= max_addr
)
1332 * No need for get_object() here since we hold kmemleak_lock.
1333 * object->use_count cannot be dropped to 0 while the object
1334 * is still present in object_tree_root and object_list
1335 * (with updates protected by kmemleak_lock).
1337 object
= lookup_object(pointer
, 1);
1340 if (object
== scanned
)
1341 /* self referenced, ignore */
1345 * Avoid the lockdep recursive warning on object->lock being
1346 * previously acquired in scan_object(). These locks are
1347 * enclosed by scan_mutex.
1349 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1350 /* only pass surplus references (object already gray) */
1351 if (color_gray(object
)) {
1352 excess_ref
= object
->excess_ref
;
1353 /* no need for update_refs() if object already gray */
1356 update_refs(object
);
1358 spin_unlock(&object
->lock
);
1361 object
= lookup_object(excess_ref
, 0);
1364 if (object
== scanned
)
1365 /* circular reference, ignore */
1367 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1368 update_refs(object
);
1369 spin_unlock(&object
->lock
);
1372 read_unlock_irqrestore(&kmemleak_lock
, flags
);
1376 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1379 static void scan_large_block(void *start
, void *end
)
1383 while (start
< end
) {
1384 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1385 scan_block(start
, next
, NULL
);
1393 * Scan a memory block corresponding to a kmemleak_object. A condition is
1394 * that object->use_count >= 1.
1396 static void scan_object(struct kmemleak_object
*object
)
1398 struct kmemleak_scan_area
*area
;
1399 unsigned long flags
;
1402 * Once the object->lock is acquired, the corresponding memory block
1403 * cannot be freed (the same lock is acquired in delete_object).
1405 spin_lock_irqsave(&object
->lock
, flags
);
1406 if (object
->flags
& OBJECT_NO_SCAN
)
1408 if (!(object
->flags
& OBJECT_ALLOCATED
))
1409 /* already freed object */
1411 if (hlist_empty(&object
->area_list
)) {
1412 void *start
= (void *)object
->pointer
;
1413 void *end
= (void *)(object
->pointer
+ object
->size
);
1417 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1418 scan_block(start
, next
, object
);
1424 spin_unlock_irqrestore(&object
->lock
, flags
);
1426 spin_lock_irqsave(&object
->lock
, flags
);
1427 } while (object
->flags
& OBJECT_ALLOCATED
);
1429 hlist_for_each_entry(area
, &object
->area_list
, node
)
1430 scan_block((void *)area
->start
,
1431 (void *)(area
->start
+ area
->size
),
1434 spin_unlock_irqrestore(&object
->lock
, flags
);
1438 * Scan the objects already referenced (gray objects). More objects will be
1439 * referenced and, if there are no memory leaks, all the objects are scanned.
1441 static void scan_gray_list(void)
1443 struct kmemleak_object
*object
, *tmp
;
1446 * The list traversal is safe for both tail additions and removals
1447 * from inside the loop. The kmemleak objects cannot be freed from
1448 * outside the loop because their use_count was incremented.
1450 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1451 while (&object
->gray_list
!= &gray_list
) {
1454 /* may add new objects to the list */
1455 if (!scan_should_stop())
1456 scan_object(object
);
1458 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1461 /* remove the object from the list and release it */
1462 list_del(&object
->gray_list
);
1467 WARN_ON(!list_empty(&gray_list
));
1471 * Scan data sections and all the referenced memory blocks allocated via the
1472 * kernel's standard allocators. This function must be called with the
1475 static void kmemleak_scan(void)
1477 unsigned long flags
;
1478 struct kmemleak_object
*object
;
1482 jiffies_last_scan
= jiffies
;
1484 /* prepare the kmemleak_object's */
1486 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1487 spin_lock_irqsave(&object
->lock
, flags
);
1490 * With a few exceptions there should be a maximum of
1491 * 1 reference to any object at this point.
1493 if (atomic_read(&object
->use_count
) > 1) {
1494 pr_debug("object->use_count = %d\n",
1495 atomic_read(&object
->use_count
));
1496 dump_object_info(object
);
1499 /* reset the reference count (whiten the object) */
1501 if (color_gray(object
) && get_object(object
))
1502 list_add_tail(&object
->gray_list
, &gray_list
);
1504 spin_unlock_irqrestore(&object
->lock
, flags
);
1509 /* per-cpu sections scanning */
1510 for_each_possible_cpu(i
)
1511 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1512 __per_cpu_end
+ per_cpu_offset(i
));
1516 * Struct page scanning for each node.
1519 for_each_online_node(i
) {
1520 unsigned long start_pfn
= node_start_pfn(i
);
1521 unsigned long end_pfn
= node_end_pfn(i
);
1524 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1525 struct page
*page
= pfn_to_online_page(pfn
);
1530 /* only scan pages belonging to this node */
1531 if (page_to_nid(page
) != i
)
1533 /* only scan if page is in use */
1534 if (page_count(page
) == 0)
1536 scan_block(page
, page
+ 1, NULL
);
1544 * Scanning the task stacks (may introduce false negatives).
1546 if (kmemleak_stack_scan
) {
1547 struct task_struct
*p
, *g
;
1549 read_lock(&tasklist_lock
);
1550 do_each_thread(g
, p
) {
1551 void *stack
= try_get_task_stack(p
);
1553 scan_block(stack
, stack
+ THREAD_SIZE
, NULL
);
1556 } while_each_thread(g
, p
);
1557 read_unlock(&tasklist_lock
);
1561 * Scan the objects already referenced from the sections scanned
1567 * Check for new or unreferenced objects modified since the previous
1568 * scan and color them gray until the next scan.
1571 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1572 spin_lock_irqsave(&object
->lock
, flags
);
1573 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1574 && update_checksum(object
) && get_object(object
)) {
1575 /* color it gray temporarily */
1576 object
->count
= object
->min_count
;
1577 list_add_tail(&object
->gray_list
, &gray_list
);
1579 spin_unlock_irqrestore(&object
->lock
, flags
);
1584 * Re-scan the gray list for modified unreferenced objects.
1589 * If scanning was stopped do not report any new unreferenced objects.
1591 if (scan_should_stop())
1595 * Scanning result reporting.
1598 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1599 spin_lock_irqsave(&object
->lock
, flags
);
1600 if (unreferenced_object(object
) &&
1601 !(object
->flags
& OBJECT_REPORTED
)) {
1602 object
->flags
|= OBJECT_REPORTED
;
1604 if (kmemleak_verbose
)
1605 print_unreferenced(NULL
, object
);
1609 spin_unlock_irqrestore(&object
->lock
, flags
);
1614 kmemleak_found_leaks
= true;
1616 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1623 * Thread function performing automatic memory scanning. Unreferenced objects
1624 * at the end of a memory scan are reported but only the first time.
1626 static int kmemleak_scan_thread(void *arg
)
1628 static int first_run
= IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
);
1630 pr_info("Automatic memory scanning thread started\n");
1631 set_user_nice(current
, 10);
1634 * Wait before the first scan to allow the system to fully initialize.
1637 signed long timeout
= msecs_to_jiffies(SECS_FIRST_SCAN
* 1000);
1639 while (timeout
&& !kthread_should_stop())
1640 timeout
= schedule_timeout_interruptible(timeout
);
1643 while (!kthread_should_stop()) {
1644 signed long timeout
= jiffies_scan_wait
;
1646 mutex_lock(&scan_mutex
);
1648 mutex_unlock(&scan_mutex
);
1650 /* wait before the next scan */
1651 while (timeout
&& !kthread_should_stop())
1652 timeout
= schedule_timeout_interruptible(timeout
);
1655 pr_info("Automatic memory scanning thread ended\n");
1661 * Start the automatic memory scanning thread. This function must be called
1662 * with the scan_mutex held.
1664 static void start_scan_thread(void)
1668 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1669 if (IS_ERR(scan_thread
)) {
1670 pr_warn("Failed to create the scan thread\n");
1676 * Stop the automatic memory scanning thread.
1678 static void stop_scan_thread(void)
1681 kthread_stop(scan_thread
);
1687 * Iterate over the object_list and return the first valid object at or after
1688 * the required position with its use_count incremented. The function triggers
1689 * a memory scanning when the pos argument points to the first position.
1691 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1693 struct kmemleak_object
*object
;
1697 err
= mutex_lock_interruptible(&scan_mutex
);
1699 return ERR_PTR(err
);
1702 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1705 if (get_object(object
))
1714 * Return the next object in the object_list. The function decrements the
1715 * use_count of the previous object and increases that of the next one.
1717 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1719 struct kmemleak_object
*prev_obj
= v
;
1720 struct kmemleak_object
*next_obj
= NULL
;
1721 struct kmemleak_object
*obj
= prev_obj
;
1725 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1726 if (get_object(obj
)) {
1732 put_object(prev_obj
);
1737 * Decrement the use_count of the last object required, if any.
1739 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1743 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1744 * waiting was interrupted, so only release it if !IS_ERR.
1747 mutex_unlock(&scan_mutex
);
1754 * Print the information for an unreferenced object to the seq file.
1756 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1758 struct kmemleak_object
*object
= v
;
1759 unsigned long flags
;
1761 spin_lock_irqsave(&object
->lock
, flags
);
1762 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1763 print_unreferenced(seq
, object
);
1764 spin_unlock_irqrestore(&object
->lock
, flags
);
1768 static const struct seq_operations kmemleak_seq_ops
= {
1769 .start
= kmemleak_seq_start
,
1770 .next
= kmemleak_seq_next
,
1771 .stop
= kmemleak_seq_stop
,
1772 .show
= kmemleak_seq_show
,
1775 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1777 return seq_open(file
, &kmemleak_seq_ops
);
1780 static int dump_str_object_info(const char *str
)
1782 unsigned long flags
;
1783 struct kmemleak_object
*object
;
1786 if (kstrtoul(str
, 0, &addr
))
1788 object
= find_and_get_object(addr
, 0);
1790 pr_info("Unknown object at 0x%08lx\n", addr
);
1794 spin_lock_irqsave(&object
->lock
, flags
);
1795 dump_object_info(object
);
1796 spin_unlock_irqrestore(&object
->lock
, flags
);
1803 * We use grey instead of black to ensure we can do future scans on the same
1804 * objects. If we did not do future scans these black objects could
1805 * potentially contain references to newly allocated objects in the future and
1806 * we'd end up with false positives.
1808 static void kmemleak_clear(void)
1810 struct kmemleak_object
*object
;
1811 unsigned long flags
;
1814 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1815 spin_lock_irqsave(&object
->lock
, flags
);
1816 if ((object
->flags
& OBJECT_REPORTED
) &&
1817 unreferenced_object(object
))
1818 __paint_it(object
, KMEMLEAK_GREY
);
1819 spin_unlock_irqrestore(&object
->lock
, flags
);
1823 kmemleak_found_leaks
= false;
1826 static void __kmemleak_do_cleanup(void);
1829 * File write operation to configure kmemleak at run-time. The following
1830 * commands can be written to the /sys/kernel/debug/kmemleak file:
1831 * off - disable kmemleak (irreversible)
1832 * stack=on - enable the task stacks scanning
1833 * stack=off - disable the tasks stacks scanning
1834 * scan=on - start the automatic memory scanning thread
1835 * scan=off - stop the automatic memory scanning thread
1836 * scan=... - set the automatic memory scanning period in seconds (0 to
1838 * scan - trigger a memory scan
1839 * clear - mark all current reported unreferenced kmemleak objects as
1840 * grey to ignore printing them, or free all kmemleak objects
1841 * if kmemleak has been disabled.
1842 * dump=... - dump information about the object found at the given address
1844 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1845 size_t size
, loff_t
*ppos
)
1851 buf_size
= min(size
, (sizeof(buf
) - 1));
1852 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1856 ret
= mutex_lock_interruptible(&scan_mutex
);
1860 if (strncmp(buf
, "clear", 5) == 0) {
1861 if (kmemleak_enabled
)
1864 __kmemleak_do_cleanup();
1868 if (!kmemleak_enabled
) {
1873 if (strncmp(buf
, "off", 3) == 0)
1875 else if (strncmp(buf
, "stack=on", 8) == 0)
1876 kmemleak_stack_scan
= 1;
1877 else if (strncmp(buf
, "stack=off", 9) == 0)
1878 kmemleak_stack_scan
= 0;
1879 else if (strncmp(buf
, "scan=on", 7) == 0)
1880 start_scan_thread();
1881 else if (strncmp(buf
, "scan=off", 8) == 0)
1883 else if (strncmp(buf
, "scan=", 5) == 0) {
1886 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1891 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1892 start_scan_thread();
1894 } else if (strncmp(buf
, "scan", 4) == 0)
1896 else if (strncmp(buf
, "dump=", 5) == 0)
1897 ret
= dump_str_object_info(buf
+ 5);
1902 mutex_unlock(&scan_mutex
);
1906 /* ignore the rest of the buffer, only one command at a time */
1911 static const struct file_operations kmemleak_fops
= {
1912 .owner
= THIS_MODULE
,
1913 .open
= kmemleak_open
,
1915 .write
= kmemleak_write
,
1916 .llseek
= seq_lseek
,
1917 .release
= seq_release
,
1920 static void __kmemleak_do_cleanup(void)
1922 struct kmemleak_object
*object
;
1925 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1926 delete_object_full(object
->pointer
);
1931 * Stop the memory scanning thread and free the kmemleak internal objects if
1932 * no previous scan thread (otherwise, kmemleak may still have some useful
1933 * information on memory leaks).
1935 static void kmemleak_do_cleanup(struct work_struct
*work
)
1939 mutex_lock(&scan_mutex
);
1941 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1942 * longer track object freeing. Ordering of the scan thread stopping and
1943 * the memory accesses below is guaranteed by the kthread_stop()
1946 kmemleak_free_enabled
= 0;
1947 mutex_unlock(&scan_mutex
);
1949 if (!kmemleak_found_leaks
)
1950 __kmemleak_do_cleanup();
1952 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1955 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1958 * Disable kmemleak. No memory allocation/freeing will be traced once this
1959 * function is called. Disabling kmemleak is an irreversible operation.
1961 static void kmemleak_disable(void)
1963 /* atomically check whether it was already invoked */
1964 if (cmpxchg(&kmemleak_error
, 0, 1))
1967 /* stop any memory operation tracing */
1968 kmemleak_enabled
= 0;
1970 /* check whether it is too early for a kernel thread */
1971 if (kmemleak_initialized
)
1972 schedule_work(&cleanup_work
);
1974 kmemleak_free_enabled
= 0;
1976 pr_info("Kernel memory leak detector disabled\n");
1980 * Allow boot-time kmemleak disabling (enabled by default).
1982 static int __init
kmemleak_boot_config(char *str
)
1986 if (strcmp(str
, "off") == 0)
1988 else if (strcmp(str
, "on") == 0)
1989 kmemleak_skip_disable
= 1;
1994 early_param("kmemleak", kmemleak_boot_config
);
1996 static void __init
print_log_trace(struct early_log
*log
)
1998 pr_notice("Early log backtrace:\n");
1999 stack_trace_print(log
->trace
, log
->trace_len
, 2);
2003 * Kmemleak initialization.
2005 void __init
kmemleak_init(void)
2008 unsigned long flags
;
2010 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2011 if (!kmemleak_skip_disable
) {
2012 kmemleak_early_log
= 0;
2018 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
2019 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
2021 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
2022 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
2024 if (crt_early_log
> ARRAY_SIZE(early_log
))
2025 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2028 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2029 local_irq_save(flags
);
2030 kmemleak_early_log
= 0;
2031 if (kmemleak_error
) {
2032 local_irq_restore(flags
);
2035 kmemleak_enabled
= 1;
2036 kmemleak_free_enabled
= 1;
2038 local_irq_restore(flags
);
2040 /* register the data/bss sections */
2041 create_object((unsigned long)_sdata
, _edata
- _sdata
,
2042 KMEMLEAK_GREY
, GFP_ATOMIC
);
2043 create_object((unsigned long)__bss_start
, __bss_stop
- __bss_start
,
2044 KMEMLEAK_GREY
, GFP_ATOMIC
);
2045 /* only register .data..ro_after_init if not within .data */
2046 if (__start_ro_after_init
< _sdata
|| __end_ro_after_init
> _edata
)
2047 create_object((unsigned long)__start_ro_after_init
,
2048 __end_ro_after_init
- __start_ro_after_init
,
2049 KMEMLEAK_GREY
, GFP_ATOMIC
);
2052 * This is the point where tracking allocations is safe. Automatic
2053 * scanning is started during the late initcall. Add the early logged
2054 * callbacks to the kmemleak infrastructure.
2056 for (i
= 0; i
< crt_early_log
; i
++) {
2057 struct early_log
*log
= &early_log
[i
];
2059 switch (log
->op_type
) {
2060 case KMEMLEAK_ALLOC
:
2063 case KMEMLEAK_ALLOC_PERCPU
:
2064 early_alloc_percpu(log
);
2067 kmemleak_free(log
->ptr
);
2069 case KMEMLEAK_FREE_PART
:
2070 kmemleak_free_part(log
->ptr
, log
->size
);
2072 case KMEMLEAK_FREE_PERCPU
:
2073 kmemleak_free_percpu(log
->ptr
);
2075 case KMEMLEAK_NOT_LEAK
:
2076 kmemleak_not_leak(log
->ptr
);
2078 case KMEMLEAK_IGNORE
:
2079 kmemleak_ignore(log
->ptr
);
2081 case KMEMLEAK_SCAN_AREA
:
2082 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
2084 case KMEMLEAK_NO_SCAN
:
2085 kmemleak_no_scan(log
->ptr
);
2087 case KMEMLEAK_SET_EXCESS_REF
:
2088 object_set_excess_ref((unsigned long)log
->ptr
,
2092 kmemleak_warn("Unknown early log operation: %d\n",
2096 if (kmemleak_warning
) {
2097 print_log_trace(log
);
2098 kmemleak_warning
= 0;
2104 * Late initialization function.
2106 static int __init
kmemleak_late_init(void)
2108 kmemleak_initialized
= 1;
2110 debugfs_create_file("kmemleak", 0644, NULL
, NULL
, &kmemleak_fops
);
2112 if (kmemleak_error
) {
2114 * Some error occurred and kmemleak was disabled. There is a
2115 * small chance that kmemleak_disable() was called immediately
2116 * after setting kmemleak_initialized and we may end up with
2117 * two clean-up threads but serialized by scan_mutex.
2119 schedule_work(&cleanup_work
);
2123 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
)) {
2124 mutex_lock(&scan_mutex
);
2125 start_scan_thread();
2126 mutex_unlock(&scan_mutex
);
2129 pr_info("Kernel memory leak detector initialized\n");
2133 late_initcall(kmemleak_late_init
);