unicore: Drop pointless include
[linux/fpc-iii.git] / mm / memory.c
blobe2bb51b6242e5814896b79cce637008f73a073bb
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
83 #include "internal.h"
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
109 * Randomize the address space (stacks, mmaps, brk, etc.).
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
117 #else
119 #endif
121 static int __init disable_randmaps(char *s)
123 randomize_va_space = 0;
124 return 1;
126 __setup("norandmaps", disable_randmaps);
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
131 unsigned long highest_memmap_pfn __read_mostly;
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
136 static int __init init_zero_pfn(void)
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
141 core_initcall(init_zero_pfn);
144 #if defined(SPLIT_RSS_COUNTING)
146 void sync_mm_rss(struct mm_struct *mm)
148 int i;
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
156 current->rss_stat.events = 0;
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
161 struct task_struct *task = current;
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct *task)
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
180 #else /* SPLIT_RSS_COUNTING */
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
185 static void check_sync_rss_stat(struct task_struct *task)
189 #endif /* SPLIT_RSS_COUNTING */
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
229 if (end - 1 > ceiling - 1)
230 return;
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
263 if (end - 1 > ceiling - 1)
264 return;
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
297 if (end - 1 > ceiling - 1)
298 return;
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
306 * This function frees user-level page tables of a process.
308 void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
312 pgd_t *pgd;
313 unsigned long next;
316 * The next few lines have given us lots of grief...
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
389 * Optimization: gather nearby vmas into one call down
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
401 vma = next;
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
439 int __pte_alloc_kernel(pmd_t *pmd)
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
445 smp_wmb(); /* See comment in __pte_alloc */
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
458 static inline void init_rss_vec(int *rss)
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
465 int i;
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
479 * The calling function must still handle the error.
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
508 nr_shown = 0;
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
555 * And for normal mappings this is false.
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
574 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
577 unsigned long pfn = pte_pfn(pte);
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588 if (pte_devmap(pte))
589 return NULL;
591 print_bad_pte(vma, addr, pte, NULL);
592 return NULL;
595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
612 if (is_zero_pfn(pfn))
613 return NULL;
615 check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
622 * NOTE! We still have PageReserved() pages in the page tables.
623 * eg. VDSO mappings can cause them to exist.
625 out:
626 return pfn_to_page(pfn);
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
633 unsigned long pfn = pmd_pfn(pmd);
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
655 if (pmd_devmap(pmd))
656 return NULL;
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
666 out:
667 return pfn_to_page(pfn);
669 #endif
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
677 static inline unsigned long
678 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
680 unsigned long addr, int *rss)
682 unsigned long vm_flags = vma->vm_flags;
683 pte_t pte = *src_pte;
684 struct page *page;
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
688 swp_entry_t entry = pte_to_swp_entry(pte);
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
706 rss[mm_counter(page)]++;
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
711 * COW mappings require pages in both
712 * parent and child to be set to read.
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
750 goto out_set_pte;
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
758 ptep_set_wrprotect(src_mm, addr, src_pte);
759 pte = pte_wrprotect(pte);
763 * If it's a shared mapping, mark it clean in
764 * the child
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
773 page_dup_rmap(page, false);
774 rss[mm_counter(page)]++;
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
779 out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
781 return 0;
784 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
788 pte_t *orig_src_pte, *orig_dst_pte;
789 pte_t *src_pte, *dst_pte;
790 spinlock_t *src_ptl, *dst_ptl;
791 int progress = 0;
792 int rss[NR_MM_COUNTERS];
793 swp_entry_t entry = (swp_entry_t){0};
795 again:
796 init_rss_vec(rss);
798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
799 if (!dst_pte)
800 return -ENOMEM;
801 src_pte = pte_offset_map(src_pmd, addr);
802 src_ptl = pte_lockptr(src_mm, src_pmd);
803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
806 arch_enter_lazy_mmu_mode();
808 do {
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
817 break;
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
830 arch_leave_lazy_mmu_mode();
831 spin_unlock(src_ptl);
832 pte_unmap(orig_src_pte);
833 add_mm_rss_vec(dst_mm, rss);
834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
835 cond_resched();
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
842 if (addr != end)
843 goto again;
844 return 0;
847 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
862 int err;
863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
881 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
889 if (!dst_pud)
890 return -ENOMEM;
891 src_pud = pud_offset(src_p4d, addr);
892 do {
893 next = pud_addr_end(addr, end);
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
915 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
937 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
944 struct mmu_notifier_range range;
945 bool is_cow;
946 int ret;
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
966 ret = track_pfn_copy(vma);
967 if (ret)
968 return ret;
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
977 is_cow = is_cow_mapping(vma->vm_flags);
979 if (is_cow) {
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
982 mmu_notifier_invalidate_range_start(&range);
985 ret = 0;
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
999 if (is_cow)
1000 mmu_notifier_invalidate_range_end(&range);
1001 return ret;
1004 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005 struct vm_area_struct *vma, pmd_t *pmd,
1006 unsigned long addr, unsigned long end,
1007 struct zap_details *details)
1009 struct mm_struct *mm = tlb->mm;
1010 int force_flush = 0;
1011 int rss[NR_MM_COUNTERS];
1012 spinlock_t *ptl;
1013 pte_t *start_pte;
1014 pte_t *pte;
1015 swp_entry_t entry;
1017 tlb_change_page_size(tlb, PAGE_SIZE);
1018 again:
1019 init_rss_vec(rss);
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
1022 flush_tlb_batched_pending(mm);
1023 arch_enter_lazy_mmu_mode();
1024 do {
1025 pte_t ptent = *pte;
1026 if (pte_none(ptent))
1027 continue;
1029 if (pte_present(ptent)) {
1030 struct page *page;
1032 page = vm_normal_page(vma, addr, ptent);
1033 if (unlikely(details) && page) {
1035 * unmap_shared_mapping_pages() wants to
1036 * invalidate cache without truncating:
1037 * unmap shared but keep private pages.
1039 if (details->check_mapping &&
1040 details->check_mapping != page_rmapping(page))
1041 continue;
1043 ptent = ptep_get_and_clear_full(mm, addr, pte,
1044 tlb->fullmm);
1045 tlb_remove_tlb_entry(tlb, pte, addr);
1046 if (unlikely(!page))
1047 continue;
1049 if (!PageAnon(page)) {
1050 if (pte_dirty(ptent)) {
1051 force_flush = 1;
1052 set_page_dirty(page);
1054 if (pte_young(ptent) &&
1055 likely(!(vma->vm_flags & VM_SEQ_READ)))
1056 mark_page_accessed(page);
1058 rss[mm_counter(page)]--;
1059 page_remove_rmap(page, false);
1060 if (unlikely(page_mapcount(page) < 0))
1061 print_bad_pte(vma, addr, ptent, page);
1062 if (unlikely(__tlb_remove_page(tlb, page))) {
1063 force_flush = 1;
1064 addr += PAGE_SIZE;
1065 break;
1067 continue;
1070 entry = pte_to_swp_entry(ptent);
1071 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072 struct page *page = device_private_entry_to_page(entry);
1074 if (unlikely(details && details->check_mapping)) {
1076 * unmap_shared_mapping_pages() wants to
1077 * invalidate cache without truncating:
1078 * unmap shared but keep private pages.
1080 if (details->check_mapping !=
1081 page_rmapping(page))
1082 continue;
1085 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086 rss[mm_counter(page)]--;
1087 page_remove_rmap(page, false);
1088 put_page(page);
1089 continue;
1092 /* If details->check_mapping, we leave swap entries. */
1093 if (unlikely(details))
1094 continue;
1096 entry = pte_to_swp_entry(ptent);
1097 if (!non_swap_entry(entry))
1098 rss[MM_SWAPENTS]--;
1099 else if (is_migration_entry(entry)) {
1100 struct page *page;
1102 page = migration_entry_to_page(entry);
1103 rss[mm_counter(page)]--;
1105 if (unlikely(!free_swap_and_cache(entry)))
1106 print_bad_pte(vma, addr, ptent, NULL);
1107 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108 } while (pte++, addr += PAGE_SIZE, addr != end);
1110 add_mm_rss_vec(mm, rss);
1111 arch_leave_lazy_mmu_mode();
1113 /* Do the actual TLB flush before dropping ptl */
1114 if (force_flush)
1115 tlb_flush_mmu_tlbonly(tlb);
1116 pte_unmap_unlock(start_pte, ptl);
1119 * If we forced a TLB flush (either due to running out of
1120 * batch buffers or because we needed to flush dirty TLB
1121 * entries before releasing the ptl), free the batched
1122 * memory too. Restart if we didn't do everything.
1124 if (force_flush) {
1125 force_flush = 0;
1126 tlb_flush_mmu(tlb);
1127 if (addr != end)
1128 goto again;
1131 return addr;
1134 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135 struct vm_area_struct *vma, pud_t *pud,
1136 unsigned long addr, unsigned long end,
1137 struct zap_details *details)
1139 pmd_t *pmd;
1140 unsigned long next;
1142 pmd = pmd_offset(pud, addr);
1143 do {
1144 next = pmd_addr_end(addr, end);
1145 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146 if (next - addr != HPAGE_PMD_SIZE)
1147 __split_huge_pmd(vma, pmd, addr, false, NULL);
1148 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149 goto next;
1150 /* fall through */
1153 * Here there can be other concurrent MADV_DONTNEED or
1154 * trans huge page faults running, and if the pmd is
1155 * none or trans huge it can change under us. This is
1156 * because MADV_DONTNEED holds the mmap_sem in read
1157 * mode.
1159 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160 goto next;
1161 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162 next:
1163 cond_resched();
1164 } while (pmd++, addr = next, addr != end);
1166 return addr;
1169 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170 struct vm_area_struct *vma, p4d_t *p4d,
1171 unsigned long addr, unsigned long end,
1172 struct zap_details *details)
1174 pud_t *pud;
1175 unsigned long next;
1177 pud = pud_offset(p4d, addr);
1178 do {
1179 next = pud_addr_end(addr, end);
1180 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181 if (next - addr != HPAGE_PUD_SIZE) {
1182 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183 split_huge_pud(vma, pud, addr);
1184 } else if (zap_huge_pud(tlb, vma, pud, addr))
1185 goto next;
1186 /* fall through */
1188 if (pud_none_or_clear_bad(pud))
1189 continue;
1190 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191 next:
1192 cond_resched();
1193 } while (pud++, addr = next, addr != end);
1195 return addr;
1198 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199 struct vm_area_struct *vma, pgd_t *pgd,
1200 unsigned long addr, unsigned long end,
1201 struct zap_details *details)
1203 p4d_t *p4d;
1204 unsigned long next;
1206 p4d = p4d_offset(pgd, addr);
1207 do {
1208 next = p4d_addr_end(addr, end);
1209 if (p4d_none_or_clear_bad(p4d))
1210 continue;
1211 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212 } while (p4d++, addr = next, addr != end);
1214 return addr;
1217 void unmap_page_range(struct mmu_gather *tlb,
1218 struct vm_area_struct *vma,
1219 unsigned long addr, unsigned long end,
1220 struct zap_details *details)
1222 pgd_t *pgd;
1223 unsigned long next;
1225 BUG_ON(addr >= end);
1226 tlb_start_vma(tlb, vma);
1227 pgd = pgd_offset(vma->vm_mm, addr);
1228 do {
1229 next = pgd_addr_end(addr, end);
1230 if (pgd_none_or_clear_bad(pgd))
1231 continue;
1232 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233 } while (pgd++, addr = next, addr != end);
1234 tlb_end_vma(tlb, vma);
1238 static void unmap_single_vma(struct mmu_gather *tlb,
1239 struct vm_area_struct *vma, unsigned long start_addr,
1240 unsigned long end_addr,
1241 struct zap_details *details)
1243 unsigned long start = max(vma->vm_start, start_addr);
1244 unsigned long end;
1246 if (start >= vma->vm_end)
1247 return;
1248 end = min(vma->vm_end, end_addr);
1249 if (end <= vma->vm_start)
1250 return;
1252 if (vma->vm_file)
1253 uprobe_munmap(vma, start, end);
1255 if (unlikely(vma->vm_flags & VM_PFNMAP))
1256 untrack_pfn(vma, 0, 0);
1258 if (start != end) {
1259 if (unlikely(is_vm_hugetlb_page(vma))) {
1261 * It is undesirable to test vma->vm_file as it
1262 * should be non-null for valid hugetlb area.
1263 * However, vm_file will be NULL in the error
1264 * cleanup path of mmap_region. When
1265 * hugetlbfs ->mmap method fails,
1266 * mmap_region() nullifies vma->vm_file
1267 * before calling this function to clean up.
1268 * Since no pte has actually been setup, it is
1269 * safe to do nothing in this case.
1271 if (vma->vm_file) {
1272 i_mmap_lock_write(vma->vm_file->f_mapping);
1273 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274 i_mmap_unlock_write(vma->vm_file->f_mapping);
1276 } else
1277 unmap_page_range(tlb, vma, start, end, details);
1282 * unmap_vmas - unmap a range of memory covered by a list of vma's
1283 * @tlb: address of the caller's struct mmu_gather
1284 * @vma: the starting vma
1285 * @start_addr: virtual address at which to start unmapping
1286 * @end_addr: virtual address at which to end unmapping
1288 * Unmap all pages in the vma list.
1290 * Only addresses between `start' and `end' will be unmapped.
1292 * The VMA list must be sorted in ascending virtual address order.
1294 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295 * range after unmap_vmas() returns. So the only responsibility here is to
1296 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297 * drops the lock and schedules.
1299 void unmap_vmas(struct mmu_gather *tlb,
1300 struct vm_area_struct *vma, unsigned long start_addr,
1301 unsigned long end_addr)
1303 struct mmu_notifier_range range;
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306 start_addr, end_addr);
1307 mmu_notifier_invalidate_range_start(&range);
1308 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310 mmu_notifier_invalidate_range_end(&range);
1314 * zap_page_range - remove user pages in a given range
1315 * @vma: vm_area_struct holding the applicable pages
1316 * @start: starting address of pages to zap
1317 * @size: number of bytes to zap
1319 * Caller must protect the VMA list
1321 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322 unsigned long size)
1324 struct mmu_notifier_range range;
1325 struct mmu_gather tlb;
1327 lru_add_drain();
1328 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329 start, start + size);
1330 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331 update_hiwater_rss(vma->vm_mm);
1332 mmu_notifier_invalidate_range_start(&range);
1333 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335 mmu_notifier_invalidate_range_end(&range);
1336 tlb_finish_mmu(&tlb, start, range.end);
1340 * zap_page_range_single - remove user pages in a given range
1341 * @vma: vm_area_struct holding the applicable pages
1342 * @address: starting address of pages to zap
1343 * @size: number of bytes to zap
1344 * @details: details of shared cache invalidation
1346 * The range must fit into one VMA.
1348 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349 unsigned long size, struct zap_details *details)
1351 struct mmu_notifier_range range;
1352 struct mmu_gather tlb;
1354 lru_add_drain();
1355 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356 address, address + size);
1357 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358 update_hiwater_rss(vma->vm_mm);
1359 mmu_notifier_invalidate_range_start(&range);
1360 unmap_single_vma(&tlb, vma, address, range.end, details);
1361 mmu_notifier_invalidate_range_end(&range);
1362 tlb_finish_mmu(&tlb, address, range.end);
1366 * zap_vma_ptes - remove ptes mapping the vma
1367 * @vma: vm_area_struct holding ptes to be zapped
1368 * @address: starting address of pages to zap
1369 * @size: number of bytes to zap
1371 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1373 * The entire address range must be fully contained within the vma.
1376 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377 unsigned long size)
1379 if (address < vma->vm_start || address + size > vma->vm_end ||
1380 !(vma->vm_flags & VM_PFNMAP))
1381 return;
1383 zap_page_range_single(vma, address, size, NULL);
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1387 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388 spinlock_t **ptl)
1390 pgd_t *pgd;
1391 p4d_t *p4d;
1392 pud_t *pud;
1393 pmd_t *pmd;
1395 pgd = pgd_offset(mm, addr);
1396 p4d = p4d_alloc(mm, pgd, addr);
1397 if (!p4d)
1398 return NULL;
1399 pud = pud_alloc(mm, p4d, addr);
1400 if (!pud)
1401 return NULL;
1402 pmd = pmd_alloc(mm, pud, addr);
1403 if (!pmd)
1404 return NULL;
1406 VM_BUG_ON(pmd_trans_huge(*pmd));
1407 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1411 * This is the old fallback for page remapping.
1413 * For historical reasons, it only allows reserved pages. Only
1414 * old drivers should use this, and they needed to mark their
1415 * pages reserved for the old functions anyway.
1417 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418 struct page *page, pgprot_t prot)
1420 struct mm_struct *mm = vma->vm_mm;
1421 int retval;
1422 pte_t *pte;
1423 spinlock_t *ptl;
1425 retval = -EINVAL;
1426 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427 goto out;
1428 retval = -ENOMEM;
1429 flush_dcache_page(page);
1430 pte = get_locked_pte(mm, addr, &ptl);
1431 if (!pte)
1432 goto out;
1433 retval = -EBUSY;
1434 if (!pte_none(*pte))
1435 goto out_unlock;
1437 /* Ok, finally just insert the thing.. */
1438 get_page(page);
1439 inc_mm_counter_fast(mm, mm_counter_file(page));
1440 page_add_file_rmap(page, false);
1441 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1443 retval = 0;
1444 out_unlock:
1445 pte_unmap_unlock(pte, ptl);
1446 out:
1447 return retval;
1451 * vm_insert_page - insert single page into user vma
1452 * @vma: user vma to map to
1453 * @addr: target user address of this page
1454 * @page: source kernel page
1456 * This allows drivers to insert individual pages they've allocated
1457 * into a user vma.
1459 * The page has to be a nice clean _individual_ kernel allocation.
1460 * If you allocate a compound page, you need to have marked it as
1461 * such (__GFP_COMP), or manually just split the page up yourself
1462 * (see split_page()).
1464 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465 * took an arbitrary page protection parameter. This doesn't allow
1466 * that. Your vma protection will have to be set up correctly, which
1467 * means that if you want a shared writable mapping, you'd better
1468 * ask for a shared writable mapping!
1470 * The page does not need to be reserved.
1472 * Usually this function is called from f_op->mmap() handler
1473 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475 * function from other places, for example from page-fault handler.
1477 * Return: %0 on success, negative error code otherwise.
1479 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 struct page *page)
1482 if (addr < vma->vm_start || addr >= vma->vm_end)
1483 return -EFAULT;
1484 if (!page_count(page))
1485 return -EINVAL;
1486 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488 BUG_ON(vma->vm_flags & VM_PFNMAP);
1489 vma->vm_flags |= VM_MIXEDMAP;
1491 return insert_page(vma, addr, page, vma->vm_page_prot);
1493 EXPORT_SYMBOL(vm_insert_page);
1496 * __vm_map_pages - maps range of kernel pages into user vma
1497 * @vma: user vma to map to
1498 * @pages: pointer to array of source kernel pages
1499 * @num: number of pages in page array
1500 * @offset: user's requested vm_pgoff
1502 * This allows drivers to map range of kernel pages into a user vma.
1504 * Return: 0 on success and error code otherwise.
1506 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507 unsigned long num, unsigned long offset)
1509 unsigned long count = vma_pages(vma);
1510 unsigned long uaddr = vma->vm_start;
1511 int ret, i;
1513 /* Fail if the user requested offset is beyond the end of the object */
1514 if (offset >= num)
1515 return -ENXIO;
1517 /* Fail if the user requested size exceeds available object size */
1518 if (count > num - offset)
1519 return -ENXIO;
1521 for (i = 0; i < count; i++) {
1522 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523 if (ret < 0)
1524 return ret;
1525 uaddr += PAGE_SIZE;
1528 return 0;
1532 * vm_map_pages - maps range of kernel pages starts with non zero offset
1533 * @vma: user vma to map to
1534 * @pages: pointer to array of source kernel pages
1535 * @num: number of pages in page array
1537 * Maps an object consisting of @num pages, catering for the user's
1538 * requested vm_pgoff
1540 * If we fail to insert any page into the vma, the function will return
1541 * immediately leaving any previously inserted pages present. Callers
1542 * from the mmap handler may immediately return the error as their caller
1543 * will destroy the vma, removing any successfully inserted pages. Other
1544 * callers should make their own arrangements for calling unmap_region().
1546 * Context: Process context. Called by mmap handlers.
1547 * Return: 0 on success and error code otherwise.
1549 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550 unsigned long num)
1552 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1554 EXPORT_SYMBOL(vm_map_pages);
1557 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558 * @vma: user vma to map to
1559 * @pages: pointer to array of source kernel pages
1560 * @num: number of pages in page array
1562 * Similar to vm_map_pages(), except that it explicitly sets the offset
1563 * to 0. This function is intended for the drivers that did not consider
1564 * vm_pgoff.
1566 * Context: Process context. Called by mmap handlers.
1567 * Return: 0 on success and error code otherwise.
1569 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570 unsigned long num)
1572 return __vm_map_pages(vma, pages, num, 0);
1574 EXPORT_SYMBOL(vm_map_pages_zero);
1576 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577 pfn_t pfn, pgprot_t prot, bool mkwrite)
1579 struct mm_struct *mm = vma->vm_mm;
1580 pte_t *pte, entry;
1581 spinlock_t *ptl;
1583 pte = get_locked_pte(mm, addr, &ptl);
1584 if (!pte)
1585 return VM_FAULT_OOM;
1586 if (!pte_none(*pte)) {
1587 if (mkwrite) {
1589 * For read faults on private mappings the PFN passed
1590 * in may not match the PFN we have mapped if the
1591 * mapped PFN is a writeable COW page. In the mkwrite
1592 * case we are creating a writable PTE for a shared
1593 * mapping and we expect the PFNs to match. If they
1594 * don't match, we are likely racing with block
1595 * allocation and mapping invalidation so just skip the
1596 * update.
1598 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600 goto out_unlock;
1602 entry = pte_mkyoung(*pte);
1603 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605 update_mmu_cache(vma, addr, pte);
1607 goto out_unlock;
1610 /* Ok, finally just insert the thing.. */
1611 if (pfn_t_devmap(pfn))
1612 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613 else
1614 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1616 if (mkwrite) {
1617 entry = pte_mkyoung(entry);
1618 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1621 set_pte_at(mm, addr, pte, entry);
1622 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1624 out_unlock:
1625 pte_unmap_unlock(pte, ptl);
1626 return VM_FAULT_NOPAGE;
1630 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631 * @vma: user vma to map to
1632 * @addr: target user address of this page
1633 * @pfn: source kernel pfn
1634 * @pgprot: pgprot flags for the inserted page
1636 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637 * to override pgprot on a per-page basis.
1639 * This only makes sense for IO mappings, and it makes no sense for
1640 * COW mappings. In general, using multiple vmas is preferable;
1641 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642 * impractical.
1644 * Context: Process context. May allocate using %GFP_KERNEL.
1645 * Return: vm_fault_t value.
1647 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648 unsigned long pfn, pgprot_t pgprot)
1651 * Technically, architectures with pte_special can avoid all these
1652 * restrictions (same for remap_pfn_range). However we would like
1653 * consistency in testing and feature parity among all, so we should
1654 * try to keep these invariants in place for everybody.
1656 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658 (VM_PFNMAP|VM_MIXEDMAP));
1659 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1662 if (addr < vma->vm_start || addr >= vma->vm_end)
1663 return VM_FAULT_SIGBUS;
1665 if (!pfn_modify_allowed(pfn, pgprot))
1666 return VM_FAULT_SIGBUS;
1668 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1670 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671 false);
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1676 * vmf_insert_pfn - insert single pfn into user vma
1677 * @vma: user vma to map to
1678 * @addr: target user address of this page
1679 * @pfn: source kernel pfn
1681 * Similar to vm_insert_page, this allows drivers to insert individual pages
1682 * they've allocated into a user vma. Same comments apply.
1684 * This function should only be called from a vm_ops->fault handler, and
1685 * in that case the handler should return the result of this function.
1687 * vma cannot be a COW mapping.
1689 * As this is called only for pages that do not currently exist, we
1690 * do not need to flush old virtual caches or the TLB.
1692 * Context: Process context. May allocate using %GFP_KERNEL.
1693 * Return: vm_fault_t value.
1695 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696 unsigned long pfn)
1698 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1700 EXPORT_SYMBOL(vmf_insert_pfn);
1702 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1704 /* these checks mirror the abort conditions in vm_normal_page */
1705 if (vma->vm_flags & VM_MIXEDMAP)
1706 return true;
1707 if (pfn_t_devmap(pfn))
1708 return true;
1709 if (pfn_t_special(pfn))
1710 return true;
1711 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712 return true;
1713 return false;
1716 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717 unsigned long addr, pfn_t pfn, bool mkwrite)
1719 pgprot_t pgprot = vma->vm_page_prot;
1720 int err;
1722 BUG_ON(!vm_mixed_ok(vma, pfn));
1724 if (addr < vma->vm_start || addr >= vma->vm_end)
1725 return VM_FAULT_SIGBUS;
1727 track_pfn_insert(vma, &pgprot, pfn);
1729 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730 return VM_FAULT_SIGBUS;
1733 * If we don't have pte special, then we have to use the pfn_valid()
1734 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735 * refcount the page if pfn_valid is true (hence insert_page rather
1736 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1737 * without pte special, it would there be refcounted as a normal page.
1739 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741 struct page *page;
1744 * At this point we are committed to insert_page()
1745 * regardless of whether the caller specified flags that
1746 * result in pfn_t_has_page() == false.
1748 page = pfn_to_page(pfn_t_to_pfn(pfn));
1749 err = insert_page(vma, addr, page, pgprot);
1750 } else {
1751 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1754 if (err == -ENOMEM)
1755 return VM_FAULT_OOM;
1756 if (err < 0 && err != -EBUSY)
1757 return VM_FAULT_SIGBUS;
1759 return VM_FAULT_NOPAGE;
1762 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763 pfn_t pfn)
1765 return __vm_insert_mixed(vma, addr, pfn, false);
1767 EXPORT_SYMBOL(vmf_insert_mixed);
1770 * If the insertion of PTE failed because someone else already added a
1771 * different entry in the mean time, we treat that as success as we assume
1772 * the same entry was actually inserted.
1774 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775 unsigned long addr, pfn_t pfn)
1777 return __vm_insert_mixed(vma, addr, pfn, true);
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1782 * maps a range of physical memory into the requested pages. the old
1783 * mappings are removed. any references to nonexistent pages results
1784 * in null mappings (currently treated as "copy-on-access")
1786 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787 unsigned long addr, unsigned long end,
1788 unsigned long pfn, pgprot_t prot)
1790 pte_t *pte;
1791 spinlock_t *ptl;
1792 int err = 0;
1794 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795 if (!pte)
1796 return -ENOMEM;
1797 arch_enter_lazy_mmu_mode();
1798 do {
1799 BUG_ON(!pte_none(*pte));
1800 if (!pfn_modify_allowed(pfn, prot)) {
1801 err = -EACCES;
1802 break;
1804 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805 pfn++;
1806 } while (pte++, addr += PAGE_SIZE, addr != end);
1807 arch_leave_lazy_mmu_mode();
1808 pte_unmap_unlock(pte - 1, ptl);
1809 return err;
1812 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813 unsigned long addr, unsigned long end,
1814 unsigned long pfn, pgprot_t prot)
1816 pmd_t *pmd;
1817 unsigned long next;
1818 int err;
1820 pfn -= addr >> PAGE_SHIFT;
1821 pmd = pmd_alloc(mm, pud, addr);
1822 if (!pmd)
1823 return -ENOMEM;
1824 VM_BUG_ON(pmd_trans_huge(*pmd));
1825 do {
1826 next = pmd_addr_end(addr, end);
1827 err = remap_pte_range(mm, pmd, addr, next,
1828 pfn + (addr >> PAGE_SHIFT), prot);
1829 if (err)
1830 return err;
1831 } while (pmd++, addr = next, addr != end);
1832 return 0;
1835 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836 unsigned long addr, unsigned long end,
1837 unsigned long pfn, pgprot_t prot)
1839 pud_t *pud;
1840 unsigned long next;
1841 int err;
1843 pfn -= addr >> PAGE_SHIFT;
1844 pud = pud_alloc(mm, p4d, addr);
1845 if (!pud)
1846 return -ENOMEM;
1847 do {
1848 next = pud_addr_end(addr, end);
1849 err = remap_pmd_range(mm, pud, addr, next,
1850 pfn + (addr >> PAGE_SHIFT), prot);
1851 if (err)
1852 return err;
1853 } while (pud++, addr = next, addr != end);
1854 return 0;
1857 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858 unsigned long addr, unsigned long end,
1859 unsigned long pfn, pgprot_t prot)
1861 p4d_t *p4d;
1862 unsigned long next;
1863 int err;
1865 pfn -= addr >> PAGE_SHIFT;
1866 p4d = p4d_alloc(mm, pgd, addr);
1867 if (!p4d)
1868 return -ENOMEM;
1869 do {
1870 next = p4d_addr_end(addr, end);
1871 err = remap_pud_range(mm, p4d, addr, next,
1872 pfn + (addr >> PAGE_SHIFT), prot);
1873 if (err)
1874 return err;
1875 } while (p4d++, addr = next, addr != end);
1876 return 0;
1880 * remap_pfn_range - remap kernel memory to userspace
1881 * @vma: user vma to map to
1882 * @addr: target user address to start at
1883 * @pfn: physical address of kernel memory
1884 * @size: size of map area
1885 * @prot: page protection flags for this mapping
1887 * Note: this is only safe if the mm semaphore is held when called.
1889 * Return: %0 on success, negative error code otherwise.
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892 unsigned long pfn, unsigned long size, pgprot_t prot)
1894 pgd_t *pgd;
1895 unsigned long next;
1896 unsigned long end = addr + PAGE_ALIGN(size);
1897 struct mm_struct *mm = vma->vm_mm;
1898 unsigned long remap_pfn = pfn;
1899 int err;
1902 * Physically remapped pages are special. Tell the
1903 * rest of the world about it:
1904 * VM_IO tells people not to look at these pages
1905 * (accesses can have side effects).
1906 * VM_PFNMAP tells the core MM that the base pages are just
1907 * raw PFN mappings, and do not have a "struct page" associated
1908 * with them.
1909 * VM_DONTEXPAND
1910 * Disable vma merging and expanding with mremap().
1911 * VM_DONTDUMP
1912 * Omit vma from core dump, even when VM_IO turned off.
1914 * There's a horrible special case to handle copy-on-write
1915 * behaviour that some programs depend on. We mark the "original"
1916 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917 * See vm_normal_page() for details.
1919 if (is_cow_mapping(vma->vm_flags)) {
1920 if (addr != vma->vm_start || end != vma->vm_end)
1921 return -EINVAL;
1922 vma->vm_pgoff = pfn;
1925 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926 if (err)
1927 return -EINVAL;
1929 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1931 BUG_ON(addr >= end);
1932 pfn -= addr >> PAGE_SHIFT;
1933 pgd = pgd_offset(mm, addr);
1934 flush_cache_range(vma, addr, end);
1935 do {
1936 next = pgd_addr_end(addr, end);
1937 err = remap_p4d_range(mm, pgd, addr, next,
1938 pfn + (addr >> PAGE_SHIFT), prot);
1939 if (err)
1940 break;
1941 } while (pgd++, addr = next, addr != end);
1943 if (err)
1944 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1946 return err;
1948 EXPORT_SYMBOL(remap_pfn_range);
1951 * vm_iomap_memory - remap memory to userspace
1952 * @vma: user vma to map to
1953 * @start: start of area
1954 * @len: size of area
1956 * This is a simplified io_remap_pfn_range() for common driver use. The
1957 * driver just needs to give us the physical memory range to be mapped,
1958 * we'll figure out the rest from the vma information.
1960 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961 * whatever write-combining details or similar.
1963 * Return: %0 on success, negative error code otherwise.
1965 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1967 unsigned long vm_len, pfn, pages;
1969 /* Check that the physical memory area passed in looks valid */
1970 if (start + len < start)
1971 return -EINVAL;
1973 * You *really* shouldn't map things that aren't page-aligned,
1974 * but we've historically allowed it because IO memory might
1975 * just have smaller alignment.
1977 len += start & ~PAGE_MASK;
1978 pfn = start >> PAGE_SHIFT;
1979 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980 if (pfn + pages < pfn)
1981 return -EINVAL;
1983 /* We start the mapping 'vm_pgoff' pages into the area */
1984 if (vma->vm_pgoff > pages)
1985 return -EINVAL;
1986 pfn += vma->vm_pgoff;
1987 pages -= vma->vm_pgoff;
1989 /* Can we fit all of the mapping? */
1990 vm_len = vma->vm_end - vma->vm_start;
1991 if (vm_len >> PAGE_SHIFT > pages)
1992 return -EINVAL;
1994 /* Ok, let it rip */
1995 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1997 EXPORT_SYMBOL(vm_iomap_memory);
1999 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000 unsigned long addr, unsigned long end,
2001 pte_fn_t fn, void *data)
2003 pte_t *pte;
2004 int err;
2005 spinlock_t *uninitialized_var(ptl);
2007 pte = (mm == &init_mm) ?
2008 pte_alloc_kernel(pmd, addr) :
2009 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010 if (!pte)
2011 return -ENOMEM;
2013 BUG_ON(pmd_huge(*pmd));
2015 arch_enter_lazy_mmu_mode();
2017 do {
2018 err = fn(pte++, addr, data);
2019 if (err)
2020 break;
2021 } while (addr += PAGE_SIZE, addr != end);
2023 arch_leave_lazy_mmu_mode();
2025 if (mm != &init_mm)
2026 pte_unmap_unlock(pte-1, ptl);
2027 return err;
2030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031 unsigned long addr, unsigned long end,
2032 pte_fn_t fn, void *data)
2034 pmd_t *pmd;
2035 unsigned long next;
2036 int err;
2038 BUG_ON(pud_huge(*pud));
2040 pmd = pmd_alloc(mm, pud, addr);
2041 if (!pmd)
2042 return -ENOMEM;
2043 do {
2044 next = pmd_addr_end(addr, end);
2045 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046 if (err)
2047 break;
2048 } while (pmd++, addr = next, addr != end);
2049 return err;
2052 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053 unsigned long addr, unsigned long end,
2054 pte_fn_t fn, void *data)
2056 pud_t *pud;
2057 unsigned long next;
2058 int err;
2060 pud = pud_alloc(mm, p4d, addr);
2061 if (!pud)
2062 return -ENOMEM;
2063 do {
2064 next = pud_addr_end(addr, end);
2065 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066 if (err)
2067 break;
2068 } while (pud++, addr = next, addr != end);
2069 return err;
2072 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073 unsigned long addr, unsigned long end,
2074 pte_fn_t fn, void *data)
2076 p4d_t *p4d;
2077 unsigned long next;
2078 int err;
2080 p4d = p4d_alloc(mm, pgd, addr);
2081 if (!p4d)
2082 return -ENOMEM;
2083 do {
2084 next = p4d_addr_end(addr, end);
2085 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086 if (err)
2087 break;
2088 } while (p4d++, addr = next, addr != end);
2089 return err;
2093 * Scan a region of virtual memory, filling in page tables as necessary
2094 * and calling a provided function on each leaf page table.
2096 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097 unsigned long size, pte_fn_t fn, void *data)
2099 pgd_t *pgd;
2100 unsigned long next;
2101 unsigned long end = addr + size;
2102 int err;
2104 if (WARN_ON(addr >= end))
2105 return -EINVAL;
2107 pgd = pgd_offset(mm, addr);
2108 do {
2109 next = pgd_addr_end(addr, end);
2110 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111 if (err)
2112 break;
2113 } while (pgd++, addr = next, addr != end);
2115 return err;
2117 EXPORT_SYMBOL_GPL(apply_to_page_range);
2120 * handle_pte_fault chooses page fault handler according to an entry which was
2121 * read non-atomically. Before making any commitment, on those architectures
2122 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123 * parts, do_swap_page must check under lock before unmapping the pte and
2124 * proceeding (but do_wp_page is only called after already making such a check;
2125 * and do_anonymous_page can safely check later on).
2127 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128 pte_t *page_table, pte_t orig_pte)
2130 int same = 1;
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132 if (sizeof(pte_t) > sizeof(unsigned long)) {
2133 spinlock_t *ptl = pte_lockptr(mm, pmd);
2134 spin_lock(ptl);
2135 same = pte_same(*page_table, orig_pte);
2136 spin_unlock(ptl);
2138 #endif
2139 pte_unmap(page_table);
2140 return same;
2143 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2145 debug_dma_assert_idle(src);
2148 * If the source page was a PFN mapping, we don't have
2149 * a "struct page" for it. We do a best-effort copy by
2150 * just copying from the original user address. If that
2151 * fails, we just zero-fill it. Live with it.
2153 if (unlikely(!src)) {
2154 void *kaddr = kmap_atomic(dst);
2155 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2158 * This really shouldn't fail, because the page is there
2159 * in the page tables. But it might just be unreadable,
2160 * in which case we just give up and fill the result with
2161 * zeroes.
2163 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164 clear_page(kaddr);
2165 kunmap_atomic(kaddr);
2166 flush_dcache_page(dst);
2167 } else
2168 copy_user_highpage(dst, src, va, vma);
2171 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2173 struct file *vm_file = vma->vm_file;
2175 if (vm_file)
2176 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2179 * Special mappings (e.g. VDSO) do not have any file so fake
2180 * a default GFP_KERNEL for them.
2182 return GFP_KERNEL;
2186 * Notify the address space that the page is about to become writable so that
2187 * it can prohibit this or wait for the page to get into an appropriate state.
2189 * We do this without the lock held, so that it can sleep if it needs to.
2191 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2193 vm_fault_t ret;
2194 struct page *page = vmf->page;
2195 unsigned int old_flags = vmf->flags;
2197 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2199 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2200 /* Restore original flags so that caller is not surprised */
2201 vmf->flags = old_flags;
2202 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2203 return ret;
2204 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2205 lock_page(page);
2206 if (!page->mapping) {
2207 unlock_page(page);
2208 return 0; /* retry */
2210 ret |= VM_FAULT_LOCKED;
2211 } else
2212 VM_BUG_ON_PAGE(!PageLocked(page), page);
2213 return ret;
2217 * Handle dirtying of a page in shared file mapping on a write fault.
2219 * The function expects the page to be locked and unlocks it.
2221 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2222 struct page *page)
2224 struct address_space *mapping;
2225 bool dirtied;
2226 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2228 dirtied = set_page_dirty(page);
2229 VM_BUG_ON_PAGE(PageAnon(page), page);
2231 * Take a local copy of the address_space - page.mapping may be zeroed
2232 * by truncate after unlock_page(). The address_space itself remains
2233 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2234 * release semantics to prevent the compiler from undoing this copying.
2236 mapping = page_rmapping(page);
2237 unlock_page(page);
2239 if ((dirtied || page_mkwrite) && mapping) {
2241 * Some device drivers do not set page.mapping
2242 * but still dirty their pages
2244 balance_dirty_pages_ratelimited(mapping);
2247 if (!page_mkwrite)
2248 file_update_time(vma->vm_file);
2252 * Handle write page faults for pages that can be reused in the current vma
2254 * This can happen either due to the mapping being with the VM_SHARED flag,
2255 * or due to us being the last reference standing to the page. In either
2256 * case, all we need to do here is to mark the page as writable and update
2257 * any related book-keeping.
2259 static inline void wp_page_reuse(struct vm_fault *vmf)
2260 __releases(vmf->ptl)
2262 struct vm_area_struct *vma = vmf->vma;
2263 struct page *page = vmf->page;
2264 pte_t entry;
2266 * Clear the pages cpupid information as the existing
2267 * information potentially belongs to a now completely
2268 * unrelated process.
2270 if (page)
2271 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2273 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2274 entry = pte_mkyoung(vmf->orig_pte);
2275 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2276 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2277 update_mmu_cache(vma, vmf->address, vmf->pte);
2278 pte_unmap_unlock(vmf->pte, vmf->ptl);
2282 * Handle the case of a page which we actually need to copy to a new page.
2284 * Called with mmap_sem locked and the old page referenced, but
2285 * without the ptl held.
2287 * High level logic flow:
2289 * - Allocate a page, copy the content of the old page to the new one.
2290 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2291 * - Take the PTL. If the pte changed, bail out and release the allocated page
2292 * - If the pte is still the way we remember it, update the page table and all
2293 * relevant references. This includes dropping the reference the page-table
2294 * held to the old page, as well as updating the rmap.
2295 * - In any case, unlock the PTL and drop the reference we took to the old page.
2297 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2299 struct vm_area_struct *vma = vmf->vma;
2300 struct mm_struct *mm = vma->vm_mm;
2301 struct page *old_page = vmf->page;
2302 struct page *new_page = NULL;
2303 pte_t entry;
2304 int page_copied = 0;
2305 struct mem_cgroup *memcg;
2306 struct mmu_notifier_range range;
2308 if (unlikely(anon_vma_prepare(vma)))
2309 goto oom;
2311 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2312 new_page = alloc_zeroed_user_highpage_movable(vma,
2313 vmf->address);
2314 if (!new_page)
2315 goto oom;
2316 } else {
2317 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2318 vmf->address);
2319 if (!new_page)
2320 goto oom;
2321 cow_user_page(new_page, old_page, vmf->address, vma);
2324 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2325 goto oom_free_new;
2327 __SetPageUptodate(new_page);
2329 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2330 vmf->address & PAGE_MASK,
2331 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2332 mmu_notifier_invalidate_range_start(&range);
2335 * Re-check the pte - we dropped the lock
2337 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2338 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2339 if (old_page) {
2340 if (!PageAnon(old_page)) {
2341 dec_mm_counter_fast(mm,
2342 mm_counter_file(old_page));
2343 inc_mm_counter_fast(mm, MM_ANONPAGES);
2345 } else {
2346 inc_mm_counter_fast(mm, MM_ANONPAGES);
2348 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2349 entry = mk_pte(new_page, vma->vm_page_prot);
2350 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2352 * Clear the pte entry and flush it first, before updating the
2353 * pte with the new entry. This will avoid a race condition
2354 * seen in the presence of one thread doing SMC and another
2355 * thread doing COW.
2357 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2358 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2359 mem_cgroup_commit_charge(new_page, memcg, false, false);
2360 lru_cache_add_active_or_unevictable(new_page, vma);
2362 * We call the notify macro here because, when using secondary
2363 * mmu page tables (such as kvm shadow page tables), we want the
2364 * new page to be mapped directly into the secondary page table.
2366 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2367 update_mmu_cache(vma, vmf->address, vmf->pte);
2368 if (old_page) {
2370 * Only after switching the pte to the new page may
2371 * we remove the mapcount here. Otherwise another
2372 * process may come and find the rmap count decremented
2373 * before the pte is switched to the new page, and
2374 * "reuse" the old page writing into it while our pte
2375 * here still points into it and can be read by other
2376 * threads.
2378 * The critical issue is to order this
2379 * page_remove_rmap with the ptp_clear_flush above.
2380 * Those stores are ordered by (if nothing else,)
2381 * the barrier present in the atomic_add_negative
2382 * in page_remove_rmap.
2384 * Then the TLB flush in ptep_clear_flush ensures that
2385 * no process can access the old page before the
2386 * decremented mapcount is visible. And the old page
2387 * cannot be reused until after the decremented
2388 * mapcount is visible. So transitively, TLBs to
2389 * old page will be flushed before it can be reused.
2391 page_remove_rmap(old_page, false);
2394 /* Free the old page.. */
2395 new_page = old_page;
2396 page_copied = 1;
2397 } else {
2398 mem_cgroup_cancel_charge(new_page, memcg, false);
2401 if (new_page)
2402 put_page(new_page);
2404 pte_unmap_unlock(vmf->pte, vmf->ptl);
2406 * No need to double call mmu_notifier->invalidate_range() callback as
2407 * the above ptep_clear_flush_notify() did already call it.
2409 mmu_notifier_invalidate_range_only_end(&range);
2410 if (old_page) {
2412 * Don't let another task, with possibly unlocked vma,
2413 * keep the mlocked page.
2415 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2416 lock_page(old_page); /* LRU manipulation */
2417 if (PageMlocked(old_page))
2418 munlock_vma_page(old_page);
2419 unlock_page(old_page);
2421 put_page(old_page);
2423 return page_copied ? VM_FAULT_WRITE : 0;
2424 oom_free_new:
2425 put_page(new_page);
2426 oom:
2427 if (old_page)
2428 put_page(old_page);
2429 return VM_FAULT_OOM;
2433 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2434 * writeable once the page is prepared
2436 * @vmf: structure describing the fault
2438 * This function handles all that is needed to finish a write page fault in a
2439 * shared mapping due to PTE being read-only once the mapped page is prepared.
2440 * It handles locking of PTE and modifying it.
2442 * The function expects the page to be locked or other protection against
2443 * concurrent faults / writeback (such as DAX radix tree locks).
2445 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2446 * we acquired PTE lock.
2448 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2450 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2451 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2452 &vmf->ptl);
2454 * We might have raced with another page fault while we released the
2455 * pte_offset_map_lock.
2457 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2458 pte_unmap_unlock(vmf->pte, vmf->ptl);
2459 return VM_FAULT_NOPAGE;
2461 wp_page_reuse(vmf);
2462 return 0;
2466 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2467 * mapping
2469 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2471 struct vm_area_struct *vma = vmf->vma;
2473 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2474 vm_fault_t ret;
2476 pte_unmap_unlock(vmf->pte, vmf->ptl);
2477 vmf->flags |= FAULT_FLAG_MKWRITE;
2478 ret = vma->vm_ops->pfn_mkwrite(vmf);
2479 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2480 return ret;
2481 return finish_mkwrite_fault(vmf);
2483 wp_page_reuse(vmf);
2484 return VM_FAULT_WRITE;
2487 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2488 __releases(vmf->ptl)
2490 struct vm_area_struct *vma = vmf->vma;
2492 get_page(vmf->page);
2494 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2495 vm_fault_t tmp;
2497 pte_unmap_unlock(vmf->pte, vmf->ptl);
2498 tmp = do_page_mkwrite(vmf);
2499 if (unlikely(!tmp || (tmp &
2500 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2501 put_page(vmf->page);
2502 return tmp;
2504 tmp = finish_mkwrite_fault(vmf);
2505 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506 unlock_page(vmf->page);
2507 put_page(vmf->page);
2508 return tmp;
2510 } else {
2511 wp_page_reuse(vmf);
2512 lock_page(vmf->page);
2514 fault_dirty_shared_page(vma, vmf->page);
2515 put_page(vmf->page);
2517 return VM_FAULT_WRITE;
2521 * This routine handles present pages, when users try to write
2522 * to a shared page. It is done by copying the page to a new address
2523 * and decrementing the shared-page counter for the old page.
2525 * Note that this routine assumes that the protection checks have been
2526 * done by the caller (the low-level page fault routine in most cases).
2527 * Thus we can safely just mark it writable once we've done any necessary
2528 * COW.
2530 * We also mark the page dirty at this point even though the page will
2531 * change only once the write actually happens. This avoids a few races,
2532 * and potentially makes it more efficient.
2534 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535 * but allow concurrent faults), with pte both mapped and locked.
2536 * We return with mmap_sem still held, but pte unmapped and unlocked.
2538 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2539 __releases(vmf->ptl)
2541 struct vm_area_struct *vma = vmf->vma;
2543 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2544 if (!vmf->page) {
2546 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2547 * VM_PFNMAP VMA.
2549 * We should not cow pages in a shared writeable mapping.
2550 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2552 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553 (VM_WRITE|VM_SHARED))
2554 return wp_pfn_shared(vmf);
2556 pte_unmap_unlock(vmf->pte, vmf->ptl);
2557 return wp_page_copy(vmf);
2561 * Take out anonymous pages first, anonymous shared vmas are
2562 * not dirty accountable.
2564 if (PageAnon(vmf->page)) {
2565 int total_map_swapcount;
2566 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2567 page_count(vmf->page) != 1))
2568 goto copy;
2569 if (!trylock_page(vmf->page)) {
2570 get_page(vmf->page);
2571 pte_unmap_unlock(vmf->pte, vmf->ptl);
2572 lock_page(vmf->page);
2573 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2574 vmf->address, &vmf->ptl);
2575 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2576 unlock_page(vmf->page);
2577 pte_unmap_unlock(vmf->pte, vmf->ptl);
2578 put_page(vmf->page);
2579 return 0;
2581 put_page(vmf->page);
2583 if (PageKsm(vmf->page)) {
2584 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2585 vmf->address);
2586 unlock_page(vmf->page);
2587 if (!reused)
2588 goto copy;
2589 wp_page_reuse(vmf);
2590 return VM_FAULT_WRITE;
2592 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2593 if (total_map_swapcount == 1) {
2595 * The page is all ours. Move it to
2596 * our anon_vma so the rmap code will
2597 * not search our parent or siblings.
2598 * Protected against the rmap code by
2599 * the page lock.
2601 page_move_anon_rmap(vmf->page, vma);
2603 unlock_page(vmf->page);
2604 wp_page_reuse(vmf);
2605 return VM_FAULT_WRITE;
2607 unlock_page(vmf->page);
2608 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609 (VM_WRITE|VM_SHARED))) {
2610 return wp_page_shared(vmf);
2612 copy:
2614 * Ok, we need to copy. Oh, well..
2616 get_page(vmf->page);
2618 pte_unmap_unlock(vmf->pte, vmf->ptl);
2619 return wp_page_copy(vmf);
2622 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2623 unsigned long start_addr, unsigned long end_addr,
2624 struct zap_details *details)
2626 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2629 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2630 struct zap_details *details)
2632 struct vm_area_struct *vma;
2633 pgoff_t vba, vea, zba, zea;
2635 vma_interval_tree_foreach(vma, root,
2636 details->first_index, details->last_index) {
2638 vba = vma->vm_pgoff;
2639 vea = vba + vma_pages(vma) - 1;
2640 zba = details->first_index;
2641 if (zba < vba)
2642 zba = vba;
2643 zea = details->last_index;
2644 if (zea > vea)
2645 zea = vea;
2647 unmap_mapping_range_vma(vma,
2648 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2649 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2650 details);
2655 * unmap_mapping_pages() - Unmap pages from processes.
2656 * @mapping: The address space containing pages to be unmapped.
2657 * @start: Index of first page to be unmapped.
2658 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2659 * @even_cows: Whether to unmap even private COWed pages.
2661 * Unmap the pages in this address space from any userspace process which
2662 * has them mmaped. Generally, you want to remove COWed pages as well when
2663 * a file is being truncated, but not when invalidating pages from the page
2664 * cache.
2666 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2667 pgoff_t nr, bool even_cows)
2669 struct zap_details details = { };
2671 details.check_mapping = even_cows ? NULL : mapping;
2672 details.first_index = start;
2673 details.last_index = start + nr - 1;
2674 if (details.last_index < details.first_index)
2675 details.last_index = ULONG_MAX;
2677 i_mmap_lock_write(mapping);
2678 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2679 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2680 i_mmap_unlock_write(mapping);
2684 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2685 * address_space corresponding to the specified byte range in the underlying
2686 * file.
2688 * @mapping: the address space containing mmaps to be unmapped.
2689 * @holebegin: byte in first page to unmap, relative to the start of
2690 * the underlying file. This will be rounded down to a PAGE_SIZE
2691 * boundary. Note that this is different from truncate_pagecache(), which
2692 * must keep the partial page. In contrast, we must get rid of
2693 * partial pages.
2694 * @holelen: size of prospective hole in bytes. This will be rounded
2695 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2696 * end of the file.
2697 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2698 * but 0 when invalidating pagecache, don't throw away private data.
2700 void unmap_mapping_range(struct address_space *mapping,
2701 loff_t const holebegin, loff_t const holelen, int even_cows)
2703 pgoff_t hba = holebegin >> PAGE_SHIFT;
2704 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2706 /* Check for overflow. */
2707 if (sizeof(holelen) > sizeof(hlen)) {
2708 long long holeend =
2709 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710 if (holeend & ~(long long)ULONG_MAX)
2711 hlen = ULONG_MAX - hba + 1;
2714 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2716 EXPORT_SYMBOL(unmap_mapping_range);
2719 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2720 * but allow concurrent faults), and pte mapped but not yet locked.
2721 * We return with pte unmapped and unlocked.
2723 * We return with the mmap_sem locked or unlocked in the same cases
2724 * as does filemap_fault().
2726 vm_fault_t do_swap_page(struct vm_fault *vmf)
2728 struct vm_area_struct *vma = vmf->vma;
2729 struct page *page = NULL, *swapcache;
2730 struct mem_cgroup *memcg;
2731 swp_entry_t entry;
2732 pte_t pte;
2733 int locked;
2734 int exclusive = 0;
2735 vm_fault_t ret = 0;
2737 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2738 goto out;
2740 entry = pte_to_swp_entry(vmf->orig_pte);
2741 if (unlikely(non_swap_entry(entry))) {
2742 if (is_migration_entry(entry)) {
2743 migration_entry_wait(vma->vm_mm, vmf->pmd,
2744 vmf->address);
2745 } else if (is_device_private_entry(entry)) {
2746 vmf->page = device_private_entry_to_page(entry);
2747 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2748 } else if (is_hwpoison_entry(entry)) {
2749 ret = VM_FAULT_HWPOISON;
2750 } else {
2751 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2752 ret = VM_FAULT_SIGBUS;
2754 goto out;
2758 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2759 page = lookup_swap_cache(entry, vma, vmf->address);
2760 swapcache = page;
2762 if (!page) {
2763 struct swap_info_struct *si = swp_swap_info(entry);
2765 if (si->flags & SWP_SYNCHRONOUS_IO &&
2766 __swap_count(entry) == 1) {
2767 /* skip swapcache */
2768 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2769 vmf->address);
2770 if (page) {
2771 __SetPageLocked(page);
2772 __SetPageSwapBacked(page);
2773 set_page_private(page, entry.val);
2774 lru_cache_add_anon(page);
2775 swap_readpage(page, true);
2777 } else {
2778 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2779 vmf);
2780 swapcache = page;
2783 if (!page) {
2785 * Back out if somebody else faulted in this pte
2786 * while we released the pte lock.
2788 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2789 vmf->address, &vmf->ptl);
2790 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2791 ret = VM_FAULT_OOM;
2792 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2793 goto unlock;
2796 /* Had to read the page from swap area: Major fault */
2797 ret = VM_FAULT_MAJOR;
2798 count_vm_event(PGMAJFAULT);
2799 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2800 } else if (PageHWPoison(page)) {
2802 * hwpoisoned dirty swapcache pages are kept for killing
2803 * owner processes (which may be unknown at hwpoison time)
2805 ret = VM_FAULT_HWPOISON;
2806 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2807 goto out_release;
2810 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2812 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2813 if (!locked) {
2814 ret |= VM_FAULT_RETRY;
2815 goto out_release;
2819 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2820 * release the swapcache from under us. The page pin, and pte_same
2821 * test below, are not enough to exclude that. Even if it is still
2822 * swapcache, we need to check that the page's swap has not changed.
2824 if (unlikely((!PageSwapCache(page) ||
2825 page_private(page) != entry.val)) && swapcache)
2826 goto out_page;
2828 page = ksm_might_need_to_copy(page, vma, vmf->address);
2829 if (unlikely(!page)) {
2830 ret = VM_FAULT_OOM;
2831 page = swapcache;
2832 goto out_page;
2835 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2836 &memcg, false)) {
2837 ret = VM_FAULT_OOM;
2838 goto out_page;
2842 * Back out if somebody else already faulted in this pte.
2844 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2845 &vmf->ptl);
2846 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2847 goto out_nomap;
2849 if (unlikely(!PageUptodate(page))) {
2850 ret = VM_FAULT_SIGBUS;
2851 goto out_nomap;
2855 * The page isn't present yet, go ahead with the fault.
2857 * Be careful about the sequence of operations here.
2858 * To get its accounting right, reuse_swap_page() must be called
2859 * while the page is counted on swap but not yet in mapcount i.e.
2860 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2861 * must be called after the swap_free(), or it will never succeed.
2864 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2865 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2866 pte = mk_pte(page, vma->vm_page_prot);
2867 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2868 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2869 vmf->flags &= ~FAULT_FLAG_WRITE;
2870 ret |= VM_FAULT_WRITE;
2871 exclusive = RMAP_EXCLUSIVE;
2873 flush_icache_page(vma, page);
2874 if (pte_swp_soft_dirty(vmf->orig_pte))
2875 pte = pte_mksoft_dirty(pte);
2876 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2877 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2878 vmf->orig_pte = pte;
2880 /* ksm created a completely new copy */
2881 if (unlikely(page != swapcache && swapcache)) {
2882 page_add_new_anon_rmap(page, vma, vmf->address, false);
2883 mem_cgroup_commit_charge(page, memcg, false, false);
2884 lru_cache_add_active_or_unevictable(page, vma);
2885 } else {
2886 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2887 mem_cgroup_commit_charge(page, memcg, true, false);
2888 activate_page(page);
2891 swap_free(entry);
2892 if (mem_cgroup_swap_full(page) ||
2893 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2894 try_to_free_swap(page);
2895 unlock_page(page);
2896 if (page != swapcache && swapcache) {
2898 * Hold the lock to avoid the swap entry to be reused
2899 * until we take the PT lock for the pte_same() check
2900 * (to avoid false positives from pte_same). For
2901 * further safety release the lock after the swap_free
2902 * so that the swap count won't change under a
2903 * parallel locked swapcache.
2905 unlock_page(swapcache);
2906 put_page(swapcache);
2909 if (vmf->flags & FAULT_FLAG_WRITE) {
2910 ret |= do_wp_page(vmf);
2911 if (ret & VM_FAULT_ERROR)
2912 ret &= VM_FAULT_ERROR;
2913 goto out;
2916 /* No need to invalidate - it was non-present before */
2917 update_mmu_cache(vma, vmf->address, vmf->pte);
2918 unlock:
2919 pte_unmap_unlock(vmf->pte, vmf->ptl);
2920 out:
2921 return ret;
2922 out_nomap:
2923 mem_cgroup_cancel_charge(page, memcg, false);
2924 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 out_page:
2926 unlock_page(page);
2927 out_release:
2928 put_page(page);
2929 if (page != swapcache && swapcache) {
2930 unlock_page(swapcache);
2931 put_page(swapcache);
2933 return ret;
2937 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2938 * but allow concurrent faults), and pte mapped but not yet locked.
2939 * We return with mmap_sem still held, but pte unmapped and unlocked.
2941 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2943 struct vm_area_struct *vma = vmf->vma;
2944 struct mem_cgroup *memcg;
2945 struct page *page;
2946 vm_fault_t ret = 0;
2947 pte_t entry;
2949 /* File mapping without ->vm_ops ? */
2950 if (vma->vm_flags & VM_SHARED)
2951 return VM_FAULT_SIGBUS;
2954 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2955 * pte_offset_map() on pmds where a huge pmd might be created
2956 * from a different thread.
2958 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2959 * parallel threads are excluded by other means.
2961 * Here we only have down_read(mmap_sem).
2963 if (pte_alloc(vma->vm_mm, vmf->pmd))
2964 return VM_FAULT_OOM;
2966 /* See the comment in pte_alloc_one_map() */
2967 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2968 return 0;
2970 /* Use the zero-page for reads */
2971 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2972 !mm_forbids_zeropage(vma->vm_mm)) {
2973 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2974 vma->vm_page_prot));
2975 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2976 vmf->address, &vmf->ptl);
2977 if (!pte_none(*vmf->pte))
2978 goto unlock;
2979 ret = check_stable_address_space(vma->vm_mm);
2980 if (ret)
2981 goto unlock;
2982 /* Deliver the page fault to userland, check inside PT lock */
2983 if (userfaultfd_missing(vma)) {
2984 pte_unmap_unlock(vmf->pte, vmf->ptl);
2985 return handle_userfault(vmf, VM_UFFD_MISSING);
2987 goto setpte;
2990 /* Allocate our own private page. */
2991 if (unlikely(anon_vma_prepare(vma)))
2992 goto oom;
2993 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2994 if (!page)
2995 goto oom;
2997 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2998 false))
2999 goto oom_free_page;
3002 * The memory barrier inside __SetPageUptodate makes sure that
3003 * preceeding stores to the page contents become visible before
3004 * the set_pte_at() write.
3006 __SetPageUptodate(page);
3008 entry = mk_pte(page, vma->vm_page_prot);
3009 if (vma->vm_flags & VM_WRITE)
3010 entry = pte_mkwrite(pte_mkdirty(entry));
3012 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3013 &vmf->ptl);
3014 if (!pte_none(*vmf->pte))
3015 goto release;
3017 ret = check_stable_address_space(vma->vm_mm);
3018 if (ret)
3019 goto release;
3021 /* Deliver the page fault to userland, check inside PT lock */
3022 if (userfaultfd_missing(vma)) {
3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 mem_cgroup_cancel_charge(page, memcg, false);
3025 put_page(page);
3026 return handle_userfault(vmf, VM_UFFD_MISSING);
3029 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3030 page_add_new_anon_rmap(page, vma, vmf->address, false);
3031 mem_cgroup_commit_charge(page, memcg, false, false);
3032 lru_cache_add_active_or_unevictable(page, vma);
3033 setpte:
3034 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3036 /* No need to invalidate - it was non-present before */
3037 update_mmu_cache(vma, vmf->address, vmf->pte);
3038 unlock:
3039 pte_unmap_unlock(vmf->pte, vmf->ptl);
3040 return ret;
3041 release:
3042 mem_cgroup_cancel_charge(page, memcg, false);
3043 put_page(page);
3044 goto unlock;
3045 oom_free_page:
3046 put_page(page);
3047 oom:
3048 return VM_FAULT_OOM;
3052 * The mmap_sem must have been held on entry, and may have been
3053 * released depending on flags and vma->vm_ops->fault() return value.
3054 * See filemap_fault() and __lock_page_retry().
3056 static vm_fault_t __do_fault(struct vm_fault *vmf)
3058 struct vm_area_struct *vma = vmf->vma;
3059 vm_fault_t ret;
3062 * Preallocate pte before we take page_lock because this might lead to
3063 * deadlocks for memcg reclaim which waits for pages under writeback:
3064 * lock_page(A)
3065 * SetPageWriteback(A)
3066 * unlock_page(A)
3067 * lock_page(B)
3068 * lock_page(B)
3069 * pte_alloc_pne
3070 * shrink_page_list
3071 * wait_on_page_writeback(A)
3072 * SetPageWriteback(B)
3073 * unlock_page(B)
3074 * # flush A, B to clear the writeback
3076 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3077 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3078 if (!vmf->prealloc_pte)
3079 return VM_FAULT_OOM;
3080 smp_wmb(); /* See comment in __pte_alloc() */
3083 ret = vma->vm_ops->fault(vmf);
3084 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3085 VM_FAULT_DONE_COW)))
3086 return ret;
3088 if (unlikely(PageHWPoison(vmf->page))) {
3089 if (ret & VM_FAULT_LOCKED)
3090 unlock_page(vmf->page);
3091 put_page(vmf->page);
3092 vmf->page = NULL;
3093 return VM_FAULT_HWPOISON;
3096 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3097 lock_page(vmf->page);
3098 else
3099 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3101 return ret;
3105 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3106 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3107 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3108 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3110 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3112 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3115 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3117 struct vm_area_struct *vma = vmf->vma;
3119 if (!pmd_none(*vmf->pmd))
3120 goto map_pte;
3121 if (vmf->prealloc_pte) {
3122 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3123 if (unlikely(!pmd_none(*vmf->pmd))) {
3124 spin_unlock(vmf->ptl);
3125 goto map_pte;
3128 mm_inc_nr_ptes(vma->vm_mm);
3129 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3130 spin_unlock(vmf->ptl);
3131 vmf->prealloc_pte = NULL;
3132 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3133 return VM_FAULT_OOM;
3135 map_pte:
3137 * If a huge pmd materialized under us just retry later. Use
3138 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3139 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3140 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3141 * running immediately after a huge pmd fault in a different thread of
3142 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3143 * All we have to ensure is that it is a regular pmd that we can walk
3144 * with pte_offset_map() and we can do that through an atomic read in
3145 * C, which is what pmd_trans_unstable() provides.
3147 if (pmd_devmap_trans_unstable(vmf->pmd))
3148 return VM_FAULT_NOPAGE;
3151 * At this point we know that our vmf->pmd points to a page of ptes
3152 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3153 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3154 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3155 * be valid and we will re-check to make sure the vmf->pte isn't
3156 * pte_none() under vmf->ptl protection when we return to
3157 * alloc_set_pte().
3159 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3160 &vmf->ptl);
3161 return 0;
3164 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3165 static void deposit_prealloc_pte(struct vm_fault *vmf)
3167 struct vm_area_struct *vma = vmf->vma;
3169 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3171 * We are going to consume the prealloc table,
3172 * count that as nr_ptes.
3174 mm_inc_nr_ptes(vma->vm_mm);
3175 vmf->prealloc_pte = NULL;
3178 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3180 struct vm_area_struct *vma = vmf->vma;
3181 bool write = vmf->flags & FAULT_FLAG_WRITE;
3182 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3183 pmd_t entry;
3184 int i;
3185 vm_fault_t ret;
3187 if (!transhuge_vma_suitable(vma, haddr))
3188 return VM_FAULT_FALLBACK;
3190 ret = VM_FAULT_FALLBACK;
3191 page = compound_head(page);
3194 * Archs like ppc64 need additonal space to store information
3195 * related to pte entry. Use the preallocated table for that.
3197 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3198 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3199 if (!vmf->prealloc_pte)
3200 return VM_FAULT_OOM;
3201 smp_wmb(); /* See comment in __pte_alloc() */
3204 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3205 if (unlikely(!pmd_none(*vmf->pmd)))
3206 goto out;
3208 for (i = 0; i < HPAGE_PMD_NR; i++)
3209 flush_icache_page(vma, page + i);
3211 entry = mk_huge_pmd(page, vma->vm_page_prot);
3212 if (write)
3213 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3215 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3216 page_add_file_rmap(page, true);
3218 * deposit and withdraw with pmd lock held
3220 if (arch_needs_pgtable_deposit())
3221 deposit_prealloc_pte(vmf);
3223 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3225 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3227 /* fault is handled */
3228 ret = 0;
3229 count_vm_event(THP_FILE_MAPPED);
3230 out:
3231 spin_unlock(vmf->ptl);
3232 return ret;
3234 #else
3235 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3237 BUILD_BUG();
3238 return 0;
3240 #endif
3243 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3244 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3246 * @vmf: fault environment
3247 * @memcg: memcg to charge page (only for private mappings)
3248 * @page: page to map
3250 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3251 * return.
3253 * Target users are page handler itself and implementations of
3254 * vm_ops->map_pages.
3256 * Return: %0 on success, %VM_FAULT_ code in case of error.
3258 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3259 struct page *page)
3261 struct vm_area_struct *vma = vmf->vma;
3262 bool write = vmf->flags & FAULT_FLAG_WRITE;
3263 pte_t entry;
3264 vm_fault_t ret;
3266 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3267 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3268 /* THP on COW? */
3269 VM_BUG_ON_PAGE(memcg, page);
3271 ret = do_set_pmd(vmf, page);
3272 if (ret != VM_FAULT_FALLBACK)
3273 return ret;
3276 if (!vmf->pte) {
3277 ret = pte_alloc_one_map(vmf);
3278 if (ret)
3279 return ret;
3282 /* Re-check under ptl */
3283 if (unlikely(!pte_none(*vmf->pte)))
3284 return VM_FAULT_NOPAGE;
3286 flush_icache_page(vma, page);
3287 entry = mk_pte(page, vma->vm_page_prot);
3288 if (write)
3289 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3290 /* copy-on-write page */
3291 if (write && !(vma->vm_flags & VM_SHARED)) {
3292 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3293 page_add_new_anon_rmap(page, vma, vmf->address, false);
3294 mem_cgroup_commit_charge(page, memcg, false, false);
3295 lru_cache_add_active_or_unevictable(page, vma);
3296 } else {
3297 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3298 page_add_file_rmap(page, false);
3300 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3302 /* no need to invalidate: a not-present page won't be cached */
3303 update_mmu_cache(vma, vmf->address, vmf->pte);
3305 return 0;
3310 * finish_fault - finish page fault once we have prepared the page to fault
3312 * @vmf: structure describing the fault
3314 * This function handles all that is needed to finish a page fault once the
3315 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3316 * given page, adds reverse page mapping, handles memcg charges and LRU
3317 * addition.
3319 * The function expects the page to be locked and on success it consumes a
3320 * reference of a page being mapped (for the PTE which maps it).
3322 * Return: %0 on success, %VM_FAULT_ code in case of error.
3324 vm_fault_t finish_fault(struct vm_fault *vmf)
3326 struct page *page;
3327 vm_fault_t ret = 0;
3329 /* Did we COW the page? */
3330 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3331 !(vmf->vma->vm_flags & VM_SHARED))
3332 page = vmf->cow_page;
3333 else
3334 page = vmf->page;
3337 * check even for read faults because we might have lost our CoWed
3338 * page
3340 if (!(vmf->vma->vm_flags & VM_SHARED))
3341 ret = check_stable_address_space(vmf->vma->vm_mm);
3342 if (!ret)
3343 ret = alloc_set_pte(vmf, vmf->memcg, page);
3344 if (vmf->pte)
3345 pte_unmap_unlock(vmf->pte, vmf->ptl);
3346 return ret;
3349 static unsigned long fault_around_bytes __read_mostly =
3350 rounddown_pow_of_two(65536);
3352 #ifdef CONFIG_DEBUG_FS
3353 static int fault_around_bytes_get(void *data, u64 *val)
3355 *val = fault_around_bytes;
3356 return 0;
3360 * fault_around_bytes must be rounded down to the nearest page order as it's
3361 * what do_fault_around() expects to see.
3363 static int fault_around_bytes_set(void *data, u64 val)
3365 if (val / PAGE_SIZE > PTRS_PER_PTE)
3366 return -EINVAL;
3367 if (val > PAGE_SIZE)
3368 fault_around_bytes = rounddown_pow_of_two(val);
3369 else
3370 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3371 return 0;
3373 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3374 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3376 static int __init fault_around_debugfs(void)
3378 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3379 &fault_around_bytes_fops);
3380 return 0;
3382 late_initcall(fault_around_debugfs);
3383 #endif
3386 * do_fault_around() tries to map few pages around the fault address. The hope
3387 * is that the pages will be needed soon and this will lower the number of
3388 * faults to handle.
3390 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3391 * not ready to be mapped: not up-to-date, locked, etc.
3393 * This function is called with the page table lock taken. In the split ptlock
3394 * case the page table lock only protects only those entries which belong to
3395 * the page table corresponding to the fault address.
3397 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3398 * only once.
3400 * fault_around_bytes defines how many bytes we'll try to map.
3401 * do_fault_around() expects it to be set to a power of two less than or equal
3402 * to PTRS_PER_PTE.
3404 * The virtual address of the area that we map is naturally aligned to
3405 * fault_around_bytes rounded down to the machine page size
3406 * (and therefore to page order). This way it's easier to guarantee
3407 * that we don't cross page table boundaries.
3409 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3411 unsigned long address = vmf->address, nr_pages, mask;
3412 pgoff_t start_pgoff = vmf->pgoff;
3413 pgoff_t end_pgoff;
3414 int off;
3415 vm_fault_t ret = 0;
3417 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3418 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3420 vmf->address = max(address & mask, vmf->vma->vm_start);
3421 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3422 start_pgoff -= off;
3425 * end_pgoff is either the end of the page table, the end of
3426 * the vma or nr_pages from start_pgoff, depending what is nearest.
3428 end_pgoff = start_pgoff -
3429 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3430 PTRS_PER_PTE - 1;
3431 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3432 start_pgoff + nr_pages - 1);
3434 if (pmd_none(*vmf->pmd)) {
3435 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3436 if (!vmf->prealloc_pte)
3437 goto out;
3438 smp_wmb(); /* See comment in __pte_alloc() */
3441 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3443 /* Huge page is mapped? Page fault is solved */
3444 if (pmd_trans_huge(*vmf->pmd)) {
3445 ret = VM_FAULT_NOPAGE;
3446 goto out;
3449 /* ->map_pages() haven't done anything useful. Cold page cache? */
3450 if (!vmf->pte)
3451 goto out;
3453 /* check if the page fault is solved */
3454 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3455 if (!pte_none(*vmf->pte))
3456 ret = VM_FAULT_NOPAGE;
3457 pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 out:
3459 vmf->address = address;
3460 vmf->pte = NULL;
3461 return ret;
3464 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3466 struct vm_area_struct *vma = vmf->vma;
3467 vm_fault_t ret = 0;
3470 * Let's call ->map_pages() first and use ->fault() as fallback
3471 * if page by the offset is not ready to be mapped (cold cache or
3472 * something).
3474 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3475 ret = do_fault_around(vmf);
3476 if (ret)
3477 return ret;
3480 ret = __do_fault(vmf);
3481 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3482 return ret;
3484 ret |= finish_fault(vmf);
3485 unlock_page(vmf->page);
3486 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487 put_page(vmf->page);
3488 return ret;
3491 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3493 struct vm_area_struct *vma = vmf->vma;
3494 vm_fault_t ret;
3496 if (unlikely(anon_vma_prepare(vma)))
3497 return VM_FAULT_OOM;
3499 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3500 if (!vmf->cow_page)
3501 return VM_FAULT_OOM;
3503 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3504 &vmf->memcg, false)) {
3505 put_page(vmf->cow_page);
3506 return VM_FAULT_OOM;
3509 ret = __do_fault(vmf);
3510 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3511 goto uncharge_out;
3512 if (ret & VM_FAULT_DONE_COW)
3513 return ret;
3515 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3516 __SetPageUptodate(vmf->cow_page);
3518 ret |= finish_fault(vmf);
3519 unlock_page(vmf->page);
3520 put_page(vmf->page);
3521 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3522 goto uncharge_out;
3523 return ret;
3524 uncharge_out:
3525 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3526 put_page(vmf->cow_page);
3527 return ret;
3530 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3532 struct vm_area_struct *vma = vmf->vma;
3533 vm_fault_t ret, tmp;
3535 ret = __do_fault(vmf);
3536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3537 return ret;
3540 * Check if the backing address space wants to know that the page is
3541 * about to become writable
3543 if (vma->vm_ops->page_mkwrite) {
3544 unlock_page(vmf->page);
3545 tmp = do_page_mkwrite(vmf);
3546 if (unlikely(!tmp ||
3547 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548 put_page(vmf->page);
3549 return tmp;
3553 ret |= finish_fault(vmf);
3554 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3555 VM_FAULT_RETRY))) {
3556 unlock_page(vmf->page);
3557 put_page(vmf->page);
3558 return ret;
3561 fault_dirty_shared_page(vma, vmf->page);
3562 return ret;
3566 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3567 * but allow concurrent faults).
3568 * The mmap_sem may have been released depending on flags and our
3569 * return value. See filemap_fault() and __lock_page_or_retry().
3570 * If mmap_sem is released, vma may become invalid (for example
3571 * by other thread calling munmap()).
3573 static vm_fault_t do_fault(struct vm_fault *vmf)
3575 struct vm_area_struct *vma = vmf->vma;
3576 struct mm_struct *vm_mm = vma->vm_mm;
3577 vm_fault_t ret;
3580 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3582 if (!vma->vm_ops->fault) {
3584 * If we find a migration pmd entry or a none pmd entry, which
3585 * should never happen, return SIGBUS
3587 if (unlikely(!pmd_present(*vmf->pmd)))
3588 ret = VM_FAULT_SIGBUS;
3589 else {
3590 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3591 vmf->pmd,
3592 vmf->address,
3593 &vmf->ptl);
3595 * Make sure this is not a temporary clearing of pte
3596 * by holding ptl and checking again. A R/M/W update
3597 * of pte involves: take ptl, clearing the pte so that
3598 * we don't have concurrent modification by hardware
3599 * followed by an update.
3601 if (unlikely(pte_none(*vmf->pte)))
3602 ret = VM_FAULT_SIGBUS;
3603 else
3604 ret = VM_FAULT_NOPAGE;
3606 pte_unmap_unlock(vmf->pte, vmf->ptl);
3608 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3609 ret = do_read_fault(vmf);
3610 else if (!(vma->vm_flags & VM_SHARED))
3611 ret = do_cow_fault(vmf);
3612 else
3613 ret = do_shared_fault(vmf);
3615 /* preallocated pagetable is unused: free it */
3616 if (vmf->prealloc_pte) {
3617 pte_free(vm_mm, vmf->prealloc_pte);
3618 vmf->prealloc_pte = NULL;
3620 return ret;
3623 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3624 unsigned long addr, int page_nid,
3625 int *flags)
3627 get_page(page);
3629 count_vm_numa_event(NUMA_HINT_FAULTS);
3630 if (page_nid == numa_node_id()) {
3631 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3632 *flags |= TNF_FAULT_LOCAL;
3635 return mpol_misplaced(page, vma, addr);
3638 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3640 struct vm_area_struct *vma = vmf->vma;
3641 struct page *page = NULL;
3642 int page_nid = NUMA_NO_NODE;
3643 int last_cpupid;
3644 int target_nid;
3645 bool migrated = false;
3646 pte_t pte, old_pte;
3647 bool was_writable = pte_savedwrite(vmf->orig_pte);
3648 int flags = 0;
3651 * The "pte" at this point cannot be used safely without
3652 * validation through pte_unmap_same(). It's of NUMA type but
3653 * the pfn may be screwed if the read is non atomic.
3655 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3656 spin_lock(vmf->ptl);
3657 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3658 pte_unmap_unlock(vmf->pte, vmf->ptl);
3659 goto out;
3663 * Make it present again, Depending on how arch implementes non
3664 * accessible ptes, some can allow access by kernel mode.
3666 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3667 pte = pte_modify(old_pte, vma->vm_page_prot);
3668 pte = pte_mkyoung(pte);
3669 if (was_writable)
3670 pte = pte_mkwrite(pte);
3671 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3672 update_mmu_cache(vma, vmf->address, vmf->pte);
3674 page = vm_normal_page(vma, vmf->address, pte);
3675 if (!page) {
3676 pte_unmap_unlock(vmf->pte, vmf->ptl);
3677 return 0;
3680 /* TODO: handle PTE-mapped THP */
3681 if (PageCompound(page)) {
3682 pte_unmap_unlock(vmf->pte, vmf->ptl);
3683 return 0;
3687 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3688 * much anyway since they can be in shared cache state. This misses
3689 * the case where a mapping is writable but the process never writes
3690 * to it but pte_write gets cleared during protection updates and
3691 * pte_dirty has unpredictable behaviour between PTE scan updates,
3692 * background writeback, dirty balancing and application behaviour.
3694 if (!pte_write(pte))
3695 flags |= TNF_NO_GROUP;
3698 * Flag if the page is shared between multiple address spaces. This
3699 * is later used when determining whether to group tasks together
3701 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3702 flags |= TNF_SHARED;
3704 last_cpupid = page_cpupid_last(page);
3705 page_nid = page_to_nid(page);
3706 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3707 &flags);
3708 pte_unmap_unlock(vmf->pte, vmf->ptl);
3709 if (target_nid == NUMA_NO_NODE) {
3710 put_page(page);
3711 goto out;
3714 /* Migrate to the requested node */
3715 migrated = migrate_misplaced_page(page, vma, target_nid);
3716 if (migrated) {
3717 page_nid = target_nid;
3718 flags |= TNF_MIGRATED;
3719 } else
3720 flags |= TNF_MIGRATE_FAIL;
3722 out:
3723 if (page_nid != NUMA_NO_NODE)
3724 task_numa_fault(last_cpupid, page_nid, 1, flags);
3725 return 0;
3728 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3730 if (vma_is_anonymous(vmf->vma))
3731 return do_huge_pmd_anonymous_page(vmf);
3732 if (vmf->vma->vm_ops->huge_fault)
3733 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3734 return VM_FAULT_FALLBACK;
3737 /* `inline' is required to avoid gcc 4.1.2 build error */
3738 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3740 if (vma_is_anonymous(vmf->vma))
3741 return do_huge_pmd_wp_page(vmf, orig_pmd);
3742 if (vmf->vma->vm_ops->huge_fault)
3743 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3745 /* COW handled on pte level: split pmd */
3746 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3747 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3749 return VM_FAULT_FALLBACK;
3752 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3754 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3757 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760 /* No support for anonymous transparent PUD pages yet */
3761 if (vma_is_anonymous(vmf->vma))
3762 return VM_FAULT_FALLBACK;
3763 if (vmf->vma->vm_ops->huge_fault)
3764 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3766 return VM_FAULT_FALLBACK;
3769 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772 /* No support for anonymous transparent PUD pages yet */
3773 if (vma_is_anonymous(vmf->vma))
3774 return VM_FAULT_FALLBACK;
3775 if (vmf->vma->vm_ops->huge_fault)
3776 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778 return VM_FAULT_FALLBACK;
3782 * These routines also need to handle stuff like marking pages dirty
3783 * and/or accessed for architectures that don't do it in hardware (most
3784 * RISC architectures). The early dirtying is also good on the i386.
3786 * There is also a hook called "update_mmu_cache()" that architectures
3787 * with external mmu caches can use to update those (ie the Sparc or
3788 * PowerPC hashed page tables that act as extended TLBs).
3790 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3791 * concurrent faults).
3793 * The mmap_sem may have been released depending on flags and our return value.
3794 * See filemap_fault() and __lock_page_or_retry().
3796 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3798 pte_t entry;
3800 if (unlikely(pmd_none(*vmf->pmd))) {
3802 * Leave __pte_alloc() until later: because vm_ops->fault may
3803 * want to allocate huge page, and if we expose page table
3804 * for an instant, it will be difficult to retract from
3805 * concurrent faults and from rmap lookups.
3807 vmf->pte = NULL;
3808 } else {
3809 /* See comment in pte_alloc_one_map() */
3810 if (pmd_devmap_trans_unstable(vmf->pmd))
3811 return 0;
3813 * A regular pmd is established and it can't morph into a huge
3814 * pmd from under us anymore at this point because we hold the
3815 * mmap_sem read mode and khugepaged takes it in write mode.
3816 * So now it's safe to run pte_offset_map().
3818 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3819 vmf->orig_pte = *vmf->pte;
3822 * some architectures can have larger ptes than wordsize,
3823 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3824 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3825 * accesses. The code below just needs a consistent view
3826 * for the ifs and we later double check anyway with the
3827 * ptl lock held. So here a barrier will do.
3829 barrier();
3830 if (pte_none(vmf->orig_pte)) {
3831 pte_unmap(vmf->pte);
3832 vmf->pte = NULL;
3836 if (!vmf->pte) {
3837 if (vma_is_anonymous(vmf->vma))
3838 return do_anonymous_page(vmf);
3839 else
3840 return do_fault(vmf);
3843 if (!pte_present(vmf->orig_pte))
3844 return do_swap_page(vmf);
3846 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3847 return do_numa_page(vmf);
3849 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3850 spin_lock(vmf->ptl);
3851 entry = vmf->orig_pte;
3852 if (unlikely(!pte_same(*vmf->pte, entry)))
3853 goto unlock;
3854 if (vmf->flags & FAULT_FLAG_WRITE) {
3855 if (!pte_write(entry))
3856 return do_wp_page(vmf);
3857 entry = pte_mkdirty(entry);
3859 entry = pte_mkyoung(entry);
3860 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3861 vmf->flags & FAULT_FLAG_WRITE)) {
3862 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3863 } else {
3865 * This is needed only for protection faults but the arch code
3866 * is not yet telling us if this is a protection fault or not.
3867 * This still avoids useless tlb flushes for .text page faults
3868 * with threads.
3870 if (vmf->flags & FAULT_FLAG_WRITE)
3871 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3873 unlock:
3874 pte_unmap_unlock(vmf->pte, vmf->ptl);
3875 return 0;
3879 * By the time we get here, we already hold the mm semaphore
3881 * The mmap_sem may have been released depending on flags and our
3882 * return value. See filemap_fault() and __lock_page_or_retry().
3884 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3885 unsigned long address, unsigned int flags)
3887 struct vm_fault vmf = {
3888 .vma = vma,
3889 .address = address & PAGE_MASK,
3890 .flags = flags,
3891 .pgoff = linear_page_index(vma, address),
3892 .gfp_mask = __get_fault_gfp_mask(vma),
3894 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3895 struct mm_struct *mm = vma->vm_mm;
3896 pgd_t *pgd;
3897 p4d_t *p4d;
3898 vm_fault_t ret;
3900 pgd = pgd_offset(mm, address);
3901 p4d = p4d_alloc(mm, pgd, address);
3902 if (!p4d)
3903 return VM_FAULT_OOM;
3905 vmf.pud = pud_alloc(mm, p4d, address);
3906 if (!vmf.pud)
3907 return VM_FAULT_OOM;
3908 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3909 ret = create_huge_pud(&vmf);
3910 if (!(ret & VM_FAULT_FALLBACK))
3911 return ret;
3912 } else {
3913 pud_t orig_pud = *vmf.pud;
3915 barrier();
3916 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3918 /* NUMA case for anonymous PUDs would go here */
3920 if (dirty && !pud_write(orig_pud)) {
3921 ret = wp_huge_pud(&vmf, orig_pud);
3922 if (!(ret & VM_FAULT_FALLBACK))
3923 return ret;
3924 } else {
3925 huge_pud_set_accessed(&vmf, orig_pud);
3926 return 0;
3931 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3932 if (!vmf.pmd)
3933 return VM_FAULT_OOM;
3934 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3935 ret = create_huge_pmd(&vmf);
3936 if (!(ret & VM_FAULT_FALLBACK))
3937 return ret;
3938 } else {
3939 pmd_t orig_pmd = *vmf.pmd;
3941 barrier();
3942 if (unlikely(is_swap_pmd(orig_pmd))) {
3943 VM_BUG_ON(thp_migration_supported() &&
3944 !is_pmd_migration_entry(orig_pmd));
3945 if (is_pmd_migration_entry(orig_pmd))
3946 pmd_migration_entry_wait(mm, vmf.pmd);
3947 return 0;
3949 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3950 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3951 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3953 if (dirty && !pmd_write(orig_pmd)) {
3954 ret = wp_huge_pmd(&vmf, orig_pmd);
3955 if (!(ret & VM_FAULT_FALLBACK))
3956 return ret;
3957 } else {
3958 huge_pmd_set_accessed(&vmf, orig_pmd);
3959 return 0;
3964 return handle_pte_fault(&vmf);
3968 * By the time we get here, we already hold the mm semaphore
3970 * The mmap_sem may have been released depending on flags and our
3971 * return value. See filemap_fault() and __lock_page_or_retry().
3973 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3974 unsigned int flags)
3976 vm_fault_t ret;
3978 __set_current_state(TASK_RUNNING);
3980 count_vm_event(PGFAULT);
3981 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3983 /* do counter updates before entering really critical section. */
3984 check_sync_rss_stat(current);
3986 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3987 flags & FAULT_FLAG_INSTRUCTION,
3988 flags & FAULT_FLAG_REMOTE))
3989 return VM_FAULT_SIGSEGV;
3992 * Enable the memcg OOM handling for faults triggered in user
3993 * space. Kernel faults are handled more gracefully.
3995 if (flags & FAULT_FLAG_USER)
3996 mem_cgroup_enter_user_fault();
3998 if (unlikely(is_vm_hugetlb_page(vma)))
3999 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4000 else
4001 ret = __handle_mm_fault(vma, address, flags);
4003 if (flags & FAULT_FLAG_USER) {
4004 mem_cgroup_exit_user_fault();
4006 * The task may have entered a memcg OOM situation but
4007 * if the allocation error was handled gracefully (no
4008 * VM_FAULT_OOM), there is no need to kill anything.
4009 * Just clean up the OOM state peacefully.
4011 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4012 mem_cgroup_oom_synchronize(false);
4015 return ret;
4017 EXPORT_SYMBOL_GPL(handle_mm_fault);
4019 #ifndef __PAGETABLE_P4D_FOLDED
4021 * Allocate p4d page table.
4022 * We've already handled the fast-path in-line.
4024 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4026 p4d_t *new = p4d_alloc_one(mm, address);
4027 if (!new)
4028 return -ENOMEM;
4030 smp_wmb(); /* See comment in __pte_alloc */
4032 spin_lock(&mm->page_table_lock);
4033 if (pgd_present(*pgd)) /* Another has populated it */
4034 p4d_free(mm, new);
4035 else
4036 pgd_populate(mm, pgd, new);
4037 spin_unlock(&mm->page_table_lock);
4038 return 0;
4040 #endif /* __PAGETABLE_P4D_FOLDED */
4042 #ifndef __PAGETABLE_PUD_FOLDED
4044 * Allocate page upper directory.
4045 * We've already handled the fast-path in-line.
4047 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4049 pud_t *new = pud_alloc_one(mm, address);
4050 if (!new)
4051 return -ENOMEM;
4053 smp_wmb(); /* See comment in __pte_alloc */
4055 spin_lock(&mm->page_table_lock);
4056 #ifndef __ARCH_HAS_5LEVEL_HACK
4057 if (!p4d_present(*p4d)) {
4058 mm_inc_nr_puds(mm);
4059 p4d_populate(mm, p4d, new);
4060 } else /* Another has populated it */
4061 pud_free(mm, new);
4062 #else
4063 if (!pgd_present(*p4d)) {
4064 mm_inc_nr_puds(mm);
4065 pgd_populate(mm, p4d, new);
4066 } else /* Another has populated it */
4067 pud_free(mm, new);
4068 #endif /* __ARCH_HAS_5LEVEL_HACK */
4069 spin_unlock(&mm->page_table_lock);
4070 return 0;
4072 #endif /* __PAGETABLE_PUD_FOLDED */
4074 #ifndef __PAGETABLE_PMD_FOLDED
4076 * Allocate page middle directory.
4077 * We've already handled the fast-path in-line.
4079 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4081 spinlock_t *ptl;
4082 pmd_t *new = pmd_alloc_one(mm, address);
4083 if (!new)
4084 return -ENOMEM;
4086 smp_wmb(); /* See comment in __pte_alloc */
4088 ptl = pud_lock(mm, pud);
4089 #ifndef __ARCH_HAS_4LEVEL_HACK
4090 if (!pud_present(*pud)) {
4091 mm_inc_nr_pmds(mm);
4092 pud_populate(mm, pud, new);
4093 } else /* Another has populated it */
4094 pmd_free(mm, new);
4095 #else
4096 if (!pgd_present(*pud)) {
4097 mm_inc_nr_pmds(mm);
4098 pgd_populate(mm, pud, new);
4099 } else /* Another has populated it */
4100 pmd_free(mm, new);
4101 #endif /* __ARCH_HAS_4LEVEL_HACK */
4102 spin_unlock(ptl);
4103 return 0;
4105 #endif /* __PAGETABLE_PMD_FOLDED */
4107 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4108 struct mmu_notifier_range *range,
4109 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4111 pgd_t *pgd;
4112 p4d_t *p4d;
4113 pud_t *pud;
4114 pmd_t *pmd;
4115 pte_t *ptep;
4117 pgd = pgd_offset(mm, address);
4118 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4119 goto out;
4121 p4d = p4d_offset(pgd, address);
4122 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4123 goto out;
4125 pud = pud_offset(p4d, address);
4126 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4127 goto out;
4129 pmd = pmd_offset(pud, address);
4130 VM_BUG_ON(pmd_trans_huge(*pmd));
4132 if (pmd_huge(*pmd)) {
4133 if (!pmdpp)
4134 goto out;
4136 if (range) {
4137 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4138 NULL, mm, address & PMD_MASK,
4139 (address & PMD_MASK) + PMD_SIZE);
4140 mmu_notifier_invalidate_range_start(range);
4142 *ptlp = pmd_lock(mm, pmd);
4143 if (pmd_huge(*pmd)) {
4144 *pmdpp = pmd;
4145 return 0;
4147 spin_unlock(*ptlp);
4148 if (range)
4149 mmu_notifier_invalidate_range_end(range);
4152 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4153 goto out;
4155 if (range) {
4156 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4157 address & PAGE_MASK,
4158 (address & PAGE_MASK) + PAGE_SIZE);
4159 mmu_notifier_invalidate_range_start(range);
4161 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4162 if (!pte_present(*ptep))
4163 goto unlock;
4164 *ptepp = ptep;
4165 return 0;
4166 unlock:
4167 pte_unmap_unlock(ptep, *ptlp);
4168 if (range)
4169 mmu_notifier_invalidate_range_end(range);
4170 out:
4171 return -EINVAL;
4174 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4175 pte_t **ptepp, spinlock_t **ptlp)
4177 int res;
4179 /* (void) is needed to make gcc happy */
4180 (void) __cond_lock(*ptlp,
4181 !(res = __follow_pte_pmd(mm, address, NULL,
4182 ptepp, NULL, ptlp)));
4183 return res;
4186 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4187 struct mmu_notifier_range *range,
4188 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4190 int res;
4192 /* (void) is needed to make gcc happy */
4193 (void) __cond_lock(*ptlp,
4194 !(res = __follow_pte_pmd(mm, address, range,
4195 ptepp, pmdpp, ptlp)));
4196 return res;
4198 EXPORT_SYMBOL(follow_pte_pmd);
4201 * follow_pfn - look up PFN at a user virtual address
4202 * @vma: memory mapping
4203 * @address: user virtual address
4204 * @pfn: location to store found PFN
4206 * Only IO mappings and raw PFN mappings are allowed.
4208 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4210 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4211 unsigned long *pfn)
4213 int ret = -EINVAL;
4214 spinlock_t *ptl;
4215 pte_t *ptep;
4217 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4218 return ret;
4220 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4221 if (ret)
4222 return ret;
4223 *pfn = pte_pfn(*ptep);
4224 pte_unmap_unlock(ptep, ptl);
4225 return 0;
4227 EXPORT_SYMBOL(follow_pfn);
4229 #ifdef CONFIG_HAVE_IOREMAP_PROT
4230 int follow_phys(struct vm_area_struct *vma,
4231 unsigned long address, unsigned int flags,
4232 unsigned long *prot, resource_size_t *phys)
4234 int ret = -EINVAL;
4235 pte_t *ptep, pte;
4236 spinlock_t *ptl;
4238 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4239 goto out;
4241 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4242 goto out;
4243 pte = *ptep;
4245 if ((flags & FOLL_WRITE) && !pte_write(pte))
4246 goto unlock;
4248 *prot = pgprot_val(pte_pgprot(pte));
4249 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4251 ret = 0;
4252 unlock:
4253 pte_unmap_unlock(ptep, ptl);
4254 out:
4255 return ret;
4258 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4259 void *buf, int len, int write)
4261 resource_size_t phys_addr;
4262 unsigned long prot = 0;
4263 void __iomem *maddr;
4264 int offset = addr & (PAGE_SIZE-1);
4266 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4267 return -EINVAL;
4269 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4270 if (!maddr)
4271 return -ENOMEM;
4273 if (write)
4274 memcpy_toio(maddr + offset, buf, len);
4275 else
4276 memcpy_fromio(buf, maddr + offset, len);
4277 iounmap(maddr);
4279 return len;
4281 EXPORT_SYMBOL_GPL(generic_access_phys);
4282 #endif
4285 * Access another process' address space as given in mm. If non-NULL, use the
4286 * given task for page fault accounting.
4288 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4289 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4291 struct vm_area_struct *vma;
4292 void *old_buf = buf;
4293 int write = gup_flags & FOLL_WRITE;
4295 if (down_read_killable(&mm->mmap_sem))
4296 return 0;
4298 /* ignore errors, just check how much was successfully transferred */
4299 while (len) {
4300 int bytes, ret, offset;
4301 void *maddr;
4302 struct page *page = NULL;
4304 ret = get_user_pages_remote(tsk, mm, addr, 1,
4305 gup_flags, &page, &vma, NULL);
4306 if (ret <= 0) {
4307 #ifndef CONFIG_HAVE_IOREMAP_PROT
4308 break;
4309 #else
4311 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4312 * we can access using slightly different code.
4314 vma = find_vma(mm, addr);
4315 if (!vma || vma->vm_start > addr)
4316 break;
4317 if (vma->vm_ops && vma->vm_ops->access)
4318 ret = vma->vm_ops->access(vma, addr, buf,
4319 len, write);
4320 if (ret <= 0)
4321 break;
4322 bytes = ret;
4323 #endif
4324 } else {
4325 bytes = len;
4326 offset = addr & (PAGE_SIZE-1);
4327 if (bytes > PAGE_SIZE-offset)
4328 bytes = PAGE_SIZE-offset;
4330 maddr = kmap(page);
4331 if (write) {
4332 copy_to_user_page(vma, page, addr,
4333 maddr + offset, buf, bytes);
4334 set_page_dirty_lock(page);
4335 } else {
4336 copy_from_user_page(vma, page, addr,
4337 buf, maddr + offset, bytes);
4339 kunmap(page);
4340 put_page(page);
4342 len -= bytes;
4343 buf += bytes;
4344 addr += bytes;
4346 up_read(&mm->mmap_sem);
4348 return buf - old_buf;
4352 * access_remote_vm - access another process' address space
4353 * @mm: the mm_struct of the target address space
4354 * @addr: start address to access
4355 * @buf: source or destination buffer
4356 * @len: number of bytes to transfer
4357 * @gup_flags: flags modifying lookup behaviour
4359 * The caller must hold a reference on @mm.
4361 * Return: number of bytes copied from source to destination.
4363 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4364 void *buf, int len, unsigned int gup_flags)
4366 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4370 * Access another process' address space.
4371 * Source/target buffer must be kernel space,
4372 * Do not walk the page table directly, use get_user_pages
4374 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4375 void *buf, int len, unsigned int gup_flags)
4377 struct mm_struct *mm;
4378 int ret;
4380 mm = get_task_mm(tsk);
4381 if (!mm)
4382 return 0;
4384 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4386 mmput(mm);
4388 return ret;
4390 EXPORT_SYMBOL_GPL(access_process_vm);
4393 * Print the name of a VMA.
4395 void print_vma_addr(char *prefix, unsigned long ip)
4397 struct mm_struct *mm = current->mm;
4398 struct vm_area_struct *vma;
4401 * we might be running from an atomic context so we cannot sleep
4403 if (!down_read_trylock(&mm->mmap_sem))
4404 return;
4406 vma = find_vma(mm, ip);
4407 if (vma && vma->vm_file) {
4408 struct file *f = vma->vm_file;
4409 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4410 if (buf) {
4411 char *p;
4413 p = file_path(f, buf, PAGE_SIZE);
4414 if (IS_ERR(p))
4415 p = "?";
4416 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4417 vma->vm_start,
4418 vma->vm_end - vma->vm_start);
4419 free_page((unsigned long)buf);
4422 up_read(&mm->mmap_sem);
4425 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4426 void __might_fault(const char *file, int line)
4429 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4430 * holding the mmap_sem, this is safe because kernel memory doesn't
4431 * get paged out, therefore we'll never actually fault, and the
4432 * below annotations will generate false positives.
4434 if (uaccess_kernel())
4435 return;
4436 if (pagefault_disabled())
4437 return;
4438 __might_sleep(file, line, 0);
4439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4440 if (current->mm)
4441 might_lock_read(&current->mm->mmap_sem);
4442 #endif
4444 EXPORT_SYMBOL(__might_fault);
4445 #endif
4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4449 * Process all subpages of the specified huge page with the specified
4450 * operation. The target subpage will be processed last to keep its
4451 * cache lines hot.
4453 static inline void process_huge_page(
4454 unsigned long addr_hint, unsigned int pages_per_huge_page,
4455 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4456 void *arg)
4458 int i, n, base, l;
4459 unsigned long addr = addr_hint &
4460 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4462 /* Process target subpage last to keep its cache lines hot */
4463 might_sleep();
4464 n = (addr_hint - addr) / PAGE_SIZE;
4465 if (2 * n <= pages_per_huge_page) {
4466 /* If target subpage in first half of huge page */
4467 base = 0;
4468 l = n;
4469 /* Process subpages at the end of huge page */
4470 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4471 cond_resched();
4472 process_subpage(addr + i * PAGE_SIZE, i, arg);
4474 } else {
4475 /* If target subpage in second half of huge page */
4476 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4477 l = pages_per_huge_page - n;
4478 /* Process subpages at the begin of huge page */
4479 for (i = 0; i < base; i++) {
4480 cond_resched();
4481 process_subpage(addr + i * PAGE_SIZE, i, arg);
4485 * Process remaining subpages in left-right-left-right pattern
4486 * towards the target subpage
4488 for (i = 0; i < l; i++) {
4489 int left_idx = base + i;
4490 int right_idx = base + 2 * l - 1 - i;
4492 cond_resched();
4493 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4494 cond_resched();
4495 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4499 static void clear_gigantic_page(struct page *page,
4500 unsigned long addr,
4501 unsigned int pages_per_huge_page)
4503 int i;
4504 struct page *p = page;
4506 might_sleep();
4507 for (i = 0; i < pages_per_huge_page;
4508 i++, p = mem_map_next(p, page, i)) {
4509 cond_resched();
4510 clear_user_highpage(p, addr + i * PAGE_SIZE);
4514 static void clear_subpage(unsigned long addr, int idx, void *arg)
4516 struct page *page = arg;
4518 clear_user_highpage(page + idx, addr);
4521 void clear_huge_page(struct page *page,
4522 unsigned long addr_hint, unsigned int pages_per_huge_page)
4524 unsigned long addr = addr_hint &
4525 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4527 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4528 clear_gigantic_page(page, addr, pages_per_huge_page);
4529 return;
4532 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4535 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4536 unsigned long addr,
4537 struct vm_area_struct *vma,
4538 unsigned int pages_per_huge_page)
4540 int i;
4541 struct page *dst_base = dst;
4542 struct page *src_base = src;
4544 for (i = 0; i < pages_per_huge_page; ) {
4545 cond_resched();
4546 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4548 i++;
4549 dst = mem_map_next(dst, dst_base, i);
4550 src = mem_map_next(src, src_base, i);
4554 struct copy_subpage_arg {
4555 struct page *dst;
4556 struct page *src;
4557 struct vm_area_struct *vma;
4560 static void copy_subpage(unsigned long addr, int idx, void *arg)
4562 struct copy_subpage_arg *copy_arg = arg;
4564 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4565 addr, copy_arg->vma);
4568 void copy_user_huge_page(struct page *dst, struct page *src,
4569 unsigned long addr_hint, struct vm_area_struct *vma,
4570 unsigned int pages_per_huge_page)
4572 unsigned long addr = addr_hint &
4573 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4574 struct copy_subpage_arg arg = {
4575 .dst = dst,
4576 .src = src,
4577 .vma = vma,
4580 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4581 copy_user_gigantic_page(dst, src, addr, vma,
4582 pages_per_huge_page);
4583 return;
4586 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4589 long copy_huge_page_from_user(struct page *dst_page,
4590 const void __user *usr_src,
4591 unsigned int pages_per_huge_page,
4592 bool allow_pagefault)
4594 void *src = (void *)usr_src;
4595 void *page_kaddr;
4596 unsigned long i, rc = 0;
4597 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4599 for (i = 0; i < pages_per_huge_page; i++) {
4600 if (allow_pagefault)
4601 page_kaddr = kmap(dst_page + i);
4602 else
4603 page_kaddr = kmap_atomic(dst_page + i);
4604 rc = copy_from_user(page_kaddr,
4605 (const void __user *)(src + i * PAGE_SIZE),
4606 PAGE_SIZE);
4607 if (allow_pagefault)
4608 kunmap(dst_page + i);
4609 else
4610 kunmap_atomic(page_kaddr);
4612 ret_val -= (PAGE_SIZE - rc);
4613 if (rc)
4614 break;
4616 cond_resched();
4618 return ret_val;
4620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4622 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4624 static struct kmem_cache *page_ptl_cachep;
4626 void __init ptlock_cache_init(void)
4628 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4629 SLAB_PANIC, NULL);
4632 bool ptlock_alloc(struct page *page)
4634 spinlock_t *ptl;
4636 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4637 if (!ptl)
4638 return false;
4639 page->ptl = ptl;
4640 return true;
4643 void ptlock_free(struct page *page)
4645 kmem_cache_free(page_ptl_cachep, page->ptl);
4647 #endif