1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr
;
92 EXPORT_SYMBOL(max_mapnr
);
95 EXPORT_SYMBOL(mem_map
);
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 EXPORT_SYMBOL(high_memory
);
109 * Randomize the address space (stacks, mmaps, brk, etc.).
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
114 int randomize_va_space __read_mostly
=
115 #ifdef CONFIG_COMPAT_BRK
121 static int __init
disable_randmaps(char *s
)
123 randomize_va_space
= 0;
126 __setup("norandmaps", disable_randmaps
);
128 unsigned long zero_pfn __read_mostly
;
129 EXPORT_SYMBOL(zero_pfn
);
131 unsigned long highest_memmap_pfn __read_mostly
;
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
136 static int __init
init_zero_pfn(void)
138 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
141 core_initcall(init_zero_pfn
);
144 #if defined(SPLIT_RSS_COUNTING)
146 void sync_mm_rss(struct mm_struct
*mm
)
150 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
151 if (current
->rss_stat
.count
[i
]) {
152 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
153 current
->rss_stat
.count
[i
] = 0;
156 current
->rss_stat
.events
= 0;
159 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
161 struct task_struct
*task
= current
;
163 if (likely(task
->mm
== mm
))
164 task
->rss_stat
.count
[member
] += val
;
166 add_mm_counter(mm
, member
, val
);
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct
*task
)
175 if (unlikely(task
!= current
))
177 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
178 sync_mm_rss(task
->mm
);
180 #else /* SPLIT_RSS_COUNTING */
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
185 static void check_sync_rss_stat(struct task_struct
*task
)
189 #endif /* SPLIT_RSS_COUNTING */
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
195 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
198 pgtable_t token
= pmd_pgtable(*pmd
);
200 pte_free_tlb(tlb
, token
, addr
);
201 mm_dec_nr_ptes(tlb
->mm
);
204 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
205 unsigned long addr
, unsigned long end
,
206 unsigned long floor
, unsigned long ceiling
)
213 pmd
= pmd_offset(pud
, addr
);
215 next
= pmd_addr_end(addr
, end
);
216 if (pmd_none_or_clear_bad(pmd
))
218 free_pte_range(tlb
, pmd
, addr
);
219 } while (pmd
++, addr
= next
, addr
!= end
);
229 if (end
- 1 > ceiling
- 1)
232 pmd
= pmd_offset(pud
, start
);
234 pmd_free_tlb(tlb
, pmd
, start
);
235 mm_dec_nr_pmds(tlb
->mm
);
238 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
239 unsigned long addr
, unsigned long end
,
240 unsigned long floor
, unsigned long ceiling
)
247 pud
= pud_offset(p4d
, addr
);
249 next
= pud_addr_end(addr
, end
);
250 if (pud_none_or_clear_bad(pud
))
252 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
253 } while (pud
++, addr
= next
, addr
!= end
);
263 if (end
- 1 > ceiling
- 1)
266 pud
= pud_offset(p4d
, start
);
268 pud_free_tlb(tlb
, pud
, start
);
269 mm_dec_nr_puds(tlb
->mm
);
272 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
273 unsigned long addr
, unsigned long end
,
274 unsigned long floor
, unsigned long ceiling
)
281 p4d
= p4d_offset(pgd
, addr
);
283 next
= p4d_addr_end(addr
, end
);
284 if (p4d_none_or_clear_bad(p4d
))
286 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
287 } while (p4d
++, addr
= next
, addr
!= end
);
293 ceiling
&= PGDIR_MASK
;
297 if (end
- 1 > ceiling
- 1)
300 p4d
= p4d_offset(pgd
, start
);
302 p4d_free_tlb(tlb
, p4d
, start
);
306 * This function frees user-level page tables of a process.
308 void free_pgd_range(struct mmu_gather
*tlb
,
309 unsigned long addr
, unsigned long end
,
310 unsigned long floor
, unsigned long ceiling
)
316 * The next few lines have given us lots of grief...
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
352 if (end
- 1 > ceiling
- 1)
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
360 tlb_change_page_size(tlb
, PAGE_SIZE
);
361 pgd
= pgd_offset(tlb
->mm
, addr
);
363 next
= pgd_addr_end(addr
, end
);
364 if (pgd_none_or_clear_bad(pgd
))
366 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
367 } while (pgd
++, addr
= next
, addr
!= end
);
370 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
371 unsigned long floor
, unsigned long ceiling
)
374 struct vm_area_struct
*next
= vma
->vm_next
;
375 unsigned long addr
= vma
->vm_start
;
378 * Hide vma from rmap and truncate_pagecache before freeing
381 unlink_anon_vmas(vma
);
382 unlink_file_vma(vma
);
384 if (is_vm_hugetlb_page(vma
)) {
385 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
386 floor
, next
? next
->vm_start
: ceiling
);
389 * Optimization: gather nearby vmas into one call down
391 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
392 && !is_vm_hugetlb_page(next
)) {
395 unlink_anon_vmas(vma
);
396 unlink_file_vma(vma
);
398 free_pgd_range(tlb
, addr
, vma
->vm_end
,
399 floor
, next
? next
->vm_start
: ceiling
);
405 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
)
408 pgtable_t
new = pte_alloc_one(mm
);
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
427 ptl
= pmd_lock(mm
, pmd
);
428 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
430 pmd_populate(mm
, pmd
, new);
439 int __pte_alloc_kernel(pmd_t
*pmd
)
441 pte_t
*new = pte_alloc_one_kernel(&init_mm
);
445 smp_wmb(); /* See comment in __pte_alloc */
447 spin_lock(&init_mm
.page_table_lock
);
448 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm
, pmd
, new);
452 spin_unlock(&init_mm
.page_table_lock
);
454 pte_free_kernel(&init_mm
, new);
458 static inline void init_rss_vec(int *rss
)
460 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
463 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
467 if (current
->mm
== mm
)
469 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
471 add_mm_counter(mm
, i
, rss
[i
]);
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
479 * The calling function must still handle the error.
481 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
482 pte_t pte
, struct page
*page
)
484 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
485 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
486 pud_t
*pud
= pud_offset(p4d
, addr
);
487 pmd_t
*pmd
= pmd_offset(pud
, addr
);
488 struct address_space
*mapping
;
490 static unsigned long resume
;
491 static unsigned long nr_shown
;
492 static unsigned long nr_unshown
;
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
498 if (nr_shown
== 60) {
499 if (time_before(jiffies
, resume
)) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
511 resume
= jiffies
+ 60 * HZ
;
513 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
514 index
= linear_page_index(vma
, addr
);
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
518 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
520 dump_page(page
, "bad pte");
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
525 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
526 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
527 mapping
? mapping
->a_ops
->readpage
: NULL
);
529 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
555 * And for normal mappings this is false.
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
574 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
577 unsigned long pfn
= pte_pfn(pte
);
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
580 if (likely(!pte_special(pte
)))
582 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
583 return vma
->vm_ops
->find_special_page(vma
, addr
);
584 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
586 if (is_zero_pfn(pfn
))
591 print_bad_pte(vma
, addr
, pte
, NULL
);
595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
597 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
598 if (vma
->vm_flags
& VM_MIXEDMAP
) {
604 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
605 if (pfn
== vma
->vm_pgoff
+ off
)
607 if (!is_cow_mapping(vma
->vm_flags
))
612 if (is_zero_pfn(pfn
))
616 if (unlikely(pfn
> highest_memmap_pfn
)) {
617 print_bad_pte(vma
, addr
, pte
, NULL
);
622 * NOTE! We still have PageReserved() pages in the page tables.
623 * eg. VDSO mappings can cause them to exist.
626 return pfn_to_page(pfn
);
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
633 unsigned long pfn
= pmd_pfn(pmd
);
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
640 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
641 if (vma
->vm_flags
& VM_MIXEDMAP
) {
647 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
648 if (pfn
== vma
->vm_pgoff
+ off
)
650 if (!is_cow_mapping(vma
->vm_flags
))
657 if (is_zero_pfn(pfn
))
659 if (unlikely(pfn
> highest_memmap_pfn
))
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
667 return pfn_to_page(pfn
);
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
677 static inline unsigned long
678 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
679 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
680 unsigned long addr
, int *rss
)
682 unsigned long vm_flags
= vma
->vm_flags
;
683 pte_t pte
= *src_pte
;
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte
))) {
688 swp_entry_t entry
= pte_to_swp_entry(pte
);
690 if (likely(!non_swap_entry(entry
))) {
691 if (swap_duplicate(entry
) < 0)
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
696 spin_lock(&mmlist_lock
);
697 if (list_empty(&dst_mm
->mmlist
))
698 list_add(&dst_mm
->mmlist
,
700 spin_unlock(&mmlist_lock
);
703 } else if (is_migration_entry(entry
)) {
704 page
= migration_entry_to_page(entry
);
706 rss
[mm_counter(page
)]++;
708 if (is_write_migration_entry(entry
) &&
709 is_cow_mapping(vm_flags
)) {
711 * COW mappings require pages in both
712 * parent and child to be set to read.
714 make_migration_entry_read(&entry
);
715 pte
= swp_entry_to_pte(entry
);
716 if (pte_swp_soft_dirty(*src_pte
))
717 pte
= pte_swp_mksoft_dirty(pte
);
718 set_pte_at(src_mm
, addr
, src_pte
, pte
);
720 } else if (is_device_private_entry(entry
)) {
721 page
= device_private_entry_to_page(entry
);
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
733 rss
[mm_counter(page
)]++;
734 page_dup_rmap(page
, false);
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
743 if (is_write_device_private_entry(entry
) &&
744 is_cow_mapping(vm_flags
)) {
745 make_device_private_entry_read(&entry
);
746 pte
= swp_entry_to_pte(entry
);
747 set_pte_at(src_mm
, addr
, src_pte
, pte
);
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
757 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
758 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
759 pte
= pte_wrprotect(pte
);
763 * If it's a shared mapping, mark it clean in
766 if (vm_flags
& VM_SHARED
)
767 pte
= pte_mkclean(pte
);
768 pte
= pte_mkold(pte
);
770 page
= vm_normal_page(vma
, addr
, pte
);
773 page_dup_rmap(page
, false);
774 rss
[mm_counter(page
)]++;
775 } else if (pte_devmap(pte
)) {
776 page
= pte_page(pte
);
780 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
784 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
785 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
786 unsigned long addr
, unsigned long end
)
788 pte_t
*orig_src_pte
, *orig_dst_pte
;
789 pte_t
*src_pte
, *dst_pte
;
790 spinlock_t
*src_ptl
, *dst_ptl
;
792 int rss
[NR_MM_COUNTERS
];
793 swp_entry_t entry
= (swp_entry_t
){0};
798 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
801 src_pte
= pte_offset_map(src_pmd
, addr
);
802 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
803 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
804 orig_src_pte
= src_pte
;
805 orig_dst_pte
= dst_pte
;
806 arch_enter_lazy_mmu_mode();
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
813 if (progress
>= 32) {
815 if (need_resched() ||
816 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
819 if (pte_none(*src_pte
)) {
823 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
828 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
830 arch_leave_lazy_mmu_mode();
831 spin_unlock(src_ptl
);
832 pte_unmap(orig_src_pte
);
833 add_mm_rss_vec(dst_mm
, rss
);
834 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
838 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
847 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
848 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
849 unsigned long addr
, unsigned long end
)
851 pmd_t
*src_pmd
, *dst_pmd
;
854 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
857 src_pmd
= pmd_offset(src_pud
, addr
);
859 next
= pmd_addr_end(addr
, end
);
860 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
861 || pmd_devmap(*src_pmd
)) {
863 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
864 err
= copy_huge_pmd(dst_mm
, src_mm
,
865 dst_pmd
, src_pmd
, addr
, vma
);
872 if (pmd_none_or_clear_bad(src_pmd
))
874 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
877 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
881 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
882 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
883 unsigned long addr
, unsigned long end
)
885 pud_t
*src_pud
, *dst_pud
;
888 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
891 src_pud
= pud_offset(src_p4d
, addr
);
893 next
= pud_addr_end(addr
, end
);
894 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
897 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
898 err
= copy_huge_pud(dst_mm
, src_mm
,
899 dst_pud
, src_pud
, addr
, vma
);
906 if (pud_none_or_clear_bad(src_pud
))
908 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
911 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
915 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
916 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
917 unsigned long addr
, unsigned long end
)
919 p4d_t
*src_p4d
, *dst_p4d
;
922 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
925 src_p4d
= p4d_offset(src_pgd
, addr
);
927 next
= p4d_addr_end(addr
, end
);
928 if (p4d_none_or_clear_bad(src_p4d
))
930 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
933 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
937 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
938 struct vm_area_struct
*vma
)
940 pgd_t
*src_pgd
, *dst_pgd
;
942 unsigned long addr
= vma
->vm_start
;
943 unsigned long end
= vma
->vm_end
;
944 struct mmu_notifier_range range
;
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
954 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
958 if (is_vm_hugetlb_page(vma
))
959 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
961 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
966 ret
= track_pfn_copy(vma
);
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
977 is_cow
= is_cow_mapping(vma
->vm_flags
);
980 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_PAGE
,
981 0, vma
, src_mm
, addr
, end
);
982 mmu_notifier_invalidate_range_start(&range
);
986 dst_pgd
= pgd_offset(dst_mm
, addr
);
987 src_pgd
= pgd_offset(src_mm
, addr
);
989 next
= pgd_addr_end(addr
, end
);
990 if (pgd_none_or_clear_bad(src_pgd
))
992 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
997 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1000 mmu_notifier_invalidate_range_end(&range
);
1004 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1005 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1006 unsigned long addr
, unsigned long end
,
1007 struct zap_details
*details
)
1009 struct mm_struct
*mm
= tlb
->mm
;
1010 int force_flush
= 0;
1011 int rss
[NR_MM_COUNTERS
];
1017 tlb_change_page_size(tlb
, PAGE_SIZE
);
1020 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1022 flush_tlb_batched_pending(mm
);
1023 arch_enter_lazy_mmu_mode();
1026 if (pte_none(ptent
))
1029 if (pte_present(ptent
)) {
1032 page
= vm_normal_page(vma
, addr
, ptent
);
1033 if (unlikely(details
) && page
) {
1035 * unmap_shared_mapping_pages() wants to
1036 * invalidate cache without truncating:
1037 * unmap shared but keep private pages.
1039 if (details
->check_mapping
&&
1040 details
->check_mapping
!= page_rmapping(page
))
1043 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1045 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1046 if (unlikely(!page
))
1049 if (!PageAnon(page
)) {
1050 if (pte_dirty(ptent
)) {
1052 set_page_dirty(page
);
1054 if (pte_young(ptent
) &&
1055 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1056 mark_page_accessed(page
);
1058 rss
[mm_counter(page
)]--;
1059 page_remove_rmap(page
, false);
1060 if (unlikely(page_mapcount(page
) < 0))
1061 print_bad_pte(vma
, addr
, ptent
, page
);
1062 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1070 entry
= pte_to_swp_entry(ptent
);
1071 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1072 struct page
*page
= device_private_entry_to_page(entry
);
1074 if (unlikely(details
&& details
->check_mapping
)) {
1076 * unmap_shared_mapping_pages() wants to
1077 * invalidate cache without truncating:
1078 * unmap shared but keep private pages.
1080 if (details
->check_mapping
!=
1081 page_rmapping(page
))
1085 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1086 rss
[mm_counter(page
)]--;
1087 page_remove_rmap(page
, false);
1092 /* If details->check_mapping, we leave swap entries. */
1093 if (unlikely(details
))
1096 entry
= pte_to_swp_entry(ptent
);
1097 if (!non_swap_entry(entry
))
1099 else if (is_migration_entry(entry
)) {
1102 page
= migration_entry_to_page(entry
);
1103 rss
[mm_counter(page
)]--;
1105 if (unlikely(!free_swap_and_cache(entry
)))
1106 print_bad_pte(vma
, addr
, ptent
, NULL
);
1107 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1108 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1110 add_mm_rss_vec(mm
, rss
);
1111 arch_leave_lazy_mmu_mode();
1113 /* Do the actual TLB flush before dropping ptl */
1115 tlb_flush_mmu_tlbonly(tlb
);
1116 pte_unmap_unlock(start_pte
, ptl
);
1119 * If we forced a TLB flush (either due to running out of
1120 * batch buffers or because we needed to flush dirty TLB
1121 * entries before releasing the ptl), free the batched
1122 * memory too. Restart if we didn't do everything.
1134 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1135 struct vm_area_struct
*vma
, pud_t
*pud
,
1136 unsigned long addr
, unsigned long end
,
1137 struct zap_details
*details
)
1142 pmd
= pmd_offset(pud
, addr
);
1144 next
= pmd_addr_end(addr
, end
);
1145 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1146 if (next
- addr
!= HPAGE_PMD_SIZE
)
1147 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1148 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1153 * Here there can be other concurrent MADV_DONTNEED or
1154 * trans huge page faults running, and if the pmd is
1155 * none or trans huge it can change under us. This is
1156 * because MADV_DONTNEED holds the mmap_sem in read
1159 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1161 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1164 } while (pmd
++, addr
= next
, addr
!= end
);
1169 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1170 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1171 unsigned long addr
, unsigned long end
,
1172 struct zap_details
*details
)
1177 pud
= pud_offset(p4d
, addr
);
1179 next
= pud_addr_end(addr
, end
);
1180 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1181 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1182 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1183 split_huge_pud(vma
, pud
, addr
);
1184 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1188 if (pud_none_or_clear_bad(pud
))
1190 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1193 } while (pud
++, addr
= next
, addr
!= end
);
1198 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1199 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1200 unsigned long addr
, unsigned long end
,
1201 struct zap_details
*details
)
1206 p4d
= p4d_offset(pgd
, addr
);
1208 next
= p4d_addr_end(addr
, end
);
1209 if (p4d_none_or_clear_bad(p4d
))
1211 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1212 } while (p4d
++, addr
= next
, addr
!= end
);
1217 void unmap_page_range(struct mmu_gather
*tlb
,
1218 struct vm_area_struct
*vma
,
1219 unsigned long addr
, unsigned long end
,
1220 struct zap_details
*details
)
1225 BUG_ON(addr
>= end
);
1226 tlb_start_vma(tlb
, vma
);
1227 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1229 next
= pgd_addr_end(addr
, end
);
1230 if (pgd_none_or_clear_bad(pgd
))
1232 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1233 } while (pgd
++, addr
= next
, addr
!= end
);
1234 tlb_end_vma(tlb
, vma
);
1238 static void unmap_single_vma(struct mmu_gather
*tlb
,
1239 struct vm_area_struct
*vma
, unsigned long start_addr
,
1240 unsigned long end_addr
,
1241 struct zap_details
*details
)
1243 unsigned long start
= max(vma
->vm_start
, start_addr
);
1246 if (start
>= vma
->vm_end
)
1248 end
= min(vma
->vm_end
, end_addr
);
1249 if (end
<= vma
->vm_start
)
1253 uprobe_munmap(vma
, start
, end
);
1255 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1256 untrack_pfn(vma
, 0, 0);
1259 if (unlikely(is_vm_hugetlb_page(vma
))) {
1261 * It is undesirable to test vma->vm_file as it
1262 * should be non-null for valid hugetlb area.
1263 * However, vm_file will be NULL in the error
1264 * cleanup path of mmap_region. When
1265 * hugetlbfs ->mmap method fails,
1266 * mmap_region() nullifies vma->vm_file
1267 * before calling this function to clean up.
1268 * Since no pte has actually been setup, it is
1269 * safe to do nothing in this case.
1272 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1273 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1274 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1277 unmap_page_range(tlb
, vma
, start
, end
, details
);
1282 * unmap_vmas - unmap a range of memory covered by a list of vma's
1283 * @tlb: address of the caller's struct mmu_gather
1284 * @vma: the starting vma
1285 * @start_addr: virtual address at which to start unmapping
1286 * @end_addr: virtual address at which to end unmapping
1288 * Unmap all pages in the vma list.
1290 * Only addresses between `start' and `end' will be unmapped.
1292 * The VMA list must be sorted in ascending virtual address order.
1294 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295 * range after unmap_vmas() returns. So the only responsibility here is to
1296 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297 * drops the lock and schedules.
1299 void unmap_vmas(struct mmu_gather
*tlb
,
1300 struct vm_area_struct
*vma
, unsigned long start_addr
,
1301 unsigned long end_addr
)
1303 struct mmu_notifier_range range
;
1305 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, vma
->vm_mm
,
1306 start_addr
, end_addr
);
1307 mmu_notifier_invalidate_range_start(&range
);
1308 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1309 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1310 mmu_notifier_invalidate_range_end(&range
);
1314 * zap_page_range - remove user pages in a given range
1315 * @vma: vm_area_struct holding the applicable pages
1316 * @start: starting address of pages to zap
1317 * @size: number of bytes to zap
1319 * Caller must protect the VMA list
1321 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1324 struct mmu_notifier_range range
;
1325 struct mmu_gather tlb
;
1328 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1329 start
, start
+ size
);
1330 tlb_gather_mmu(&tlb
, vma
->vm_mm
, start
, range
.end
);
1331 update_hiwater_rss(vma
->vm_mm
);
1332 mmu_notifier_invalidate_range_start(&range
);
1333 for ( ; vma
&& vma
->vm_start
< range
.end
; vma
= vma
->vm_next
)
1334 unmap_single_vma(&tlb
, vma
, start
, range
.end
, NULL
);
1335 mmu_notifier_invalidate_range_end(&range
);
1336 tlb_finish_mmu(&tlb
, start
, range
.end
);
1340 * zap_page_range_single - remove user pages in a given range
1341 * @vma: vm_area_struct holding the applicable pages
1342 * @address: starting address of pages to zap
1343 * @size: number of bytes to zap
1344 * @details: details of shared cache invalidation
1346 * The range must fit into one VMA.
1348 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1349 unsigned long size
, struct zap_details
*details
)
1351 struct mmu_notifier_range range
;
1352 struct mmu_gather tlb
;
1355 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1356 address
, address
+ size
);
1357 tlb_gather_mmu(&tlb
, vma
->vm_mm
, address
, range
.end
);
1358 update_hiwater_rss(vma
->vm_mm
);
1359 mmu_notifier_invalidate_range_start(&range
);
1360 unmap_single_vma(&tlb
, vma
, address
, range
.end
, details
);
1361 mmu_notifier_invalidate_range_end(&range
);
1362 tlb_finish_mmu(&tlb
, address
, range
.end
);
1366 * zap_vma_ptes - remove ptes mapping the vma
1367 * @vma: vm_area_struct holding ptes to be zapped
1368 * @address: starting address of pages to zap
1369 * @size: number of bytes to zap
1371 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1373 * The entire address range must be fully contained within the vma.
1376 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1379 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1380 !(vma
->vm_flags
& VM_PFNMAP
))
1383 zap_page_range_single(vma
, address
, size
, NULL
);
1385 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1387 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1395 pgd
= pgd_offset(mm
, addr
);
1396 p4d
= p4d_alloc(mm
, pgd
, addr
);
1399 pud
= pud_alloc(mm
, p4d
, addr
);
1402 pmd
= pmd_alloc(mm
, pud
, addr
);
1406 VM_BUG_ON(pmd_trans_huge(*pmd
));
1407 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1411 * This is the old fallback for page remapping.
1413 * For historical reasons, it only allows reserved pages. Only
1414 * old drivers should use this, and they needed to mark their
1415 * pages reserved for the old functions anyway.
1417 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1418 struct page
*page
, pgprot_t prot
)
1420 struct mm_struct
*mm
= vma
->vm_mm
;
1426 if (PageAnon(page
) || PageSlab(page
) || page_has_type(page
))
1429 flush_dcache_page(page
);
1430 pte
= get_locked_pte(mm
, addr
, &ptl
);
1434 if (!pte_none(*pte
))
1437 /* Ok, finally just insert the thing.. */
1439 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1440 page_add_file_rmap(page
, false);
1441 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1445 pte_unmap_unlock(pte
, ptl
);
1451 * vm_insert_page - insert single page into user vma
1452 * @vma: user vma to map to
1453 * @addr: target user address of this page
1454 * @page: source kernel page
1456 * This allows drivers to insert individual pages they've allocated
1459 * The page has to be a nice clean _individual_ kernel allocation.
1460 * If you allocate a compound page, you need to have marked it as
1461 * such (__GFP_COMP), or manually just split the page up yourself
1462 * (see split_page()).
1464 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465 * took an arbitrary page protection parameter. This doesn't allow
1466 * that. Your vma protection will have to be set up correctly, which
1467 * means that if you want a shared writable mapping, you'd better
1468 * ask for a shared writable mapping!
1470 * The page does not need to be reserved.
1472 * Usually this function is called from f_op->mmap() handler
1473 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475 * function from other places, for example from page-fault handler.
1477 * Return: %0 on success, negative error code otherwise.
1479 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1482 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1484 if (!page_count(page
))
1486 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1487 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1488 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1489 vma
->vm_flags
|= VM_MIXEDMAP
;
1491 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1493 EXPORT_SYMBOL(vm_insert_page
);
1496 * __vm_map_pages - maps range of kernel pages into user vma
1497 * @vma: user vma to map to
1498 * @pages: pointer to array of source kernel pages
1499 * @num: number of pages in page array
1500 * @offset: user's requested vm_pgoff
1502 * This allows drivers to map range of kernel pages into a user vma.
1504 * Return: 0 on success and error code otherwise.
1506 static int __vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1507 unsigned long num
, unsigned long offset
)
1509 unsigned long count
= vma_pages(vma
);
1510 unsigned long uaddr
= vma
->vm_start
;
1513 /* Fail if the user requested offset is beyond the end of the object */
1517 /* Fail if the user requested size exceeds available object size */
1518 if (count
> num
- offset
)
1521 for (i
= 0; i
< count
; i
++) {
1522 ret
= vm_insert_page(vma
, uaddr
, pages
[offset
+ i
]);
1532 * vm_map_pages - maps range of kernel pages starts with non zero offset
1533 * @vma: user vma to map to
1534 * @pages: pointer to array of source kernel pages
1535 * @num: number of pages in page array
1537 * Maps an object consisting of @num pages, catering for the user's
1538 * requested vm_pgoff
1540 * If we fail to insert any page into the vma, the function will return
1541 * immediately leaving any previously inserted pages present. Callers
1542 * from the mmap handler may immediately return the error as their caller
1543 * will destroy the vma, removing any successfully inserted pages. Other
1544 * callers should make their own arrangements for calling unmap_region().
1546 * Context: Process context. Called by mmap handlers.
1547 * Return: 0 on success and error code otherwise.
1549 int vm_map_pages(struct vm_area_struct
*vma
, struct page
**pages
,
1552 return __vm_map_pages(vma
, pages
, num
, vma
->vm_pgoff
);
1554 EXPORT_SYMBOL(vm_map_pages
);
1557 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558 * @vma: user vma to map to
1559 * @pages: pointer to array of source kernel pages
1560 * @num: number of pages in page array
1562 * Similar to vm_map_pages(), except that it explicitly sets the offset
1563 * to 0. This function is intended for the drivers that did not consider
1566 * Context: Process context. Called by mmap handlers.
1567 * Return: 0 on success and error code otherwise.
1569 int vm_map_pages_zero(struct vm_area_struct
*vma
, struct page
**pages
,
1572 return __vm_map_pages(vma
, pages
, num
, 0);
1574 EXPORT_SYMBOL(vm_map_pages_zero
);
1576 static vm_fault_t
insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1577 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1579 struct mm_struct
*mm
= vma
->vm_mm
;
1583 pte
= get_locked_pte(mm
, addr
, &ptl
);
1585 return VM_FAULT_OOM
;
1586 if (!pte_none(*pte
)) {
1589 * For read faults on private mappings the PFN passed
1590 * in may not match the PFN we have mapped if the
1591 * mapped PFN is a writeable COW page. In the mkwrite
1592 * case we are creating a writable PTE for a shared
1593 * mapping and we expect the PFNs to match. If they
1594 * don't match, we are likely racing with block
1595 * allocation and mapping invalidation so just skip the
1598 if (pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)) {
1599 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte
)));
1602 entry
= pte_mkyoung(*pte
);
1603 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1604 if (ptep_set_access_flags(vma
, addr
, pte
, entry
, 1))
1605 update_mmu_cache(vma
, addr
, pte
);
1610 /* Ok, finally just insert the thing.. */
1611 if (pfn_t_devmap(pfn
))
1612 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1614 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1617 entry
= pte_mkyoung(entry
);
1618 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1621 set_pte_at(mm
, addr
, pte
, entry
);
1622 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1625 pte_unmap_unlock(pte
, ptl
);
1626 return VM_FAULT_NOPAGE
;
1630 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631 * @vma: user vma to map to
1632 * @addr: target user address of this page
1633 * @pfn: source kernel pfn
1634 * @pgprot: pgprot flags for the inserted page
1636 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637 * to override pgprot on a per-page basis.
1639 * This only makes sense for IO mappings, and it makes no sense for
1640 * COW mappings. In general, using multiple vmas is preferable;
1641 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1644 * Context: Process context. May allocate using %GFP_KERNEL.
1645 * Return: vm_fault_t value.
1647 vm_fault_t
vmf_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1648 unsigned long pfn
, pgprot_t pgprot
)
1651 * Technically, architectures with pte_special can avoid all these
1652 * restrictions (same for remap_pfn_range). However we would like
1653 * consistency in testing and feature parity among all, so we should
1654 * try to keep these invariants in place for everybody.
1656 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1657 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1658 (VM_PFNMAP
|VM_MIXEDMAP
));
1659 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1660 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1662 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1663 return VM_FAULT_SIGBUS
;
1665 if (!pfn_modify_allowed(pfn
, pgprot
))
1666 return VM_FAULT_SIGBUS
;
1668 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1670 return insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1673 EXPORT_SYMBOL(vmf_insert_pfn_prot
);
1676 * vmf_insert_pfn - insert single pfn into user vma
1677 * @vma: user vma to map to
1678 * @addr: target user address of this page
1679 * @pfn: source kernel pfn
1681 * Similar to vm_insert_page, this allows drivers to insert individual pages
1682 * they've allocated into a user vma. Same comments apply.
1684 * This function should only be called from a vm_ops->fault handler, and
1685 * in that case the handler should return the result of this function.
1687 * vma cannot be a COW mapping.
1689 * As this is called only for pages that do not currently exist, we
1690 * do not need to flush old virtual caches or the TLB.
1692 * Context: Process context. May allocate using %GFP_KERNEL.
1693 * Return: vm_fault_t value.
1695 vm_fault_t
vmf_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1698 return vmf_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1700 EXPORT_SYMBOL(vmf_insert_pfn
);
1702 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1704 /* these checks mirror the abort conditions in vm_normal_page */
1705 if (vma
->vm_flags
& VM_MIXEDMAP
)
1707 if (pfn_t_devmap(pfn
))
1709 if (pfn_t_special(pfn
))
1711 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1716 static vm_fault_t
__vm_insert_mixed(struct vm_area_struct
*vma
,
1717 unsigned long addr
, pfn_t pfn
, bool mkwrite
)
1719 pgprot_t pgprot
= vma
->vm_page_prot
;
1722 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1724 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1725 return VM_FAULT_SIGBUS
;
1727 track_pfn_insert(vma
, &pgprot
, pfn
);
1729 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1730 return VM_FAULT_SIGBUS
;
1733 * If we don't have pte special, then we have to use the pfn_valid()
1734 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735 * refcount the page if pfn_valid is true (hence insert_page rather
1736 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1737 * without pte special, it would there be refcounted as a normal page.
1739 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1740 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1744 * At this point we are committed to insert_page()
1745 * regardless of whether the caller specified flags that
1746 * result in pfn_t_has_page() == false.
1748 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1749 err
= insert_page(vma
, addr
, page
, pgprot
);
1751 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1755 return VM_FAULT_OOM
;
1756 if (err
< 0 && err
!= -EBUSY
)
1757 return VM_FAULT_SIGBUS
;
1759 return VM_FAULT_NOPAGE
;
1762 vm_fault_t
vmf_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1765 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1767 EXPORT_SYMBOL(vmf_insert_mixed
);
1770 * If the insertion of PTE failed because someone else already added a
1771 * different entry in the mean time, we treat that as success as we assume
1772 * the same entry was actually inserted.
1774 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1775 unsigned long addr
, pfn_t pfn
)
1777 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1779 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1782 * maps a range of physical memory into the requested pages. the old
1783 * mappings are removed. any references to nonexistent pages results
1784 * in null mappings (currently treated as "copy-on-access")
1786 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1787 unsigned long addr
, unsigned long end
,
1788 unsigned long pfn
, pgprot_t prot
)
1794 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1797 arch_enter_lazy_mmu_mode();
1799 BUG_ON(!pte_none(*pte
));
1800 if (!pfn_modify_allowed(pfn
, prot
)) {
1804 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1806 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1807 arch_leave_lazy_mmu_mode();
1808 pte_unmap_unlock(pte
- 1, ptl
);
1812 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1813 unsigned long addr
, unsigned long end
,
1814 unsigned long pfn
, pgprot_t prot
)
1820 pfn
-= addr
>> PAGE_SHIFT
;
1821 pmd
= pmd_alloc(mm
, pud
, addr
);
1824 VM_BUG_ON(pmd_trans_huge(*pmd
));
1826 next
= pmd_addr_end(addr
, end
);
1827 err
= remap_pte_range(mm
, pmd
, addr
, next
,
1828 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1831 } while (pmd
++, addr
= next
, addr
!= end
);
1835 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1836 unsigned long addr
, unsigned long end
,
1837 unsigned long pfn
, pgprot_t prot
)
1843 pfn
-= addr
>> PAGE_SHIFT
;
1844 pud
= pud_alloc(mm
, p4d
, addr
);
1848 next
= pud_addr_end(addr
, end
);
1849 err
= remap_pmd_range(mm
, pud
, addr
, next
,
1850 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1853 } while (pud
++, addr
= next
, addr
!= end
);
1857 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1858 unsigned long addr
, unsigned long end
,
1859 unsigned long pfn
, pgprot_t prot
)
1865 pfn
-= addr
>> PAGE_SHIFT
;
1866 p4d
= p4d_alloc(mm
, pgd
, addr
);
1870 next
= p4d_addr_end(addr
, end
);
1871 err
= remap_pud_range(mm
, p4d
, addr
, next
,
1872 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1875 } while (p4d
++, addr
= next
, addr
!= end
);
1880 * remap_pfn_range - remap kernel memory to userspace
1881 * @vma: user vma to map to
1882 * @addr: target user address to start at
1883 * @pfn: physical address of kernel memory
1884 * @size: size of map area
1885 * @prot: page protection flags for this mapping
1887 * Note: this is only safe if the mm semaphore is held when called.
1889 * Return: %0 on success, negative error code otherwise.
1891 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1892 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1896 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1897 struct mm_struct
*mm
= vma
->vm_mm
;
1898 unsigned long remap_pfn
= pfn
;
1902 * Physically remapped pages are special. Tell the
1903 * rest of the world about it:
1904 * VM_IO tells people not to look at these pages
1905 * (accesses can have side effects).
1906 * VM_PFNMAP tells the core MM that the base pages are just
1907 * raw PFN mappings, and do not have a "struct page" associated
1910 * Disable vma merging and expanding with mremap().
1912 * Omit vma from core dump, even when VM_IO turned off.
1914 * There's a horrible special case to handle copy-on-write
1915 * behaviour that some programs depend on. We mark the "original"
1916 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917 * See vm_normal_page() for details.
1919 if (is_cow_mapping(vma
->vm_flags
)) {
1920 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1922 vma
->vm_pgoff
= pfn
;
1925 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1929 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1931 BUG_ON(addr
>= end
);
1932 pfn
-= addr
>> PAGE_SHIFT
;
1933 pgd
= pgd_offset(mm
, addr
);
1934 flush_cache_range(vma
, addr
, end
);
1936 next
= pgd_addr_end(addr
, end
);
1937 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
1938 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1941 } while (pgd
++, addr
= next
, addr
!= end
);
1944 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1948 EXPORT_SYMBOL(remap_pfn_range
);
1951 * vm_iomap_memory - remap memory to userspace
1952 * @vma: user vma to map to
1953 * @start: start of area
1954 * @len: size of area
1956 * This is a simplified io_remap_pfn_range() for common driver use. The
1957 * driver just needs to give us the physical memory range to be mapped,
1958 * we'll figure out the rest from the vma information.
1960 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961 * whatever write-combining details or similar.
1963 * Return: %0 on success, negative error code otherwise.
1965 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1967 unsigned long vm_len
, pfn
, pages
;
1969 /* Check that the physical memory area passed in looks valid */
1970 if (start
+ len
< start
)
1973 * You *really* shouldn't map things that aren't page-aligned,
1974 * but we've historically allowed it because IO memory might
1975 * just have smaller alignment.
1977 len
+= start
& ~PAGE_MASK
;
1978 pfn
= start
>> PAGE_SHIFT
;
1979 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1980 if (pfn
+ pages
< pfn
)
1983 /* We start the mapping 'vm_pgoff' pages into the area */
1984 if (vma
->vm_pgoff
> pages
)
1986 pfn
+= vma
->vm_pgoff
;
1987 pages
-= vma
->vm_pgoff
;
1989 /* Can we fit all of the mapping? */
1990 vm_len
= vma
->vm_end
- vma
->vm_start
;
1991 if (vm_len
>> PAGE_SHIFT
> pages
)
1994 /* Ok, let it rip */
1995 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1997 EXPORT_SYMBOL(vm_iomap_memory
);
1999 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2000 unsigned long addr
, unsigned long end
,
2001 pte_fn_t fn
, void *data
)
2005 spinlock_t
*uninitialized_var(ptl
);
2007 pte
= (mm
== &init_mm
) ?
2008 pte_alloc_kernel(pmd
, addr
) :
2009 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2013 BUG_ON(pmd_huge(*pmd
));
2015 arch_enter_lazy_mmu_mode();
2018 err
= fn(pte
++, addr
, data
);
2021 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2023 arch_leave_lazy_mmu_mode();
2026 pte_unmap_unlock(pte
-1, ptl
);
2030 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2031 unsigned long addr
, unsigned long end
,
2032 pte_fn_t fn
, void *data
)
2038 BUG_ON(pud_huge(*pud
));
2040 pmd
= pmd_alloc(mm
, pud
, addr
);
2044 next
= pmd_addr_end(addr
, end
);
2045 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2048 } while (pmd
++, addr
= next
, addr
!= end
);
2052 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2053 unsigned long addr
, unsigned long end
,
2054 pte_fn_t fn
, void *data
)
2060 pud
= pud_alloc(mm
, p4d
, addr
);
2064 next
= pud_addr_end(addr
, end
);
2065 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2068 } while (pud
++, addr
= next
, addr
!= end
);
2072 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2073 unsigned long addr
, unsigned long end
,
2074 pte_fn_t fn
, void *data
)
2080 p4d
= p4d_alloc(mm
, pgd
, addr
);
2084 next
= p4d_addr_end(addr
, end
);
2085 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2088 } while (p4d
++, addr
= next
, addr
!= end
);
2093 * Scan a region of virtual memory, filling in page tables as necessary
2094 * and calling a provided function on each leaf page table.
2096 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2097 unsigned long size
, pte_fn_t fn
, void *data
)
2101 unsigned long end
= addr
+ size
;
2104 if (WARN_ON(addr
>= end
))
2107 pgd
= pgd_offset(mm
, addr
);
2109 next
= pgd_addr_end(addr
, end
);
2110 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2113 } while (pgd
++, addr
= next
, addr
!= end
);
2117 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2120 * handle_pte_fault chooses page fault handler according to an entry which was
2121 * read non-atomically. Before making any commitment, on those architectures
2122 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123 * parts, do_swap_page must check under lock before unmapping the pte and
2124 * proceeding (but do_wp_page is only called after already making such a check;
2125 * and do_anonymous_page can safely check later on).
2127 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2128 pte_t
*page_table
, pte_t orig_pte
)
2131 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2133 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2135 same
= pte_same(*page_table
, orig_pte
);
2139 pte_unmap(page_table
);
2143 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2145 debug_dma_assert_idle(src
);
2148 * If the source page was a PFN mapping, we don't have
2149 * a "struct page" for it. We do a best-effort copy by
2150 * just copying from the original user address. If that
2151 * fails, we just zero-fill it. Live with it.
2153 if (unlikely(!src
)) {
2154 void *kaddr
= kmap_atomic(dst
);
2155 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2158 * This really shouldn't fail, because the page is there
2159 * in the page tables. But it might just be unreadable,
2160 * in which case we just give up and fill the result with
2163 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2165 kunmap_atomic(kaddr
);
2166 flush_dcache_page(dst
);
2168 copy_user_highpage(dst
, src
, va
, vma
);
2171 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2173 struct file
*vm_file
= vma
->vm_file
;
2176 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2179 * Special mappings (e.g. VDSO) do not have any file so fake
2180 * a default GFP_KERNEL for them.
2186 * Notify the address space that the page is about to become writable so that
2187 * it can prohibit this or wait for the page to get into an appropriate state.
2189 * We do this without the lock held, so that it can sleep if it needs to.
2191 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2194 struct page
*page
= vmf
->page
;
2195 unsigned int old_flags
= vmf
->flags
;
2197 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2199 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2200 /* Restore original flags so that caller is not surprised */
2201 vmf
->flags
= old_flags
;
2202 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2204 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2206 if (!page
->mapping
) {
2208 return 0; /* retry */
2210 ret
|= VM_FAULT_LOCKED
;
2212 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2217 * Handle dirtying of a page in shared file mapping on a write fault.
2219 * The function expects the page to be locked and unlocks it.
2221 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2224 struct address_space
*mapping
;
2226 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2228 dirtied
= set_page_dirty(page
);
2229 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2231 * Take a local copy of the address_space - page.mapping may be zeroed
2232 * by truncate after unlock_page(). The address_space itself remains
2233 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2234 * release semantics to prevent the compiler from undoing this copying.
2236 mapping
= page_rmapping(page
);
2239 if ((dirtied
|| page_mkwrite
) && mapping
) {
2241 * Some device drivers do not set page.mapping
2242 * but still dirty their pages
2244 balance_dirty_pages_ratelimited(mapping
);
2248 file_update_time(vma
->vm_file
);
2252 * Handle write page faults for pages that can be reused in the current vma
2254 * This can happen either due to the mapping being with the VM_SHARED flag,
2255 * or due to us being the last reference standing to the page. In either
2256 * case, all we need to do here is to mark the page as writable and update
2257 * any related book-keeping.
2259 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2260 __releases(vmf
->ptl
)
2262 struct vm_area_struct
*vma
= vmf
->vma
;
2263 struct page
*page
= vmf
->page
;
2266 * Clear the pages cpupid information as the existing
2267 * information potentially belongs to a now completely
2268 * unrelated process.
2271 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2273 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2274 entry
= pte_mkyoung(vmf
->orig_pte
);
2275 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2276 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2277 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2278 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2282 * Handle the case of a page which we actually need to copy to a new page.
2284 * Called with mmap_sem locked and the old page referenced, but
2285 * without the ptl held.
2287 * High level logic flow:
2289 * - Allocate a page, copy the content of the old page to the new one.
2290 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2291 * - Take the PTL. If the pte changed, bail out and release the allocated page
2292 * - If the pte is still the way we remember it, update the page table and all
2293 * relevant references. This includes dropping the reference the page-table
2294 * held to the old page, as well as updating the rmap.
2295 * - In any case, unlock the PTL and drop the reference we took to the old page.
2297 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2299 struct vm_area_struct
*vma
= vmf
->vma
;
2300 struct mm_struct
*mm
= vma
->vm_mm
;
2301 struct page
*old_page
= vmf
->page
;
2302 struct page
*new_page
= NULL
;
2304 int page_copied
= 0;
2305 struct mem_cgroup
*memcg
;
2306 struct mmu_notifier_range range
;
2308 if (unlikely(anon_vma_prepare(vma
)))
2311 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2312 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2317 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2321 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2324 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2327 __SetPageUptodate(new_page
);
2329 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
,
2330 vmf
->address
& PAGE_MASK
,
2331 (vmf
->address
& PAGE_MASK
) + PAGE_SIZE
);
2332 mmu_notifier_invalidate_range_start(&range
);
2335 * Re-check the pte - we dropped the lock
2337 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2338 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2340 if (!PageAnon(old_page
)) {
2341 dec_mm_counter_fast(mm
,
2342 mm_counter_file(old_page
));
2343 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2346 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2348 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2349 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2350 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2352 * Clear the pte entry and flush it first, before updating the
2353 * pte with the new entry. This will avoid a race condition
2354 * seen in the presence of one thread doing SMC and another
2357 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2358 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2359 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2360 lru_cache_add_active_or_unevictable(new_page
, vma
);
2362 * We call the notify macro here because, when using secondary
2363 * mmu page tables (such as kvm shadow page tables), we want the
2364 * new page to be mapped directly into the secondary page table.
2366 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2367 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2370 * Only after switching the pte to the new page may
2371 * we remove the mapcount here. Otherwise another
2372 * process may come and find the rmap count decremented
2373 * before the pte is switched to the new page, and
2374 * "reuse" the old page writing into it while our pte
2375 * here still points into it and can be read by other
2378 * The critical issue is to order this
2379 * page_remove_rmap with the ptp_clear_flush above.
2380 * Those stores are ordered by (if nothing else,)
2381 * the barrier present in the atomic_add_negative
2382 * in page_remove_rmap.
2384 * Then the TLB flush in ptep_clear_flush ensures that
2385 * no process can access the old page before the
2386 * decremented mapcount is visible. And the old page
2387 * cannot be reused until after the decremented
2388 * mapcount is visible. So transitively, TLBs to
2389 * old page will be flushed before it can be reused.
2391 page_remove_rmap(old_page
, false);
2394 /* Free the old page.. */
2395 new_page
= old_page
;
2398 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2404 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2406 * No need to double call mmu_notifier->invalidate_range() callback as
2407 * the above ptep_clear_flush_notify() did already call it.
2409 mmu_notifier_invalidate_range_only_end(&range
);
2412 * Don't let another task, with possibly unlocked vma,
2413 * keep the mlocked page.
2415 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2416 lock_page(old_page
); /* LRU manipulation */
2417 if (PageMlocked(old_page
))
2418 munlock_vma_page(old_page
);
2419 unlock_page(old_page
);
2423 return page_copied
? VM_FAULT_WRITE
: 0;
2429 return VM_FAULT_OOM
;
2433 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2434 * writeable once the page is prepared
2436 * @vmf: structure describing the fault
2438 * This function handles all that is needed to finish a write page fault in a
2439 * shared mapping due to PTE being read-only once the mapped page is prepared.
2440 * It handles locking of PTE and modifying it.
2442 * The function expects the page to be locked or other protection against
2443 * concurrent faults / writeback (such as DAX radix tree locks).
2445 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2446 * we acquired PTE lock.
2448 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2450 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2451 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2454 * We might have raced with another page fault while we released the
2455 * pte_offset_map_lock.
2457 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2458 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2459 return VM_FAULT_NOPAGE
;
2466 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2469 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2471 struct vm_area_struct
*vma
= vmf
->vma
;
2473 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2476 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2477 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2478 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2479 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2481 return finish_mkwrite_fault(vmf
);
2484 return VM_FAULT_WRITE
;
2487 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2488 __releases(vmf
->ptl
)
2490 struct vm_area_struct
*vma
= vmf
->vma
;
2492 get_page(vmf
->page
);
2494 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2497 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2498 tmp
= do_page_mkwrite(vmf
);
2499 if (unlikely(!tmp
|| (tmp
&
2500 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2501 put_page(vmf
->page
);
2504 tmp
= finish_mkwrite_fault(vmf
);
2505 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2506 unlock_page(vmf
->page
);
2507 put_page(vmf
->page
);
2512 lock_page(vmf
->page
);
2514 fault_dirty_shared_page(vma
, vmf
->page
);
2515 put_page(vmf
->page
);
2517 return VM_FAULT_WRITE
;
2521 * This routine handles present pages, when users try to write
2522 * to a shared page. It is done by copying the page to a new address
2523 * and decrementing the shared-page counter for the old page.
2525 * Note that this routine assumes that the protection checks have been
2526 * done by the caller (the low-level page fault routine in most cases).
2527 * Thus we can safely just mark it writable once we've done any necessary
2530 * We also mark the page dirty at this point even though the page will
2531 * change only once the write actually happens. This avoids a few races,
2532 * and potentially makes it more efficient.
2534 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535 * but allow concurrent faults), with pte both mapped and locked.
2536 * We return with mmap_sem still held, but pte unmapped and unlocked.
2538 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2539 __releases(vmf
->ptl
)
2541 struct vm_area_struct
*vma
= vmf
->vma
;
2543 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2546 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2549 * We should not cow pages in a shared writeable mapping.
2550 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2552 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2553 (VM_WRITE
|VM_SHARED
))
2554 return wp_pfn_shared(vmf
);
2556 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2557 return wp_page_copy(vmf
);
2561 * Take out anonymous pages first, anonymous shared vmas are
2562 * not dirty accountable.
2564 if (PageAnon(vmf
->page
)) {
2565 int total_map_swapcount
;
2566 if (PageKsm(vmf
->page
) && (PageSwapCache(vmf
->page
) ||
2567 page_count(vmf
->page
) != 1))
2569 if (!trylock_page(vmf
->page
)) {
2570 get_page(vmf
->page
);
2571 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2572 lock_page(vmf
->page
);
2573 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2574 vmf
->address
, &vmf
->ptl
);
2575 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2576 unlock_page(vmf
->page
);
2577 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2578 put_page(vmf
->page
);
2581 put_page(vmf
->page
);
2583 if (PageKsm(vmf
->page
)) {
2584 bool reused
= reuse_ksm_page(vmf
->page
, vmf
->vma
,
2586 unlock_page(vmf
->page
);
2590 return VM_FAULT_WRITE
;
2592 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2593 if (total_map_swapcount
== 1) {
2595 * The page is all ours. Move it to
2596 * our anon_vma so the rmap code will
2597 * not search our parent or siblings.
2598 * Protected against the rmap code by
2601 page_move_anon_rmap(vmf
->page
, vma
);
2603 unlock_page(vmf
->page
);
2605 return VM_FAULT_WRITE
;
2607 unlock_page(vmf
->page
);
2608 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2609 (VM_WRITE
|VM_SHARED
))) {
2610 return wp_page_shared(vmf
);
2614 * Ok, we need to copy. Oh, well..
2616 get_page(vmf
->page
);
2618 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2619 return wp_page_copy(vmf
);
2622 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2623 unsigned long start_addr
, unsigned long end_addr
,
2624 struct zap_details
*details
)
2626 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2629 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2630 struct zap_details
*details
)
2632 struct vm_area_struct
*vma
;
2633 pgoff_t vba
, vea
, zba
, zea
;
2635 vma_interval_tree_foreach(vma
, root
,
2636 details
->first_index
, details
->last_index
) {
2638 vba
= vma
->vm_pgoff
;
2639 vea
= vba
+ vma_pages(vma
) - 1;
2640 zba
= details
->first_index
;
2643 zea
= details
->last_index
;
2647 unmap_mapping_range_vma(vma
,
2648 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2649 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2655 * unmap_mapping_pages() - Unmap pages from processes.
2656 * @mapping: The address space containing pages to be unmapped.
2657 * @start: Index of first page to be unmapped.
2658 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2659 * @even_cows: Whether to unmap even private COWed pages.
2661 * Unmap the pages in this address space from any userspace process which
2662 * has them mmaped. Generally, you want to remove COWed pages as well when
2663 * a file is being truncated, but not when invalidating pages from the page
2666 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2667 pgoff_t nr
, bool even_cows
)
2669 struct zap_details details
= { };
2671 details
.check_mapping
= even_cows
? NULL
: mapping
;
2672 details
.first_index
= start
;
2673 details
.last_index
= start
+ nr
- 1;
2674 if (details
.last_index
< details
.first_index
)
2675 details
.last_index
= ULONG_MAX
;
2677 i_mmap_lock_write(mapping
);
2678 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2679 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2680 i_mmap_unlock_write(mapping
);
2684 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2685 * address_space corresponding to the specified byte range in the underlying
2688 * @mapping: the address space containing mmaps to be unmapped.
2689 * @holebegin: byte in first page to unmap, relative to the start of
2690 * the underlying file. This will be rounded down to a PAGE_SIZE
2691 * boundary. Note that this is different from truncate_pagecache(), which
2692 * must keep the partial page. In contrast, we must get rid of
2694 * @holelen: size of prospective hole in bytes. This will be rounded
2695 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2697 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2698 * but 0 when invalidating pagecache, don't throw away private data.
2700 void unmap_mapping_range(struct address_space
*mapping
,
2701 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2703 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2704 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2706 /* Check for overflow. */
2707 if (sizeof(holelen
) > sizeof(hlen
)) {
2709 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2710 if (holeend
& ~(long long)ULONG_MAX
)
2711 hlen
= ULONG_MAX
- hba
+ 1;
2714 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2716 EXPORT_SYMBOL(unmap_mapping_range
);
2719 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2720 * but allow concurrent faults), and pte mapped but not yet locked.
2721 * We return with pte unmapped and unlocked.
2723 * We return with the mmap_sem locked or unlocked in the same cases
2724 * as does filemap_fault().
2726 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2728 struct vm_area_struct
*vma
= vmf
->vma
;
2729 struct page
*page
= NULL
, *swapcache
;
2730 struct mem_cgroup
*memcg
;
2737 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2740 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2741 if (unlikely(non_swap_entry(entry
))) {
2742 if (is_migration_entry(entry
)) {
2743 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2745 } else if (is_device_private_entry(entry
)) {
2746 vmf
->page
= device_private_entry_to_page(entry
);
2747 ret
= vmf
->page
->pgmap
->ops
->migrate_to_ram(vmf
);
2748 } else if (is_hwpoison_entry(entry
)) {
2749 ret
= VM_FAULT_HWPOISON
;
2751 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2752 ret
= VM_FAULT_SIGBUS
;
2758 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2759 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2763 struct swap_info_struct
*si
= swp_swap_info(entry
);
2765 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2766 __swap_count(entry
) == 1) {
2767 /* skip swapcache */
2768 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2771 __SetPageLocked(page
);
2772 __SetPageSwapBacked(page
);
2773 set_page_private(page
, entry
.val
);
2774 lru_cache_add_anon(page
);
2775 swap_readpage(page
, true);
2778 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2785 * Back out if somebody else faulted in this pte
2786 * while we released the pte lock.
2788 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2789 vmf
->address
, &vmf
->ptl
);
2790 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2792 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2796 /* Had to read the page from swap area: Major fault */
2797 ret
= VM_FAULT_MAJOR
;
2798 count_vm_event(PGMAJFAULT
);
2799 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2800 } else if (PageHWPoison(page
)) {
2802 * hwpoisoned dirty swapcache pages are kept for killing
2803 * owner processes (which may be unknown at hwpoison time)
2805 ret
= VM_FAULT_HWPOISON
;
2806 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2810 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2812 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2814 ret
|= VM_FAULT_RETRY
;
2819 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2820 * release the swapcache from under us. The page pin, and pte_same
2821 * test below, are not enough to exclude that. Even if it is still
2822 * swapcache, we need to check that the page's swap has not changed.
2824 if (unlikely((!PageSwapCache(page
) ||
2825 page_private(page
) != entry
.val
)) && swapcache
)
2828 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2829 if (unlikely(!page
)) {
2835 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
2842 * Back out if somebody else already faulted in this pte.
2844 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2846 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2849 if (unlikely(!PageUptodate(page
))) {
2850 ret
= VM_FAULT_SIGBUS
;
2855 * The page isn't present yet, go ahead with the fault.
2857 * Be careful about the sequence of operations here.
2858 * To get its accounting right, reuse_swap_page() must be called
2859 * while the page is counted on swap but not yet in mapcount i.e.
2860 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2861 * must be called after the swap_free(), or it will never succeed.
2864 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2865 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2866 pte
= mk_pte(page
, vma
->vm_page_prot
);
2867 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2868 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2869 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2870 ret
|= VM_FAULT_WRITE
;
2871 exclusive
= RMAP_EXCLUSIVE
;
2873 flush_icache_page(vma
, page
);
2874 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2875 pte
= pte_mksoft_dirty(pte
);
2876 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2877 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
2878 vmf
->orig_pte
= pte
;
2880 /* ksm created a completely new copy */
2881 if (unlikely(page
!= swapcache
&& swapcache
)) {
2882 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2883 mem_cgroup_commit_charge(page
, memcg
, false, false);
2884 lru_cache_add_active_or_unevictable(page
, vma
);
2886 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2887 mem_cgroup_commit_charge(page
, memcg
, true, false);
2888 activate_page(page
);
2892 if (mem_cgroup_swap_full(page
) ||
2893 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2894 try_to_free_swap(page
);
2896 if (page
!= swapcache
&& swapcache
) {
2898 * Hold the lock to avoid the swap entry to be reused
2899 * until we take the PT lock for the pte_same() check
2900 * (to avoid false positives from pte_same). For
2901 * further safety release the lock after the swap_free
2902 * so that the swap count won't change under a
2903 * parallel locked swapcache.
2905 unlock_page(swapcache
);
2906 put_page(swapcache
);
2909 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2910 ret
|= do_wp_page(vmf
);
2911 if (ret
& VM_FAULT_ERROR
)
2912 ret
&= VM_FAULT_ERROR
;
2916 /* No need to invalidate - it was non-present before */
2917 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2919 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2923 mem_cgroup_cancel_charge(page
, memcg
, false);
2924 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2929 if (page
!= swapcache
&& swapcache
) {
2930 unlock_page(swapcache
);
2931 put_page(swapcache
);
2937 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2938 * but allow concurrent faults), and pte mapped but not yet locked.
2939 * We return with mmap_sem still held, but pte unmapped and unlocked.
2941 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
2943 struct vm_area_struct
*vma
= vmf
->vma
;
2944 struct mem_cgroup
*memcg
;
2949 /* File mapping without ->vm_ops ? */
2950 if (vma
->vm_flags
& VM_SHARED
)
2951 return VM_FAULT_SIGBUS
;
2954 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2955 * pte_offset_map() on pmds where a huge pmd might be created
2956 * from a different thread.
2958 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2959 * parallel threads are excluded by other means.
2961 * Here we only have down_read(mmap_sem).
2963 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
))
2964 return VM_FAULT_OOM
;
2966 /* See the comment in pte_alloc_one_map() */
2967 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2970 /* Use the zero-page for reads */
2971 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2972 !mm_forbids_zeropage(vma
->vm_mm
)) {
2973 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2974 vma
->vm_page_prot
));
2975 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2976 vmf
->address
, &vmf
->ptl
);
2977 if (!pte_none(*vmf
->pte
))
2979 ret
= check_stable_address_space(vma
->vm_mm
);
2982 /* Deliver the page fault to userland, check inside PT lock */
2983 if (userfaultfd_missing(vma
)) {
2984 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2985 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2990 /* Allocate our own private page. */
2991 if (unlikely(anon_vma_prepare(vma
)))
2993 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2997 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3002 * The memory barrier inside __SetPageUptodate makes sure that
3003 * preceeding stores to the page contents become visible before
3004 * the set_pte_at() write.
3006 __SetPageUptodate(page
);
3008 entry
= mk_pte(page
, vma
->vm_page_prot
);
3009 if (vma
->vm_flags
& VM_WRITE
)
3010 entry
= pte_mkwrite(pte_mkdirty(entry
));
3012 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3014 if (!pte_none(*vmf
->pte
))
3017 ret
= check_stable_address_space(vma
->vm_mm
);
3021 /* Deliver the page fault to userland, check inside PT lock */
3022 if (userfaultfd_missing(vma
)) {
3023 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3024 mem_cgroup_cancel_charge(page
, memcg
, false);
3026 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3029 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3030 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3031 mem_cgroup_commit_charge(page
, memcg
, false, false);
3032 lru_cache_add_active_or_unevictable(page
, vma
);
3034 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3036 /* No need to invalidate - it was non-present before */
3037 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3039 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3042 mem_cgroup_cancel_charge(page
, memcg
, false);
3048 return VM_FAULT_OOM
;
3052 * The mmap_sem must have been held on entry, and may have been
3053 * released depending on flags and vma->vm_ops->fault() return value.
3054 * See filemap_fault() and __lock_page_retry().
3056 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3058 struct vm_area_struct
*vma
= vmf
->vma
;
3062 * Preallocate pte before we take page_lock because this might lead to
3063 * deadlocks for memcg reclaim which waits for pages under writeback:
3065 * SetPageWriteback(A)
3071 * wait_on_page_writeback(A)
3072 * SetPageWriteback(B)
3074 * # flush A, B to clear the writeback
3076 if (pmd_none(*vmf
->pmd
) && !vmf
->prealloc_pte
) {
3077 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3078 if (!vmf
->prealloc_pte
)
3079 return VM_FAULT_OOM
;
3080 smp_wmb(); /* See comment in __pte_alloc() */
3083 ret
= vma
->vm_ops
->fault(vmf
);
3084 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3085 VM_FAULT_DONE_COW
)))
3088 if (unlikely(PageHWPoison(vmf
->page
))) {
3089 if (ret
& VM_FAULT_LOCKED
)
3090 unlock_page(vmf
->page
);
3091 put_page(vmf
->page
);
3093 return VM_FAULT_HWPOISON
;
3096 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3097 lock_page(vmf
->page
);
3099 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3105 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3106 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3107 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3108 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3110 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3112 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3115 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3117 struct vm_area_struct
*vma
= vmf
->vma
;
3119 if (!pmd_none(*vmf
->pmd
))
3121 if (vmf
->prealloc_pte
) {
3122 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3123 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3124 spin_unlock(vmf
->ptl
);
3128 mm_inc_nr_ptes(vma
->vm_mm
);
3129 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3130 spin_unlock(vmf
->ptl
);
3131 vmf
->prealloc_pte
= NULL
;
3132 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
))) {
3133 return VM_FAULT_OOM
;
3137 * If a huge pmd materialized under us just retry later. Use
3138 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3139 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3140 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3141 * running immediately after a huge pmd fault in a different thread of
3142 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3143 * All we have to ensure is that it is a regular pmd that we can walk
3144 * with pte_offset_map() and we can do that through an atomic read in
3145 * C, which is what pmd_trans_unstable() provides.
3147 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3148 return VM_FAULT_NOPAGE
;
3151 * At this point we know that our vmf->pmd points to a page of ptes
3152 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3153 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3154 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3155 * be valid and we will re-check to make sure the vmf->pte isn't
3156 * pte_none() under vmf->ptl protection when we return to
3159 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3164 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3165 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3167 struct vm_area_struct
*vma
= vmf
->vma
;
3169 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3171 * We are going to consume the prealloc table,
3172 * count that as nr_ptes.
3174 mm_inc_nr_ptes(vma
->vm_mm
);
3175 vmf
->prealloc_pte
= NULL
;
3178 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3180 struct vm_area_struct
*vma
= vmf
->vma
;
3181 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3182 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3187 if (!transhuge_vma_suitable(vma
, haddr
))
3188 return VM_FAULT_FALLBACK
;
3190 ret
= VM_FAULT_FALLBACK
;
3191 page
= compound_head(page
);
3194 * Archs like ppc64 need additonal space to store information
3195 * related to pte entry. Use the preallocated table for that.
3197 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3198 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
);
3199 if (!vmf
->prealloc_pte
)
3200 return VM_FAULT_OOM
;
3201 smp_wmb(); /* See comment in __pte_alloc() */
3204 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3205 if (unlikely(!pmd_none(*vmf
->pmd
)))
3208 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3209 flush_icache_page(vma
, page
+ i
);
3211 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3213 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3215 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3216 page_add_file_rmap(page
, true);
3218 * deposit and withdraw with pmd lock held
3220 if (arch_needs_pgtable_deposit())
3221 deposit_prealloc_pte(vmf
);
3223 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3225 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3227 /* fault is handled */
3229 count_vm_event(THP_FILE_MAPPED
);
3231 spin_unlock(vmf
->ptl
);
3235 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3243 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3244 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3246 * @vmf: fault environment
3247 * @memcg: memcg to charge page (only for private mappings)
3248 * @page: page to map
3250 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3253 * Target users are page handler itself and implementations of
3254 * vm_ops->map_pages.
3256 * Return: %0 on success, %VM_FAULT_ code in case of error.
3258 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3261 struct vm_area_struct
*vma
= vmf
->vma
;
3262 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3266 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3267 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3269 VM_BUG_ON_PAGE(memcg
, page
);
3271 ret
= do_set_pmd(vmf
, page
);
3272 if (ret
!= VM_FAULT_FALLBACK
)
3277 ret
= pte_alloc_one_map(vmf
);
3282 /* Re-check under ptl */
3283 if (unlikely(!pte_none(*vmf
->pte
)))
3284 return VM_FAULT_NOPAGE
;
3286 flush_icache_page(vma
, page
);
3287 entry
= mk_pte(page
, vma
->vm_page_prot
);
3289 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3290 /* copy-on-write page */
3291 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3292 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3293 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3294 mem_cgroup_commit_charge(page
, memcg
, false, false);
3295 lru_cache_add_active_or_unevictable(page
, vma
);
3297 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3298 page_add_file_rmap(page
, false);
3300 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3302 /* no need to invalidate: a not-present page won't be cached */
3303 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3310 * finish_fault - finish page fault once we have prepared the page to fault
3312 * @vmf: structure describing the fault
3314 * This function handles all that is needed to finish a page fault once the
3315 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3316 * given page, adds reverse page mapping, handles memcg charges and LRU
3319 * The function expects the page to be locked and on success it consumes a
3320 * reference of a page being mapped (for the PTE which maps it).
3322 * Return: %0 on success, %VM_FAULT_ code in case of error.
3324 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3329 /* Did we COW the page? */
3330 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3331 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3332 page
= vmf
->cow_page
;
3337 * check even for read faults because we might have lost our CoWed
3340 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3341 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3343 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3345 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3349 static unsigned long fault_around_bytes __read_mostly
=
3350 rounddown_pow_of_two(65536);
3352 #ifdef CONFIG_DEBUG_FS
3353 static int fault_around_bytes_get(void *data
, u64
*val
)
3355 *val
= fault_around_bytes
;
3360 * fault_around_bytes must be rounded down to the nearest page order as it's
3361 * what do_fault_around() expects to see.
3363 static int fault_around_bytes_set(void *data
, u64 val
)
3365 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3367 if (val
> PAGE_SIZE
)
3368 fault_around_bytes
= rounddown_pow_of_two(val
);
3370 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3373 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3374 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3376 static int __init
fault_around_debugfs(void)
3378 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3379 &fault_around_bytes_fops
);
3382 late_initcall(fault_around_debugfs
);
3386 * do_fault_around() tries to map few pages around the fault address. The hope
3387 * is that the pages will be needed soon and this will lower the number of
3390 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3391 * not ready to be mapped: not up-to-date, locked, etc.
3393 * This function is called with the page table lock taken. In the split ptlock
3394 * case the page table lock only protects only those entries which belong to
3395 * the page table corresponding to the fault address.
3397 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3400 * fault_around_bytes defines how many bytes we'll try to map.
3401 * do_fault_around() expects it to be set to a power of two less than or equal
3404 * The virtual address of the area that we map is naturally aligned to
3405 * fault_around_bytes rounded down to the machine page size
3406 * (and therefore to page order). This way it's easier to guarantee
3407 * that we don't cross page table boundaries.
3409 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3411 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3412 pgoff_t start_pgoff
= vmf
->pgoff
;
3417 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3418 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3420 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3421 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3425 * end_pgoff is either the end of the page table, the end of
3426 * the vma or nr_pages from start_pgoff, depending what is nearest.
3428 end_pgoff
= start_pgoff
-
3429 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3431 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3432 start_pgoff
+ nr_pages
- 1);
3434 if (pmd_none(*vmf
->pmd
)) {
3435 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
);
3436 if (!vmf
->prealloc_pte
)
3438 smp_wmb(); /* See comment in __pte_alloc() */
3441 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3443 /* Huge page is mapped? Page fault is solved */
3444 if (pmd_trans_huge(*vmf
->pmd
)) {
3445 ret
= VM_FAULT_NOPAGE
;
3449 /* ->map_pages() haven't done anything useful. Cold page cache? */
3453 /* check if the page fault is solved */
3454 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3455 if (!pte_none(*vmf
->pte
))
3456 ret
= VM_FAULT_NOPAGE
;
3457 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3459 vmf
->address
= address
;
3464 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3466 struct vm_area_struct
*vma
= vmf
->vma
;
3470 * Let's call ->map_pages() first and use ->fault() as fallback
3471 * if page by the offset is not ready to be mapped (cold cache or
3474 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3475 ret
= do_fault_around(vmf
);
3480 ret
= __do_fault(vmf
);
3481 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3484 ret
|= finish_fault(vmf
);
3485 unlock_page(vmf
->page
);
3486 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3487 put_page(vmf
->page
);
3491 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3493 struct vm_area_struct
*vma
= vmf
->vma
;
3496 if (unlikely(anon_vma_prepare(vma
)))
3497 return VM_FAULT_OOM
;
3499 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3501 return VM_FAULT_OOM
;
3503 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3504 &vmf
->memcg
, false)) {
3505 put_page(vmf
->cow_page
);
3506 return VM_FAULT_OOM
;
3509 ret
= __do_fault(vmf
);
3510 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3512 if (ret
& VM_FAULT_DONE_COW
)
3515 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3516 __SetPageUptodate(vmf
->cow_page
);
3518 ret
|= finish_fault(vmf
);
3519 unlock_page(vmf
->page
);
3520 put_page(vmf
->page
);
3521 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3525 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3526 put_page(vmf
->cow_page
);
3530 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3532 struct vm_area_struct
*vma
= vmf
->vma
;
3533 vm_fault_t ret
, tmp
;
3535 ret
= __do_fault(vmf
);
3536 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3540 * Check if the backing address space wants to know that the page is
3541 * about to become writable
3543 if (vma
->vm_ops
->page_mkwrite
) {
3544 unlock_page(vmf
->page
);
3545 tmp
= do_page_mkwrite(vmf
);
3546 if (unlikely(!tmp
||
3547 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3548 put_page(vmf
->page
);
3553 ret
|= finish_fault(vmf
);
3554 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3556 unlock_page(vmf
->page
);
3557 put_page(vmf
->page
);
3561 fault_dirty_shared_page(vma
, vmf
->page
);
3566 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3567 * but allow concurrent faults).
3568 * The mmap_sem may have been released depending on flags and our
3569 * return value. See filemap_fault() and __lock_page_or_retry().
3570 * If mmap_sem is released, vma may become invalid (for example
3571 * by other thread calling munmap()).
3573 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3575 struct vm_area_struct
*vma
= vmf
->vma
;
3576 struct mm_struct
*vm_mm
= vma
->vm_mm
;
3580 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3582 if (!vma
->vm_ops
->fault
) {
3584 * If we find a migration pmd entry or a none pmd entry, which
3585 * should never happen, return SIGBUS
3587 if (unlikely(!pmd_present(*vmf
->pmd
)))
3588 ret
= VM_FAULT_SIGBUS
;
3590 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
,
3595 * Make sure this is not a temporary clearing of pte
3596 * by holding ptl and checking again. A R/M/W update
3597 * of pte involves: take ptl, clearing the pte so that
3598 * we don't have concurrent modification by hardware
3599 * followed by an update.
3601 if (unlikely(pte_none(*vmf
->pte
)))
3602 ret
= VM_FAULT_SIGBUS
;
3604 ret
= VM_FAULT_NOPAGE
;
3606 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3608 } else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3609 ret
= do_read_fault(vmf
);
3610 else if (!(vma
->vm_flags
& VM_SHARED
))
3611 ret
= do_cow_fault(vmf
);
3613 ret
= do_shared_fault(vmf
);
3615 /* preallocated pagetable is unused: free it */
3616 if (vmf
->prealloc_pte
) {
3617 pte_free(vm_mm
, vmf
->prealloc_pte
);
3618 vmf
->prealloc_pte
= NULL
;
3623 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3624 unsigned long addr
, int page_nid
,
3629 count_vm_numa_event(NUMA_HINT_FAULTS
);
3630 if (page_nid
== numa_node_id()) {
3631 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3632 *flags
|= TNF_FAULT_LOCAL
;
3635 return mpol_misplaced(page
, vma
, addr
);
3638 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3640 struct vm_area_struct
*vma
= vmf
->vma
;
3641 struct page
*page
= NULL
;
3642 int page_nid
= NUMA_NO_NODE
;
3645 bool migrated
= false;
3647 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3651 * The "pte" at this point cannot be used safely without
3652 * validation through pte_unmap_same(). It's of NUMA type but
3653 * the pfn may be screwed if the read is non atomic.
3655 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3656 spin_lock(vmf
->ptl
);
3657 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3658 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3663 * Make it present again, Depending on how arch implementes non
3664 * accessible ptes, some can allow access by kernel mode.
3666 old_pte
= ptep_modify_prot_start(vma
, vmf
->address
, vmf
->pte
);
3667 pte
= pte_modify(old_pte
, vma
->vm_page_prot
);
3668 pte
= pte_mkyoung(pte
);
3670 pte
= pte_mkwrite(pte
);
3671 ptep_modify_prot_commit(vma
, vmf
->address
, vmf
->pte
, old_pte
, pte
);
3672 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3674 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3676 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3680 /* TODO: handle PTE-mapped THP */
3681 if (PageCompound(page
)) {
3682 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3687 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3688 * much anyway since they can be in shared cache state. This misses
3689 * the case where a mapping is writable but the process never writes
3690 * to it but pte_write gets cleared during protection updates and
3691 * pte_dirty has unpredictable behaviour between PTE scan updates,
3692 * background writeback, dirty balancing and application behaviour.
3694 if (!pte_write(pte
))
3695 flags
|= TNF_NO_GROUP
;
3698 * Flag if the page is shared between multiple address spaces. This
3699 * is later used when determining whether to group tasks together
3701 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3702 flags
|= TNF_SHARED
;
3704 last_cpupid
= page_cpupid_last(page
);
3705 page_nid
= page_to_nid(page
);
3706 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3708 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3709 if (target_nid
== NUMA_NO_NODE
) {
3714 /* Migrate to the requested node */
3715 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3717 page_nid
= target_nid
;
3718 flags
|= TNF_MIGRATED
;
3720 flags
|= TNF_MIGRATE_FAIL
;
3723 if (page_nid
!= NUMA_NO_NODE
)
3724 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3728 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3730 if (vma_is_anonymous(vmf
->vma
))
3731 return do_huge_pmd_anonymous_page(vmf
);
3732 if (vmf
->vma
->vm_ops
->huge_fault
)
3733 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3734 return VM_FAULT_FALLBACK
;
3737 /* `inline' is required to avoid gcc 4.1.2 build error */
3738 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3740 if (vma_is_anonymous(vmf
->vma
))
3741 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3742 if (vmf
->vma
->vm_ops
->huge_fault
)
3743 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3745 /* COW handled on pte level: split pmd */
3746 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3747 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3749 return VM_FAULT_FALLBACK
;
3752 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3754 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3757 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760 /* No support for anonymous transparent PUD pages yet */
3761 if (vma_is_anonymous(vmf
->vma
))
3762 return VM_FAULT_FALLBACK
;
3763 if (vmf
->vma
->vm_ops
->huge_fault
)
3764 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3766 return VM_FAULT_FALLBACK
;
3769 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772 /* No support for anonymous transparent PUD pages yet */
3773 if (vma_is_anonymous(vmf
->vma
))
3774 return VM_FAULT_FALLBACK
;
3775 if (vmf
->vma
->vm_ops
->huge_fault
)
3776 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3777 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778 return VM_FAULT_FALLBACK
;
3782 * These routines also need to handle stuff like marking pages dirty
3783 * and/or accessed for architectures that don't do it in hardware (most
3784 * RISC architectures). The early dirtying is also good on the i386.
3786 * There is also a hook called "update_mmu_cache()" that architectures
3787 * with external mmu caches can use to update those (ie the Sparc or
3788 * PowerPC hashed page tables that act as extended TLBs).
3790 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3791 * concurrent faults).
3793 * The mmap_sem may have been released depending on flags and our return value.
3794 * See filemap_fault() and __lock_page_or_retry().
3796 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
3800 if (unlikely(pmd_none(*vmf
->pmd
))) {
3802 * Leave __pte_alloc() until later: because vm_ops->fault may
3803 * want to allocate huge page, and if we expose page table
3804 * for an instant, it will be difficult to retract from
3805 * concurrent faults and from rmap lookups.
3809 /* See comment in pte_alloc_one_map() */
3810 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3813 * A regular pmd is established and it can't morph into a huge
3814 * pmd from under us anymore at this point because we hold the
3815 * mmap_sem read mode and khugepaged takes it in write mode.
3816 * So now it's safe to run pte_offset_map().
3818 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3819 vmf
->orig_pte
= *vmf
->pte
;
3822 * some architectures can have larger ptes than wordsize,
3823 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3824 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3825 * accesses. The code below just needs a consistent view
3826 * for the ifs and we later double check anyway with the
3827 * ptl lock held. So here a barrier will do.
3830 if (pte_none(vmf
->orig_pte
)) {
3831 pte_unmap(vmf
->pte
);
3837 if (vma_is_anonymous(vmf
->vma
))
3838 return do_anonymous_page(vmf
);
3840 return do_fault(vmf
);
3843 if (!pte_present(vmf
->orig_pte
))
3844 return do_swap_page(vmf
);
3846 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3847 return do_numa_page(vmf
);
3849 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3850 spin_lock(vmf
->ptl
);
3851 entry
= vmf
->orig_pte
;
3852 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3854 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3855 if (!pte_write(entry
))
3856 return do_wp_page(vmf
);
3857 entry
= pte_mkdirty(entry
);
3859 entry
= pte_mkyoung(entry
);
3860 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3861 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3862 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3865 * This is needed only for protection faults but the arch code
3866 * is not yet telling us if this is a protection fault or not.
3867 * This still avoids useless tlb flushes for .text page faults
3870 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3871 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3874 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3879 * By the time we get here, we already hold the mm semaphore
3881 * The mmap_sem may have been released depending on flags and our
3882 * return value. See filemap_fault() and __lock_page_or_retry().
3884 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
3885 unsigned long address
, unsigned int flags
)
3887 struct vm_fault vmf
= {
3889 .address
= address
& PAGE_MASK
,
3891 .pgoff
= linear_page_index(vma
, address
),
3892 .gfp_mask
= __get_fault_gfp_mask(vma
),
3894 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3895 struct mm_struct
*mm
= vma
->vm_mm
;
3900 pgd
= pgd_offset(mm
, address
);
3901 p4d
= p4d_alloc(mm
, pgd
, address
);
3903 return VM_FAULT_OOM
;
3905 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
3907 return VM_FAULT_OOM
;
3908 if (pud_none(*vmf
.pud
) && __transparent_hugepage_enabled(vma
)) {
3909 ret
= create_huge_pud(&vmf
);
3910 if (!(ret
& VM_FAULT_FALLBACK
))
3913 pud_t orig_pud
= *vmf
.pud
;
3916 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3918 /* NUMA case for anonymous PUDs would go here */
3920 if (dirty
&& !pud_write(orig_pud
)) {
3921 ret
= wp_huge_pud(&vmf
, orig_pud
);
3922 if (!(ret
& VM_FAULT_FALLBACK
))
3925 huge_pud_set_accessed(&vmf
, orig_pud
);
3931 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3933 return VM_FAULT_OOM
;
3934 if (pmd_none(*vmf
.pmd
) && __transparent_hugepage_enabled(vma
)) {
3935 ret
= create_huge_pmd(&vmf
);
3936 if (!(ret
& VM_FAULT_FALLBACK
))
3939 pmd_t orig_pmd
= *vmf
.pmd
;
3942 if (unlikely(is_swap_pmd(orig_pmd
))) {
3943 VM_BUG_ON(thp_migration_supported() &&
3944 !is_pmd_migration_entry(orig_pmd
));
3945 if (is_pmd_migration_entry(orig_pmd
))
3946 pmd_migration_entry_wait(mm
, vmf
.pmd
);
3949 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3950 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3951 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3953 if (dirty
&& !pmd_write(orig_pmd
)) {
3954 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3955 if (!(ret
& VM_FAULT_FALLBACK
))
3958 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3964 return handle_pte_fault(&vmf
);
3968 * By the time we get here, we already hold the mm semaphore
3970 * The mmap_sem may have been released depending on flags and our
3971 * return value. See filemap_fault() and __lock_page_or_retry().
3973 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3978 __set_current_state(TASK_RUNNING
);
3980 count_vm_event(PGFAULT
);
3981 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
3983 /* do counter updates before entering really critical section. */
3984 check_sync_rss_stat(current
);
3986 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3987 flags
& FAULT_FLAG_INSTRUCTION
,
3988 flags
& FAULT_FLAG_REMOTE
))
3989 return VM_FAULT_SIGSEGV
;
3992 * Enable the memcg OOM handling for faults triggered in user
3993 * space. Kernel faults are handled more gracefully.
3995 if (flags
& FAULT_FLAG_USER
)
3996 mem_cgroup_enter_user_fault();
3998 if (unlikely(is_vm_hugetlb_page(vma
)))
3999 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4001 ret
= __handle_mm_fault(vma
, address
, flags
);
4003 if (flags
& FAULT_FLAG_USER
) {
4004 mem_cgroup_exit_user_fault();
4006 * The task may have entered a memcg OOM situation but
4007 * if the allocation error was handled gracefully (no
4008 * VM_FAULT_OOM), there is no need to kill anything.
4009 * Just clean up the OOM state peacefully.
4011 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4012 mem_cgroup_oom_synchronize(false);
4017 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4019 #ifndef __PAGETABLE_P4D_FOLDED
4021 * Allocate p4d page table.
4022 * We've already handled the fast-path in-line.
4024 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4026 p4d_t
*new = p4d_alloc_one(mm
, address
);
4030 smp_wmb(); /* See comment in __pte_alloc */
4032 spin_lock(&mm
->page_table_lock
);
4033 if (pgd_present(*pgd
)) /* Another has populated it */
4036 pgd_populate(mm
, pgd
, new);
4037 spin_unlock(&mm
->page_table_lock
);
4040 #endif /* __PAGETABLE_P4D_FOLDED */
4042 #ifndef __PAGETABLE_PUD_FOLDED
4044 * Allocate page upper directory.
4045 * We've already handled the fast-path in-line.
4047 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4049 pud_t
*new = pud_alloc_one(mm
, address
);
4053 smp_wmb(); /* See comment in __pte_alloc */
4055 spin_lock(&mm
->page_table_lock
);
4056 #ifndef __ARCH_HAS_5LEVEL_HACK
4057 if (!p4d_present(*p4d
)) {
4059 p4d_populate(mm
, p4d
, new);
4060 } else /* Another has populated it */
4063 if (!pgd_present(*p4d
)) {
4065 pgd_populate(mm
, p4d
, new);
4066 } else /* Another has populated it */
4068 #endif /* __ARCH_HAS_5LEVEL_HACK */
4069 spin_unlock(&mm
->page_table_lock
);
4072 #endif /* __PAGETABLE_PUD_FOLDED */
4074 #ifndef __PAGETABLE_PMD_FOLDED
4076 * Allocate page middle directory.
4077 * We've already handled the fast-path in-line.
4079 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4082 pmd_t
*new = pmd_alloc_one(mm
, address
);
4086 smp_wmb(); /* See comment in __pte_alloc */
4088 ptl
= pud_lock(mm
, pud
);
4089 #ifndef __ARCH_HAS_4LEVEL_HACK
4090 if (!pud_present(*pud
)) {
4092 pud_populate(mm
, pud
, new);
4093 } else /* Another has populated it */
4096 if (!pgd_present(*pud
)) {
4098 pgd_populate(mm
, pud
, new);
4099 } else /* Another has populated it */
4101 #endif /* __ARCH_HAS_4LEVEL_HACK */
4105 #endif /* __PAGETABLE_PMD_FOLDED */
4107 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4108 struct mmu_notifier_range
*range
,
4109 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4117 pgd
= pgd_offset(mm
, address
);
4118 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4121 p4d
= p4d_offset(pgd
, address
);
4122 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4125 pud
= pud_offset(p4d
, address
);
4126 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4129 pmd
= pmd_offset(pud
, address
);
4130 VM_BUG_ON(pmd_trans_huge(*pmd
));
4132 if (pmd_huge(*pmd
)) {
4137 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0,
4138 NULL
, mm
, address
& PMD_MASK
,
4139 (address
& PMD_MASK
) + PMD_SIZE
);
4140 mmu_notifier_invalidate_range_start(range
);
4142 *ptlp
= pmd_lock(mm
, pmd
);
4143 if (pmd_huge(*pmd
)) {
4149 mmu_notifier_invalidate_range_end(range
);
4152 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4156 mmu_notifier_range_init(range
, MMU_NOTIFY_CLEAR
, 0, NULL
, mm
,
4157 address
& PAGE_MASK
,
4158 (address
& PAGE_MASK
) + PAGE_SIZE
);
4159 mmu_notifier_invalidate_range_start(range
);
4161 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4162 if (!pte_present(*ptep
))
4167 pte_unmap_unlock(ptep
, *ptlp
);
4169 mmu_notifier_invalidate_range_end(range
);
4174 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4175 pte_t
**ptepp
, spinlock_t
**ptlp
)
4179 /* (void) is needed to make gcc happy */
4180 (void) __cond_lock(*ptlp
,
4181 !(res
= __follow_pte_pmd(mm
, address
, NULL
,
4182 ptepp
, NULL
, ptlp
)));
4186 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4187 struct mmu_notifier_range
*range
,
4188 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4192 /* (void) is needed to make gcc happy */
4193 (void) __cond_lock(*ptlp
,
4194 !(res
= __follow_pte_pmd(mm
, address
, range
,
4195 ptepp
, pmdpp
, ptlp
)));
4198 EXPORT_SYMBOL(follow_pte_pmd
);
4201 * follow_pfn - look up PFN at a user virtual address
4202 * @vma: memory mapping
4203 * @address: user virtual address
4204 * @pfn: location to store found PFN
4206 * Only IO mappings and raw PFN mappings are allowed.
4208 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4210 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4217 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4220 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4223 *pfn
= pte_pfn(*ptep
);
4224 pte_unmap_unlock(ptep
, ptl
);
4227 EXPORT_SYMBOL(follow_pfn
);
4229 #ifdef CONFIG_HAVE_IOREMAP_PROT
4230 int follow_phys(struct vm_area_struct
*vma
,
4231 unsigned long address
, unsigned int flags
,
4232 unsigned long *prot
, resource_size_t
*phys
)
4238 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4241 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4245 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4248 *prot
= pgprot_val(pte_pgprot(pte
));
4249 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4253 pte_unmap_unlock(ptep
, ptl
);
4258 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4259 void *buf
, int len
, int write
)
4261 resource_size_t phys_addr
;
4262 unsigned long prot
= 0;
4263 void __iomem
*maddr
;
4264 int offset
= addr
& (PAGE_SIZE
-1);
4266 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4269 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4274 memcpy_toio(maddr
+ offset
, buf
, len
);
4276 memcpy_fromio(buf
, maddr
+ offset
, len
);
4281 EXPORT_SYMBOL_GPL(generic_access_phys
);
4285 * Access another process' address space as given in mm. If non-NULL, use the
4286 * given task for page fault accounting.
4288 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4289 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4291 struct vm_area_struct
*vma
;
4292 void *old_buf
= buf
;
4293 int write
= gup_flags
& FOLL_WRITE
;
4295 if (down_read_killable(&mm
->mmap_sem
))
4298 /* ignore errors, just check how much was successfully transferred */
4300 int bytes
, ret
, offset
;
4302 struct page
*page
= NULL
;
4304 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4305 gup_flags
, &page
, &vma
, NULL
);
4307 #ifndef CONFIG_HAVE_IOREMAP_PROT
4311 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4312 * we can access using slightly different code.
4314 vma
= find_vma(mm
, addr
);
4315 if (!vma
|| vma
->vm_start
> addr
)
4317 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4318 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4326 offset
= addr
& (PAGE_SIZE
-1);
4327 if (bytes
> PAGE_SIZE
-offset
)
4328 bytes
= PAGE_SIZE
-offset
;
4332 copy_to_user_page(vma
, page
, addr
,
4333 maddr
+ offset
, buf
, bytes
);
4334 set_page_dirty_lock(page
);
4336 copy_from_user_page(vma
, page
, addr
,
4337 buf
, maddr
+ offset
, bytes
);
4346 up_read(&mm
->mmap_sem
);
4348 return buf
- old_buf
;
4352 * access_remote_vm - access another process' address space
4353 * @mm: the mm_struct of the target address space
4354 * @addr: start address to access
4355 * @buf: source or destination buffer
4356 * @len: number of bytes to transfer
4357 * @gup_flags: flags modifying lookup behaviour
4359 * The caller must hold a reference on @mm.
4361 * Return: number of bytes copied from source to destination.
4363 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4364 void *buf
, int len
, unsigned int gup_flags
)
4366 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4370 * Access another process' address space.
4371 * Source/target buffer must be kernel space,
4372 * Do not walk the page table directly, use get_user_pages
4374 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4375 void *buf
, int len
, unsigned int gup_flags
)
4377 struct mm_struct
*mm
;
4380 mm
= get_task_mm(tsk
);
4384 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4390 EXPORT_SYMBOL_GPL(access_process_vm
);
4393 * Print the name of a VMA.
4395 void print_vma_addr(char *prefix
, unsigned long ip
)
4397 struct mm_struct
*mm
= current
->mm
;
4398 struct vm_area_struct
*vma
;
4401 * we might be running from an atomic context so we cannot sleep
4403 if (!down_read_trylock(&mm
->mmap_sem
))
4406 vma
= find_vma(mm
, ip
);
4407 if (vma
&& vma
->vm_file
) {
4408 struct file
*f
= vma
->vm_file
;
4409 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4413 p
= file_path(f
, buf
, PAGE_SIZE
);
4416 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4418 vma
->vm_end
- vma
->vm_start
);
4419 free_page((unsigned long)buf
);
4422 up_read(&mm
->mmap_sem
);
4425 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4426 void __might_fault(const char *file
, int line
)
4429 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4430 * holding the mmap_sem, this is safe because kernel memory doesn't
4431 * get paged out, therefore we'll never actually fault, and the
4432 * below annotations will generate false positives.
4434 if (uaccess_kernel())
4436 if (pagefault_disabled())
4438 __might_sleep(file
, line
, 0);
4439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4441 might_lock_read(¤t
->mm
->mmap_sem
);
4444 EXPORT_SYMBOL(__might_fault
);
4447 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4449 * Process all subpages of the specified huge page with the specified
4450 * operation. The target subpage will be processed last to keep its
4453 static inline void process_huge_page(
4454 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4455 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4459 unsigned long addr
= addr_hint
&
4460 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4462 /* Process target subpage last to keep its cache lines hot */
4464 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4465 if (2 * n
<= pages_per_huge_page
) {
4466 /* If target subpage in first half of huge page */
4469 /* Process subpages at the end of huge page */
4470 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4472 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4475 /* If target subpage in second half of huge page */
4476 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4477 l
= pages_per_huge_page
- n
;
4478 /* Process subpages at the begin of huge page */
4479 for (i
= 0; i
< base
; i
++) {
4481 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4485 * Process remaining subpages in left-right-left-right pattern
4486 * towards the target subpage
4488 for (i
= 0; i
< l
; i
++) {
4489 int left_idx
= base
+ i
;
4490 int right_idx
= base
+ 2 * l
- 1 - i
;
4493 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4495 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4499 static void clear_gigantic_page(struct page
*page
,
4501 unsigned int pages_per_huge_page
)
4504 struct page
*p
= page
;
4507 for (i
= 0; i
< pages_per_huge_page
;
4508 i
++, p
= mem_map_next(p
, page
, i
)) {
4510 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4514 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4516 struct page
*page
= arg
;
4518 clear_user_highpage(page
+ idx
, addr
);
4521 void clear_huge_page(struct page
*page
,
4522 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4524 unsigned long addr
= addr_hint
&
4525 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4527 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4528 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4532 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4535 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4537 struct vm_area_struct
*vma
,
4538 unsigned int pages_per_huge_page
)
4541 struct page
*dst_base
= dst
;
4542 struct page
*src_base
= src
;
4544 for (i
= 0; i
< pages_per_huge_page
; ) {
4546 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4549 dst
= mem_map_next(dst
, dst_base
, i
);
4550 src
= mem_map_next(src
, src_base
, i
);
4554 struct copy_subpage_arg
{
4557 struct vm_area_struct
*vma
;
4560 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4562 struct copy_subpage_arg
*copy_arg
= arg
;
4564 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4565 addr
, copy_arg
->vma
);
4568 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4569 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4570 unsigned int pages_per_huge_page
)
4572 unsigned long addr
= addr_hint
&
4573 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4574 struct copy_subpage_arg arg
= {
4580 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4581 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4582 pages_per_huge_page
);
4586 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4589 long copy_huge_page_from_user(struct page
*dst_page
,
4590 const void __user
*usr_src
,
4591 unsigned int pages_per_huge_page
,
4592 bool allow_pagefault
)
4594 void *src
= (void *)usr_src
;
4596 unsigned long i
, rc
= 0;
4597 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4599 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4600 if (allow_pagefault
)
4601 page_kaddr
= kmap(dst_page
+ i
);
4603 page_kaddr
= kmap_atomic(dst_page
+ i
);
4604 rc
= copy_from_user(page_kaddr
,
4605 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4607 if (allow_pagefault
)
4608 kunmap(dst_page
+ i
);
4610 kunmap_atomic(page_kaddr
);
4612 ret_val
-= (PAGE_SIZE
- rc
);
4620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4622 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4624 static struct kmem_cache
*page_ptl_cachep
;
4626 void __init
ptlock_cache_init(void)
4628 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4632 bool ptlock_alloc(struct page
*page
)
4636 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4643 void ptlock_free(struct page
*page
)
4645 kmem_cache_free(page_ptl_cachep
, page
->ptl
);