1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright IBM Corporation 2005.
6 * Author : Ram Pai (linuxram@us.ibm.com)
8 #include <linux/mnt_namespace.h>
9 #include <linux/mount.h>
11 #include <linux/nsproxy.h>
12 #include <uapi/linux/mount.h>
16 /* return the next shared peer mount of @p */
17 static inline struct mount
*next_peer(struct mount
*p
)
19 return list_entry(p
->mnt_share
.next
, struct mount
, mnt_share
);
22 static inline struct mount
*first_slave(struct mount
*p
)
24 return list_entry(p
->mnt_slave_list
.next
, struct mount
, mnt_slave
);
27 static inline struct mount
*last_slave(struct mount
*p
)
29 return list_entry(p
->mnt_slave_list
.prev
, struct mount
, mnt_slave
);
32 static inline struct mount
*next_slave(struct mount
*p
)
34 return list_entry(p
->mnt_slave
.next
, struct mount
, mnt_slave
);
37 static struct mount
*get_peer_under_root(struct mount
*mnt
,
38 struct mnt_namespace
*ns
,
39 const struct path
*root
)
41 struct mount
*m
= mnt
;
44 /* Check the namespace first for optimization */
45 if (m
->mnt_ns
== ns
&& is_path_reachable(m
, m
->mnt
.mnt_root
, root
))
55 * Get ID of closest dominating peer group having a representative
56 * under the given root.
58 * Caller must hold namespace_sem
60 int get_dominating_id(struct mount
*mnt
, const struct path
*root
)
64 for (m
= mnt
->mnt_master
; m
!= NULL
; m
= m
->mnt_master
) {
65 struct mount
*d
= get_peer_under_root(m
, mnt
->mnt_ns
, root
);
67 return d
->mnt_group_id
;
73 static int do_make_slave(struct mount
*mnt
)
75 struct mount
*master
, *slave_mnt
;
77 if (list_empty(&mnt
->mnt_share
)) {
78 if (IS_MNT_SHARED(mnt
)) {
79 mnt_release_group_id(mnt
);
80 CLEAR_MNT_SHARED(mnt
);
82 master
= mnt
->mnt_master
;
84 struct list_head
*p
= &mnt
->mnt_slave_list
;
85 while (!list_empty(p
)) {
86 slave_mnt
= list_first_entry(p
,
87 struct mount
, mnt_slave
);
88 list_del_init(&slave_mnt
->mnt_slave
);
89 slave_mnt
->mnt_master
= NULL
;
96 * slave 'mnt' to a peer mount that has the
97 * same root dentry. If none is available then
98 * slave it to anything that is available.
100 for (m
= master
= next_peer(mnt
); m
!= mnt
; m
= next_peer(m
)) {
101 if (m
->mnt
.mnt_root
== mnt
->mnt
.mnt_root
) {
106 list_del_init(&mnt
->mnt_share
);
107 mnt
->mnt_group_id
= 0;
108 CLEAR_MNT_SHARED(mnt
);
110 list_for_each_entry(slave_mnt
, &mnt
->mnt_slave_list
, mnt_slave
)
111 slave_mnt
->mnt_master
= master
;
112 list_move(&mnt
->mnt_slave
, &master
->mnt_slave_list
);
113 list_splice(&mnt
->mnt_slave_list
, master
->mnt_slave_list
.prev
);
114 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
115 mnt
->mnt_master
= master
;
120 * vfsmount lock must be held for write
122 void change_mnt_propagation(struct mount
*mnt
, int type
)
124 if (type
== MS_SHARED
) {
129 if (type
!= MS_SLAVE
) {
130 list_del_init(&mnt
->mnt_slave
);
131 mnt
->mnt_master
= NULL
;
132 if (type
== MS_UNBINDABLE
)
133 mnt
->mnt
.mnt_flags
|= MNT_UNBINDABLE
;
135 mnt
->mnt
.mnt_flags
&= ~MNT_UNBINDABLE
;
140 * get the next mount in the propagation tree.
141 * @m: the mount seen last
142 * @origin: the original mount from where the tree walk initiated
144 * Note that peer groups form contiguous segments of slave lists.
145 * We rely on that in get_source() to be able to find out if
146 * vfsmount found while iterating with propagation_next() is
147 * a peer of one we'd found earlier.
149 static struct mount
*propagation_next(struct mount
*m
,
150 struct mount
*origin
)
152 /* are there any slaves of this mount? */
153 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
154 return first_slave(m
);
157 struct mount
*master
= m
->mnt_master
;
159 if (master
== origin
->mnt_master
) {
160 struct mount
*next
= next_peer(m
);
161 return (next
== origin
) ? NULL
: next
;
162 } else if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
163 return next_slave(m
);
170 static struct mount
*skip_propagation_subtree(struct mount
*m
,
171 struct mount
*origin
)
174 * Advance m such that propagation_next will not return
177 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
183 static struct mount
*next_group(struct mount
*m
, struct mount
*origin
)
188 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
189 return first_slave(m
);
191 if (m
->mnt_group_id
== origin
->mnt_group_id
) {
194 } else if (m
->mnt_slave
.next
!= &next
->mnt_slave
)
198 /* m is the last peer */
200 struct mount
*master
= m
->mnt_master
;
201 if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
202 return next_slave(m
);
203 m
= next_peer(master
);
204 if (master
->mnt_group_id
== origin
->mnt_group_id
)
206 if (master
->mnt_slave
.next
== &m
->mnt_slave
)
215 /* all accesses are serialized by namespace_sem */
216 static struct mount
*last_dest
, *first_source
, *last_source
, *dest_master
;
217 static struct mountpoint
*mp
;
218 static struct hlist_head
*list
;
220 static inline bool peers(struct mount
*m1
, struct mount
*m2
)
222 return m1
->mnt_group_id
== m2
->mnt_group_id
&& m1
->mnt_group_id
;
225 static int propagate_one(struct mount
*m
)
229 /* skip ones added by this propagate_mnt() */
232 /* skip if mountpoint isn't covered by it */
233 if (!is_subdir(mp
->m_dentry
, m
->mnt
.mnt_root
))
235 if (peers(m
, last_dest
)) {
236 type
= CL_MAKE_SHARED
;
240 for (n
= m
; ; n
= p
) {
242 if (p
== dest_master
|| IS_MNT_MARKED(p
))
246 struct mount
*parent
= last_source
->mnt_parent
;
247 if (last_source
== first_source
)
249 done
= parent
->mnt_master
== p
;
250 if (done
&& peers(n
, parent
))
252 last_source
= last_source
->mnt_master
;
256 /* beginning of peer group among the slaves? */
257 if (IS_MNT_SHARED(m
))
258 type
|= CL_MAKE_SHARED
;
261 child
= copy_tree(last_source
, last_source
->mnt
.mnt_root
, type
);
263 return PTR_ERR(child
);
264 read_seqlock_excl(&mount_lock
);
265 mnt_set_mountpoint(m
, mp
, child
);
266 if (m
->mnt_master
!= dest_master
)
267 SET_MNT_MARK(m
->mnt_master
);
268 read_sequnlock_excl(&mount_lock
);
271 hlist_add_head(&child
->mnt_hash
, list
);
272 return count_mounts(m
->mnt_ns
, child
);
276 * mount 'source_mnt' under the destination 'dest_mnt' at
277 * dentry 'dest_dentry'. And propagate that mount to
278 * all the peer and slave mounts of 'dest_mnt'.
279 * Link all the new mounts into a propagation tree headed at
280 * source_mnt. Also link all the new mounts using ->mnt_list
281 * headed at source_mnt's ->mnt_list
283 * @dest_mnt: destination mount.
284 * @dest_dentry: destination dentry.
285 * @source_mnt: source mount.
286 * @tree_list : list of heads of trees to be attached.
288 int propagate_mnt(struct mount
*dest_mnt
, struct mountpoint
*dest_mp
,
289 struct mount
*source_mnt
, struct hlist_head
*tree_list
)
295 * we don't want to bother passing tons of arguments to
296 * propagate_one(); everything is serialized by namespace_sem,
297 * so globals will do just fine.
299 last_dest
= dest_mnt
;
300 first_source
= source_mnt
;
301 last_source
= source_mnt
;
304 dest_master
= dest_mnt
->mnt_master
;
306 /* all peers of dest_mnt, except dest_mnt itself */
307 for (n
= next_peer(dest_mnt
); n
!= dest_mnt
; n
= next_peer(n
)) {
308 ret
= propagate_one(n
);
313 /* all slave groups */
314 for (m
= next_group(dest_mnt
, dest_mnt
); m
;
315 m
= next_group(m
, dest_mnt
)) {
316 /* everything in that slave group */
319 ret
= propagate_one(n
);
326 read_seqlock_excl(&mount_lock
);
327 hlist_for_each_entry(n
, tree_list
, mnt_hash
) {
329 if (m
->mnt_master
!= dest_mnt
->mnt_master
)
330 CLEAR_MNT_MARK(m
->mnt_master
);
332 read_sequnlock_excl(&mount_lock
);
336 static struct mount
*find_topper(struct mount
*mnt
)
338 /* If there is exactly one mount covering mnt completely return it. */
341 if (!list_is_singular(&mnt
->mnt_mounts
))
344 child
= list_first_entry(&mnt
->mnt_mounts
, struct mount
, mnt_child
);
345 if (child
->mnt_mountpoint
!= mnt
->mnt
.mnt_root
)
352 * return true if the refcount is greater than count
354 static inline int do_refcount_check(struct mount
*mnt
, int count
)
356 return mnt_get_count(mnt
) > count
;
360 * check if the mount 'mnt' can be unmounted successfully.
361 * @mnt: the mount to be checked for unmount
362 * NOTE: unmounting 'mnt' would naturally propagate to all
363 * other mounts its parent propagates to.
364 * Check if any of these mounts that **do not have submounts**
365 * have more references than 'refcnt'. If so return busy.
367 * vfsmount lock must be held for write
369 int propagate_mount_busy(struct mount
*mnt
, int refcnt
)
371 struct mount
*m
, *child
, *topper
;
372 struct mount
*parent
= mnt
->mnt_parent
;
375 return do_refcount_check(mnt
, refcnt
);
378 * quickly check if the current mount can be unmounted.
379 * If not, we don't have to go checking for all other
382 if (!list_empty(&mnt
->mnt_mounts
) || do_refcount_check(mnt
, refcnt
))
385 for (m
= propagation_next(parent
, parent
); m
;
386 m
= propagation_next(m
, parent
)) {
388 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
392 /* Is there exactly one mount on the child that covers
393 * it completely whose reference should be ignored?
395 topper
= find_topper(child
);
398 else if (!list_empty(&child
->mnt_mounts
))
401 if (do_refcount_check(child
, count
))
408 * Clear MNT_LOCKED when it can be shown to be safe.
410 * mount_lock lock must be held for write
412 void propagate_mount_unlock(struct mount
*mnt
)
414 struct mount
*parent
= mnt
->mnt_parent
;
415 struct mount
*m
, *child
;
417 BUG_ON(parent
== mnt
);
419 for (m
= propagation_next(parent
, parent
); m
;
420 m
= propagation_next(m
, parent
)) {
421 child
= __lookup_mnt(&m
->mnt
, mnt
->mnt_mountpoint
);
423 child
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
427 static void umount_one(struct mount
*mnt
, struct list_head
*to_umount
)
430 mnt
->mnt
.mnt_flags
|= MNT_UMOUNT
;
431 list_del_init(&mnt
->mnt_child
);
432 list_del_init(&mnt
->mnt_umounting
);
433 list_move_tail(&mnt
->mnt_list
, to_umount
);
437 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
438 * parent propagates to.
440 static bool __propagate_umount(struct mount
*mnt
,
441 struct list_head
*to_umount
,
442 struct list_head
*to_restore
)
444 bool progress
= false;
448 * The state of the parent won't change if this mount is
449 * already unmounted or marked as without children.
451 if (mnt
->mnt
.mnt_flags
& (MNT_UMOUNT
| MNT_MARKED
))
454 /* Verify topper is the only grandchild that has not been
455 * speculatively unmounted.
457 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
458 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
460 if (!list_empty(&child
->mnt_umounting
) && IS_MNT_MARKED(child
))
462 /* Found a mounted child */
466 /* Mark mounts that can be unmounted if not locked */
470 /* If a mount is without children and not locked umount it. */
471 if (!IS_MNT_LOCKED(mnt
)) {
472 umount_one(mnt
, to_umount
);
475 list_move_tail(&mnt
->mnt_umounting
, to_restore
);
481 static void umount_list(struct list_head
*to_umount
,
482 struct list_head
*to_restore
)
484 struct mount
*mnt
, *child
, *tmp
;
485 list_for_each_entry(mnt
, to_umount
, mnt_list
) {
486 list_for_each_entry_safe(child
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
488 if (child
->mnt_mountpoint
== mnt
->mnt
.mnt_root
)
489 list_move_tail(&child
->mnt_umounting
, to_restore
);
491 umount_one(child
, to_umount
);
496 static void restore_mounts(struct list_head
*to_restore
)
498 /* Restore mounts to a clean working state */
499 while (!list_empty(to_restore
)) {
500 struct mount
*mnt
, *parent
;
501 struct mountpoint
*mp
;
503 mnt
= list_first_entry(to_restore
, struct mount
, mnt_umounting
);
505 list_del_init(&mnt
->mnt_umounting
);
507 /* Should this mount be reparented? */
509 parent
= mnt
->mnt_parent
;
510 while (parent
->mnt
.mnt_flags
& MNT_UMOUNT
) {
512 parent
= parent
->mnt_parent
;
514 if (parent
!= mnt
->mnt_parent
)
515 mnt_change_mountpoint(parent
, mp
, mnt
);
519 static void cleanup_umount_visitations(struct list_head
*visited
)
521 while (!list_empty(visited
)) {
523 list_first_entry(visited
, struct mount
, mnt_umounting
);
524 list_del_init(&mnt
->mnt_umounting
);
529 * collect all mounts that receive propagation from the mount in @list,
530 * and return these additional mounts in the same list.
531 * @list: the list of mounts to be unmounted.
533 * vfsmount lock must be held for write
535 int propagate_umount(struct list_head
*list
)
538 LIST_HEAD(to_restore
);
539 LIST_HEAD(to_umount
);
542 /* Find candidates for unmounting */
543 list_for_each_entry_reverse(mnt
, list
, mnt_list
) {
544 struct mount
*parent
= mnt
->mnt_parent
;
548 * If this mount has already been visited it is known that it's
549 * entire peer group and all of their slaves in the propagation
550 * tree for the mountpoint has already been visited and there is
551 * no need to visit them again.
553 if (!list_empty(&mnt
->mnt_umounting
))
556 list_add_tail(&mnt
->mnt_umounting
, &visited
);
557 for (m
= propagation_next(parent
, parent
); m
;
558 m
= propagation_next(m
, parent
)) {
559 struct mount
*child
= __lookup_mnt(&m
->mnt
,
560 mnt
->mnt_mountpoint
);
564 if (!list_empty(&child
->mnt_umounting
)) {
566 * If the child has already been visited it is
567 * know that it's entire peer group and all of
568 * their slaves in the propgation tree for the
569 * mountpoint has already been visited and there
570 * is no need to visit this subtree again.
572 m
= skip_propagation_subtree(m
, parent
);
574 } else if (child
->mnt
.mnt_flags
& MNT_UMOUNT
) {
576 * We have come accross an partially unmounted
577 * mount in list that has not been visited yet.
578 * Remember it has been visited and continue
579 * about our merry way.
581 list_add_tail(&child
->mnt_umounting
, &visited
);
585 /* Check the child and parents while progress is made */
586 while (__propagate_umount(child
,
587 &to_umount
, &to_restore
)) {
588 /* Is the parent a umount candidate? */
589 child
= child
->mnt_parent
;
590 if (list_empty(&child
->mnt_umounting
))
596 umount_list(&to_umount
, &to_restore
);
597 restore_mounts(&to_restore
);
598 cleanup_umount_visitations(&visited
);
599 list_splice_tail(&to_umount
, list
);