1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
32 static inline int is_dma_buf_file(struct file
*);
35 struct list_head head
;
39 static struct dma_buf_list db_list
;
41 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
43 struct dma_buf
*dmabuf
;
44 char name
[DMA_BUF_NAME_LEN
];
47 dmabuf
= dentry
->d_fsdata
;
48 dma_resv_lock(dmabuf
->resv
, NULL
);
50 ret
= strlcpy(name
, dmabuf
->name
, DMA_BUF_NAME_LEN
);
51 dma_resv_unlock(dmabuf
->resv
);
53 return dynamic_dname(dentry
, buffer
, buflen
, "/%s:%s",
54 dentry
->d_name
.name
, ret
> 0 ? name
: "");
57 static const struct dentry_operations dma_buf_dentry_ops
= {
58 .d_dname
= dmabuffs_dname
,
61 static struct vfsmount
*dma_buf_mnt
;
63 static int dma_buf_fs_init_context(struct fs_context
*fc
)
65 struct pseudo_fs_context
*ctx
;
67 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
70 ctx
->dops
= &dma_buf_dentry_ops
;
74 static struct file_system_type dma_buf_fs_type
= {
76 .init_fs_context
= dma_buf_fs_init_context
,
77 .kill_sb
= kill_anon_super
,
80 static int dma_buf_release(struct inode
*inode
, struct file
*file
)
82 struct dma_buf
*dmabuf
;
84 if (!is_dma_buf_file(file
))
87 dmabuf
= file
->private_data
;
89 BUG_ON(dmabuf
->vmapping_counter
);
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
99 BUG_ON(dmabuf
->cb_shared
.active
|| dmabuf
->cb_excl
.active
);
101 dmabuf
->ops
->release(dmabuf
);
103 mutex_lock(&db_list
.lock
);
104 list_del(&dmabuf
->list_node
);
105 mutex_unlock(&db_list
.lock
);
107 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
108 dma_resv_fini(dmabuf
->resv
);
110 module_put(dmabuf
->owner
);
116 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
118 struct dma_buf
*dmabuf
;
120 if (!is_dma_buf_file(file
))
123 dmabuf
= file
->private_data
;
125 /* check if buffer supports mmap */
126 if (!dmabuf
->ops
->mmap
)
129 /* check for overflowing the buffer's size */
130 if (vma
->vm_pgoff
+ vma_pages(vma
) >
131 dmabuf
->size
>> PAGE_SHIFT
)
134 return dmabuf
->ops
->mmap(dmabuf
, vma
);
137 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
139 struct dma_buf
*dmabuf
;
142 if (!is_dma_buf_file(file
))
145 dmabuf
= file
->private_data
;
147 /* only support discovering the end of the buffer,
148 but also allow SEEK_SET to maintain the idiomatic
149 SEEK_END(0), SEEK_CUR(0) pattern */
150 if (whence
== SEEK_END
)
152 else if (whence
== SEEK_SET
)
160 return base
+ offset
;
166 * To support cross-device and cross-driver synchronization of buffer access
167 * implicit fences (represented internally in the kernel with &struct fence) can
168 * be attached to a &dma_buf. The glue for that and a few related things are
169 * provided in the &dma_resv structure.
171 * Userspace can query the state of these implicitly tracked fences using poll()
172 * and related system calls:
174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175 * most recent write or exclusive fence.
177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178 * all attached fences, shared and exclusive ones.
180 * Note that this only signals the completion of the respective fences, i.e. the
181 * DMA transfers are complete. Cache flushing and any other necessary
182 * preparations before CPU access can begin still need to happen.
185 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
187 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
190 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
191 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
193 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
196 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
198 struct dma_buf
*dmabuf
;
199 struct dma_resv
*resv
;
200 struct dma_resv_list
*fobj
;
201 struct dma_fence
*fence_excl
;
203 unsigned shared_count
, seq
;
205 dmabuf
= file
->private_data
;
206 if (!dmabuf
|| !dmabuf
->resv
)
211 poll_wait(file
, &dmabuf
->poll
, poll
);
213 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
218 seq
= read_seqcount_begin(&resv
->seq
);
221 fobj
= rcu_dereference(resv
->fence
);
223 shared_count
= fobj
->shared_count
;
226 fence_excl
= rcu_dereference(resv
->fence_excl
);
227 if (read_seqcount_retry(&resv
->seq
, seq
)) {
232 if (fence_excl
&& (!(events
& EPOLLOUT
) || shared_count
== 0)) {
233 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_excl
;
234 __poll_t pevents
= EPOLLIN
;
236 if (shared_count
== 0)
239 spin_lock_irq(&dmabuf
->poll
.lock
);
241 dcb
->active
|= pevents
;
244 dcb
->active
= pevents
;
245 spin_unlock_irq(&dmabuf
->poll
.lock
);
247 if (events
& pevents
) {
248 if (!dma_fence_get_rcu(fence_excl
)) {
249 /* force a recheck */
251 dma_buf_poll_cb(NULL
, &dcb
->cb
);
252 } else if (!dma_fence_add_callback(fence_excl
, &dcb
->cb
,
255 dma_fence_put(fence_excl
);
258 * No callback queued, wake up any additional
261 dma_fence_put(fence_excl
);
262 dma_buf_poll_cb(NULL
, &dcb
->cb
);
267 if ((events
& EPOLLOUT
) && shared_count
> 0) {
268 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_shared
;
271 /* Only queue a new callback if no event has fired yet */
272 spin_lock_irq(&dmabuf
->poll
.lock
);
276 dcb
->active
= EPOLLOUT
;
277 spin_unlock_irq(&dmabuf
->poll
.lock
);
279 if (!(events
& EPOLLOUT
))
282 for (i
= 0; i
< shared_count
; ++i
) {
283 struct dma_fence
*fence
= rcu_dereference(fobj
->shared
[i
]);
285 if (!dma_fence_get_rcu(fence
)) {
287 * fence refcount dropped to zero, this means
288 * that fobj has been freed
290 * call dma_buf_poll_cb and force a recheck!
293 dma_buf_poll_cb(NULL
, &dcb
->cb
);
296 if (!dma_fence_add_callback(fence
, &dcb
->cb
,
298 dma_fence_put(fence
);
302 dma_fence_put(fence
);
305 /* No callback queued, wake up any additional waiters. */
306 if (i
== shared_count
)
307 dma_buf_poll_cb(NULL
, &dcb
->cb
);
316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317 * The name of the dma-buf buffer can only be set when the dma-buf is not
318 * attached to any devices. It could theoritically support changing the
319 * name of the dma-buf if the same piece of memory is used for multiple
320 * purpose between different devices.
322 * @dmabuf [in] dmabuf buffer that will be renamed.
323 * @buf: [in] A piece of userspace memory that contains the name of
326 * Returns 0 on success. If the dma-buf buffer is already attached to
327 * devices, return -EBUSY.
330 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
332 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
336 return PTR_ERR(name
);
338 dma_resv_lock(dmabuf
->resv
, NULL
);
339 if (!list_empty(&dmabuf
->attachments
)) {
348 dma_resv_unlock(dmabuf
->resv
);
352 static long dma_buf_ioctl(struct file
*file
,
353 unsigned int cmd
, unsigned long arg
)
355 struct dma_buf
*dmabuf
;
356 struct dma_buf_sync sync
;
357 enum dma_data_direction direction
;
360 dmabuf
= file
->private_data
;
363 case DMA_BUF_IOCTL_SYNC
:
364 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
367 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
370 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
371 case DMA_BUF_SYNC_READ
:
372 direction
= DMA_FROM_DEVICE
;
374 case DMA_BUF_SYNC_WRITE
:
375 direction
= DMA_TO_DEVICE
;
377 case DMA_BUF_SYNC_RW
:
378 direction
= DMA_BIDIRECTIONAL
;
384 if (sync
.flags
& DMA_BUF_SYNC_END
)
385 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
387 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
391 case DMA_BUF_SET_NAME_A
:
392 case DMA_BUF_SET_NAME_B
:
393 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
400 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
402 struct dma_buf
*dmabuf
= file
->private_data
;
404 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
405 /* Don't count the temporary reference taken inside procfs seq_show */
406 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
407 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
408 dma_resv_lock(dmabuf
->resv
, NULL
);
410 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
411 dma_resv_unlock(dmabuf
->resv
);
414 static const struct file_operations dma_buf_fops
= {
415 .release
= dma_buf_release
,
416 .mmap
= dma_buf_mmap_internal
,
417 .llseek
= dma_buf_llseek
,
418 .poll
= dma_buf_poll
,
419 .unlocked_ioctl
= dma_buf_ioctl
,
420 .compat_ioctl
= compat_ptr_ioctl
,
421 .show_fdinfo
= dma_buf_show_fdinfo
,
425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
427 static inline int is_dma_buf_file(struct file
*file
)
429 return file
->f_op
== &dma_buf_fops
;
432 static struct file
*dma_buf_getfile(struct dma_buf
*dmabuf
, int flags
)
435 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
438 return ERR_CAST(inode
);
440 inode
->i_size
= dmabuf
->size
;
441 inode_set_bytes(inode
, dmabuf
->size
);
443 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
444 flags
, &dma_buf_fops
);
447 file
->f_flags
= flags
& (O_ACCMODE
| O_NONBLOCK
);
448 file
->private_data
= dmabuf
;
449 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
459 * DOC: dma buf device access
461 * For device DMA access to a shared DMA buffer the usual sequence of operations
464 * 1. The exporter defines his exporter instance using
465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467 * as a file descriptor by calling dma_buf_fd().
469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470 * to share with: First the filedescriptor is converted to a &dma_buf using
471 * dma_buf_get(). Then the buffer is attached to the device using
474 * Up to this stage the exporter is still free to migrate or reallocate the
477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
478 * access to the shared buffer. In the kernel this is done by calling
479 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
481 * 4. Once a driver is done with a shared buffer it needs to call
482 * dma_buf_detach() (after cleaning up any mappings) and then release the
483 * reference acquired with dma_buf_get by calling dma_buf_put().
485 * For the detailed semantics exporters are expected to implement see
490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
491 * with this buffer, so it can be exported.
492 * Also connect the allocator specific data and ops to the buffer.
493 * Additionally, provide a name string for exporter; useful in debugging.
495 * @exp_info: [in] holds all the export related information provided
496 * by the exporter. see &struct dma_buf_export_info
497 * for further details.
499 * Returns, on success, a newly created dma_buf object, which wraps the
500 * supplied private data and operations for dma_buf_ops. On either missing
501 * ops, or error in allocating struct dma_buf, will return negative error.
503 * For most cases the easiest way to create @exp_info is through the
504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
506 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
508 struct dma_buf
*dmabuf
;
509 struct dma_resv
*resv
= exp_info
->resv
;
511 size_t alloc_size
= sizeof(struct dma_buf
);
515 alloc_size
+= sizeof(struct dma_resv
);
517 /* prevent &dma_buf[1] == dma_buf->resv */
520 if (WARN_ON(!exp_info
->priv
522 || !exp_info
->ops
->map_dma_buf
523 || !exp_info
->ops
->unmap_dma_buf
524 || !exp_info
->ops
->release
)) {
525 return ERR_PTR(-EINVAL
);
528 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
529 (exp_info
->ops
->pin
|| exp_info
->ops
->unpin
)))
530 return ERR_PTR(-EINVAL
);
532 if (WARN_ON(!exp_info
->ops
->pin
!= !exp_info
->ops
->unpin
))
533 return ERR_PTR(-EINVAL
);
535 if (!try_module_get(exp_info
->owner
))
536 return ERR_PTR(-ENOENT
);
538 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
544 dmabuf
->priv
= exp_info
->priv
;
545 dmabuf
->ops
= exp_info
->ops
;
546 dmabuf
->size
= exp_info
->size
;
547 dmabuf
->exp_name
= exp_info
->exp_name
;
548 dmabuf
->owner
= exp_info
->owner
;
549 init_waitqueue_head(&dmabuf
->poll
);
550 dmabuf
->cb_excl
.poll
= dmabuf
->cb_shared
.poll
= &dmabuf
->poll
;
551 dmabuf
->cb_excl
.active
= dmabuf
->cb_shared
.active
= 0;
554 resv
= (struct dma_resv
*)&dmabuf
[1];
559 file
= dma_buf_getfile(dmabuf
, exp_info
->flags
);
565 file
->f_mode
|= FMODE_LSEEK
;
568 mutex_init(&dmabuf
->lock
);
569 INIT_LIST_HEAD(&dmabuf
->attachments
);
571 mutex_lock(&db_list
.lock
);
572 list_add(&dmabuf
->list_node
, &db_list
.head
);
573 mutex_unlock(&db_list
.lock
);
580 module_put(exp_info
->owner
);
583 EXPORT_SYMBOL_GPL(dma_buf_export
);
586 * dma_buf_fd - returns a file descriptor for the given dma_buf
587 * @dmabuf: [in] pointer to dma_buf for which fd is required.
588 * @flags: [in] flags to give to fd
590 * On success, returns an associated 'fd'. Else, returns error.
592 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
596 if (!dmabuf
|| !dmabuf
->file
)
599 fd
= get_unused_fd_flags(flags
);
603 fd_install(fd
, dmabuf
->file
);
607 EXPORT_SYMBOL_GPL(dma_buf_fd
);
610 * dma_buf_get - returns the dma_buf structure related to an fd
611 * @fd: [in] fd associated with the dma_buf to be returned
613 * On success, returns the dma_buf structure associated with an fd; uses
614 * file's refcounting done by fget to increase refcount. returns ERR_PTR
617 struct dma_buf
*dma_buf_get(int fd
)
624 return ERR_PTR(-EBADF
);
626 if (!is_dma_buf_file(file
)) {
628 return ERR_PTR(-EINVAL
);
631 return file
->private_data
;
633 EXPORT_SYMBOL_GPL(dma_buf_get
);
636 * dma_buf_put - decreases refcount of the buffer
637 * @dmabuf: [in] buffer to reduce refcount of
639 * Uses file's refcounting done implicitly by fput().
641 * If, as a result of this call, the refcount becomes 0, the 'release' file
642 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
643 * in turn, and frees the memory allocated for dmabuf when exported.
645 void dma_buf_put(struct dma_buf
*dmabuf
)
647 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
652 EXPORT_SYMBOL_GPL(dma_buf_put
);
655 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
656 * calls attach() of dma_buf_ops to allow device-specific attach functionality
657 * @dmabuf: [in] buffer to attach device to.
658 * @dev: [in] device to be attached.
659 * @importer_ops: [in] importer operations for the attachment
660 * @importer_priv: [in] importer private pointer for the attachment
662 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
663 * must be cleaned up by calling dma_buf_detach().
667 * A pointer to newly created &dma_buf_attachment on success, or a negative
668 * error code wrapped into a pointer on failure.
670 * Note that this can fail if the backing storage of @dmabuf is in a place not
671 * accessible to @dev, and cannot be moved to a more suitable place. This is
672 * indicated with the error code -EBUSY.
674 struct dma_buf_attachment
*
675 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
676 const struct dma_buf_attach_ops
*importer_ops
,
679 struct dma_buf_attachment
*attach
;
682 if (WARN_ON(!dmabuf
|| !dev
))
683 return ERR_PTR(-EINVAL
);
685 if (WARN_ON(importer_ops
&& !importer_ops
->move_notify
))
686 return ERR_PTR(-EINVAL
);
688 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
690 return ERR_PTR(-ENOMEM
);
693 attach
->dmabuf
= dmabuf
;
694 attach
->importer_ops
= importer_ops
;
695 attach
->importer_priv
= importer_priv
;
697 if (dmabuf
->ops
->attach
) {
698 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
702 dma_resv_lock(dmabuf
->resv
, NULL
);
703 list_add(&attach
->node
, &dmabuf
->attachments
);
704 dma_resv_unlock(dmabuf
->resv
);
706 /* When either the importer or the exporter can't handle dynamic
707 * mappings we cache the mapping here to avoid issues with the
708 * reservation object lock.
710 if (dma_buf_attachment_is_dynamic(attach
) !=
711 dma_buf_is_dynamic(dmabuf
)) {
712 struct sg_table
*sgt
;
714 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
715 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
716 ret
= dma_buf_pin(attach
);
721 sgt
= dmabuf
->ops
->map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
723 sgt
= ERR_PTR(-ENOMEM
);
728 if (dma_buf_is_dynamic(attach
->dmabuf
))
729 dma_resv_unlock(attach
->dmabuf
->resv
);
731 attach
->dir
= DMA_BIDIRECTIONAL
;
741 if (dma_buf_is_dynamic(attach
->dmabuf
))
742 dma_buf_unpin(attach
);
745 if (dma_buf_is_dynamic(attach
->dmabuf
))
746 dma_resv_unlock(attach
->dmabuf
->resv
);
748 dma_buf_detach(dmabuf
, attach
);
751 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach
);
754 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
755 * @dmabuf: [in] buffer to attach device to.
756 * @dev: [in] device to be attached.
758 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
761 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
764 return dma_buf_dynamic_attach(dmabuf
, dev
, NULL
, NULL
);
766 EXPORT_SYMBOL_GPL(dma_buf_attach
);
769 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
770 * optionally calls detach() of dma_buf_ops for device-specific detach
771 * @dmabuf: [in] buffer to detach from.
772 * @attach: [in] attachment to be detached; is free'd after this call.
774 * Clean up a device attachment obtained by calling dma_buf_attach().
776 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
778 if (WARN_ON(!dmabuf
|| !attach
))
782 if (dma_buf_is_dynamic(attach
->dmabuf
))
783 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
785 dmabuf
->ops
->unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
787 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
788 dma_buf_unpin(attach
);
789 dma_resv_unlock(attach
->dmabuf
->resv
);
793 dma_resv_lock(dmabuf
->resv
, NULL
);
794 list_del(&attach
->node
);
795 dma_resv_unlock(dmabuf
->resv
);
796 if (dmabuf
->ops
->detach
)
797 dmabuf
->ops
->detach(dmabuf
, attach
);
801 EXPORT_SYMBOL_GPL(dma_buf_detach
);
804 * dma_buf_pin - Lock down the DMA-buf
806 * @attach: [in] attachment which should be pinned
809 * 0 on success, negative error code on failure.
811 int dma_buf_pin(struct dma_buf_attachment
*attach
)
813 struct dma_buf
*dmabuf
= attach
->dmabuf
;
816 dma_resv_assert_held(dmabuf
->resv
);
818 if (dmabuf
->ops
->pin
)
819 ret
= dmabuf
->ops
->pin(attach
);
823 EXPORT_SYMBOL_GPL(dma_buf_pin
);
826 * dma_buf_unpin - Remove lock from DMA-buf
828 * @attach: [in] attachment which should be unpinned
830 void dma_buf_unpin(struct dma_buf_attachment
*attach
)
832 struct dma_buf
*dmabuf
= attach
->dmabuf
;
834 dma_resv_assert_held(dmabuf
->resv
);
836 if (dmabuf
->ops
->unpin
)
837 dmabuf
->ops
->unpin(attach
);
839 EXPORT_SYMBOL_GPL(dma_buf_unpin
);
842 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
843 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
845 * @attach: [in] attachment whose scatterlist is to be returned
846 * @direction: [in] direction of DMA transfer
848 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
849 * on error. May return -EINTR if it is interrupted by a signal.
851 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
852 * the underlying backing storage is pinned for as long as a mapping exists,
853 * therefore users/importers should not hold onto a mapping for undue amounts of
856 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
857 enum dma_data_direction direction
)
859 struct sg_table
*sg_table
;
864 if (WARN_ON(!attach
|| !attach
->dmabuf
))
865 return ERR_PTR(-EINVAL
);
867 if (dma_buf_attachment_is_dynamic(attach
))
868 dma_resv_assert_held(attach
->dmabuf
->resv
);
872 * Two mappings with different directions for the same
873 * attachment are not allowed.
875 if (attach
->dir
!= direction
&&
876 attach
->dir
!= DMA_BIDIRECTIONAL
)
877 return ERR_PTR(-EBUSY
);
882 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
883 dma_resv_assert_held(attach
->dmabuf
->resv
);
884 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
)) {
885 r
= dma_buf_pin(attach
);
891 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
893 sg_table
= ERR_PTR(-ENOMEM
);
895 if (IS_ERR(sg_table
) && dma_buf_is_dynamic(attach
->dmabuf
) &&
896 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
897 dma_buf_unpin(attach
);
899 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
900 attach
->sgt
= sg_table
;
901 attach
->dir
= direction
;
906 EXPORT_SYMBOL_GPL(dma_buf_map_attachment
);
909 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
910 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
912 * @attach: [in] attachment to unmap buffer from
913 * @sg_table: [in] scatterlist info of the buffer to unmap
914 * @direction: [in] direction of DMA transfer
916 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
918 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
919 struct sg_table
*sg_table
,
920 enum dma_data_direction direction
)
924 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
927 if (dma_buf_attachment_is_dynamic(attach
))
928 dma_resv_assert_held(attach
->dmabuf
->resv
);
930 if (attach
->sgt
== sg_table
)
933 if (dma_buf_is_dynamic(attach
->dmabuf
))
934 dma_resv_assert_held(attach
->dmabuf
->resv
);
936 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
938 if (dma_buf_is_dynamic(attach
->dmabuf
) &&
939 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
940 dma_buf_unpin(attach
);
942 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment
);
945 * dma_buf_move_notify - notify attachments that DMA-buf is moving
947 * @dmabuf: [in] buffer which is moving
949 * Informs all attachmenst that they need to destroy and recreated all their
952 void dma_buf_move_notify(struct dma_buf
*dmabuf
)
954 struct dma_buf_attachment
*attach
;
956 dma_resv_assert_held(dmabuf
->resv
);
958 list_for_each_entry(attach
, &dmabuf
->attachments
, node
)
959 if (attach
->importer_ops
)
960 attach
->importer_ops
->move_notify(attach
);
962 EXPORT_SYMBOL_GPL(dma_buf_move_notify
);
967 * There are mutliple reasons for supporting CPU access to a dma buffer object:
969 * - Fallback operations in the kernel, for example when a device is connected
970 * over USB and the kernel needs to shuffle the data around first before
971 * sending it away. Cache coherency is handled by braketing any transactions
972 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
975 * Since for most kernel internal dma-buf accesses need the entire buffer, a
976 * vmap interface is introduced. Note that on very old 32-bit architectures
977 * vmalloc space might be limited and result in vmap calls failing.
980 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
981 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
983 * The vmap call can fail if there is no vmap support in the exporter, or if
984 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
985 * that the dma-buf layer keeps a reference count for all vmap access and
986 * calls down into the exporter's vmap function only when no vmapping exists,
987 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
988 * provided by taking the dma_buf->lock mutex.
990 * - For full compatibility on the importer side with existing userspace
991 * interfaces, which might already support mmap'ing buffers. This is needed in
992 * many processing pipelines (e.g. feeding a software rendered image into a
993 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
994 * framework already supported this and for DMA buffer file descriptors to
995 * replace ION buffers mmap support was needed.
997 * There is no special interfaces, userspace simply calls mmap on the dma-buf
998 * fd. But like for CPU access there's a need to braket the actual access,
999 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1000 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1003 * Some systems might need some sort of cache coherency management e.g. when
1004 * CPU and GPU domains are being accessed through dma-buf at the same time.
1005 * To circumvent this problem there are begin/end coherency markers, that
1006 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1007 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1008 * sequence would be used like following:
1011 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1012 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1013 * want (with the new data being consumed by say the GPU or the scanout
1015 * - munmap once you don't need the buffer any more
1017 * For correctness and optimal performance, it is always required to use
1018 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1019 * mapped address. Userspace cannot rely on coherent access, even when there
1020 * are systems where it just works without calling these ioctls.
1022 * - And as a CPU fallback in userspace processing pipelines.
1024 * Similar to the motivation for kernel cpu access it is again important that
1025 * the userspace code of a given importing subsystem can use the same
1026 * interfaces with a imported dma-buf buffer object as with a native buffer
1027 * object. This is especially important for drm where the userspace part of
1028 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1029 * use a different way to mmap a buffer rather invasive.
1031 * The assumption in the current dma-buf interfaces is that redirecting the
1032 * initial mmap is all that's needed. A survey of some of the existing
1033 * subsystems shows that no driver seems to do any nefarious thing like
1034 * syncing up with outstanding asynchronous processing on the device or
1035 * allocating special resources at fault time. So hopefully this is good
1036 * enough, since adding interfaces to intercept pagefaults and allow pte
1037 * shootdowns would increase the complexity quite a bit.
1040 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1043 * If the importing subsystem simply provides a special-purpose mmap call to
1044 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1045 * equally achieve that for a dma-buf object.
1048 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1049 enum dma_data_direction direction
)
1051 bool write
= (direction
== DMA_BIDIRECTIONAL
||
1052 direction
== DMA_TO_DEVICE
);
1053 struct dma_resv
*resv
= dmabuf
->resv
;
1056 /* Wait on any implicit rendering fences */
1057 ret
= dma_resv_wait_timeout_rcu(resv
, write
, true,
1058 MAX_SCHEDULE_TIMEOUT
);
1066 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1067 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1068 * preparations. Coherency is only guaranteed in the specified range for the
1069 * specified access direction.
1070 * @dmabuf: [in] buffer to prepare cpu access for.
1071 * @direction: [in] length of range for cpu access.
1073 * After the cpu access is complete the caller should call
1074 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1075 * it guaranteed to be coherent with other DMA access.
1077 * Can return negative error values, returns 0 on success.
1079 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1080 enum dma_data_direction direction
)
1084 if (WARN_ON(!dmabuf
))
1087 if (dmabuf
->ops
->begin_cpu_access
)
1088 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
1090 /* Ensure that all fences are waited upon - but we first allow
1091 * the native handler the chance to do so more efficiently if it
1092 * chooses. A double invocation here will be reasonably cheap no-op.
1095 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1099 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access
);
1102 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1103 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1104 * actions. Coherency is only guaranteed in the specified range for the
1105 * specified access direction.
1106 * @dmabuf: [in] buffer to complete cpu access for.
1107 * @direction: [in] length of range for cpu access.
1109 * This terminates CPU access started with dma_buf_begin_cpu_access().
1111 * Can return negative error values, returns 0 on success.
1113 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1114 enum dma_data_direction direction
)
1120 if (dmabuf
->ops
->end_cpu_access
)
1121 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1125 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access
);
1129 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1130 * @dmabuf: [in] buffer that should back the vma
1131 * @vma: [in] vma for the mmap
1132 * @pgoff: [in] offset in pages where this mmap should start within the
1135 * This function adjusts the passed in vma so that it points at the file of the
1136 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1137 * checking on the size of the vma. Then it calls the exporters mmap function to
1138 * set up the mapping.
1140 * Can return negative error values, returns 0 on success.
1142 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1143 unsigned long pgoff
)
1145 struct file
*oldfile
;
1148 if (WARN_ON(!dmabuf
|| !vma
))
1151 /* check if buffer supports mmap */
1152 if (!dmabuf
->ops
->mmap
)
1155 /* check for offset overflow */
1156 if (pgoff
+ vma_pages(vma
) < pgoff
)
1159 /* check for overflowing the buffer's size */
1160 if (pgoff
+ vma_pages(vma
) >
1161 dmabuf
->size
>> PAGE_SHIFT
)
1164 /* readjust the vma */
1165 get_file(dmabuf
->file
);
1166 oldfile
= vma
->vm_file
;
1167 vma
->vm_file
= dmabuf
->file
;
1168 vma
->vm_pgoff
= pgoff
;
1170 ret
= dmabuf
->ops
->mmap(dmabuf
, vma
);
1172 /* restore old parameters on failure */
1173 vma
->vm_file
= oldfile
;
1182 EXPORT_SYMBOL_GPL(dma_buf_mmap
);
1185 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1186 * address space. Same restrictions as for vmap and friends apply.
1187 * @dmabuf: [in] buffer to vmap
1189 * This call may fail due to lack of virtual mapping address space.
1190 * These calls are optional in drivers. The intended use for them
1191 * is for mapping objects linear in kernel space for high use objects.
1192 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1194 * Returns NULL on error.
1196 void *dma_buf_vmap(struct dma_buf
*dmabuf
)
1200 if (WARN_ON(!dmabuf
))
1203 if (!dmabuf
->ops
->vmap
)
1206 mutex_lock(&dmabuf
->lock
);
1207 if (dmabuf
->vmapping_counter
) {
1208 dmabuf
->vmapping_counter
++;
1209 BUG_ON(!dmabuf
->vmap_ptr
);
1210 ptr
= dmabuf
->vmap_ptr
;
1214 BUG_ON(dmabuf
->vmap_ptr
);
1216 ptr
= dmabuf
->ops
->vmap(dmabuf
);
1217 if (WARN_ON_ONCE(IS_ERR(ptr
)))
1222 dmabuf
->vmap_ptr
= ptr
;
1223 dmabuf
->vmapping_counter
= 1;
1226 mutex_unlock(&dmabuf
->lock
);
1229 EXPORT_SYMBOL_GPL(dma_buf_vmap
);
1232 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1233 * @dmabuf: [in] buffer to vunmap
1234 * @vaddr: [in] vmap to vunmap
1236 void dma_buf_vunmap(struct dma_buf
*dmabuf
, void *vaddr
)
1238 if (WARN_ON(!dmabuf
))
1241 BUG_ON(!dmabuf
->vmap_ptr
);
1242 BUG_ON(dmabuf
->vmapping_counter
== 0);
1243 BUG_ON(dmabuf
->vmap_ptr
!= vaddr
);
1245 mutex_lock(&dmabuf
->lock
);
1246 if (--dmabuf
->vmapping_counter
== 0) {
1247 if (dmabuf
->ops
->vunmap
)
1248 dmabuf
->ops
->vunmap(dmabuf
, vaddr
);
1249 dmabuf
->vmap_ptr
= NULL
;
1251 mutex_unlock(&dmabuf
->lock
);
1253 EXPORT_SYMBOL_GPL(dma_buf_vunmap
);
1255 #ifdef CONFIG_DEBUG_FS
1256 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1259 struct dma_buf
*buf_obj
;
1260 struct dma_buf_attachment
*attach_obj
;
1261 struct dma_resv
*robj
;
1262 struct dma_resv_list
*fobj
;
1263 struct dma_fence
*fence
;
1265 int count
= 0, attach_count
, shared_count
, i
;
1268 ret
= mutex_lock_interruptible(&db_list
.lock
);
1273 seq_puts(s
, "\nDma-buf Objects:\n");
1274 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1275 "size", "flags", "mode", "count", "ino");
1277 list_for_each_entry(buf_obj
, &db_list
.head
, list_node
) {
1279 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1283 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1285 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1286 file_count(buf_obj
->file
),
1288 file_inode(buf_obj
->file
)->i_ino
,
1289 buf_obj
->name
?: "");
1291 robj
= buf_obj
->resv
;
1293 seq
= read_seqcount_begin(&robj
->seq
);
1295 fobj
= rcu_dereference(robj
->fence
);
1296 shared_count
= fobj
? fobj
->shared_count
: 0;
1297 fence
= rcu_dereference(robj
->fence_excl
);
1298 if (!read_seqcount_retry(&robj
->seq
, seq
))
1304 seq_printf(s
, "\tExclusive fence: %s %s %ssignalled\n",
1305 fence
->ops
->get_driver_name(fence
),
1306 fence
->ops
->get_timeline_name(fence
),
1307 dma_fence_is_signaled(fence
) ? "" : "un");
1308 for (i
= 0; i
< shared_count
; i
++) {
1309 fence
= rcu_dereference(fobj
->shared
[i
]);
1310 if (!dma_fence_get_rcu(fence
))
1312 seq_printf(s
, "\tShared fence: %s %s %ssignalled\n",
1313 fence
->ops
->get_driver_name(fence
),
1314 fence
->ops
->get_timeline_name(fence
),
1315 dma_fence_is_signaled(fence
) ? "" : "un");
1316 dma_fence_put(fence
);
1320 seq_puts(s
, "\tAttached Devices:\n");
1323 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1324 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1327 dma_resv_unlock(buf_obj
->resv
);
1329 seq_printf(s
, "Total %d devices attached\n\n",
1333 size
+= buf_obj
->size
;
1336 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1338 mutex_unlock(&db_list
.lock
);
1342 mutex_unlock(&db_list
.lock
);
1346 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1348 static struct dentry
*dma_buf_debugfs_dir
;
1350 static int dma_buf_init_debugfs(void)
1355 d
= debugfs_create_dir("dma_buf", NULL
);
1359 dma_buf_debugfs_dir
= d
;
1361 d
= debugfs_create_file("bufinfo", S_IRUGO
, dma_buf_debugfs_dir
,
1362 NULL
, &dma_buf_debug_fops
);
1364 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1365 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1366 dma_buf_debugfs_dir
= NULL
;
1373 static void dma_buf_uninit_debugfs(void)
1375 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1378 static inline int dma_buf_init_debugfs(void)
1382 static inline void dma_buf_uninit_debugfs(void)
1387 static int __init
dma_buf_init(void)
1389 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1390 if (IS_ERR(dma_buf_mnt
))
1391 return PTR_ERR(dma_buf_mnt
);
1393 mutex_init(&db_list
.lock
);
1394 INIT_LIST_HEAD(&db_list
.head
);
1395 dma_buf_init_debugfs();
1398 subsys_initcall(dma_buf_init
);
1400 static void __exit
dma_buf_deinit(void)
1402 dma_buf_uninit_debugfs();
1403 kern_unmount(dma_buf_mnt
);
1405 __exitcall(dma_buf_deinit
);