1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/video/cyber2000fb.c
5 * Copyright (C) 1998-2002 Russell King
7 * MIPS and 50xx clock support
8 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
10 * 32 bit support, text color and panning fixes for modes != 8 bit
11 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
13 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
17 * Note that we now use the new fbcon fix, var and cmap scheme. We do
18 * still have to check which console is the currently displayed one
19 * however, especially for the colourmap stuff.
21 * We also use the new hotplug PCI subsystem. I'm not sure if there
22 * are any such cards, but I'm erring on the side of caution. We don't
23 * want to go pop just because someone does have one.
25 * Note that this doesn't work fully in the case of multiple CyberPro
26 * cards with grabbers. We currently can only attach to the first
27 * CyberPro card found.
29 * When we're in truecolour mode, we power down the LUT RAM as a power
30 * saving feature. Also, when we enter any of the powersaving modes
31 * (except soft blanking) we power down the RAMDACs. This saves about
32 * 1W, which is roughly 8% of the power consumption of a NetWinder
33 * (which, incidentally, is about the same saving as a 2.5in hard disk
34 * entering standby mode.)
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/errno.h>
39 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/delay.h>
44 #include <linux/pci.h>
45 #include <linux/init.h>
47 #include <linux/i2c.h>
48 #include <linux/i2c-algo-bit.h>
50 #include <asm/pgtable.h>
53 #include <asm/mach-types.h>
56 #include "cyber2000fb.h"
60 struct display_switch
*dispsw
;
61 unsigned char __iomem
*region
;
62 unsigned char __iomem
*regs
;
75 } palette
[NR_PALETTE
];
82 * RAMDAC control register is both of these or'ed together
85 u_char ramdac_powerdown
;
87 u32 pseudo_palette
[16];
89 spinlock_t reg_b0_lock
;
91 #ifdef CONFIG_FB_CYBER2000_DDC
93 struct i2c_adapter ddc_adapter
;
94 struct i2c_algo_bit_data ddc_algo
;
97 #ifdef CONFIG_FB_CYBER2000_I2C
98 struct i2c_adapter i2c_adapter
;
99 struct i2c_algo_bit_data i2c_algo
;
103 static char *default_font
= "Acorn8x8";
104 module_param(default_font
, charp
, 0);
105 MODULE_PARM_DESC(default_font
, "Default font name");
108 * Our access methods.
110 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
111 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
112 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
114 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
117 cyber2000_crtcw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
119 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3d4, cfb
);
123 cyber2000_grphw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
125 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3ce, cfb
);
128 static inline unsigned int
129 cyber2000_grphr(unsigned int reg
, struct cfb_info
*cfb
)
131 cyber2000fb_writeb(reg
, 0x3ce, cfb
);
132 return cyber2000fb_readb(0x3cf, cfb
);
136 cyber2000_attrw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
138 cyber2000fb_readb(0x3da, cfb
);
139 cyber2000fb_writeb(reg
, 0x3c0, cfb
);
140 cyber2000fb_readb(0x3c1, cfb
);
141 cyber2000fb_writeb(val
, 0x3c0, cfb
);
145 cyber2000_seqw(unsigned int reg
, unsigned int val
, struct cfb_info
*cfb
)
147 cyber2000fb_writew((reg
& 255) | val
<< 8, 0x3c4, cfb
);
150 /* -------------------- Hardware specific routines ------------------------- */
153 * Hardware Cyber2000 Acceleration
156 cyber2000fb_fillrect(struct fb_info
*info
, const struct fb_fillrect
*rect
)
158 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
159 unsigned long dst
, col
;
161 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
162 cfb_fillrect(info
, rect
);
166 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
167 cyber2000fb_writew(rect
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
168 cyber2000fb_writew(rect
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
171 if (cfb
->fb
.var
.bits_per_pixel
> 8)
172 col
= ((u32
*)cfb
->fb
.pseudo_palette
)[col
];
173 cyber2000fb_writel(col
, CO_REG_FGCOLOUR
, cfb
);
175 dst
= rect
->dx
+ rect
->dy
* cfb
->fb
.var
.xres_virtual
;
176 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
177 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
181 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
182 cyber2000fb_writeb(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
183 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL
, CO_REG_CMD_L
, cfb
);
184 cyber2000fb_writew(CO_CMD_H_BLITTER
, CO_REG_CMD_H
, cfb
);
188 cyber2000fb_copyarea(struct fb_info
*info
, const struct fb_copyarea
*region
)
190 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
191 unsigned int cmd
= CO_CMD_L_PATTERN_FGCOL
;
192 unsigned long src
, dst
;
194 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
)) {
195 cfb_copyarea(info
, region
);
199 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
200 cyber2000fb_writew(region
->width
- 1, CO_REG_PIXWIDTH
, cfb
);
201 cyber2000fb_writew(region
->height
- 1, CO_REG_PIXHEIGHT
, cfb
);
203 src
= region
->sx
+ region
->sy
* cfb
->fb
.var
.xres_virtual
;
204 dst
= region
->dx
+ region
->dy
* cfb
->fb
.var
.xres_virtual
;
206 if (region
->sx
< region
->dx
) {
207 src
+= region
->width
- 1;
208 dst
+= region
->width
- 1;
209 cmd
|= CO_CMD_L_INC_LEFT
;
212 if (region
->sy
< region
->dy
) {
213 src
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
214 dst
+= (region
->height
- 1) * cfb
->fb
.var
.xres_virtual
;
215 cmd
|= CO_CMD_L_INC_UP
;
218 if (cfb
->fb
.var
.bits_per_pixel
== 24) {
219 cyber2000fb_writeb(dst
, CO_REG_X_PHASE
, cfb
);
223 cyber2000fb_writel(src
, CO_REG_SRC1_PTR
, cfb
);
224 cyber2000fb_writel(dst
, CO_REG_DEST_PTR
, cfb
);
225 cyber2000fb_writew(CO_FG_MIX_SRC
, CO_REG_FGMIX
, cfb
);
226 cyber2000fb_writew(cmd
, CO_REG_CMD_L
, cfb
);
227 cyber2000fb_writew(CO_CMD_H_FGSRCMAP
| CO_CMD_H_BLITTER
,
232 cyber2000fb_imageblit(struct fb_info
*info
, const struct fb_image
*image
)
234 cfb_imageblit(info
, image
);
238 static int cyber2000fb_sync(struct fb_info
*info
)
240 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
243 if (!(cfb
->fb
.var
.accel_flags
& FB_ACCELF_TEXT
))
246 while (cyber2000fb_readb(CO_REG_CONTROL
, cfb
) & CO_CTRL_BUSY
) {
248 debug_printf("accel_wait timed out\n");
249 cyber2000fb_writeb(0, CO_REG_CONTROL
, cfb
);
258 * ===========================================================================
261 static inline u32
convert_bitfield(u_int val
, struct fb_bitfield
*bf
)
263 u_int mask
= (1 << bf
->length
) - 1;
265 return (val
>> (16 - bf
->length
) & mask
) << bf
->offset
;
269 * Set a single color register. Return != 0 for invalid regno.
272 cyber2000fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
273 u_int transp
, struct fb_info
*info
)
275 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
276 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
280 switch (cfb
->fb
.fix
.visual
) {
287 * pixel --/--+--/--> red lut --> red dac
289 * +--/--> green lut --> green dac
291 * +--/--> blue lut --> blue dac
293 case FB_VISUAL_PSEUDOCOLOR
:
294 if (regno
>= NR_PALETTE
)
301 cfb
->palette
[regno
].red
= red
;
302 cfb
->palette
[regno
].green
= green
;
303 cfb
->palette
[regno
].blue
= blue
;
305 cyber2000fb_writeb(regno
, 0x3c8, cfb
);
306 cyber2000fb_writeb(red
, 0x3c9, cfb
);
307 cyber2000fb_writeb(green
, 0x3c9, cfb
);
308 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
314 * pixel --/--+--/--> red lut --> red dac
316 * +--/--> green lut --> green dac
318 * +--/--> blue lut --> blue dac
319 * n = bpp, rl = red length, gl = green length, bl = blue length
321 case FB_VISUAL_DIRECTCOLOR
:
326 if (var
->green
.length
== 6 && regno
< 64) {
327 cfb
->palette
[regno
<< 2].green
= green
;
330 * The 6 bits of the green component are applied
331 * to the high 6 bits of the LUT.
333 cyber2000fb_writeb(regno
<< 2, 0x3c8, cfb
);
334 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].red
,
336 cyber2000fb_writeb(green
, 0x3c9, cfb
);
337 cyber2000fb_writeb(cfb
->palette
[regno
>> 1].blue
,
340 green
= cfb
->palette
[regno
<< 3].green
;
345 if (var
->green
.length
>= 5 && regno
< 32) {
346 cfb
->palette
[regno
<< 3].red
= red
;
347 cfb
->palette
[regno
<< 3].green
= green
;
348 cfb
->palette
[regno
<< 3].blue
= blue
;
351 * The 5 bits of each colour component are
352 * applied to the high 5 bits of the LUT.
354 cyber2000fb_writeb(regno
<< 3, 0x3c8, cfb
);
355 cyber2000fb_writeb(red
, 0x3c9, cfb
);
356 cyber2000fb_writeb(green
, 0x3c9, cfb
);
357 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
361 if (var
->green
.length
== 4 && regno
< 16) {
362 cfb
->palette
[regno
<< 4].red
= red
;
363 cfb
->palette
[regno
<< 4].green
= green
;
364 cfb
->palette
[regno
<< 4].blue
= blue
;
367 * The 5 bits of each colour component are
368 * applied to the high 5 bits of the LUT.
370 cyber2000fb_writeb(regno
<< 4, 0x3c8, cfb
);
371 cyber2000fb_writeb(red
, 0x3c9, cfb
);
372 cyber2000fb_writeb(green
, 0x3c9, cfb
);
373 cyber2000fb_writeb(blue
, 0x3c9, cfb
);
378 * Since this is only used for the first 16 colours, we
379 * don't have to care about overflowing for regno >= 32
381 pseudo_val
= regno
<< var
->red
.offset
|
382 regno
<< var
->green
.offset
|
383 regno
<< var
->blue
.offset
;
389 * pixel --/--+--/--> red dac
394 * n = bpp, rl = red length, gl = green length, bl = blue length
396 case FB_VISUAL_TRUECOLOR
:
397 pseudo_val
= convert_bitfield(transp
^ 0xffff, &var
->transp
);
398 pseudo_val
|= convert_bitfield(red
, &var
->red
);
399 pseudo_val
|= convert_bitfield(green
, &var
->green
);
400 pseudo_val
|= convert_bitfield(blue
, &var
->blue
);
406 * Now set our pseudo palette for the CFB16/24/32 drivers.
409 ((u32
*)cfb
->fb
.pseudo_palette
)[regno
] = pseudo_val
;
434 static const u_char crtc_idx
[] = {
435 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
437 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
440 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info
*cfb
)
443 unsigned int val
= cfb
->ramdac_ctrl
| cfb
->ramdac_powerdown
;
445 cyber2000fb_writeb(0x56, 0x3ce, cfb
);
446 i
= cyber2000fb_readb(0x3cf, cfb
);
447 cyber2000fb_writeb(i
| 4, 0x3cf, cfb
);
448 cyber2000fb_writeb(val
, 0x3c6, cfb
);
449 cyber2000fb_writeb(i
, 0x3cf, cfb
);
450 /* prevent card lock-up observed on x86 with CyberPro 2000 */
451 cyber2000fb_readb(0x3cf, cfb
);
454 static void cyber2000fb_set_timing(struct cfb_info
*cfb
, struct par_info
*hw
)
461 for (i
= 0; i
< NR_PALETTE
; i
++) {
462 cyber2000fb_writeb(i
, 0x3c8, cfb
);
463 cyber2000fb_writeb(0, 0x3c9, cfb
);
464 cyber2000fb_writeb(0, 0x3c9, cfb
);
465 cyber2000fb_writeb(0, 0x3c9, cfb
);
468 cyber2000fb_writeb(0xef, 0x3c2, cfb
);
469 cyber2000_crtcw(0x11, 0x0b, cfb
);
470 cyber2000_attrw(0x11, 0x00, cfb
);
472 cyber2000_seqw(0x00, 0x01, cfb
);
473 cyber2000_seqw(0x01, 0x01, cfb
);
474 cyber2000_seqw(0x02, 0x0f, cfb
);
475 cyber2000_seqw(0x03, 0x00, cfb
);
476 cyber2000_seqw(0x04, 0x0e, cfb
);
477 cyber2000_seqw(0x00, 0x03, cfb
);
479 for (i
= 0; i
< sizeof(crtc_idx
); i
++)
480 cyber2000_crtcw(crtc_idx
[i
], hw
->crtc
[i
], cfb
);
482 for (i
= 0x0a; i
< 0x10; i
++)
483 cyber2000_crtcw(i
, 0, cfb
);
485 cyber2000_grphw(EXT_CRT_VRTOFL
, hw
->crtc_ofl
, cfb
);
486 cyber2000_grphw(0x00, 0x00, cfb
);
487 cyber2000_grphw(0x01, 0x00, cfb
);
488 cyber2000_grphw(0x02, 0x00, cfb
);
489 cyber2000_grphw(0x03, 0x00, cfb
);
490 cyber2000_grphw(0x04, 0x00, cfb
);
491 cyber2000_grphw(0x05, 0x60, cfb
);
492 cyber2000_grphw(0x06, 0x05, cfb
);
493 cyber2000_grphw(0x07, 0x0f, cfb
);
494 cyber2000_grphw(0x08, 0xff, cfb
);
496 /* Attribute controller registers */
497 for (i
= 0; i
< 16; i
++)
498 cyber2000_attrw(i
, i
, cfb
);
500 cyber2000_attrw(0x10, 0x01, cfb
);
501 cyber2000_attrw(0x11, 0x00, cfb
);
502 cyber2000_attrw(0x12, 0x0f, cfb
);
503 cyber2000_attrw(0x13, 0x00, cfb
);
504 cyber2000_attrw(0x14, 0x00, cfb
);
507 spin_lock(&cfb
->reg_b0_lock
);
508 cyber2000_grphw(EXT_DCLK_MULT
, hw
->clock_mult
, cfb
);
509 cyber2000_grphw(EXT_DCLK_DIV
, hw
->clock_div
, cfb
);
510 cyber2000_grphw(EXT_MCLK_MULT
, cfb
->mclk_mult
, cfb
);
511 cyber2000_grphw(EXT_MCLK_DIV
, cfb
->mclk_div
, cfb
);
512 cyber2000_grphw(0x90, 0x01, cfb
);
513 cyber2000_grphw(0xb9, 0x80, cfb
);
514 cyber2000_grphw(0xb9, 0x00, cfb
);
515 spin_unlock(&cfb
->reg_b0_lock
);
517 cfb
->ramdac_ctrl
= hw
->ramdac
;
518 cyber2000fb_write_ramdac_ctrl(cfb
);
520 cyber2000fb_writeb(0x20, 0x3c0, cfb
);
521 cyber2000fb_writeb(0xff, 0x3c6, cfb
);
523 cyber2000_grphw(0x14, hw
->fetch
, cfb
);
524 cyber2000_grphw(0x15, ((hw
->fetch
>> 8) & 0x03) |
525 ((hw
->pitch
>> 4) & 0x30), cfb
);
526 cyber2000_grphw(EXT_SEQ_MISC
, hw
->extseqmisc
, cfb
);
529 * Set up accelerator registers
531 cyber2000fb_writew(hw
->width
, CO_REG_SRC_WIDTH
, cfb
);
532 cyber2000fb_writew(hw
->width
, CO_REG_DEST_WIDTH
, cfb
);
533 cyber2000fb_writeb(hw
->co_pixfmt
, CO_REG_PIXFMT
, cfb
);
537 cyber2000fb_update_start(struct cfb_info
*cfb
, struct fb_var_screeninfo
*var
)
539 u_int base
= var
->yoffset
* var
->xres_virtual
+ var
->xoffset
;
541 base
*= var
->bits_per_pixel
;
544 * Convert to bytes and shift two extra bits because DAC
545 * can only start on 4 byte aligned data.
552 cyber2000_grphw(0x10, base
>> 16 | 0x10, cfb
);
553 cyber2000_crtcw(0x0c, base
>> 8, cfb
);
554 cyber2000_crtcw(0x0d, base
, cfb
);
560 cyber2000fb_decode_crtc(struct par_info
*hw
, struct cfb_info
*cfb
,
561 struct fb_var_screeninfo
*var
)
563 u_int Htotal
, Hblankend
, Hsyncend
;
564 u_int Vtotal
, Vdispend
, Vblankstart
, Vblankend
, Vsyncstart
, Vsyncend
;
565 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
567 hw
->crtc
[13] = hw
->pitch
;
572 Htotal
= var
->xres
+ var
->right_margin
+
573 var
->hsync_len
+ var
->left_margin
;
578 hw
->crtc
[0] = (Htotal
>> 3) - 5;
579 hw
->crtc
[1] = (var
->xres
>> 3) - 1;
580 hw
->crtc
[2] = var
->xres
>> 3;
581 hw
->crtc
[4] = (var
->xres
+ var
->right_margin
) >> 3;
583 Hblankend
= (Htotal
- 4 * 8) >> 3;
585 hw
->crtc
[3] = ENCODE_BIT(Hblankend
, 0, 0x1f, 0) |
586 ENCODE_BIT(1, 0, 0x01, 7);
588 Hsyncend
= (var
->xres
+ var
->right_margin
+ var
->hsync_len
) >> 3;
590 hw
->crtc
[5] = ENCODE_BIT(Hsyncend
, 0, 0x1f, 0) |
591 ENCODE_BIT(Hblankend
, 5, 0x01, 7);
593 Vdispend
= var
->yres
- 1;
594 Vsyncstart
= var
->yres
+ var
->lower_margin
;
595 Vsyncend
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
;
596 Vtotal
= var
->yres
+ var
->lower_margin
+ var
->vsync_len
+
597 var
->upper_margin
- 2;
602 Vblankstart
= var
->yres
+ 6;
603 Vblankend
= Vtotal
- 10;
605 hw
->crtc
[6] = Vtotal
;
606 hw
->crtc
[7] = ENCODE_BIT(Vtotal
, 8, 0x01, 0) |
607 ENCODE_BIT(Vdispend
, 8, 0x01, 1) |
608 ENCODE_BIT(Vsyncstart
, 8, 0x01, 2) |
609 ENCODE_BIT(Vblankstart
, 8, 0x01, 3) |
610 ENCODE_BIT(1, 0, 0x01, 4) |
611 ENCODE_BIT(Vtotal
, 9, 0x01, 5) |
612 ENCODE_BIT(Vdispend
, 9, 0x01, 6) |
613 ENCODE_BIT(Vsyncstart
, 9, 0x01, 7);
614 hw
->crtc
[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
615 ENCODE_BIT(Vblankstart
, 9, 0x01, 5) |
616 ENCODE_BIT(1, 0, 0x01, 6);
617 hw
->crtc
[10] = Vsyncstart
;
618 hw
->crtc
[11] = ENCODE_BIT(Vsyncend
, 0, 0x0f, 0) |
619 ENCODE_BIT(1, 0, 0x01, 7);
620 hw
->crtc
[12] = Vdispend
;
621 hw
->crtc
[15] = Vblankstart
;
622 hw
->crtc
[16] = Vblankend
;
626 * overflow - graphics reg 0x11
627 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
628 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
631 ENCODE_BIT(Vtotal
, 10, 0x01, 0) |
632 ENCODE_BIT(Vdispend
, 10, 0x01, 1) |
633 ENCODE_BIT(Vsyncstart
, 10, 0x01, 2) |
634 ENCODE_BIT(Vblankstart
, 10, 0x01, 3) |
635 EXT_CRT_VRTOFL_LINECOMP10
;
637 /* woody: set the interlaced bit... */
638 /* FIXME: what about doublescan? */
639 if ((var
->vmode
& FB_VMODE_MASK
) == FB_VMODE_INTERLACED
)
640 hw
->crtc_ofl
|= EXT_CRT_VRTOFL_INTERLACE
;
646 * The following was discovered by a good monitor, bit twiddling, theorising
647 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
650 * fclock = fpll / div2
651 * fpll = fref * mult / div1
653 * fref = 14.318MHz (69842ps)
655 * div1 = (reg0xb1.5:0 + 1)
656 * div2 = 2^(reg0xb1.7:6)
657 * fpll should be between 115 and 260 MHz
658 * (8696ps and 3846ps)
661 cyber2000fb_decode_clock(struct par_info
*hw
, struct cfb_info
*cfb
,
662 struct fb_var_screeninfo
*var
)
664 u_long pll_ps
= var
->pixclock
;
665 const u_long ref_ps
= cfb
->ref_ps
;
666 u_int div2
, t_div1
, best_div1
, best_mult
;
672 * find div2 such that 115MHz < fpll < 260MHz
675 for (div2
= 0; div2
< 4; div2
++) {
678 new_pll
= pll_ps
/ cfb
->divisors
[div2
];
679 if (8696 > new_pll
&& new_pll
> 3846) {
690 * Given pll_ps and ref_ps, find:
691 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
692 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
693 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
695 best_diff
= 0x7fffffff;
698 for (t_div1
= 2; t_div1
< 32; t_div1
+= 1) {
699 u_int rr
, t_mult
, t_pll_ps
;
703 * Find the multiplier for this divisor
705 rr
= ref_ps
* t_div1
;
706 t_mult
= (rr
+ pll_ps
/ 2) / pll_ps
;
709 * Is the multiplier within the correct range?
711 if (t_mult
> 256 || t_mult
< 2)
715 * Calculate the actual clock period from this multiplier
716 * and divisor, and estimate the error.
718 t_pll_ps
= (rr
+ t_mult
/ 2) / t_mult
;
719 diff
= pll_ps
- t_pll_ps
;
723 if (diff
< best_diff
) {
730 * If we hit an exact value, there is no point in continuing.
740 hw
->clock_mult
= best_mult
- 1;
741 hw
->clock_div
= div2
<< 6 | (best_div1
- 1);
743 vco
= ref_ps
* best_div1
/ best_mult
;
744 if ((ref_ps
== 40690) && (vco
< 5556))
745 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
746 hw
->clock_div
|= EXT_DCLK_DIV_VFSEL
;
752 * Set the User Defined Part of the Display
755 cyber2000fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
757 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
762 var
->transp
.msb_right
= 0;
763 var
->red
.msb_right
= 0;
764 var
->green
.msb_right
= 0;
765 var
->blue
.msb_right
= 0;
766 var
->transp
.offset
= 0;
767 var
->transp
.length
= 0;
769 switch (var
->bits_per_pixel
) {
770 case 8: /* PSEUDOCOLOUR, 256 */
773 var
->green
.offset
= 0;
774 var
->green
.length
= 8;
775 var
->blue
.offset
= 0;
776 var
->blue
.length
= 8;
779 case 16:/* DIRECTCOLOUR, 64k or 32k */
780 switch (var
->green
.length
) {
781 case 6: /* RGB565, 64k */
782 var
->red
.offset
= 11;
784 var
->green
.offset
= 5;
785 var
->green
.length
= 6;
786 var
->blue
.offset
= 0;
787 var
->blue
.length
= 5;
791 case 5: /* RGB555, 32k */
792 var
->red
.offset
= 10;
794 var
->green
.offset
= 5;
795 var
->green
.length
= 5;
796 var
->blue
.offset
= 0;
797 var
->blue
.length
= 5;
800 case 4: /* RGB444, 4k + transparency? */
801 var
->transp
.offset
= 12;
802 var
->transp
.length
= 4;
805 var
->green
.offset
= 4;
806 var
->green
.length
= 4;
807 var
->blue
.offset
= 0;
808 var
->blue
.length
= 4;
813 case 24:/* TRUECOLOUR, 16m */
814 var
->red
.offset
= 16;
816 var
->green
.offset
= 8;
817 var
->green
.length
= 8;
818 var
->blue
.offset
= 0;
819 var
->blue
.length
= 8;
822 case 32:/* TRUECOLOUR, 16m */
823 var
->transp
.offset
= 24;
824 var
->transp
.length
= 8;
825 var
->red
.offset
= 16;
827 var
->green
.offset
= 8;
828 var
->green
.length
= 8;
829 var
->blue
.offset
= 0;
830 var
->blue
.length
= 8;
837 mem
= var
->xres_virtual
* var
->yres_virtual
* (var
->bits_per_pixel
/ 8);
838 if (mem
> cfb
->fb
.fix
.smem_len
)
839 var
->yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
840 (var
->bits_per_pixel
* var
->xres_virtual
);
842 if (var
->yres
> var
->yres_virtual
)
843 var
->yres
= var
->yres_virtual
;
844 if (var
->xres
> var
->xres_virtual
)
845 var
->xres
= var
->xres_virtual
;
847 err
= cyber2000fb_decode_clock(&hw
, cfb
, var
);
851 err
= cyber2000fb_decode_crtc(&hw
, cfb
, var
);
858 static int cyber2000fb_set_par(struct fb_info
*info
)
860 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
861 struct fb_var_screeninfo
*var
= &cfb
->fb
.var
;
865 hw
.width
= var
->xres_virtual
;
866 hw
.ramdac
= RAMDAC_VREFEN
| RAMDAC_DAC8BIT
;
868 switch (var
->bits_per_pixel
) {
870 hw
.co_pixfmt
= CO_PIXFMT_8BPP
;
871 hw
.pitch
= hw
.width
>> 3;
872 hw
.extseqmisc
= EXT_SEQ_MISC_8
;
876 hw
.co_pixfmt
= CO_PIXFMT_16BPP
;
877 hw
.pitch
= hw
.width
>> 2;
879 switch (var
->green
.length
) {
880 case 6: /* RGB565, 64k */
881 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB565
;
883 case 5: /* RGB555, 32k */
884 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB555
;
886 case 4: /* RGB444, 4k + transparency? */
887 hw
.extseqmisc
= EXT_SEQ_MISC_16_RGB444
;
894 case 24:/* TRUECOLOUR, 16m */
895 hw
.co_pixfmt
= CO_PIXFMT_24BPP
;
897 hw
.pitch
= hw
.width
>> 3;
898 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
899 hw
.extseqmisc
= EXT_SEQ_MISC_24_RGB888
;
902 case 32:/* TRUECOLOUR, 16m */
903 hw
.co_pixfmt
= CO_PIXFMT_32BPP
;
904 hw
.pitch
= hw
.width
>> 1;
905 hw
.ramdac
|= (RAMDAC_BYPASS
| RAMDAC_RAMPWRDN
);
906 hw
.extseqmisc
= EXT_SEQ_MISC_32
;
914 * Sigh, this is absolutely disgusting, but caused by
915 * the way the fbcon developers want to separate out
916 * the "checking" and the "setting" of the video mode.
918 * If the mode is not suitable for the hardware here,
919 * we can't prevent it being set by returning an error.
921 * In theory, since NetWinders contain just one VGA card,
922 * we should never end up hitting this problem.
924 BUG_ON(cyber2000fb_decode_clock(&hw
, cfb
, var
) != 0);
925 BUG_ON(cyber2000fb_decode_crtc(&hw
, cfb
, var
) != 0);
929 if (!(cfb
->mem_ctl2
& MEM_CTL2_64BIT
))
933 cfb
->fb
.fix
.line_length
= var
->xres_virtual
* var
->bits_per_pixel
/ 8;
936 * Same here - if the size of the video mode exceeds the
937 * available RAM, we can't prevent this mode being set.
939 * In theory, since NetWinders contain just one VGA card,
940 * we should never end up hitting this problem.
942 mem
= cfb
->fb
.fix
.line_length
* var
->yres_virtual
;
943 BUG_ON(mem
> cfb
->fb
.fix
.smem_len
);
946 * 8bpp displays are always pseudo colour. 16bpp and above
947 * are direct colour or true colour, depending on whether
948 * the RAMDAC palettes are bypassed. (Direct colour has
949 * palettes, true colour does not.)
951 if (var
->bits_per_pixel
== 8)
952 cfb
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
953 else if (hw
.ramdac
& RAMDAC_BYPASS
)
954 cfb
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
956 cfb
->fb
.fix
.visual
= FB_VISUAL_DIRECTCOLOR
;
958 cyber2000fb_set_timing(cfb
, &hw
);
959 cyber2000fb_update_start(cfb
, var
);
965 * Pan or Wrap the Display
968 cyber2000fb_pan_display(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
970 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
972 if (cyber2000fb_update_start(cfb
, var
))
975 cfb
->fb
.var
.xoffset
= var
->xoffset
;
976 cfb
->fb
.var
.yoffset
= var
->yoffset
;
978 if (var
->vmode
& FB_VMODE_YWRAP
) {
979 cfb
->fb
.var
.vmode
|= FB_VMODE_YWRAP
;
981 cfb
->fb
.var
.vmode
&= ~FB_VMODE_YWRAP
;
988 * (Un)Blank the display.
990 * Blank the screen if blank_mode != 0, else unblank. If
991 * blank == NULL then the caller blanks by setting the CLUT
992 * (Color Look Up Table) to all black. Return 0 if blanking
993 * succeeded, != 0 if un-/blanking failed due to e.g. a
994 * video mode which doesn't support it. Implements VESA
995 * suspend and powerdown modes on hardware that supports
996 * disabling hsync/vsync:
997 * blank_mode == 2: suspend vsync
998 * blank_mode == 3: suspend hsync
999 * blank_mode == 4: powerdown
1001 * wms...Enable VESA DMPS compatible powerdown mode
1002 * run "setterm -powersave powerdown" to take advantage
1004 static int cyber2000fb_blank(int blank
, struct fb_info
*info
)
1006 struct cfb_info
*cfb
= container_of(info
, struct cfb_info
, fb
);
1007 unsigned int sync
= 0;
1011 case FB_BLANK_POWERDOWN
: /* powerdown - both sync lines down */
1012 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_0
;
1014 case FB_BLANK_HSYNC_SUSPEND
: /* hsync off */
1015 sync
= EXT_SYNC_CTL_VS_NORMAL
| EXT_SYNC_CTL_HS_0
;
1017 case FB_BLANK_VSYNC_SUSPEND
: /* vsync off */
1018 sync
= EXT_SYNC_CTL_VS_0
| EXT_SYNC_CTL_HS_NORMAL
;
1020 case FB_BLANK_NORMAL
: /* soft blank */
1021 default: /* unblank */
1025 cyber2000_grphw(EXT_SYNC_CTL
, sync
, cfb
);
1028 /* turn on ramdacs */
1029 cfb
->ramdac_powerdown
&= ~(RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1031 cyber2000fb_write_ramdac_ctrl(cfb
);
1035 * Soft blank/unblank the display.
1037 if (blank
) { /* soft blank */
1038 for (i
= 0; i
< NR_PALETTE
; i
++) {
1039 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1040 cyber2000fb_writeb(0, 0x3c9, cfb
);
1041 cyber2000fb_writeb(0, 0x3c9, cfb
);
1042 cyber2000fb_writeb(0, 0x3c9, cfb
);
1044 } else { /* unblank */
1045 for (i
= 0; i
< NR_PALETTE
; i
++) {
1046 cyber2000fb_writeb(i
, 0x3c8, cfb
);
1047 cyber2000fb_writeb(cfb
->palette
[i
].red
, 0x3c9, cfb
);
1048 cyber2000fb_writeb(cfb
->palette
[i
].green
, 0x3c9, cfb
);
1049 cyber2000fb_writeb(cfb
->palette
[i
].blue
, 0x3c9, cfb
);
1054 /* turn off ramdacs */
1055 cfb
->ramdac_powerdown
|= RAMDAC_DACPWRDN
| RAMDAC_BYPASS
|
1057 cyber2000fb_write_ramdac_ctrl(cfb
);
1063 static const struct fb_ops cyber2000fb_ops
= {
1064 .owner
= THIS_MODULE
,
1065 .fb_check_var
= cyber2000fb_check_var
,
1066 .fb_set_par
= cyber2000fb_set_par
,
1067 .fb_setcolreg
= cyber2000fb_setcolreg
,
1068 .fb_blank
= cyber2000fb_blank
,
1069 .fb_pan_display
= cyber2000fb_pan_display
,
1070 .fb_fillrect
= cyber2000fb_fillrect
,
1071 .fb_copyarea
= cyber2000fb_copyarea
,
1072 .fb_imageblit
= cyber2000fb_imageblit
,
1073 .fb_sync
= cyber2000fb_sync
,
1077 * This is the only "static" reference to the internal data structures
1078 * of this driver. It is here solely at the moment to support the other
1079 * CyberPro modules external to this driver.
1081 static struct cfb_info
*int_cfb_info
;
1084 * Enable access to the extended registers
1086 void cyber2000fb_enable_extregs(struct cfb_info
*cfb
)
1088 cfb
->func_use_count
+= 1;
1090 if (cfb
->func_use_count
== 1) {
1093 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1094 old
|= EXT_FUNC_CTL_EXTREGENBL
;
1095 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1098 EXPORT_SYMBOL(cyber2000fb_enable_extregs
);
1101 * Disable access to the extended registers
1103 void cyber2000fb_disable_extregs(struct cfb_info
*cfb
)
1105 if (cfb
->func_use_count
== 1) {
1108 old
= cyber2000_grphr(EXT_FUNC_CTL
, cfb
);
1109 old
&= ~EXT_FUNC_CTL_EXTREGENBL
;
1110 cyber2000_grphw(EXT_FUNC_CTL
, old
, cfb
);
1113 if (cfb
->func_use_count
== 0)
1114 printk(KERN_ERR
"disable_extregs: count = 0\n");
1116 cfb
->func_use_count
-= 1;
1118 EXPORT_SYMBOL(cyber2000fb_disable_extregs
);
1121 * Attach a capture/tv driver to the core CyberX0X0 driver.
1123 int cyber2000fb_attach(struct cyberpro_info
*info
, int idx
)
1125 if (int_cfb_info
!= NULL
) {
1126 info
->dev
= int_cfb_info
->fb
.device
;
1127 #ifdef CONFIG_FB_CYBER2000_I2C
1128 info
->i2c
= &int_cfb_info
->i2c_adapter
;
1132 info
->regs
= int_cfb_info
->regs
;
1133 info
->irq
= int_cfb_info
->irq
;
1134 info
->fb
= int_cfb_info
->fb
.screen_base
;
1135 info
->fb_size
= int_cfb_info
->fb
.fix
.smem_len
;
1136 info
->info
= int_cfb_info
;
1138 strlcpy(info
->dev_name
, int_cfb_info
->fb
.fix
.id
,
1139 sizeof(info
->dev_name
));
1142 return int_cfb_info
!= NULL
;
1144 EXPORT_SYMBOL(cyber2000fb_attach
);
1147 * Detach a capture/tv driver from the core CyberX0X0 driver.
1149 void cyber2000fb_detach(int idx
)
1152 EXPORT_SYMBOL(cyber2000fb_detach
);
1154 #ifdef CONFIG_FB_CYBER2000_DDC
1156 #define DDC_REG 0xb0
1157 #define DDC_SCL_OUT (1 << 0)
1158 #define DDC_SDA_OUT (1 << 4)
1159 #define DDC_SCL_IN (1 << 2)
1160 #define DDC_SDA_IN (1 << 6)
1162 static void cyber2000fb_enable_ddc(struct cfb_info
*cfb
)
1164 spin_lock(&cfb
->reg_b0_lock
);
1165 cyber2000fb_writew(0x1bf, 0x3ce, cfb
);
1168 static void cyber2000fb_disable_ddc(struct cfb_info
*cfb
)
1170 cyber2000fb_writew(0x0bf, 0x3ce, cfb
);
1171 spin_unlock(&cfb
->reg_b0_lock
);
1175 static void cyber2000fb_ddc_setscl(void *data
, int val
)
1177 struct cfb_info
*cfb
= data
;
1180 cyber2000fb_enable_ddc(cfb
);
1181 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1182 if (!val
) /* bit is inverted */
1185 reg
&= ~DDC_SCL_OUT
;
1186 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1187 cyber2000fb_disable_ddc(cfb
);
1190 static void cyber2000fb_ddc_setsda(void *data
, int val
)
1192 struct cfb_info
*cfb
= data
;
1195 cyber2000fb_enable_ddc(cfb
);
1196 reg
= cyber2000_grphr(DDC_REG
, cfb
);
1197 if (!val
) /* bit is inverted */
1200 reg
&= ~DDC_SDA_OUT
;
1201 cyber2000_grphw(DDC_REG
, reg
, cfb
);
1202 cyber2000fb_disable_ddc(cfb
);
1205 static int cyber2000fb_ddc_getscl(void *data
)
1207 struct cfb_info
*cfb
= data
;
1210 cyber2000fb_enable_ddc(cfb
);
1211 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SCL_IN
);
1212 cyber2000fb_disable_ddc(cfb
);
1217 static int cyber2000fb_ddc_getsda(void *data
)
1219 struct cfb_info
*cfb
= data
;
1222 cyber2000fb_enable_ddc(cfb
);
1223 retval
= !!(cyber2000_grphr(DDC_REG
, cfb
) & DDC_SDA_IN
);
1224 cyber2000fb_disable_ddc(cfb
);
1229 static int cyber2000fb_setup_ddc_bus(struct cfb_info
*cfb
)
1231 strlcpy(cfb
->ddc_adapter
.name
, cfb
->fb
.fix
.id
,
1232 sizeof(cfb
->ddc_adapter
.name
));
1233 cfb
->ddc_adapter
.owner
= THIS_MODULE
;
1234 cfb
->ddc_adapter
.class = I2C_CLASS_DDC
;
1235 cfb
->ddc_adapter
.algo_data
= &cfb
->ddc_algo
;
1236 cfb
->ddc_adapter
.dev
.parent
= cfb
->fb
.device
;
1237 cfb
->ddc_algo
.setsda
= cyber2000fb_ddc_setsda
;
1238 cfb
->ddc_algo
.setscl
= cyber2000fb_ddc_setscl
;
1239 cfb
->ddc_algo
.getsda
= cyber2000fb_ddc_getsda
;
1240 cfb
->ddc_algo
.getscl
= cyber2000fb_ddc_getscl
;
1241 cfb
->ddc_algo
.udelay
= 10;
1242 cfb
->ddc_algo
.timeout
= 20;
1243 cfb
->ddc_algo
.data
= cfb
;
1245 i2c_set_adapdata(&cfb
->ddc_adapter
, cfb
);
1247 return i2c_bit_add_bus(&cfb
->ddc_adapter
);
1249 #endif /* CONFIG_FB_CYBER2000_DDC */
1251 #ifdef CONFIG_FB_CYBER2000_I2C
1252 static void cyber2000fb_i2c_setsda(void *data
, int state
)
1254 struct cfb_info
*cfb
= data
;
1255 unsigned int latch2
;
1257 spin_lock(&cfb
->reg_b0_lock
);
1258 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1259 latch2
&= EXT_LATCH2_I2C_CLKEN
;
1261 latch2
|= EXT_LATCH2_I2C_DATEN
;
1262 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1263 spin_unlock(&cfb
->reg_b0_lock
);
1266 static void cyber2000fb_i2c_setscl(void *data
, int state
)
1268 struct cfb_info
*cfb
= data
;
1269 unsigned int latch2
;
1271 spin_lock(&cfb
->reg_b0_lock
);
1272 latch2
= cyber2000_grphr(EXT_LATCH2
, cfb
);
1273 latch2
&= EXT_LATCH2_I2C_DATEN
;
1275 latch2
|= EXT_LATCH2_I2C_CLKEN
;
1276 cyber2000_grphw(EXT_LATCH2
, latch2
, cfb
);
1277 spin_unlock(&cfb
->reg_b0_lock
);
1280 static int cyber2000fb_i2c_getsda(void *data
)
1282 struct cfb_info
*cfb
= data
;
1285 spin_lock(&cfb
->reg_b0_lock
);
1286 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_DAT
);
1287 spin_unlock(&cfb
->reg_b0_lock
);
1292 static int cyber2000fb_i2c_getscl(void *data
)
1294 struct cfb_info
*cfb
= data
;
1297 spin_lock(&cfb
->reg_b0_lock
);
1298 ret
= !!(cyber2000_grphr(EXT_LATCH2
, cfb
) & EXT_LATCH2_I2C_CLK
);
1299 spin_unlock(&cfb
->reg_b0_lock
);
1304 static int cyber2000fb_i2c_register(struct cfb_info
*cfb
)
1306 strlcpy(cfb
->i2c_adapter
.name
, cfb
->fb
.fix
.id
,
1307 sizeof(cfb
->i2c_adapter
.name
));
1308 cfb
->i2c_adapter
.owner
= THIS_MODULE
;
1309 cfb
->i2c_adapter
.algo_data
= &cfb
->i2c_algo
;
1310 cfb
->i2c_adapter
.dev
.parent
= cfb
->fb
.device
;
1311 cfb
->i2c_algo
.setsda
= cyber2000fb_i2c_setsda
;
1312 cfb
->i2c_algo
.setscl
= cyber2000fb_i2c_setscl
;
1313 cfb
->i2c_algo
.getsda
= cyber2000fb_i2c_getsda
;
1314 cfb
->i2c_algo
.getscl
= cyber2000fb_i2c_getscl
;
1315 cfb
->i2c_algo
.udelay
= 5;
1316 cfb
->i2c_algo
.timeout
= msecs_to_jiffies(100);
1317 cfb
->i2c_algo
.data
= cfb
;
1319 return i2c_bit_add_bus(&cfb
->i2c_adapter
);
1322 static void cyber2000fb_i2c_unregister(struct cfb_info
*cfb
)
1324 i2c_del_adapter(&cfb
->i2c_adapter
);
1327 #define cyber2000fb_i2c_register(cfb) (0)
1328 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1332 * These parameters give
1333 * 640x480, hsync 31.5kHz, vsync 60Hz
1335 static const struct fb_videomode cyber2000fb_default_mode
= {
1346 .sync
= FB_SYNC_COMP_HIGH_ACT
| FB_SYNC_VERT_HIGH_ACT
,
1347 .vmode
= FB_VMODE_NONINTERLACED
1350 static char igs_regs
[] = {
1354 EXT_SEG_WRITE_PTR
, 0,
1355 EXT_SEG_READ_PTR
, 0,
1356 EXT_BIU_MISC
, EXT_BIU_MISC_LIN_ENABLE
|
1357 EXT_BIU_MISC_COP_ENABLE
|
1358 EXT_BIU_MISC_COP_BFC
,
1361 CURS_H_START
+ 1, 0,
1364 CURS_V_START
+ 1, 0,
1367 EXT_ATTRIB_CTL
, EXT_ATTRIB_CTL_EXT
,
1368 EXT_OVERSCAN_RED
, 0,
1369 EXT_OVERSCAN_GREEN
, 0,
1370 EXT_OVERSCAN_BLUE
, 0,
1372 /* some of these are questionable when we have a BIOS */
1373 EXT_MEM_CTL0
, EXT_MEM_CTL0_7CLK
|
1374 EXT_MEM_CTL0_RAS_1
|
1375 EXT_MEM_CTL0_MULTCAS
,
1376 EXT_HIDDEN_CTL1
, 0x30,
1378 EXT_FIFO_CTL
+ 1, 0x17,
1380 EXT_HIDDEN_CTL4
, 0xc8
1384 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1385 * ensure that we're using the correct PLL (5XXX's may be
1386 * programmed to use an additional set of PLLs.)
1388 static void cyberpro_init_hw(struct cfb_info
*cfb
)
1392 for (i
= 0; i
< sizeof(igs_regs
); i
+= 2)
1393 cyber2000_grphw(igs_regs
[i
], igs_regs
[i
+ 1], cfb
);
1395 if (cfb
->id
== ID_CYBERPRO_5000
) {
1397 cyber2000fb_writeb(0xba, 0x3ce, cfb
);
1398 val
= cyber2000fb_readb(0x3cf, cfb
) & 0x80;
1399 cyber2000fb_writeb(val
, 0x3cf, cfb
);
1403 static struct cfb_info
*cyberpro_alloc_fb_info(unsigned int id
, char *name
)
1405 struct cfb_info
*cfb
;
1407 cfb
= kzalloc(sizeof(struct cfb_info
), GFP_KERNEL
);
1414 if (id
== ID_CYBERPRO_5000
)
1415 cfb
->ref_ps
= 40690; /* 24.576 MHz */
1417 cfb
->ref_ps
= 69842; /* 14.31818 MHz (69841?) */
1419 cfb
->divisors
[0] = 1;
1420 cfb
->divisors
[1] = 2;
1421 cfb
->divisors
[2] = 4;
1423 if (id
== ID_CYBERPRO_2000
)
1424 cfb
->divisors
[3] = 8;
1426 cfb
->divisors
[3] = 6;
1428 strcpy(cfb
->fb
.fix
.id
, name
);
1430 cfb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1431 cfb
->fb
.fix
.type_aux
= 0;
1432 cfb
->fb
.fix
.xpanstep
= 0;
1433 cfb
->fb
.fix
.ypanstep
= 1;
1434 cfb
->fb
.fix
.ywrapstep
= 0;
1438 cfb
->fb
.fix
.accel
= 0;
1441 case ID_CYBERPRO_2000
:
1442 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2000
;
1445 case ID_CYBERPRO_2010
:
1446 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER2010
;
1449 case ID_CYBERPRO_5000
:
1450 cfb
->fb
.fix
.accel
= FB_ACCEL_IGS_CYBER5000
;
1454 cfb
->fb
.var
.nonstd
= 0;
1455 cfb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1456 cfb
->fb
.var
.height
= -1;
1457 cfb
->fb
.var
.width
= -1;
1458 cfb
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1460 cfb
->fb
.fbops
= &cyber2000fb_ops
;
1461 cfb
->fb
.flags
= FBINFO_DEFAULT
| FBINFO_HWACCEL_YPAN
;
1462 cfb
->fb
.pseudo_palette
= cfb
->pseudo_palette
;
1464 spin_lock_init(&cfb
->reg_b0_lock
);
1466 fb_alloc_cmap(&cfb
->fb
.cmap
, NR_PALETTE
, 0);
1471 static void cyberpro_free_fb_info(struct cfb_info
*cfb
)
1475 * Free the colourmap
1477 fb_alloc_cmap(&cfb
->fb
.cmap
, 0, 0);
1484 * Parse Cyber2000fb options. Usage:
1485 * video=cyber2000:font:fontname
1488 static int cyber2000fb_setup(char *options
)
1492 if (!options
|| !*options
)
1495 while ((opt
= strsep(&options
, ",")) != NULL
) {
1499 if (strncmp(opt
, "font:", 5) == 0) {
1500 static char default_font_storage
[40];
1502 strlcpy(default_font_storage
, opt
+ 5,
1503 sizeof(default_font_storage
));
1504 default_font
= default_font_storage
;
1508 printk(KERN_ERR
"CyberPro20x0: unknown parameter: %s\n", opt
);
1515 * The CyberPro chips can be placed on many different bus types.
1516 * This probe function is common to all bus types. The bus-specific
1517 * probe function is expected to have:
1518 * - enabled access to the linear memory region
1519 * - memory mapped access to the registers
1520 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1522 static int cyberpro_common_probe(struct cfb_info
*cfb
)
1525 u_int h_sync
, v_sync
;
1528 cyberpro_init_hw(cfb
);
1531 * Get the video RAM size and width from the VGA register.
1532 * This should have been already initialised by the BIOS,
1533 * but if it's garbage, claim default 1MB VRAM (woody)
1535 cfb
->mem_ctl1
= cyber2000_grphr(EXT_MEM_CTL1
, cfb
);
1536 cfb
->mem_ctl2
= cyber2000_grphr(EXT_MEM_CTL2
, cfb
);
1539 * Determine the size of the memory.
1541 switch (cfb
->mem_ctl2
& MEM_CTL2_SIZE_MASK
) {
1542 case MEM_CTL2_SIZE_4MB
:
1543 smem_size
= 0x00400000;
1545 case MEM_CTL2_SIZE_2MB
:
1546 smem_size
= 0x00200000;
1548 case MEM_CTL2_SIZE_1MB
:
1549 smem_size
= 0x00100000;
1552 smem_size
= 0x00100000;
1556 cfb
->fb
.fix
.smem_len
= smem_size
;
1557 cfb
->fb
.fix
.mmio_len
= MMIO_SIZE
;
1558 cfb
->fb
.screen_base
= cfb
->region
;
1560 #ifdef CONFIG_FB_CYBER2000_DDC
1561 if (cyber2000fb_setup_ddc_bus(cfb
) == 0)
1562 cfb
->ddc_registered
= true;
1566 if (!fb_find_mode(&cfb
->fb
.var
, &cfb
->fb
, NULL
, NULL
, 0,
1567 &cyber2000fb_default_mode
, 8)) {
1568 printk(KERN_ERR
"%s: no valid mode found\n", cfb
->fb
.fix
.id
);
1572 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.fix
.smem_len
* 8 /
1573 (cfb
->fb
.var
.bits_per_pixel
* cfb
->fb
.var
.xres_virtual
);
1575 if (cfb
->fb
.var
.yres_virtual
< cfb
->fb
.var
.yres
)
1576 cfb
->fb
.var
.yres_virtual
= cfb
->fb
.var
.yres
;
1578 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1581 * Calculate the hsync and vsync frequencies. Note that
1582 * we split the 1e12 constant up so that we can preserve
1583 * the precision and fit the results into 32-bit registers.
1584 * (1953125000 * 512 = 1e12)
1586 h_sync
= 1953125000 / cfb
->fb
.var
.pixclock
;
1587 h_sync
= h_sync
* 512 / (cfb
->fb
.var
.xres
+ cfb
->fb
.var
.left_margin
+
1588 cfb
->fb
.var
.right_margin
+ cfb
->fb
.var
.hsync_len
);
1589 v_sync
= h_sync
/ (cfb
->fb
.var
.yres
+ cfb
->fb
.var
.upper_margin
+
1590 cfb
->fb
.var
.lower_margin
+ cfb
->fb
.var
.vsync_len
);
1592 printk(KERN_INFO
"%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1593 cfb
->fb
.fix
.id
, cfb
->fb
.fix
.smem_len
>> 10,
1594 cfb
->fb
.var
.xres
, cfb
->fb
.var
.yres
,
1595 h_sync
/ 1000, h_sync
% 1000, v_sync
);
1597 err
= cyber2000fb_i2c_register(cfb
);
1601 err
= register_framebuffer(&cfb
->fb
);
1603 cyber2000fb_i2c_unregister(cfb
);
1606 #ifdef CONFIG_FB_CYBER2000_DDC
1607 if (err
&& cfb
->ddc_registered
)
1608 i2c_del_adapter(&cfb
->ddc_adapter
);
1613 static void cyberpro_common_remove(struct cfb_info
*cfb
)
1615 unregister_framebuffer(&cfb
->fb
);
1616 #ifdef CONFIG_FB_CYBER2000_DDC
1617 if (cfb
->ddc_registered
)
1618 i2c_del_adapter(&cfb
->ddc_adapter
);
1620 cyber2000fb_i2c_unregister(cfb
);
1623 static void cyberpro_common_resume(struct cfb_info
*cfb
)
1625 cyberpro_init_hw(cfb
);
1628 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1630 cyber2000_grphw(EXT_MEM_CTL1
, cfb
->mem_ctl1
, cfb
);
1631 cyber2000_grphw(EXT_MEM_CTL2
, cfb
->mem_ctl2
, cfb
);
1634 * Restore the old video mode and the palette.
1635 * We also need to tell fbcon to redraw the console.
1637 cyber2000fb_set_par(&cfb
->fb
);
1641 * We need to wake up the CyberPro, and make sure its in linear memory
1642 * mode. Unfortunately, this is specific to the platform and card that
1643 * we are running on.
1645 * On x86 and ARM, should we be initialising the CyberPro first via the
1646 * IO registers, and then the MMIO registers to catch all cases? Can we
1647 * end up in the situation where the chip is in MMIO mode, but not awake
1650 static int cyberpro_pci_enable_mmio(struct cfb_info
*cfb
)
1654 #if defined(__sparc_v9__)
1655 #error "You lose, consult DaveM."
1656 #elif defined(__sparc__)
1658 * SPARC does not have an "outb" instruction, so we generate
1659 * I/O cycles storing into a reserved memory space at
1660 * physical address 0x3000000
1662 unsigned char __iomem
*iop
;
1664 iop
= ioremap(0x3000000, 0x5000);
1666 printk(KERN_ERR
"iga5000: cannot map I/O\n");
1670 writeb(0x18, iop
+ 0x46e8);
1671 writeb(0x01, iop
+ 0x102);
1672 writeb(0x08, iop
+ 0x46e8);
1673 writeb(EXT_BIU_MISC
, iop
+ 0x3ce);
1674 writeb(EXT_BIU_MISC_LIN_ENABLE
, iop
+ 0x3cf);
1679 * Most other machine types are "normal", so
1680 * we use the standard IO-based wakeup.
1685 outb(EXT_BIU_MISC
, 0x3ce);
1686 outb(EXT_BIU_MISC_LIN_ENABLE
, 0x3cf);
1690 * Allow the CyberPro to accept PCI burst accesses
1692 if (cfb
->id
== ID_CYBERPRO_2010
) {
1693 printk(KERN_INFO
"%s: NOT enabling PCI bursts\n",
1696 val
= cyber2000_grphr(EXT_BUS_CTL
, cfb
);
1697 if (!(val
& EXT_BUS_CTL_PCIBURST_WRITE
)) {
1698 printk(KERN_INFO
"%s: enabling PCI bursts\n",
1701 val
|= EXT_BUS_CTL_PCIBURST_WRITE
;
1703 if (cfb
->id
== ID_CYBERPRO_5000
)
1704 val
|= EXT_BUS_CTL_PCIBURST_READ
;
1706 cyber2000_grphw(EXT_BUS_CTL
, val
, cfb
);
1713 static int cyberpro_pci_probe(struct pci_dev
*dev
,
1714 const struct pci_device_id
*id
)
1716 struct cfb_info
*cfb
;
1720 sprintf(name
, "CyberPro%4X", id
->device
);
1722 err
= pci_enable_device(dev
);
1727 cfb
= cyberpro_alloc_fb_info(id
->driver_data
, name
);
1729 goto failed_release
;
1731 err
= pci_request_regions(dev
, cfb
->fb
.fix
.id
);
1733 goto failed_regions
;
1735 cfb
->irq
= dev
->irq
;
1736 cfb
->region
= pci_ioremap_bar(dev
, 0);
1739 goto failed_ioremap
;
1742 cfb
->regs
= cfb
->region
+ MMIO_OFFSET
;
1743 cfb
->fb
.device
= &dev
->dev
;
1744 cfb
->fb
.fix
.mmio_start
= pci_resource_start(dev
, 0) + MMIO_OFFSET
;
1745 cfb
->fb
.fix
.smem_start
= pci_resource_start(dev
, 0);
1748 * Bring up the hardware. This is expected to enable access
1749 * to the linear memory region, and allow access to the memory
1750 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1753 err
= cyberpro_pci_enable_mmio(cfb
);
1758 * Use MCLK from BIOS. FIXME: what about hotplug?
1760 cfb
->mclk_mult
= cyber2000_grphr(EXT_MCLK_MULT
, cfb
);
1761 cfb
->mclk_div
= cyber2000_grphr(EXT_MCLK_DIV
, cfb
);
1765 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1767 if (machine_is_netwinder()) {
1768 cfb
->mclk_mult
= 0xdb;
1769 cfb
->mclk_div
= 0x54;
1773 err
= cyberpro_common_probe(cfb
);
1780 pci_set_drvdata(dev
, cfb
);
1781 if (int_cfb_info
== NULL
)
1787 iounmap(cfb
->region
);
1789 pci_release_regions(dev
);
1791 cyberpro_free_fb_info(cfb
);
1796 static void cyberpro_pci_remove(struct pci_dev
*dev
)
1798 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1801 cyberpro_common_remove(cfb
);
1802 iounmap(cfb
->region
);
1803 cyberpro_free_fb_info(cfb
);
1805 if (cfb
== int_cfb_info
)
1806 int_cfb_info
= NULL
;
1808 pci_release_regions(dev
);
1812 static int cyberpro_pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
1818 * Re-initialise the CyberPro hardware
1820 static int cyberpro_pci_resume(struct pci_dev
*dev
)
1822 struct cfb_info
*cfb
= pci_get_drvdata(dev
);
1825 cyberpro_pci_enable_mmio(cfb
);
1826 cyberpro_common_resume(cfb
);
1832 static struct pci_device_id cyberpro_pci_table
[] = {
1834 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1835 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1837 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2000
,
1838 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2000
},
1839 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_2010
,
1840 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_2010
},
1841 { PCI_VENDOR_ID_INTERG
, PCI_DEVICE_ID_INTERG_5000
,
1842 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, ID_CYBERPRO_5000
},
1846 MODULE_DEVICE_TABLE(pci
, cyberpro_pci_table
);
1848 static struct pci_driver cyberpro_driver
= {
1850 .probe
= cyberpro_pci_probe
,
1851 .remove
= cyberpro_pci_remove
,
1852 .suspend
= cyberpro_pci_suspend
,
1853 .resume
= cyberpro_pci_resume
,
1854 .id_table
= cyberpro_pci_table
1858 * I don't think we can use the "module_init" stuff here because
1859 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1860 * around module_init.
1862 * Tony: "module_init" is now required
1864 static int __init
cyber2000fb_init(void)
1869 char *option
= NULL
;
1871 if (fb_get_options("cyber2000fb", &option
))
1873 cyber2000fb_setup(option
);
1876 err
= pci_register_driver(&cyberpro_driver
);
1880 return ret
? err
: 0;
1882 module_init(cyber2000fb_init
);
1884 static void __exit
cyberpro_exit(void)
1886 pci_unregister_driver(&cyberpro_driver
);
1888 module_exit(cyberpro_exit
);
1890 MODULE_AUTHOR("Russell King");
1891 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1892 MODULE_LICENSE("GPL");