1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
56 * sbridge Memory Controller Registers
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development process. This table should be
62 * moved to pci_id.h when submitted upstream
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 sbridge_dram_rule
[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
91 static const u32 ibridge_dram_rule
[] = {
92 0x60, 0x68, 0x70, 0x78, 0x80,
93 0x88, 0x90, 0x98, 0xa0, 0xa8,
94 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
95 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
98 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
99 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
100 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
101 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
103 static char *get_dram_attr(u32 reg
)
105 switch(DRAM_ATTR(reg
)) {
117 static const u32 sbridge_interleave_list
[] = {
118 0x84, 0x8c, 0x94, 0x9c, 0xa4,
119 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
122 static const u32 ibridge_interleave_list
[] = {
123 0x64, 0x6c, 0x74, 0x7c, 0x84,
124 0x8c, 0x94, 0x9c, 0xa4, 0xac,
125 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
126 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
129 struct interleave_pkg
{
134 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
145 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
156 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
159 return GET_BITFIELD(reg
, table
[interleave
].start
,
160 table
[interleave
].end
);
163 /* Devices 12 Function 7 */
168 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
169 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
171 /* Device 13 Function 6 */
173 #define SAD_TARGET 0xf0
175 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
177 #define SAD_CONTROL 0xf4
179 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
181 /* Device 14 function 0 */
183 static const u32 tad_dram_rule
[] = {
184 0x40, 0x44, 0x48, 0x4c,
185 0x50, 0x54, 0x58, 0x5c,
186 0x60, 0x64, 0x68, 0x6c,
188 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
190 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
191 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
192 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
193 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
194 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
195 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
196 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
198 /* Device 15, function 0 */
202 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
203 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
204 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
206 /* Device 15, function 1 */
208 #define RASENABLES 0xac
209 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
211 /* Device 15, functions 2-5 */
213 static const int mtr_regs
[] = {
217 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
218 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
219 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
220 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
221 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
223 static const u32 tad_ch_nilv_offset
[] = {
224 0x90, 0x94, 0x98, 0x9c,
225 0xa0, 0xa4, 0xa8, 0xac,
226 0xb0, 0xb4, 0xb8, 0xbc,
228 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
229 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
231 static const u32 rir_way_limit
[] = {
232 0x108, 0x10c, 0x110, 0x114, 0x118,
234 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
236 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
237 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
238 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
240 #define MAX_RIR_WAY 8
242 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
243 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
244 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
245 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
246 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
247 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
250 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
251 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
253 /* Device 16, functions 2-7 */
256 * FIXME: Implement the error count reads directly
259 static const u32 correrrcnt
[] = {
260 0x104, 0x108, 0x10c, 0x110,
263 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
268 static const u32 correrrthrsld
[] = {
269 0x11c, 0x120, 0x124, 0x128,
272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
276 /* Device 17, function 0 */
278 #define SB_RANK_CFG_A 0x0328
280 #define IB_RANK_CFG_A 0x0320
282 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
288 #define NUM_CHANNELS 4
289 #define MAX_DIMMS 3 /* Max DIMMS per channel */
297 struct sbridge_info
{
301 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
302 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
303 const u32
*dram_rule
;
304 const u32
*interleave_list
;
305 const struct interleave_pkg
*interleave_pkg
;
310 struct sbridge_channel
{
315 struct pci_id_descr
{
322 struct pci_id_table
{
323 const struct pci_id_descr
*descr
;
328 struct list_head list
;
330 u8 node_id
, source_id
;
331 struct pci_dev
**pdev
;
333 struct mem_ctl_info
*mci
;
337 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
338 struct pci_dev
*pci_sad0
, *pci_sad1
;
339 struct pci_dev
*pci_ha0
, *pci_ha1
;
340 struct pci_dev
*pci_br0
, *pci_br1
;
341 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
343 struct sbridge_dev
*sbridge_dev
;
345 struct sbridge_info info
;
346 struct sbridge_channel channel
[NUM_CHANNELS
];
348 /* Memory type detection */
349 bool is_mirrored
, is_lockstep
, is_close_pg
;
351 /* Fifo double buffers */
352 struct mce mce_entry
[MCE_LOG_LEN
];
353 struct mce mce_outentry
[MCE_LOG_LEN
];
355 /* Fifo in/out counters */
356 unsigned mce_in
, mce_out
;
358 /* Count indicator to show errors not got */
359 unsigned mce_overrun
;
361 /* Memory description */
365 #define PCI_DESCR(device, function, device_id, opt) \
367 .func = (function), \
368 .dev_id = (device_id), \
371 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
372 /* Processor Home Agent */
373 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
375 /* Memory controller */
376 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
377 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
378 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
379 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
380 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
381 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
382 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
384 /* System Address Decoder */
385 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
386 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
388 /* Broadcast Registers */
389 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
392 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
393 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
394 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
395 {0,} /* 0 terminated list. */
398 /* This changes depending if 1HA or 2HA:
400 * 0x0eb8 (17.0) is DDRIO0
402 * 0x0ebc (17.4) is DDRIO0
404 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
405 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
408 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
410 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
411 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
412 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
417 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
421 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
424 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
425 /* Processor Home Agent */
426 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
428 /* Memory controller */
429 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
430 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
431 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
432 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
433 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
434 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
436 /* System Address Decoder */
437 { PCI_DESCR(22, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
439 /* Broadcast Registers */
440 { PCI_DESCR(22, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
441 { PCI_DESCR(22, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
443 /* Optional, mode 2HA */
444 { PCI_DESCR(28, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
446 { PCI_DESCR(29, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
447 { PCI_DESCR(29, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
449 { PCI_DESCR(29, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
450 { PCI_DESCR(29, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
452 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
453 { PCI_DESCR(17, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
456 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
457 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
),
458 {0,} /* 0 terminated list. */
462 * pci_device_id table for which devices we are looking for
464 static const struct pci_device_id sbridge_pci_tbl
[] = {
465 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
)},
466 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
)},
467 {0,} /* 0 terminated list. */
471 /****************************************************************************
472 Ancillary status routines
473 ****************************************************************************/
475 static inline int numrank(u32 mtr
)
477 int ranks
= (1 << RANK_CNT_BITS(mtr
));
480 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
481 ranks
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
488 static inline int numrow(u32 mtr
)
490 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
492 if (rows
< 13 || rows
> 18) {
493 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
494 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
501 static inline int numcol(u32 mtr
)
503 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
506 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
507 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
514 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
516 struct sbridge_dev
*sbridge_dev
;
518 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
519 if (sbridge_dev
->bus
== bus
)
526 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
527 const struct pci_id_table
*table
)
529 struct sbridge_dev
*sbridge_dev
;
531 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
535 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
537 if (!sbridge_dev
->pdev
) {
542 sbridge_dev
->bus
= bus
;
543 sbridge_dev
->n_devs
= table
->n_devs
;
544 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
549 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
551 list_del(&sbridge_dev
->list
);
552 kfree(sbridge_dev
->pdev
);
556 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
560 /* Address range is 32:28 */
561 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
562 return GET_TOLM(reg
);
565 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
569 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
570 return GET_TOHM(reg
);
573 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
577 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
579 return GET_TOLM(reg
);
582 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
586 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
588 return GET_TOHM(reg
);
591 static inline u8
sad_pkg_socket(u8 pkg
)
593 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
594 return (pkg
>> 3) | (pkg
& 0x3);
597 static inline u8
sad_pkg_ha(u8 pkg
)
599 return (pkg
>> 2) & 0x1;
602 /****************************************************************************
603 Memory check routines
604 ****************************************************************************/
605 static struct pci_dev
*get_pdev_slot_func(u8 bus
, unsigned slot
,
608 struct sbridge_dev
*sbridge_dev
= get_sbridge_dev(bus
);
614 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
615 if (!sbridge_dev
->pdev
[i
])
618 if (PCI_SLOT(sbridge_dev
->pdev
[i
]->devfn
) == slot
&&
619 PCI_FUNC(sbridge_dev
->pdev
[i
]->devfn
) == func
) {
620 edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
621 bus
, slot
, func
, sbridge_dev
->pdev
[i
]);
622 return sbridge_dev
->pdev
[i
];
630 * check_if_ecc_is_active() - Checks if ECC is active
633 static int check_if_ecc_is_active(const u8 bus
)
635 struct pci_dev
*pdev
= NULL
;
638 pdev
= get_pdev_slot_func(bus
, 15, 0);
640 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
646 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
647 if (!IS_ECC_ENABLED(mcmtr
)) {
648 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
654 static int get_dimm_config(struct mem_ctl_info
*mci
)
656 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
657 struct dimm_info
*dimm
;
658 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
664 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
665 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
667 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
668 pvt
->sbridge_dev
->node_id
= NODE_ID(reg
);
669 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
670 pvt
->sbridge_dev
->mc
,
671 pvt
->sbridge_dev
->node_id
,
672 pvt
->sbridge_dev
->source_id
);
674 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
675 if (IS_MIRROR_ENABLED(reg
)) {
676 edac_dbg(0, "Memory mirror is enabled\n");
677 pvt
->is_mirrored
= true;
679 edac_dbg(0, "Memory mirror is disabled\n");
680 pvt
->is_mirrored
= false;
683 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
684 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
685 edac_dbg(0, "Lockstep is enabled\n");
686 mode
= EDAC_S8ECD8ED
;
687 pvt
->is_lockstep
= true;
689 edac_dbg(0, "Lockstep is disabled\n");
690 mode
= EDAC_S4ECD4ED
;
691 pvt
->is_lockstep
= false;
693 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
694 edac_dbg(0, "address map is on closed page mode\n");
695 pvt
->is_close_pg
= true;
697 edac_dbg(0, "address map is on open page mode\n");
698 pvt
->is_close_pg
= false;
701 if (pvt
->pci_ddrio
) {
702 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
704 if (IS_RDIMM_ENABLED(reg
)) {
705 /* FIXME: Can also be LRDIMM */
706 edac_dbg(0, "Memory is registered\n");
709 edac_dbg(0, "Memory is unregistered\n");
713 edac_dbg(0, "Cannot determine memory type\n");
717 /* On all supported DDR3 DIMM types, there are 8 banks available */
720 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
723 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
724 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
726 pci_read_config_dword(pvt
->pci_tad
[i
],
728 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
729 if (IS_DIMM_PRESENT(mtr
)) {
730 pvt
->channel
[i
].dimms
++;
732 ranks
= numrank(mtr
);
736 /* DDR3 has 8 I/O banks */
737 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
738 npages
= MiB_TO_PAGES(size
);
740 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
741 pvt
->sbridge_dev
->mc
, i
, j
,
743 banks
, ranks
, rows
, cols
);
745 dimm
->nr_pages
= npages
;
747 dimm
->dtype
= (banks
== 8) ? DEV_X8
: DEV_X4
;
749 dimm
->edac_mode
= mode
;
750 snprintf(dimm
->label
, sizeof(dimm
->label
),
751 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
752 pvt
->sbridge_dev
->source_id
, i
, j
);
760 static void get_memory_layout(const struct mem_ctl_info
*mci
)
762 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
763 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
771 * Step 1) Get TOLM/TOHM ranges
774 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
775 tmp_mb
= (1 + pvt
->tolm
) >> 20;
777 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
778 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tolm
);
780 /* Address range is already 45:25 */
781 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
782 tmp_mb
= (1 + pvt
->tohm
) >> 20;
784 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
785 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tohm
);
788 * Step 2) Get SAD range and SAD Interleave list
789 * TAD registers contain the interleave wayness. However, it
790 * seems simpler to just discover it indirectly, with the
794 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
795 /* SAD_LIMIT Address range is 45:26 */
796 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
798 limit
= SAD_LIMIT(reg
);
800 if (!DRAM_RULE_ENABLE(reg
))
806 tmp_mb
= (limit
+ 1) >> 20;
807 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
808 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
812 ((u64
)tmp_mb
) << 20L,
813 INTERLEAVE_MODE(reg
) ? "8:6" : "[8:6]XOR[18:16]",
817 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
819 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
820 for (j
= 0; j
< 8; j
++) {
821 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
822 if (j
> 0 && sad_interl
== pkg
)
825 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
831 * Step 3) Get TAD range
834 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
835 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
837 limit
= TAD_LIMIT(reg
);
840 tmp_mb
= (limit
+ 1) >> 20;
842 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
843 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
845 ((u64
)tmp_mb
) << 20L,
857 * Step 4) Get TAD offsets, per each channel
859 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
860 if (!pvt
->channel
[i
].dimms
)
862 for (j
= 0; j
< n_tads
; j
++) {
863 pci_read_config_dword(pvt
->pci_tad
[i
],
864 tad_ch_nilv_offset
[j
],
866 tmp_mb
= TAD_OFFSET(reg
) >> 20;
867 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
868 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
871 ((u64
)tmp_mb
) << 20L,
877 * Step 6) Get RIR Wayness/Limit, per each channel
879 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
880 if (!pvt
->channel
[i
].dimms
)
882 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
883 pci_read_config_dword(pvt
->pci_tad
[i
],
887 if (!IS_RIR_VALID(reg
))
890 tmp_mb
= RIR_LIMIT(reg
) >> 20;
891 rir_way
= 1 << RIR_WAY(reg
);
892 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
893 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
896 ((u64
)tmp_mb
) << 20L,
900 for (k
= 0; k
< rir_way
; k
++) {
901 pci_read_config_dword(pvt
->pci_tad
[i
],
904 tmp_mb
= RIR_OFFSET(reg
) << 6;
906 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
907 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
910 ((u64
)tmp_mb
) << 20L,
911 (u32
)RIR_RNK_TGT(reg
),
918 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
920 struct sbridge_dev
*sbridge_dev
;
922 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
923 if (sbridge_dev
->node_id
== node_id
)
924 return sbridge_dev
->mci
;
929 static int get_memory_error_data(struct mem_ctl_info
*mci
,
934 char **area_type
, char *msg
)
936 struct mem_ctl_info
*new_mci
;
937 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
938 struct pci_dev
*pci_ha
;
939 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
940 int sad_interl
, idx
, base_ch
;
942 unsigned sad_interleave
[pvt
->info
.max_interleave
];
944 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0;
948 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
952 * Step 0) Check if the address is at special memory ranges
953 * The check bellow is probably enough to fill all cases where
954 * the error is not inside a memory, except for the legacy
955 * range (e. g. VGA addresses). It is unlikely, however, that the
956 * memory controller would generate an error on that range.
958 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
959 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
962 if (addr
>= (u64
)pvt
->tohm
) {
963 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
970 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
971 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
974 if (!DRAM_RULE_ENABLE(reg
))
977 limit
= SAD_LIMIT(reg
);
979 sprintf(msg
, "Can't discover the memory socket");
986 if (n_sads
== pvt
->info
.max_sad
) {
987 sprintf(msg
, "Can't discover the memory socket");
990 *area_type
= get_dram_attr(reg
);
991 interleave_mode
= INTERLEAVE_MODE(reg
);
993 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
996 if (pvt
->info
.type
== SANDY_BRIDGE
) {
997 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
998 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
999 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
1000 if (sad_way
> 0 && sad_interl
== pkg
)
1002 sad_interleave
[sad_way
] = pkg
;
1003 edac_dbg(0, "SAD interleave #%d: %d\n",
1004 sad_way
, sad_interleave
[sad_way
]);
1006 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1007 pvt
->sbridge_dev
->mc
,
1012 !interleave_mode
? "" : "XOR[18:16]");
1013 if (interleave_mode
)
1014 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
1016 idx
= (addr
>> 6) & 7;
1030 sprintf(msg
, "Can't discover socket interleave");
1033 *socket
= sad_interleave
[idx
];
1034 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1035 idx
, sad_way
, *socket
);
1037 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1038 idx
= (addr
>> 6) & 7;
1039 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
1040 *socket
= sad_pkg_socket(pkg
);
1041 sad_ha
= sad_pkg_ha(pkg
);
1042 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1043 idx
, *socket
, sad_ha
);
1047 * Move to the proper node structure, in order to access the
1048 * right PCI registers
1050 new_mci
= get_mci_for_node_id(*socket
);
1052 sprintf(msg
, "Struct for socket #%u wasn't initialized",
1057 pvt
= mci
->pvt_info
;
1060 * Step 2) Get memory channel
1063 if (pvt
->info
.type
== SANDY_BRIDGE
)
1064 pci_ha
= pvt
->pci_ha0
;
1067 pci_ha
= pvt
->pci_ha1
;
1069 pci_ha
= pvt
->pci_ha0
;
1071 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1072 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
1073 limit
= TAD_LIMIT(reg
);
1075 sprintf(msg
, "Can't discover the memory channel");
1082 if (n_tads
== MAX_TAD
) {
1083 sprintf(msg
, "Can't discover the memory channel");
1087 ch_way
= TAD_CH(reg
) + 1;
1088 sck_way
= TAD_SOCK(reg
) + 1;
1093 idx
= addr
>> (6 + sck_way
);
1097 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1101 base_ch
= TAD_TGT0(reg
);
1104 base_ch
= TAD_TGT1(reg
);
1107 base_ch
= TAD_TGT2(reg
);
1110 base_ch
= TAD_TGT3(reg
);
1113 sprintf(msg
, "Can't discover the TAD target");
1116 *channel_mask
= 1 << base_ch
;
1118 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1119 tad_ch_nilv_offset
[n_tads
],
1122 if (pvt
->is_mirrored
) {
1123 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
1127 sck_xch
= 1 << sck_way
* (ch_way
>> 1);
1130 sprintf(msg
, "Invalid mirror set. Can't decode addr");
1134 sck_xch
= (1 << sck_way
) * ch_way
;
1136 if (pvt
->is_lockstep
)
1137 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
1139 offset
= TAD_OFFSET(tad_offset
);
1141 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1152 /* Calculate channel address */
1153 /* Remove the TAD offset */
1155 if (offset
> addr
) {
1156 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1161 /* Store the low bits [0:6] of the addr */
1162 ch_addr
= addr
& 0x7f;
1163 /* Remove socket wayness and remove 6 bits */
1165 addr
= div_u64(addr
, sck_xch
);
1167 /* Divide by channel way */
1168 addr
= addr
/ ch_way
;
1170 /* Recover the last 6 bits */
1171 ch_addr
|= addr
<< 6;
1174 * Step 3) Decode rank
1176 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1177 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1178 rir_way_limit
[n_rir
],
1181 if (!IS_RIR_VALID(reg
))
1184 limit
= RIR_LIMIT(reg
);
1185 mb
= div_u64_rem(limit
>> 20, 1000, &kb
);
1186 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1191 if (ch_addr
<= limit
)
1194 if (n_rir
== MAX_RIR_RANGES
) {
1195 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1199 rir_way
= RIR_WAY(reg
);
1200 if (pvt
->is_close_pg
)
1201 idx
= (ch_addr
>> 6);
1203 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1204 idx
%= 1 << rir_way
;
1206 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1207 rir_offset
[n_rir
][idx
],
1209 *rank
= RIR_RNK_TGT(reg
);
1211 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1221 /****************************************************************************
1222 Device initialization routines: put/get, init/exit
1223 ****************************************************************************/
1226 * sbridge_put_all_devices 'put' all the devices that we have
1227 * reserved via 'get'
1229 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1234 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1235 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1238 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1240 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1245 static void sbridge_put_all_devices(void)
1247 struct sbridge_dev
*sbridge_dev
, *tmp
;
1249 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1250 sbridge_put_devices(sbridge_dev
);
1251 free_sbridge_dev(sbridge_dev
);
1255 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1257 const struct pci_id_table
*table
,
1258 const unsigned devno
)
1260 struct sbridge_dev
*sbridge_dev
;
1261 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1263 struct pci_dev
*pdev
= NULL
;
1266 sbridge_printk(KERN_INFO
,
1267 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1268 dev_descr
->dev
, dev_descr
->func
,
1269 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1271 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1272 dev_descr
->dev_id
, *prev
);
1280 if (dev_descr
->optional
)
1286 sbridge_printk(KERN_INFO
,
1287 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1288 dev_descr
->dev
, dev_descr
->func
,
1289 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1291 /* End of list, leave */
1294 bus
= pdev
->bus
->number
;
1296 sbridge_dev
= get_sbridge_dev(bus
);
1298 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1306 if (sbridge_dev
->pdev
[devno
]) {
1307 sbridge_printk(KERN_ERR
,
1308 "Duplicated device for "
1309 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1310 bus
, dev_descr
->dev
, dev_descr
->func
,
1311 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1316 sbridge_dev
->pdev
[devno
] = pdev
;
1319 if (unlikely(PCI_SLOT(pdev
->devfn
) != dev_descr
->dev
||
1320 PCI_FUNC(pdev
->devfn
) != dev_descr
->func
)) {
1321 sbridge_printk(KERN_ERR
,
1322 "Device PCI ID %04x:%04x "
1323 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1324 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
,
1325 bus
, PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1326 bus
, dev_descr
->dev
, dev_descr
->func
);
1330 /* Be sure that the device is enabled */
1331 if (unlikely(pci_enable_device(pdev
) < 0)) {
1332 sbridge_printk(KERN_ERR
,
1334 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1335 bus
, dev_descr
->dev
, dev_descr
->func
,
1336 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1340 edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1341 bus
, dev_descr
->dev
, dev_descr
->func
,
1342 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1345 * As stated on drivers/pci/search.c, the reference count for
1346 * @from is always decremented if it is not %NULL. So, as we need
1347 * to get all devices up to null, we need to do a get for the device
1357 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1358 * device/functions we want to reference for this driver.
1359 * Need to 'get' device 16 func 1 and func 2.
1360 * @num_mc: pointer to the memory controllers count, to be incremented in case
1362 * @table: model specific table
1364 * returns 0 in case of success or error code
1366 static int sbridge_get_all_devices(u8
*num_mc
,
1367 const struct pci_id_table
*table
)
1370 struct pci_dev
*pdev
= NULL
;
1372 while (table
&& table
->descr
) {
1373 for (i
= 0; i
< table
->n_devs
; i
++) {
1376 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1383 sbridge_put_all_devices();
1394 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1395 struct sbridge_dev
*sbridge_dev
)
1397 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1398 struct pci_dev
*pdev
;
1401 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1402 pdev
= sbridge_dev
->pdev
[i
];
1405 slot
= PCI_SLOT(pdev
->devfn
);
1406 func
= PCI_FUNC(pdev
->devfn
);
1411 pvt
->pci_sad0
= pdev
;
1414 pvt
->pci_sad1
= pdev
;
1423 pvt
->pci_br0
= pdev
;
1432 pvt
->pci_ha0
= pdev
;
1444 pvt
->pci_ras
= pdev
;
1450 pvt
->pci_tad
[func
- 2] = pdev
;
1459 pvt
->pci_ddrio
= pdev
;
1469 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1471 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1475 /* Check if everything were registered */
1476 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1477 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
1480 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1481 if (!pvt
->pci_tad
[i
])
1487 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1491 sbridge_printk(KERN_ERR
, "Device %d, function %d "
1492 "is out of the expected range\n",
1497 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
1498 struct sbridge_dev
*sbridge_dev
)
1500 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1501 struct pci_dev
*pdev
, *tmp
;
1503 bool mode_2ha
= false;
1505 tmp
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1506 PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, NULL
);
1512 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1513 pdev
= sbridge_dev
->pdev
[i
];
1516 slot
= PCI_SLOT(pdev
->devfn
);
1517 func
= PCI_FUNC(pdev
->devfn
);
1522 pvt
->pci_ha0
= pdev
;
1532 pvt
->pci_ras
= pdev
;
1536 /* if we have 2 HAs active, channels 2 and 3
1537 * are in other device */
1543 pvt
->pci_tad
[func
- 2] = pdev
;
1551 pvt
->pci_ddrio
= pdev
;
1553 } else if (func
== 0) {
1555 pvt
->pci_ddrio
= pdev
;
1562 pvt
->pci_sad0
= pdev
;
1565 pvt
->pci_br0
= pdev
;
1568 pvt
->pci_br1
= pdev
;
1576 pvt
->pci_ha1
= pdev
;
1581 /* we shouldn't have this device if we have just one
1584 if (func
== 2 || func
== 3) {
1585 pvt
->pci_tad
[func
] = pdev
;
1593 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1595 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1599 /* Check if everything were registered */
1600 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
1601 !pvt
->pci_br1
|| !pvt
->pci_tad
|| !pvt
->pci_ras
||
1605 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1606 if (!pvt
->pci_tad
[i
])
1612 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1616 sbridge_printk(KERN_ERR
,
1617 "Device %d, function %d is out of the expected range\n",
1622 /****************************************************************************
1623 Error check routines
1624 ****************************************************************************/
1627 * While Sandy Bridge has error count registers, SMI BIOS read values from
1628 * and resets the counters. So, they are not reliable for the OS to read
1629 * from them. So, we have no option but to just trust on whatever MCE is
1630 * telling us about the errors.
1632 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
1633 const struct mce
*m
)
1635 struct mem_ctl_info
*new_mci
;
1636 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1637 enum hw_event_mc_err_type tp_event
;
1638 char *type
, *optype
, msg
[256];
1639 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
1640 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
1641 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
1643 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
1644 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
1645 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
1646 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
1647 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
1648 long channel_mask
, first_channel
;
1651 char *area_type
= NULL
;
1653 if (pvt
->info
.type
== IVY_BRIDGE
)
1656 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
1658 if (uncorrected_error
) {
1661 tp_event
= HW_EVENT_ERR_FATAL
;
1664 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
1668 tp_event
= HW_EVENT_ERR_CORRECTED
;
1672 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1673 * memory errors should fit in this mask:
1674 * 000f 0000 1mmm cccc (binary)
1676 * f = Correction Report Filtering Bit. If 1, subsequent errors
1680 * If the mask doesn't match, report an error to the parsing logic
1682 if (! ((errcode
& 0xef80) == 0x80)) {
1683 optype
= "Can't parse: it is not a mem";
1685 switch (optypenum
) {
1687 optype
= "generic undef request error";
1690 optype
= "memory read error";
1693 optype
= "memory write error";
1696 optype
= "addr/cmd error";
1699 optype
= "memory scrubbing error";
1702 optype
= "reserved";
1707 /* Only decode errors with an valid address (ADDRV) */
1708 if (!GET_BITFIELD(m
->status
, 58, 58))
1711 rc
= get_memory_error_data(mci
, m
->addr
, &socket
,
1712 &channel_mask
, &rank
, &area_type
, msg
);
1715 new_mci
= get_mci_for_node_id(socket
);
1717 strcpy(msg
, "Error: socket got corrupted!");
1721 pvt
= mci
->pvt_info
;
1723 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
1734 * FIXME: On some memory configurations (mirror, lockstep), the
1735 * Memory Controller can't point the error to a single DIMM. The
1736 * EDAC core should be handling the channel mask, in order to point
1737 * to the group of dimm's where the error may be happening.
1739 snprintf(msg
, sizeof(msg
),
1740 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1741 overflow
? " OVERFLOW" : "",
1742 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
1749 edac_dbg(0, "%s\n", msg
);
1751 /* FIXME: need support for channel mask */
1753 /* Call the helper to output message */
1754 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
1755 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
1760 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
1767 * sbridge_check_error Retrieve and process errors reported by the
1768 * hardware. Called by the Core module.
1770 static void sbridge_check_error(struct mem_ctl_info
*mci
)
1772 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1778 * MCE first step: Copy all mce errors into a temporary buffer
1779 * We use a double buffering here, to reduce the risk of
1783 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
1788 m
= pvt
->mce_outentry
;
1789 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
1790 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
1792 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
1798 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
1800 pvt
->mce_in
+= count
;
1803 if (pvt
->mce_overrun
) {
1804 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
1807 pvt
->mce_overrun
= 0;
1811 * MCE second step: parse errors and display
1813 for (i
= 0; i
< count
; i
++)
1814 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
1818 * sbridge_mce_check_error Replicates mcelog routine to get errors
1819 * This routine simply queues mcelog errors, and
1820 * return. The error itself should be handled later
1821 * by sbridge_check_error.
1822 * WARNING: As this routine should be called at NMI time, extra care should
1823 * be taken to avoid deadlocks, and to be as fast as possible.
1825 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
1828 struct mce
*mce
= (struct mce
*)data
;
1829 struct mem_ctl_info
*mci
;
1830 struct sbridge_pvt
*pvt
;
1832 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
1835 mci
= get_mci_for_node_id(mce
->socketid
);
1838 pvt
= mci
->pvt_info
;
1841 * Just let mcelog handle it if the error is
1842 * outside the memory controller. A memory error
1843 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1844 * bit 12 has an special meaning.
1846 if ((mce
->status
& 0xefff) >> 7 != 1)
1849 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1851 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1852 mce
->extcpu
, mce
->mcgstatus
, mce
->bank
, mce
->status
);
1853 printk("TSC %llx ", mce
->tsc
);
1854 printk("ADDR %llx ", mce
->addr
);
1855 printk("MISC %llx ", mce
->misc
);
1857 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1858 mce
->cpuvendor
, mce
->cpuid
, mce
->time
,
1859 mce
->socketid
, mce
->apicid
);
1861 /* Only handle if it is the right mc controller */
1862 if (cpu_data(mce
->cpu
).phys_proc_id
!= pvt
->sbridge_dev
->mc
)
1866 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
1872 /* Copy memory error at the ringbuffer */
1873 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
1875 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
1877 /* Handle fatal errors immediately */
1878 if (mce
->mcgstatus
& 1)
1879 sbridge_check_error(mci
);
1881 /* Advice mcelog that the error were handled */
1885 static struct notifier_block sbridge_mce_dec
= {
1886 .notifier_call
= sbridge_mce_check_error
,
1889 /****************************************************************************
1890 EDAC register/unregister logic
1891 ****************************************************************************/
1893 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
1895 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
1896 struct sbridge_pvt
*pvt
;
1898 if (unlikely(!mci
|| !mci
->pvt_info
)) {
1899 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
1901 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
1905 pvt
= mci
->pvt_info
;
1907 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1908 mci
, &sbridge_dev
->pdev
[0]->dev
);
1910 /* Remove MC sysfs nodes */
1911 edac_mc_del_mc(mci
->pdev
);
1913 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
1914 kfree(mci
->ctl_name
);
1916 sbridge_dev
->mci
= NULL
;
1919 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
1921 struct mem_ctl_info
*mci
;
1922 struct edac_mc_layer layers
[2];
1923 struct sbridge_pvt
*pvt
;
1924 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
1927 /* Check the number of active and not disabled channels */
1928 rc
= check_if_ecc_is_active(sbridge_dev
->bus
);
1929 if (unlikely(rc
< 0))
1932 /* allocate a new MC control structure */
1933 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
1934 layers
[0].size
= NUM_CHANNELS
;
1935 layers
[0].is_virt_csrow
= false;
1936 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
1937 layers
[1].size
= MAX_DIMMS
;
1938 layers
[1].is_virt_csrow
= true;
1939 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
1945 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1948 pvt
= mci
->pvt_info
;
1949 memset(pvt
, 0, sizeof(*pvt
));
1951 /* Associate sbridge_dev and mci for future usage */
1952 pvt
->sbridge_dev
= sbridge_dev
;
1953 sbridge_dev
->mci
= mci
;
1955 mci
->mtype_cap
= MEM_FLAG_DDR3
;
1956 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1957 mci
->edac_cap
= EDAC_FLAG_NONE
;
1958 mci
->mod_name
= "sbridge_edac.c";
1959 mci
->mod_ver
= SBRIDGE_REVISION
;
1960 mci
->dev_name
= pci_name(pdev
);
1961 mci
->ctl_page_to_phys
= NULL
;
1963 /* Set the function pointer to an actual operation function */
1964 mci
->edac_check
= sbridge_check_error
;
1966 pvt
->info
.type
= type
;
1967 if (type
== IVY_BRIDGE
) {
1968 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
1969 pvt
->info
.get_tolm
= ibridge_get_tolm
;
1970 pvt
->info
.get_tohm
= ibridge_get_tohm
;
1971 pvt
->info
.dram_rule
= ibridge_dram_rule
;
1972 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
1973 pvt
->info
.interleave_list
= ibridge_interleave_list
;
1974 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
1975 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
1976 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
1978 /* Store pci devices at mci for faster access */
1979 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
1980 if (unlikely(rc
< 0))
1983 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
1984 pvt
->info
.get_tolm
= sbridge_get_tolm
;
1985 pvt
->info
.get_tohm
= sbridge_get_tohm
;
1986 pvt
->info
.dram_rule
= sbridge_dram_rule
;
1987 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
1988 pvt
->info
.interleave_list
= sbridge_interleave_list
;
1989 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
1990 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
1991 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
1993 /* Store pci devices at mci for faster access */
1994 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
1995 if (unlikely(rc
< 0))
2000 /* Get dimm basic config and the memory layout */
2001 get_dimm_config(mci
);
2002 get_memory_layout(mci
);
2004 /* record ptr to the generic device */
2005 mci
->pdev
= &pdev
->dev
;
2007 /* add this new MC control structure to EDAC's list of MCs */
2008 if (unlikely(edac_mc_add_mc(mci
))) {
2009 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2017 kfree(mci
->ctl_name
);
2019 sbridge_dev
->mci
= NULL
;
2024 * sbridge_probe Probe for ONE instance of device to see if it is
2027 * 0 for FOUND a device
2028 * < 0 for error code
2031 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
2035 struct sbridge_dev
*sbridge_dev
;
2038 /* get the pci devices we want to reserve for our use */
2039 mutex_lock(&sbridge_edac_lock
);
2042 * All memory controllers are allocated at the first pass.
2044 if (unlikely(probed
>= 1)) {
2045 mutex_unlock(&sbridge_edac_lock
);
2050 if (pdev
->device
== PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
) {
2051 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_ibridge_table
);
2054 rc
= sbridge_get_all_devices(&num_mc
, pci_dev_descr_sbridge_table
);
2055 type
= SANDY_BRIDGE
;
2057 if (unlikely(rc
< 0))
2061 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
2062 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2063 mc
, mc
+ 1, num_mc
);
2064 sbridge_dev
->mc
= mc
++;
2065 rc
= sbridge_register_mci(sbridge_dev
, type
);
2066 if (unlikely(rc
< 0))
2070 sbridge_printk(KERN_INFO
, "Driver loaded.\n");
2072 mutex_unlock(&sbridge_edac_lock
);
2076 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2077 sbridge_unregister_mci(sbridge_dev
);
2079 sbridge_put_all_devices();
2081 mutex_unlock(&sbridge_edac_lock
);
2086 * sbridge_remove destructor for one instance of device
2089 static void sbridge_remove(struct pci_dev
*pdev
)
2091 struct sbridge_dev
*sbridge_dev
;
2096 * we have a trouble here: pdev value for removal will be wrong, since
2097 * it will point to the X58 register used to detect that the machine
2098 * is a Nehalem or upper design. However, due to the way several PCI
2099 * devices are grouped together to provide MC functionality, we need
2100 * to use a different method for releasing the devices
2103 mutex_lock(&sbridge_edac_lock
);
2105 if (unlikely(!probed
)) {
2106 mutex_unlock(&sbridge_edac_lock
);
2110 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
2111 sbridge_unregister_mci(sbridge_dev
);
2113 /* Release PCI resources */
2114 sbridge_put_all_devices();
2118 mutex_unlock(&sbridge_edac_lock
);
2121 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
2124 * sbridge_driver pci_driver structure for this module
2127 static struct pci_driver sbridge_driver
= {
2128 .name
= "sbridge_edac",
2129 .probe
= sbridge_probe
,
2130 .remove
= sbridge_remove
,
2131 .id_table
= sbridge_pci_tbl
,
2135 * sbridge_init Module entry function
2136 * Try to initialize this module for its devices
2138 static int __init
sbridge_init(void)
2144 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2147 pci_rc
= pci_register_driver(&sbridge_driver
);
2149 mce_register_decode_chain(&sbridge_mce_dec
);
2150 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
2151 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
2155 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
2162 * sbridge_exit() Module exit function
2163 * Unregister the driver
2165 static void __exit
sbridge_exit(void)
2168 pci_unregister_driver(&sbridge_driver
);
2169 mce_unregister_decode_chain(&sbridge_mce_dec
);
2172 module_init(sbridge_init
);
2173 module_exit(sbridge_exit
);
2175 module_param(edac_op_state
, int, 0444);
2176 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
2178 MODULE_LICENSE("GPL");
2179 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2180 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2181 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "