Staging: unisys: Remove RETINT macro
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / mac.c
blob5f727588ca2788b0e598ccf98450af8f396c7135
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 struct ath9k_tx_queue_info *qi)
24 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 ah->txurn_interrupt_mask);
30 ENABLE_REGWRITE_BUFFER(ah);
32 REG_WRITE(ah, AR_IMR_S0,
33 SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 REG_WRITE(ah, AR_IMR_S1,
36 SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
39 ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
43 REGWRITE_BUFFER_FLUSH(ah);
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
48 return REG_READ(ah, AR_QTXDP(q));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
54 REG_WRITE(ah, AR_QTXDP(q), txdp);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
60 ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 REG_WRITE(ah, AR_Q_TXE, 1 << q);
63 EXPORT_SYMBOL(ath9k_hw_txstart);
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
67 u32 npend;
69 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 if (npend == 0) {
72 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 npend = 1;
76 return npend;
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
80 /**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
107 u32 txcfg, curLevel, newLevel;
109 if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 return false;
112 ath9k_hw_disable_interrupts(ah);
114 txcfg = REG_READ(ah, AR_TXCFG);
115 curLevel = MS(txcfg, AR_FTRIG);
116 newLevel = curLevel;
117 if (bIncTrigLevel) {
118 if (curLevel < ah->config.max_txtrig_level)
119 newLevel++;
120 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 newLevel--;
122 if (newLevel != curLevel)
123 REG_WRITE(ah, AR_TXCFG,
124 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
126 ath9k_hw_enable_interrupts(ah);
128 ah->tx_trig_level = newLevel;
130 return newLevel != curLevel;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
136 int maxdelay = 1000;
137 int i, q;
139 if (ah->curchan) {
140 if (IS_CHAN_HALF_RATE(ah->curchan))
141 maxdelay *= 2;
142 else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 maxdelay *= 4;
146 REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
148 REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
152 for (q = 0; q < AR_NUM_QCU; q++) {
153 for (i = 0; i < maxdelay; i++) {
154 if (i)
155 udelay(5);
157 if (!ath9k_hw_numtxpending(ah, q))
158 break;
162 REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
166 REG_WRITE(ah, AR_Q_TXD, 0);
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 int wait;
177 REG_WRITE(ah, AR_Q_TXD, 1 << q);
179 for (wait = wait_time; wait != 0; wait--) {
180 if (wait != wait_time)
181 udelay(ATH9K_TIME_QUANTUM);
183 if (ath9k_hw_numtxpending(ah, q) == 0)
184 break;
187 REG_WRITE(ah, AR_Q_TXD, 0);
189 return wait != 0;
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 const struct ath9k_tx_queue_info *qinfo)
199 u32 cw;
200 struct ath_common *common = ath9k_hw_common(ah);
201 struct ath9k_tx_queue_info *qi;
203 qi = &ah->txq[q];
204 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 ath_dbg(common, QUEUE,
206 "Set TXQ properties, inactive queue: %u\n", q);
207 return false;
210 ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
212 qi->tqi_ver = qinfo->tqi_ver;
213 qi->tqi_subtype = qinfo->tqi_subtype;
214 qi->tqi_qflags = qinfo->tqi_qflags;
215 qi->tqi_priority = qinfo->tqi_priority;
216 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 else
219 qi->tqi_aifs = INIT_AIFS;
220 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 cw = min(qinfo->tqi_cwmin, 1024U);
222 qi->tqi_cwmin = 1;
223 while (qi->tqi_cwmin < cw)
224 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 } else
226 qi->tqi_cwmin = qinfo->tqi_cwmin;
227 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 cw = min(qinfo->tqi_cwmax, 1024U);
229 qi->tqi_cwmax = 1;
230 while (qi->tqi_cwmax < cw)
231 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 } else
233 qi->tqi_cwmax = INIT_CWMAX;
235 if (qinfo->tqi_shretry != 0)
236 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 else
238 qi->tqi_shretry = INIT_SH_RETRY;
239 if (qinfo->tqi_lgretry != 0)
240 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 else
242 qi->tqi_lgretry = INIT_LG_RETRY;
243 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 qi->tqi_burstTime = qinfo->tqi_burstTime;
246 qi->tqi_readyTime = qinfo->tqi_readyTime;
248 switch (qinfo->tqi_subtype) {
249 case ATH9K_WME_UPSD:
250 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 break;
253 default:
254 break;
257 return true;
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 struct ath9k_tx_queue_info *qinfo)
264 struct ath_common *common = ath9k_hw_common(ah);
265 struct ath9k_tx_queue_info *qi;
267 qi = &ah->txq[q];
268 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 ath_dbg(common, QUEUE,
270 "Get TXQ properties, inactive queue: %u\n", q);
271 return false;
274 qinfo->tqi_qflags = qi->tqi_qflags;
275 qinfo->tqi_ver = qi->tqi_ver;
276 qinfo->tqi_subtype = qi->tqi_subtype;
277 qinfo->tqi_qflags = qi->tqi_qflags;
278 qinfo->tqi_priority = qi->tqi_priority;
279 qinfo->tqi_aifs = qi->tqi_aifs;
280 qinfo->tqi_cwmin = qi->tqi_cwmin;
281 qinfo->tqi_cwmax = qi->tqi_cwmax;
282 qinfo->tqi_shretry = qi->tqi_shretry;
283 qinfo->tqi_lgretry = qi->tqi_lgretry;
284 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 qinfo->tqi_burstTime = qi->tqi_burstTime;
287 qinfo->tqi_readyTime = qi->tqi_readyTime;
289 return true;
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 const struct ath9k_tx_queue_info *qinfo)
296 struct ath_common *common = ath9k_hw_common(ah);
297 struct ath9k_tx_queue_info *qi;
298 int q;
300 switch (type) {
301 case ATH9K_TX_QUEUE_BEACON:
302 q = ATH9K_NUM_TX_QUEUES - 1;
303 break;
304 case ATH9K_TX_QUEUE_CAB:
305 q = ATH9K_NUM_TX_QUEUES - 2;
306 break;
307 case ATH9K_TX_QUEUE_PSPOLL:
308 q = 1;
309 break;
310 case ATH9K_TX_QUEUE_UAPSD:
311 q = ATH9K_NUM_TX_QUEUES - 3;
312 break;
313 case ATH9K_TX_QUEUE_DATA:
314 for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315 if (ah->txq[q].tqi_type ==
316 ATH9K_TX_QUEUE_INACTIVE)
317 break;
318 if (q == ATH9K_NUM_TX_QUEUES) {
319 ath_err(common, "No available TX queue\n");
320 return -1;
322 break;
323 default:
324 ath_err(common, "Invalid TX queue type: %u\n", type);
325 return -1;
328 ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
330 qi = &ah->txq[q];
331 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332 ath_err(common, "TX queue: %u already active\n", q);
333 return -1;
335 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336 qi->tqi_type = type;
337 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
340 return q;
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
344 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
346 ah->txok_interrupt_mask &= ~(1 << q);
347 ah->txerr_interrupt_mask &= ~(1 << q);
348 ah->txdesc_interrupt_mask &= ~(1 << q);
349 ah->txeol_interrupt_mask &= ~(1 << q);
350 ah->txurn_interrupt_mask &= ~(1 << q);
353 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
355 struct ath_common *common = ath9k_hw_common(ah);
356 struct ath9k_tx_queue_info *qi;
358 qi = &ah->txq[q];
359 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
360 ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
361 return false;
364 ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
366 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
367 ath9k_hw_clear_queue_interrupts(ah, q);
368 ath9k_hw_set_txq_interrupts(ah, qi);
370 return true;
372 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
374 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
376 struct ath_common *common = ath9k_hw_common(ah);
377 struct ath9k_tx_queue_info *qi;
378 u32 cwMin, chanCwMin, value;
380 qi = &ah->txq[q];
381 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
382 ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
383 return true;
386 ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
388 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
389 chanCwMin = INIT_CWMIN;
391 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
392 } else
393 cwMin = qi->tqi_cwmin;
395 ENABLE_REGWRITE_BUFFER(ah);
397 REG_WRITE(ah, AR_DLCL_IFS(q),
398 SM(cwMin, AR_D_LCL_IFS_CWMIN) |
399 SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
400 SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
402 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
403 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
404 SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
405 SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
407 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
409 if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
410 REG_WRITE(ah, AR_DMISC(q),
411 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
412 else
413 REG_WRITE(ah, AR_DMISC(q),
414 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
416 if (qi->tqi_cbrPeriod) {
417 REG_WRITE(ah, AR_QCBRCFG(q),
418 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
419 SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
420 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
421 (qi->tqi_cbrOverflowLimit ?
422 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
424 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
425 REG_WRITE(ah, AR_QRDYTIMECFG(q),
426 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
427 AR_Q_RDYTIMECFG_EN);
430 REG_WRITE(ah, AR_DCHNTIME(q),
431 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
432 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
434 if (qi->tqi_burstTime
435 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
436 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
438 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
439 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
441 REGWRITE_BUFFER_FLUSH(ah);
443 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
444 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
446 switch (qi->tqi_type) {
447 case ATH9K_TX_QUEUE_BEACON:
448 ENABLE_REGWRITE_BUFFER(ah);
450 REG_SET_BIT(ah, AR_QMISC(q),
451 AR_Q_MISC_FSP_DBA_GATED
452 | AR_Q_MISC_BEACON_USE
453 | AR_Q_MISC_CBR_INCR_DIS1);
455 REG_SET_BIT(ah, AR_DMISC(q),
456 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
457 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
458 | AR_D_MISC_BEACON_USE
459 | AR_D_MISC_POST_FR_BKOFF_DIS);
461 REGWRITE_BUFFER_FLUSH(ah);
464 * cwmin and cwmax should be 0 for beacon queue
465 * but not for IBSS as we would create an imbalance
466 * on beaconing fairness for participating nodes.
468 if (AR_SREV_9300_20_OR_LATER(ah) &&
469 ah->opmode != NL80211_IFTYPE_ADHOC) {
470 REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
471 | SM(0, AR_D_LCL_IFS_CWMAX)
472 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
474 break;
475 case ATH9K_TX_QUEUE_CAB:
476 ENABLE_REGWRITE_BUFFER(ah);
478 REG_SET_BIT(ah, AR_QMISC(q),
479 AR_Q_MISC_FSP_DBA_GATED
480 | AR_Q_MISC_CBR_INCR_DIS1
481 | AR_Q_MISC_CBR_INCR_DIS0);
482 value = (qi->tqi_readyTime -
483 (ah->config.sw_beacon_response_time -
484 ah->config.dma_beacon_response_time)) * 1024;
485 REG_WRITE(ah, AR_QRDYTIMECFG(q),
486 value | AR_Q_RDYTIMECFG_EN);
487 REG_SET_BIT(ah, AR_DMISC(q),
488 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
489 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
491 REGWRITE_BUFFER_FLUSH(ah);
493 break;
494 case ATH9K_TX_QUEUE_PSPOLL:
495 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
496 break;
497 case ATH9K_TX_QUEUE_UAPSD:
498 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
499 break;
500 default:
501 break;
504 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
505 REG_SET_BIT(ah, AR_DMISC(q),
506 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
507 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
508 AR_D_MISC_POST_FR_BKOFF_DIS);
511 if (AR_SREV_9300_20_OR_LATER(ah))
512 REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
514 ath9k_hw_clear_queue_interrupts(ah, q);
515 if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
516 ah->txok_interrupt_mask |= 1 << q;
517 ah->txerr_interrupt_mask |= 1 << q;
519 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
520 ah->txdesc_interrupt_mask |= 1 << q;
521 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
522 ah->txeol_interrupt_mask |= 1 << q;
523 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
524 ah->txurn_interrupt_mask |= 1 << q;
525 ath9k_hw_set_txq_interrupts(ah, qi);
527 return true;
529 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
531 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
532 struct ath_rx_status *rs)
534 struct ar5416_desc ads;
535 struct ar5416_desc *adsp = AR5416DESC(ds);
536 u32 phyerr;
538 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
539 return -EINPROGRESS;
541 ads.u.rx = adsp->u.rx;
543 rs->rs_status = 0;
544 rs->rs_flags = 0;
545 rs->flag = 0;
547 rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
548 rs->rs_tstamp = ads.AR_RcvTimestamp;
550 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
551 rs->rs_rssi = ATH9K_RSSI_BAD;
552 rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
553 rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
554 rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
555 rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
556 rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
557 rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
558 } else {
559 rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
560 rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
561 AR_RxRSSIAnt00);
562 rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
563 AR_RxRSSIAnt01);
564 rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
565 AR_RxRSSIAnt02);
566 rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
567 AR_RxRSSIAnt10);
568 rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
569 AR_RxRSSIAnt11);
570 rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
571 AR_RxRSSIAnt12);
573 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
574 rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
575 else
576 rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
578 rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
579 rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
581 rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
582 rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
583 rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
584 rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
586 /* directly mapped flags for ieee80211_rx_status */
587 rs->flag |=
588 (ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
589 rs->flag |=
590 (ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
591 if (AR_SREV_9280_20_OR_LATER(ah))
592 rs->flag |=
593 (ads.ds_rxstatus3 & AR_STBC) ?
594 /* we can only Nss=1 STBC */
595 (1 << RX_FLAG_STBC_SHIFT) : 0;
597 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
598 rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
599 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
600 rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
601 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
602 rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
604 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
606 * Treat these errors as mutually exclusive to avoid spurious
607 * extra error reports from the hardware. If a CRC error is
608 * reported, then decryption and MIC errors are irrelevant,
609 * the frame is going to be dropped either way
611 if (ads.ds_rxstatus8 & AR_PHYErr) {
612 rs->rs_status |= ATH9K_RXERR_PHY;
613 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
614 rs->rs_phyerr = phyerr;
615 } else if (ads.ds_rxstatus8 & AR_CRCErr)
616 rs->rs_status |= ATH9K_RXERR_CRC;
617 else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
618 rs->rs_status |= ATH9K_RXERR_DECRYPT;
619 else if (ads.ds_rxstatus8 & AR_MichaelErr)
620 rs->rs_status |= ATH9K_RXERR_MIC;
621 } else {
622 if (ads.ds_rxstatus8 &
623 (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
624 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
626 /* Only up to MCS16 supported, everything above is invalid */
627 if (rs->rs_rate >= 0x90)
628 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
631 if (ads.ds_rxstatus8 & AR_KeyMiss)
632 rs->rs_status |= ATH9K_RXERR_KEYMISS;
634 return 0;
636 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
639 * This can stop or re-enables RX.
641 * If bool is set this will kill any frame which is currently being
642 * transferred between the MAC and baseband and also prevent any new
643 * frames from getting started.
645 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
647 u32 reg;
649 if (set) {
650 REG_SET_BIT(ah, AR_DIAG_SW,
651 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
653 if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
654 0, AH_WAIT_TIMEOUT)) {
655 REG_CLR_BIT(ah, AR_DIAG_SW,
656 (AR_DIAG_RX_DIS |
657 AR_DIAG_RX_ABORT));
659 reg = REG_READ(ah, AR_OBS_BUS_1);
660 ath_err(ath9k_hw_common(ah),
661 "RX failed to go idle in 10 ms RXSM=0x%x\n",
662 reg);
664 return false;
666 } else {
667 REG_CLR_BIT(ah, AR_DIAG_SW,
668 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
671 return true;
673 EXPORT_SYMBOL(ath9k_hw_setrxabort);
675 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
677 REG_WRITE(ah, AR_RXDP, rxdp);
679 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
681 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
683 ath9k_enable_mib_counters(ah);
685 ath9k_ani_reset(ah, is_scanning);
687 REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
689 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
691 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
693 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
695 ath9k_hw_disable_mib_counters(ah);
697 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
699 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
701 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
702 struct ath_common *common = ath9k_hw_common(ah);
703 u32 mac_status, last_mac_status = 0;
704 int i;
706 /* Enable access to the DMA observation bus */
707 REG_WRITE(ah, AR_MACMISC,
708 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
709 (AR_MACMISC_MISC_OBS_BUS_1 <<
710 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
712 REG_WRITE(ah, AR_CR, AR_CR_RXD);
714 /* Wait for rx enable bit to go low */
715 for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
716 if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
717 break;
719 if (!AR_SREV_9300_20_OR_LATER(ah)) {
720 mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
721 if (mac_status == 0x1c0 && mac_status == last_mac_status) {
722 *reset = true;
723 break;
726 last_mac_status = mac_status;
729 udelay(AH_TIME_QUANTUM);
732 if (i == 0) {
733 ath_err(common,
734 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
735 AH_RX_STOP_DMA_TIMEOUT / 1000,
736 REG_READ(ah, AR_CR),
737 REG_READ(ah, AR_DIAG_SW),
738 REG_READ(ah, AR_DMADBG_7));
739 return false;
740 } else {
741 return true;
744 #undef AH_RX_STOP_DMA_TIMEOUT
746 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
748 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
750 struct ath9k_tx_queue_info qi;
752 memset(&qi, 0, sizeof(qi));
753 qi.tqi_aifs = 1;
754 qi.tqi_cwmin = 0;
755 qi.tqi_cwmax = 0;
757 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
758 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
760 return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
762 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
764 bool ath9k_hw_intrpend(struct ath_hw *ah)
766 u32 host_isr;
768 if (AR_SREV_9100(ah))
769 return true;
771 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
773 if (((host_isr & AR_INTR_MAC_IRQ) ||
774 (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
775 (host_isr != AR_INTR_SPURIOUS))
776 return true;
778 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
779 if ((host_isr & AR_INTR_SYNC_DEFAULT)
780 && (host_isr != AR_INTR_SPURIOUS))
781 return true;
783 return false;
785 EXPORT_SYMBOL(ath9k_hw_intrpend);
787 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
789 struct ath_common *common = ath9k_hw_common(ah);
791 ath_dbg(common, INTERRUPT, "disable IER\n");
792 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
793 (void) REG_READ(ah, AR_IER);
794 if (!AR_SREV_9100(ah)) {
795 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
796 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
798 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
799 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
802 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
804 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
806 if (!(ah->imask & ATH9K_INT_GLOBAL))
807 atomic_set(&ah->intr_ref_cnt, -1);
808 else
809 atomic_dec(&ah->intr_ref_cnt);
811 ath9k_hw_kill_interrupts(ah);
813 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
815 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
817 struct ath_common *common = ath9k_hw_common(ah);
818 u32 sync_default = AR_INTR_SYNC_DEFAULT;
819 u32 async_mask;
821 if (!(ah->imask & ATH9K_INT_GLOBAL))
822 return;
824 if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
825 ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
826 atomic_read(&ah->intr_ref_cnt));
827 return;
830 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
831 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
833 async_mask = AR_INTR_MAC_IRQ;
835 if (ah->imask & ATH9K_INT_MCI)
836 async_mask |= AR_INTR_ASYNC_MASK_MCI;
838 ath_dbg(common, INTERRUPT, "enable IER\n");
839 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
840 if (!AR_SREV_9100(ah)) {
841 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
842 REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
844 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
845 REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
847 ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
848 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
850 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
852 void ath9k_hw_set_interrupts(struct ath_hw *ah)
854 enum ath9k_int ints = ah->imask;
855 u32 mask, mask2;
856 struct ath9k_hw_capabilities *pCap = &ah->caps;
857 struct ath_common *common = ath9k_hw_common(ah);
859 if (!(ints & ATH9K_INT_GLOBAL))
860 ath9k_hw_disable_interrupts(ah);
862 ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
864 mask = ints & ATH9K_INT_COMMON;
865 mask2 = 0;
867 if (ints & ATH9K_INT_TX) {
868 if (ah->config.tx_intr_mitigation)
869 mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
870 else {
871 if (ah->txok_interrupt_mask)
872 mask |= AR_IMR_TXOK;
873 if (ah->txdesc_interrupt_mask)
874 mask |= AR_IMR_TXDESC;
876 if (ah->txerr_interrupt_mask)
877 mask |= AR_IMR_TXERR;
878 if (ah->txeol_interrupt_mask)
879 mask |= AR_IMR_TXEOL;
881 if (ints & ATH9K_INT_RX) {
882 if (AR_SREV_9300_20_OR_LATER(ah)) {
883 mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
884 if (ah->config.rx_intr_mitigation) {
885 mask &= ~AR_IMR_RXOK_LP;
886 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
887 } else {
888 mask |= AR_IMR_RXOK_LP;
890 } else {
891 if (ah->config.rx_intr_mitigation)
892 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
893 else
894 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
896 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
897 mask |= AR_IMR_GENTMR;
900 if (ints & ATH9K_INT_GENTIMER)
901 mask |= AR_IMR_GENTMR;
903 if (ints & (ATH9K_INT_BMISC)) {
904 mask |= AR_IMR_BCNMISC;
905 if (ints & ATH9K_INT_TIM)
906 mask2 |= AR_IMR_S2_TIM;
907 if (ints & ATH9K_INT_DTIM)
908 mask2 |= AR_IMR_S2_DTIM;
909 if (ints & ATH9K_INT_DTIMSYNC)
910 mask2 |= AR_IMR_S2_DTIMSYNC;
911 if (ints & ATH9K_INT_CABEND)
912 mask2 |= AR_IMR_S2_CABEND;
913 if (ints & ATH9K_INT_TSFOOR)
914 mask2 |= AR_IMR_S2_TSFOOR;
917 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
918 mask |= AR_IMR_BCNMISC;
919 if (ints & ATH9K_INT_GTT)
920 mask2 |= AR_IMR_S2_GTT;
921 if (ints & ATH9K_INT_CST)
922 mask2 |= AR_IMR_S2_CST;
925 if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
926 if (ints & ATH9K_INT_BB_WATCHDOG) {
927 mask |= AR_IMR_BCNMISC;
928 mask2 |= AR_IMR_S2_BB_WATCHDOG;
932 ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
933 REG_WRITE(ah, AR_IMR, mask);
934 ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
935 AR_IMR_S2_DTIM |
936 AR_IMR_S2_DTIMSYNC |
937 AR_IMR_S2_CABEND |
938 AR_IMR_S2_CABTO |
939 AR_IMR_S2_TSFOOR |
940 AR_IMR_S2_GTT |
941 AR_IMR_S2_CST);
943 if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
944 if (ints & ATH9K_INT_BB_WATCHDOG)
945 ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
948 ah->imrs2_reg |= mask2;
949 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
951 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
952 if (ints & ATH9K_INT_TIM_TIMER)
953 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
954 else
955 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
958 return;
960 EXPORT_SYMBOL(ath9k_hw_set_interrupts);