2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.20"
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
80 MV_IO_BAR
= 2, /* offset 0x18: IO space */
81 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
87 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
89 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
90 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
91 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
94 MV_SATAHC0_REG_BASE
= 0x20000,
95 MV_FLASH_CTL_OFS
= 0x1046c,
96 MV_GPIO_PORT_CTL_OFS
= 0x104f0,
97 MV_RESET_CFG_OFS
= 0x180d8,
99 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
100 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
101 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
102 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
105 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
112 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
114 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT
= 2,
118 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
123 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
125 /* SoC integrated controllers, no PCI interface */
126 MV_FLAG_SOC
= (1 << 28),
128 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
129 ATA_FLAG_MMIO
| ATA_FLAG_NO_ATAPI
|
130 ATA_FLAG_PIO_POLLING
,
131 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
133 CRQB_FLAG_READ
= (1 << 0),
135 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
136 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
137 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
138 CRQB_CMD_ADDR_SHIFT
= 8,
139 CRQB_CMD_CS
= (0x2 << 11),
140 CRQB_CMD_LAST
= (1 << 15),
142 CRPB_FLAG_STATUS_SHIFT
= 8,
143 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
144 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
146 EPRD_FLAG_END_OF_TBL
= (1 << 31),
148 /* PCI interface registers */
150 PCI_COMMAND_OFS
= 0xc00,
151 PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
153 PCI_MAIN_CMD_STS_OFS
= 0xd30,
154 STOP_PCI_MASTER
= (1 << 2),
155 PCI_MASTER_EMPTY
= (1 << 3),
156 GLOB_SFT_RST
= (1 << 4),
158 MV_PCI_MODE_OFS
= 0xd00,
159 MV_PCI_MODE_MASK
= 0x30,
161 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
162 MV_PCI_DISC_TIMER
= 0xd04,
163 MV_PCI_MSI_TRIGGER
= 0xc38,
164 MV_PCI_SERR_MASK
= 0xc28,
165 MV_PCI_XBAR_TMOUT_OFS
= 0x1d04,
166 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
167 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
168 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
169 MV_PCI_ERR_COMMAND
= 0x1d50,
171 PCI_IRQ_CAUSE_OFS
= 0x1d58,
172 PCI_IRQ_MASK_OFS
= 0x1d5c,
173 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
175 PCIE_IRQ_CAUSE_OFS
= 0x1900,
176 PCIE_IRQ_MASK_OFS
= 0x1910,
177 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
179 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
180 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
181 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
182 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
183 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
184 ERR_IRQ
= (1 << 0), /* shift by port # */
185 DONE_IRQ
= (1 << 1), /* shift by port # */
186 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
187 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
189 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
190 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
191 PORTS_0_3_COAL_DONE
= (1 << 8),
192 PORTS_4_7_COAL_DONE
= (1 << 17),
193 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
194 GPIO_INT
= (1 << 22),
195 SELF_INT
= (1 << 23),
196 TWSI_INT
= (1 << 24),
197 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
198 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
199 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
200 HC_MAIN_MASKED_IRQS
= (TRAN_LO_DONE
| TRAN_HI_DONE
|
201 PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
202 PORTS_0_7_COAL_DONE
| GPIO_INT
| TWSI_INT
|
204 HC_MAIN_MASKED_IRQS_5
= (PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
206 HC_MAIN_MASKED_IRQS_SOC
= (PORTS_0_3_COAL_DONE
| HC_MAIN_RSVD_SOC
),
208 /* SATAHC registers */
211 HC_IRQ_CAUSE_OFS
= 0x14,
212 DMA_IRQ
= (1 << 0), /* shift by port # */
213 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
214 DEV_IRQ
= (1 << 8), /* shift by port # */
216 /* Shadow block registers */
218 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
221 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
222 SATA_ACTIVE_OFS
= 0x350,
223 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
226 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
231 SATA_IFCTL_OFS
= 0x344,
232 SATA_TESTCTL_OFS
= 0x348,
233 SATA_IFSTAT_OFS
= 0x34c,
234 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
237 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
238 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
241 MV5_LTMODE_OFS
= 0x30,
242 MV5_PHY_CTL_OFS
= 0x0C,
243 SATA_INTERFACE_CFG_OFS
= 0x050,
245 MV_M2_PREAMP_MASK
= 0x7e0,
249 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
250 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
251 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
252 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
253 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
254 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
255 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
257 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
258 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
259 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
260 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
261 EDMA_ERR_DEV
= (1 << 2), /* device error */
262 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
263 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
264 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
265 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
266 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
267 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
268 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
269 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
270 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
271 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
272 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
274 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
275 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
276 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
277 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
278 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
280 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
282 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
283 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
284 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
285 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
286 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
287 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
289 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
291 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
292 EDMA_ERR_OVERRUN_5
= (1 << 5),
293 EDMA_ERR_UNDERRUN_5
= (1 << 6),
295 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
296 EDMA_ERR_LNK_CTRL_RX_1
|
297 EDMA_ERR_LNK_CTRL_RX_3
|
298 EDMA_ERR_LNK_CTRL_TX
,
300 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
310 EDMA_ERR_LNK_CTRL_RX_2
|
311 EDMA_ERR_LNK_DATA_RX
|
312 EDMA_ERR_LNK_DATA_TX
|
313 EDMA_ERR_TRANS_PROTO
,
315 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
320 EDMA_ERR_UNDERRUN_5
|
321 EDMA_ERR_SELF_DIS_5
|
327 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
328 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
330 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
331 EDMA_REQ_Q_PTR_SHIFT
= 5,
333 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
334 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
335 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
336 EDMA_RSP_Q_PTR_SHIFT
= 3,
338 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
339 EDMA_EN
= (1 << 0), /* enable EDMA */
340 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
341 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
343 EDMA_STATUS_OFS
= 0x30, /* EDMA engine status */
344 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
345 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
347 EDMA_IORDY_TMOUT_OFS
= 0x34,
348 EDMA_ARB_CFG_OFS
= 0x38,
350 EDMA_HALTCOND_OFS
= 0x60, /* GenIIe halt conditions */
352 GEN_II_NCQ_MAX_SECTORS
= 256, /* max sects/io on Gen2 w/NCQ */
354 /* Host private flags (hp_flags) */
355 MV_HP_FLAG_MSI
= (1 << 0),
356 MV_HP_ERRATA_50XXB0
= (1 << 1),
357 MV_HP_ERRATA_50XXB2
= (1 << 2),
358 MV_HP_ERRATA_60X1B2
= (1 << 3),
359 MV_HP_ERRATA_60X1C0
= (1 << 4),
360 MV_HP_ERRATA_XX42A0
= (1 << 5),
361 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
362 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
363 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
364 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
365 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
367 /* Port private flags (pp_flags) */
368 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
369 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
370 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
371 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
374 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
375 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
376 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
377 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
378 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
380 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
381 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
384 /* DMA boundary 0xffff is required by the s/g splitting
385 * we need on /length/ in mv_fill-sg().
387 MV_DMA_BOUNDARY
= 0xffffU
,
389 /* mask of register bits containing lower 32 bits
390 * of EDMA request queue DMA address
392 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
394 /* ditto, for response queue */
395 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
409 /* Command ReQuest Block: 32B */
425 /* Command ResPonse Block: 8B */
432 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
440 struct mv_port_priv
{
441 struct mv_crqb
*crqb
;
443 struct mv_crpb
*crpb
;
445 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
446 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
448 unsigned int req_idx
;
449 unsigned int resp_idx
;
452 unsigned int delayed_eh_pmp_map
;
455 struct mv_port_signal
{
460 struct mv_host_priv
{
462 struct mv_port_signal signal
[8];
463 const struct mv_hw_ops
*ops
;
466 void __iomem
*main_irq_cause_addr
;
467 void __iomem
*main_irq_mask_addr
;
472 * These consistent DMA memory pools give us guaranteed
473 * alignment for hardware-accessed data structures,
474 * and less memory waste in accomplishing the alignment.
476 struct dma_pool
*crqb_pool
;
477 struct dma_pool
*crpb_pool
;
478 struct dma_pool
*sg_tbl_pool
;
482 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
484 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
485 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
487 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
489 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
490 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
493 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
494 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
495 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
496 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
497 static int mv_port_start(struct ata_port
*ap
);
498 static void mv_port_stop(struct ata_port
*ap
);
499 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
500 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
501 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
502 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
503 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
504 unsigned long deadline
);
505 static void mv_eh_freeze(struct ata_port
*ap
);
506 static void mv_eh_thaw(struct ata_port
*ap
);
507 static void mv6_dev_config(struct ata_device
*dev
);
509 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
511 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
512 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
514 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
516 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
517 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
519 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
521 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
522 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
524 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
526 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
527 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
529 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
531 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
532 void __iomem
*mmio
, unsigned int n_hc
);
533 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
535 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
536 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
537 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
538 unsigned int port_no
);
539 static int mv_stop_edma(struct ata_port
*ap
);
540 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
541 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
);
543 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
544 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
545 unsigned long deadline
);
546 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
547 unsigned long deadline
);
548 static void mv_pmp_error_handler(struct ata_port
*ap
);
549 static void mv_process_crpb_entries(struct ata_port
*ap
,
550 struct mv_port_priv
*pp
);
552 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
553 * because we have to allow room for worst case splitting of
554 * PRDs for 64K boundaries in mv_fill_sg().
556 static struct scsi_host_template mv5_sht
= {
557 ATA_BASE_SHT(DRV_NAME
),
558 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
559 .dma_boundary
= MV_DMA_BOUNDARY
,
562 static struct scsi_host_template mv6_sht
= {
563 ATA_NCQ_SHT(DRV_NAME
),
564 .can_queue
= MV_MAX_Q_DEPTH
- 1,
565 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
566 .dma_boundary
= MV_DMA_BOUNDARY
,
569 static struct ata_port_operations mv5_ops
= {
570 .inherits
= &ata_sff_port_ops
,
572 .qc_defer
= mv_qc_defer
,
573 .qc_prep
= mv_qc_prep
,
574 .qc_issue
= mv_qc_issue
,
576 .freeze
= mv_eh_freeze
,
578 .hardreset
= mv_hardreset
,
579 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
580 .post_internal_cmd
= ATA_OP_NULL
,
582 .scr_read
= mv5_scr_read
,
583 .scr_write
= mv5_scr_write
,
585 .port_start
= mv_port_start
,
586 .port_stop
= mv_port_stop
,
589 static struct ata_port_operations mv6_ops
= {
590 .inherits
= &mv5_ops
,
591 .dev_config
= mv6_dev_config
,
592 .scr_read
= mv_scr_read
,
593 .scr_write
= mv_scr_write
,
595 .pmp_hardreset
= mv_pmp_hardreset
,
596 .pmp_softreset
= mv_softreset
,
597 .softreset
= mv_softreset
,
598 .error_handler
= mv_pmp_error_handler
,
601 static struct ata_port_operations mv_iie_ops
= {
602 .inherits
= &mv6_ops
,
603 .dev_config
= ATA_OP_NULL
,
604 .qc_prep
= mv_qc_prep_iie
,
607 static const struct ata_port_info mv_port_info
[] = {
609 .flags
= MV_COMMON_FLAGS
,
610 .pio_mask
= 0x1f, /* pio0-4 */
611 .udma_mask
= ATA_UDMA6
,
612 .port_ops
= &mv5_ops
,
615 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
616 .pio_mask
= 0x1f, /* pio0-4 */
617 .udma_mask
= ATA_UDMA6
,
618 .port_ops
= &mv5_ops
,
621 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
622 .pio_mask
= 0x1f, /* pio0-4 */
623 .udma_mask
= ATA_UDMA6
,
624 .port_ops
= &mv5_ops
,
627 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
628 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
630 .pio_mask
= 0x1f, /* pio0-4 */
631 .udma_mask
= ATA_UDMA6
,
632 .port_ops
= &mv6_ops
,
635 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
636 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
637 ATA_FLAG_NCQ
| MV_FLAG_DUAL_HC
,
638 .pio_mask
= 0x1f, /* pio0-4 */
639 .udma_mask
= ATA_UDMA6
,
640 .port_ops
= &mv6_ops
,
643 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
644 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
646 .pio_mask
= 0x1f, /* pio0-4 */
647 .udma_mask
= ATA_UDMA6
,
648 .port_ops
= &mv_iie_ops
,
651 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
652 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
654 .pio_mask
= 0x1f, /* pio0-4 */
655 .udma_mask
= ATA_UDMA6
,
656 .port_ops
= &mv_iie_ops
,
659 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
660 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
661 ATA_FLAG_NCQ
| MV_FLAG_SOC
,
662 .pio_mask
= 0x1f, /* pio0-4 */
663 .udma_mask
= ATA_UDMA6
,
664 .port_ops
= &mv_iie_ops
,
668 static const struct pci_device_id mv_pci_tbl
[] = {
669 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
670 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
671 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
672 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
673 /* RocketRAID 1740/174x have different identifiers */
674 { PCI_VDEVICE(TTI
, 0x1740), chip_508x
},
675 { PCI_VDEVICE(TTI
, 0x1742), chip_508x
},
677 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
678 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
679 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
680 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
681 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
683 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
686 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
688 /* Marvell 7042 support */
689 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
691 /* Highpoint RocketRAID PCIe series */
692 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
693 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
695 { } /* terminate list */
698 static const struct mv_hw_ops mv5xxx_ops
= {
699 .phy_errata
= mv5_phy_errata
,
700 .enable_leds
= mv5_enable_leds
,
701 .read_preamp
= mv5_read_preamp
,
702 .reset_hc
= mv5_reset_hc
,
703 .reset_flash
= mv5_reset_flash
,
704 .reset_bus
= mv5_reset_bus
,
707 static const struct mv_hw_ops mv6xxx_ops
= {
708 .phy_errata
= mv6_phy_errata
,
709 .enable_leds
= mv6_enable_leds
,
710 .read_preamp
= mv6_read_preamp
,
711 .reset_hc
= mv6_reset_hc
,
712 .reset_flash
= mv6_reset_flash
,
713 .reset_bus
= mv_reset_pci_bus
,
716 static const struct mv_hw_ops mv_soc_ops
= {
717 .phy_errata
= mv6_phy_errata
,
718 .enable_leds
= mv_soc_enable_leds
,
719 .read_preamp
= mv_soc_read_preamp
,
720 .reset_hc
= mv_soc_reset_hc
,
721 .reset_flash
= mv_soc_reset_flash
,
722 .reset_bus
= mv_soc_reset_bus
,
729 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
732 (void) readl(addr
); /* flush to avoid PCI posted write */
735 static inline unsigned int mv_hc_from_port(unsigned int port
)
737 return port
>> MV_PORT_HC_SHIFT
;
740 static inline unsigned int mv_hardport_from_port(unsigned int port
)
742 return port
& MV_PORT_MASK
;
746 * Consolidate some rather tricky bit shift calculations.
747 * This is hot-path stuff, so not a function.
748 * Simple code, with two return values, so macro rather than inline.
750 * port is the sole input, in range 0..7.
751 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
752 * hardport is the other output, in range 0..3.
754 * Note that port and hardport may be the same variable in some cases.
756 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
758 shift = mv_hc_from_port(port) * HC_SHIFT; \
759 hardport = mv_hardport_from_port(port); \
760 shift += hardport * 2; \
763 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
765 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
768 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
771 return mv_hc_base(base
, mv_hc_from_port(port
));
774 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
776 return mv_hc_base_from_port(base
, port
) +
777 MV_SATAHC_ARBTR_REG_SZ
+
778 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
781 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
783 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
784 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
786 return hc_mmio
+ ofs
;
789 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
791 struct mv_host_priv
*hpriv
= host
->private_data
;
795 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
797 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
800 static inline int mv_get_hc_count(unsigned long port_flags
)
802 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
805 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
806 struct mv_host_priv
*hpriv
,
807 struct mv_port_priv
*pp
)
812 * initialize request queue
814 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
815 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
817 WARN_ON(pp
->crqb_dma
& 0x3ff);
818 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
819 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
820 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
822 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
823 writelfl((pp
->crqb_dma
& 0xffffffff) | index
,
824 port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
826 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
829 * initialize response queue
831 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
832 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
834 WARN_ON(pp
->crpb_dma
& 0xff);
835 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
837 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
838 writelfl((pp
->crpb_dma
& 0xffffffff) | index
,
839 port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
841 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
843 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
844 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
848 * mv_start_dma - Enable eDMA engine
849 * @base: port base address
850 * @pp: port private data
852 * Verify the local cache of the eDMA state is accurate with a
856 * Inherited from caller.
858 static void mv_start_dma(struct ata_port
*ap
, void __iomem
*port_mmio
,
859 struct mv_port_priv
*pp
, u8 protocol
)
861 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
863 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
864 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
865 if (want_ncq
!= using_ncq
)
868 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
869 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
870 int hardport
= mv_hardport_from_port(ap
->port_no
);
871 void __iomem
*hc_mmio
= mv_hc_base_from_port(
872 mv_host_base(ap
->host
), hardport
);
873 u32 hc_irq_cause
, ipending
;
875 /* clear EDMA event indicators, if any */
876 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
878 /* clear EDMA interrupt indicator, if any */
879 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
880 ipending
= (DEV_IRQ
| DMA_IRQ
) << hardport
;
881 if (hc_irq_cause
& ipending
) {
882 writelfl(hc_irq_cause
& ~ipending
,
883 hc_mmio
+ HC_IRQ_CAUSE_OFS
);
886 mv_edma_cfg(ap
, want_ncq
);
888 /* clear FIS IRQ Cause */
889 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
891 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
893 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
894 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
898 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
900 void __iomem
*port_mmio
= mv_ap_base(ap
);
901 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
902 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
906 * Wait for the EDMA engine to finish transactions in progress.
907 * No idea what a good "timeout" value might be, but measurements
908 * indicate that it often requires hundreds of microseconds
909 * with two drives in-use. So we use the 15msec value above
910 * as a rough guess at what even more drives might require.
912 for (i
= 0; i
< timeout
; ++i
) {
913 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS_OFS
);
914 if ((edma_stat
& empty_idle
) == empty_idle
)
918 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
922 * mv_stop_edma_engine - Disable eDMA engine
923 * @port_mmio: io base address
926 * Inherited from caller.
928 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
932 /* Disable eDMA. The disable bit auto clears. */
933 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
935 /* Wait for the chip to confirm eDMA is off. */
936 for (i
= 10000; i
> 0; i
--) {
937 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
938 if (!(reg
& EDMA_EN
))
945 static int mv_stop_edma(struct ata_port
*ap
)
947 void __iomem
*port_mmio
= mv_ap_base(ap
);
948 struct mv_port_priv
*pp
= ap
->private_data
;
950 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
952 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
953 mv_wait_for_edma_empty_idle(ap
);
954 if (mv_stop_edma_engine(port_mmio
)) {
955 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
962 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
965 for (b
= 0; b
< bytes
; ) {
966 DPRINTK("%p: ", start
+ b
);
967 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
968 printk("%08x ", readl(start
+ b
));
976 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
981 for (b
= 0; b
< bytes
; ) {
982 DPRINTK("%02x: ", b
);
983 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
984 (void) pci_read_config_dword(pdev
, b
, &dw
);
992 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
993 struct pci_dev
*pdev
)
996 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
997 port
>> MV_PORT_HC_SHIFT
);
998 void __iomem
*port_base
;
999 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1002 start_hc
= start_port
= 0;
1003 num_ports
= 8; /* shld be benign for 4 port devs */
1006 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1008 num_ports
= num_hcs
= 1;
1010 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1011 num_ports
> 1 ? num_ports
- 1 : start_port
);
1014 DPRINTK("PCI config space regs:\n");
1015 mv_dump_pci_cfg(pdev
, 0x68);
1017 DPRINTK("PCI regs:\n");
1018 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1019 mv_dump_mem(mmio_base
+0xd00, 0x34);
1020 mv_dump_mem(mmio_base
+0xf00, 0x4);
1021 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1022 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1023 hc_base
= mv_hc_base(mmio_base
, hc
);
1024 DPRINTK("HC regs (HC %i):\n", hc
);
1025 mv_dump_mem(hc_base
, 0x1c);
1027 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1028 port_base
= mv_port_base(mmio_base
, p
);
1029 DPRINTK("EDMA regs (port %i):\n", p
);
1030 mv_dump_mem(port_base
, 0x54);
1031 DPRINTK("SATA regs (port %i):\n", p
);
1032 mv_dump_mem(port_base
+0x300, 0x60);
1037 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1041 switch (sc_reg_in
) {
1045 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1048 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1057 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
1059 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1061 if (ofs
!= 0xffffffffU
) {
1062 *val
= readl(mv_ap_base(ap
) + ofs
);
1068 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1070 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1072 if (ofs
!= 0xffffffffU
) {
1073 writelfl(val
, mv_ap_base(ap
) + ofs
);
1079 static void mv6_dev_config(struct ata_device
*adev
)
1082 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1084 * Gen-II does not support NCQ over a port multiplier
1085 * (no FIS-based switching).
1087 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1088 * See mv_qc_prep() for more info.
1090 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1091 if (sata_pmp_attached(adev
->link
->ap
)) {
1092 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1093 ata_dev_printk(adev
, KERN_INFO
,
1094 "NCQ disabled for command-based switching\n");
1095 } else if (adev
->max_sectors
> GEN_II_NCQ_MAX_SECTORS
) {
1096 adev
->max_sectors
= GEN_II_NCQ_MAX_SECTORS
;
1097 ata_dev_printk(adev
, KERN_INFO
,
1098 "max_sectors limited to %u for NCQ\n",
1104 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1106 struct ata_link
*link
= qc
->dev
->link
;
1107 struct ata_port
*ap
= link
->ap
;
1108 struct mv_port_priv
*pp
= ap
->private_data
;
1111 * Don't allow new commands if we're in a delayed EH state
1112 * for NCQ and/or FIS-based switching.
1114 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1115 return ATA_DEFER_PORT
;
1117 * If the port is completely idle, then allow the new qc.
1119 if (ap
->nr_active_links
== 0)
1122 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1124 * The port is operating in host queuing mode (EDMA).
1125 * It can accomodate a new qc if the qc protocol
1126 * is compatible with the current host queue mode.
1128 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1130 * The host queue (EDMA) is in NCQ mode.
1131 * If the new qc is also an NCQ command,
1132 * then allow the new qc.
1134 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
1138 * The host queue (EDMA) is in non-NCQ, DMA mode.
1139 * If the new qc is also a non-NCQ, DMA command,
1140 * then allow the new qc.
1142 if (qc
->tf
.protocol
== ATA_PROT_DMA
)
1146 return ATA_DEFER_PORT
;
1149 static void mv_config_fbs(void __iomem
*port_mmio
, int want_ncq
, int want_fbs
)
1151 u32 new_fiscfg
, old_fiscfg
;
1152 u32 new_ltmode
, old_ltmode
;
1153 u32 new_haltcond
, old_haltcond
;
1155 old_fiscfg
= readl(port_mmio
+ FISCFG_OFS
);
1156 old_ltmode
= readl(port_mmio
+ LTMODE_OFS
);
1157 old_haltcond
= readl(port_mmio
+ EDMA_HALTCOND_OFS
);
1159 new_fiscfg
= old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1160 new_ltmode
= old_ltmode
& ~LTMODE_BIT8
;
1161 new_haltcond
= old_haltcond
| EDMA_ERR_DEV
;
1164 new_fiscfg
= old_fiscfg
| FISCFG_SINGLE_SYNC
;
1165 new_ltmode
= old_ltmode
| LTMODE_BIT8
;
1167 new_haltcond
&= ~EDMA_ERR_DEV
;
1169 new_fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1172 if (new_fiscfg
!= old_fiscfg
)
1173 writelfl(new_fiscfg
, port_mmio
+ FISCFG_OFS
);
1174 if (new_ltmode
!= old_ltmode
)
1175 writelfl(new_ltmode
, port_mmio
+ LTMODE_OFS
);
1176 if (new_haltcond
!= old_haltcond
)
1177 writelfl(new_haltcond
, port_mmio
+ EDMA_HALTCOND_OFS
);
1180 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1182 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1185 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1186 old
= readl(hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1188 new = old
| (1 << 22);
1190 new = old
& ~(1 << 22);
1192 writel(new, hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1195 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
)
1198 struct mv_port_priv
*pp
= ap
->private_data
;
1199 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1200 void __iomem
*port_mmio
= mv_ap_base(ap
);
1202 /* set up non-NCQ EDMA configuration */
1203 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1204 pp
->pp_flags
&= ~MV_PP_FLAG_FBS_EN
;
1206 if (IS_GEN_I(hpriv
))
1207 cfg
|= (1 << 8); /* enab config burst size mask */
1209 else if (IS_GEN_II(hpriv
)) {
1210 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1211 mv_60x1_errata_sata25(ap
, want_ncq
);
1213 } else if (IS_GEN_IIE(hpriv
)) {
1214 int want_fbs
= sata_pmp_attached(ap
);
1216 * Possible future enhancement:
1218 * The chip can use FBS with non-NCQ, if we allow it,
1219 * But first we need to have the error handling in place
1220 * for this mode (datasheet section 7.3.15.4.2.3).
1221 * So disallow non-NCQ FBS for now.
1223 want_fbs
&= want_ncq
;
1225 mv_config_fbs(port_mmio
, want_ncq
, want_fbs
);
1228 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1229 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1232 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1233 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1234 if (HAS_PCI(ap
->host
))
1235 cfg
|= (1 << 18); /* enab early completion */
1236 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1237 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1241 cfg
|= EDMA_CFG_NCQ
;
1242 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1244 pp
->pp_flags
&= ~MV_PP_FLAG_NCQ_EN
;
1246 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1249 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1251 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1252 struct mv_port_priv
*pp
= ap
->private_data
;
1256 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1260 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1264 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1265 * For later hardware, we have one unique sg_tbl per NCQ tag.
1267 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1268 if (pp
->sg_tbl
[tag
]) {
1269 if (tag
== 0 || !IS_GEN_I(hpriv
))
1270 dma_pool_free(hpriv
->sg_tbl_pool
,
1272 pp
->sg_tbl_dma
[tag
]);
1273 pp
->sg_tbl
[tag
] = NULL
;
1279 * mv_port_start - Port specific init/start routine.
1280 * @ap: ATA channel to manipulate
1282 * Allocate and point to DMA memory, init port private memory,
1286 * Inherited from caller.
1288 static int mv_port_start(struct ata_port
*ap
)
1290 struct device
*dev
= ap
->host
->dev
;
1291 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1292 struct mv_port_priv
*pp
;
1295 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1298 ap
->private_data
= pp
;
1300 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1303 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1305 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1307 goto out_port_free_dma_mem
;
1308 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1311 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1312 * For later hardware, we need one unique sg_tbl per NCQ tag.
1314 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1315 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1316 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1317 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1318 if (!pp
->sg_tbl
[tag
])
1319 goto out_port_free_dma_mem
;
1321 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1322 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1327 out_port_free_dma_mem
:
1328 mv_port_free_dma_mem(ap
);
1333 * mv_port_stop - Port specific cleanup/stop routine.
1334 * @ap: ATA channel to manipulate
1336 * Stop DMA, cleanup port memory.
1339 * This routine uses the host lock to protect the DMA stop.
1341 static void mv_port_stop(struct ata_port
*ap
)
1344 mv_port_free_dma_mem(ap
);
1348 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1349 * @qc: queued command whose SG list to source from
1351 * Populate the SG list and mark the last entry.
1354 * Inherited from caller.
1356 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1358 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1359 struct scatterlist
*sg
;
1360 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1363 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1364 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1365 dma_addr_t addr
= sg_dma_address(sg
);
1366 u32 sg_len
= sg_dma_len(sg
);
1369 u32 offset
= addr
& 0xffff;
1372 if ((offset
+ sg_len
> 0x10000))
1373 len
= 0x10000 - offset
;
1375 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1376 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1377 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1387 if (likely(last_sg
))
1388 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1391 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1393 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1394 (last
? CRQB_CMD_LAST
: 0);
1395 *cmdw
= cpu_to_le16(tmp
);
1399 * mv_qc_prep - Host specific command preparation.
1400 * @qc: queued command to prepare
1402 * This routine simply redirects to the general purpose routine
1403 * if command is not DMA. Else, it handles prep of the CRQB
1404 * (command request block), does some sanity checking, and calls
1405 * the SG load routine.
1408 * Inherited from caller.
1410 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1412 struct ata_port
*ap
= qc
->ap
;
1413 struct mv_port_priv
*pp
= ap
->private_data
;
1415 struct ata_taskfile
*tf
;
1419 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1420 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1423 /* Fill in command request block
1425 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1426 flags
|= CRQB_FLAG_READ
;
1427 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1428 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1429 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1431 /* get current queue index from software */
1432 in_index
= pp
->req_idx
;
1434 pp
->crqb
[in_index
].sg_addr
=
1435 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1436 pp
->crqb
[in_index
].sg_addr_hi
=
1437 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1438 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1440 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1443 /* Sadly, the CRQB cannot accomodate all registers--there are
1444 * only 11 bytes...so we must pick and choose required
1445 * registers based on the command. So, we drop feature and
1446 * hob_feature for [RW] DMA commands, but they are needed for
1447 * NCQ. NCQ will drop hob_nsect.
1449 switch (tf
->command
) {
1451 case ATA_CMD_READ_EXT
:
1453 case ATA_CMD_WRITE_EXT
:
1454 case ATA_CMD_WRITE_FUA_EXT
:
1455 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1457 case ATA_CMD_FPDMA_READ
:
1458 case ATA_CMD_FPDMA_WRITE
:
1459 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1460 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1463 /* The only other commands EDMA supports in non-queued and
1464 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1465 * of which are defined/used by Linux. If we get here, this
1466 * driver needs work.
1468 * FIXME: modify libata to give qc_prep a return value and
1469 * return error here.
1471 BUG_ON(tf
->command
);
1474 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1475 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1476 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1477 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1478 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1479 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1480 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1481 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1482 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1484 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1490 * mv_qc_prep_iie - Host specific command preparation.
1491 * @qc: queued command to prepare
1493 * This routine simply redirects to the general purpose routine
1494 * if command is not DMA. Else, it handles prep of the CRQB
1495 * (command request block), does some sanity checking, and calls
1496 * the SG load routine.
1499 * Inherited from caller.
1501 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1503 struct ata_port
*ap
= qc
->ap
;
1504 struct mv_port_priv
*pp
= ap
->private_data
;
1505 struct mv_crqb_iie
*crqb
;
1506 struct ata_taskfile
*tf
;
1510 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1511 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1514 /* Fill in Gen IIE command request block */
1515 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1516 flags
|= CRQB_FLAG_READ
;
1518 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1519 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1520 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1521 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1523 /* get current queue index from software */
1524 in_index
= pp
->req_idx
;
1526 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1527 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1528 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1529 crqb
->flags
= cpu_to_le32(flags
);
1532 crqb
->ata_cmd
[0] = cpu_to_le32(
1533 (tf
->command
<< 16) |
1536 crqb
->ata_cmd
[1] = cpu_to_le32(
1542 crqb
->ata_cmd
[2] = cpu_to_le32(
1543 (tf
->hob_lbal
<< 0) |
1544 (tf
->hob_lbam
<< 8) |
1545 (tf
->hob_lbah
<< 16) |
1546 (tf
->hob_feature
<< 24)
1548 crqb
->ata_cmd
[3] = cpu_to_le32(
1550 (tf
->hob_nsect
<< 8)
1553 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1559 * mv_qc_issue - Initiate a command to the host
1560 * @qc: queued command to start
1562 * This routine simply redirects to the general purpose routine
1563 * if command is not DMA. Else, it sanity checks our local
1564 * caches of the request producer/consumer indices then enables
1565 * DMA and bumps the request producer index.
1568 * Inherited from caller.
1570 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1572 struct ata_port
*ap
= qc
->ap
;
1573 void __iomem
*port_mmio
= mv_ap_base(ap
);
1574 struct mv_port_priv
*pp
= ap
->private_data
;
1577 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1578 (qc
->tf
.protocol
!= ATA_PROT_NCQ
)) {
1580 * We're about to send a non-EDMA capable command to the
1581 * port. Turn off EDMA so there won't be problems accessing
1582 * shadow block, etc registers.
1585 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
1586 return ata_sff_qc_issue(qc
);
1589 mv_start_dma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
1591 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1592 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1594 /* and write the request in pointer to kick the EDMA to life */
1595 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
1596 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1601 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
1603 struct mv_port_priv
*pp
= ap
->private_data
;
1604 struct ata_queued_cmd
*qc
;
1606 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1608 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1609 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1614 static void mv_pmp_error_handler(struct ata_port
*ap
)
1616 unsigned int pmp
, pmp_map
;
1617 struct mv_port_priv
*pp
= ap
->private_data
;
1619 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
1621 * Perform NCQ error analysis on failed PMPs
1622 * before we freeze the port entirely.
1624 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1626 pmp_map
= pp
->delayed_eh_pmp_map
;
1627 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
1628 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1629 unsigned int this_pmp
= (1 << pmp
);
1630 if (pmp_map
& this_pmp
) {
1631 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1632 pmp_map
&= ~this_pmp
;
1633 ata_eh_analyze_ncq_error(link
);
1636 ata_port_freeze(ap
);
1638 sata_pmp_error_handler(ap
);
1641 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
1643 void __iomem
*port_mmio
= mv_ap_base(ap
);
1645 return readl(port_mmio
+ SATA_TESTCTL_OFS
) >> 16;
1648 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
1650 struct ata_eh_info
*ehi
;
1654 * Initialize EH info for PMPs which saw device errors
1656 ehi
= &ap
->link
.eh_info
;
1657 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1658 unsigned int this_pmp
= (1 << pmp
);
1659 if (pmp_map
& this_pmp
) {
1660 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1662 pmp_map
&= ~this_pmp
;
1663 ehi
= &link
->eh_info
;
1664 ata_ehi_clear_desc(ehi
);
1665 ata_ehi_push_desc(ehi
, "dev err");
1666 ehi
->err_mask
|= AC_ERR_DEV
;
1667 ehi
->action
|= ATA_EH_RESET
;
1668 ata_link_abort(link
);
1673 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
1675 struct mv_port_priv
*pp
= ap
->private_data
;
1677 unsigned int old_map
, new_map
;
1680 * Device error during FBS+NCQ operation:
1682 * Set a port flag to prevent further I/O being enqueued.
1683 * Leave the EDMA running to drain outstanding commands from this port.
1684 * Perform the post-mortem/EH only when all responses are complete.
1685 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1687 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
1688 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
1689 pp
->delayed_eh_pmp_map
= 0;
1691 old_map
= pp
->delayed_eh_pmp_map
;
1692 new_map
= old_map
| mv_get_err_pmp_map(ap
);
1694 if (old_map
!= new_map
) {
1695 pp
->delayed_eh_pmp_map
= new_map
;
1696 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
1698 failed_links
= hweight16(new_map
);
1700 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
1701 "failed_links=%d nr_active_links=%d\n",
1702 __func__
, pp
->delayed_eh_pmp_map
,
1703 ap
->qc_active
, failed_links
,
1704 ap
->nr_active_links
);
1706 if (ap
->nr_active_links
<= failed_links
) {
1707 mv_process_crpb_entries(ap
, pp
);
1710 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
1711 return 1; /* handled */
1713 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
1714 return 1; /* handled */
1717 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
1720 * Possible future enhancement:
1722 * FBS+non-NCQ operation is not yet implemented.
1723 * See related notes in mv_edma_cfg().
1725 * Device error during FBS+non-NCQ operation:
1727 * We need to snapshot the shadow registers for each failed command.
1728 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1730 return 0; /* not handled */
1733 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
1735 struct mv_port_priv
*pp
= ap
->private_data
;
1737 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1738 return 0; /* EDMA was not active: not handled */
1739 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
1740 return 0; /* FBS was not active: not handled */
1742 if (!(edma_err_cause
& EDMA_ERR_DEV
))
1743 return 0; /* non DEV error: not handled */
1744 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
1745 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
1746 return 0; /* other problems: not handled */
1748 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1750 * EDMA should NOT have self-disabled for this case.
1751 * If it did, then something is wrong elsewhere,
1752 * and we cannot handle it here.
1754 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1755 ata_port_printk(ap
, KERN_WARNING
,
1756 "%s: err_cause=0x%x pp_flags=0x%x\n",
1757 __func__
, edma_err_cause
, pp
->pp_flags
);
1758 return 0; /* not handled */
1760 return mv_handle_fbs_ncq_dev_err(ap
);
1763 * EDMA should have self-disabled for this case.
1764 * If it did not, then something is wrong elsewhere,
1765 * and we cannot handle it here.
1767 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
1768 ata_port_printk(ap
, KERN_WARNING
,
1769 "%s: err_cause=0x%x pp_flags=0x%x\n",
1770 __func__
, edma_err_cause
, pp
->pp_flags
);
1771 return 0; /* not handled */
1773 return mv_handle_fbs_non_ncq_dev_err(ap
);
1775 return 0; /* not handled */
1778 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
1780 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1781 char *when
= "idle";
1783 ata_ehi_clear_desc(ehi
);
1784 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
1786 } else if (edma_was_enabled
) {
1787 when
= "EDMA enabled";
1789 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1790 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1793 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
1794 ehi
->err_mask
|= AC_ERR_OTHER
;
1795 ehi
->action
|= ATA_EH_RESET
;
1796 ata_port_freeze(ap
);
1800 * mv_err_intr - Handle error interrupts on the port
1801 * @ap: ATA channel to manipulate
1802 * @qc: affected command (non-NCQ), or NULL
1804 * Most cases require a full reset of the chip's state machine,
1805 * which also performs a COMRESET.
1806 * Also, if the port disabled DMA, update our cached copy to match.
1809 * Inherited from caller.
1811 static void mv_err_intr(struct ata_port
*ap
)
1813 void __iomem
*port_mmio
= mv_ap_base(ap
);
1814 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
1815 struct mv_port_priv
*pp
= ap
->private_data
;
1816 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1817 unsigned int action
= 0, err_mask
= 0;
1818 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1819 struct ata_queued_cmd
*qc
;
1823 * Read and clear the SError and err_cause bits.
1825 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
1826 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
1828 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1829 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1831 ata_port_printk(ap
, KERN_INFO
, "%s: err_cause=%08x pp_flags=0x%x\n",
1832 __func__
, edma_err_cause
, pp
->pp_flags
);
1834 if (edma_err_cause
& EDMA_ERR_DEV
) {
1836 * Device errors during FIS-based switching operation
1837 * require special handling.
1839 if (mv_handle_dev_err(ap
, edma_err_cause
))
1843 qc
= mv_get_active_qc(ap
);
1844 ata_ehi_clear_desc(ehi
);
1845 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
1846 edma_err_cause
, pp
->pp_flags
);
1848 * All generations share these EDMA error cause bits:
1850 if (edma_err_cause
& EDMA_ERR_DEV
) {
1851 err_mask
|= AC_ERR_DEV
;
1852 action
|= ATA_EH_RESET
;
1853 ata_ehi_push_desc(ehi
, "dev error");
1855 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
1856 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
1857 EDMA_ERR_INTRL_PAR
)) {
1858 err_mask
|= AC_ERR_ATA_BUS
;
1859 action
|= ATA_EH_RESET
;
1860 ata_ehi_push_desc(ehi
, "parity error");
1862 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
1863 ata_ehi_hotplugged(ehi
);
1864 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
1865 "dev disconnect" : "dev connect");
1866 action
|= ATA_EH_RESET
;
1870 * Gen-I has a different SELF_DIS bit,
1871 * different FREEZE bits, and no SERR bit:
1873 if (IS_GEN_I(hpriv
)) {
1874 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
1875 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
1876 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1877 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1880 eh_freeze_mask
= EDMA_EH_FREEZE
;
1881 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1882 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1883 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1885 if (edma_err_cause
& EDMA_ERR_SERR
) {
1886 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
1887 err_mask
|= AC_ERR_ATA_BUS
;
1888 action
|= ATA_EH_RESET
;
1893 err_mask
= AC_ERR_OTHER
;
1894 action
|= ATA_EH_RESET
;
1897 ehi
->serror
|= serr
;
1898 ehi
->action
|= action
;
1901 qc
->err_mask
|= err_mask
;
1903 ehi
->err_mask
|= err_mask
;
1905 if (err_mask
== AC_ERR_DEV
) {
1907 * Cannot do ata_port_freeze() here,
1908 * because it would kill PIO access,
1909 * which is needed for further diagnosis.
1913 } else if (edma_err_cause
& eh_freeze_mask
) {
1915 * Note to self: ata_port_freeze() calls ata_port_abort()
1917 ata_port_freeze(ap
);
1924 ata_link_abort(qc
->dev
->link
);
1930 static void mv_process_crpb_response(struct ata_port
*ap
,
1931 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
1933 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
1937 u16 edma_status
= le16_to_cpu(response
->flags
);
1939 * edma_status from a response queue entry:
1940 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1941 * MSB is saved ATA status from command completion.
1944 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
1947 * Error will be seen/handled by mv_err_intr().
1948 * So do nothing at all here.
1953 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
1954 if (!ac_err_mask(ata_status
))
1955 ata_qc_complete(qc
);
1956 /* else: leave it for mv_err_intr() */
1958 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
1963 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
1965 void __iomem
*port_mmio
= mv_ap_base(ap
);
1966 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1968 bool work_done
= false;
1969 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
1971 /* Get the hardware queue position index */
1972 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
1973 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1975 /* Process new responses from since the last time we looked */
1976 while (in_index
!= pp
->resp_idx
) {
1978 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
1980 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1982 if (IS_GEN_I(hpriv
)) {
1983 /* 50xx: no NCQ, only one command active at a time */
1984 tag
= ap
->link
.active_tag
;
1986 /* Gen II/IIE: get command tag from CRPB entry */
1987 tag
= le16_to_cpu(response
->id
) & 0x1f;
1989 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
1993 /* Update the software queue position index in hardware */
1995 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
1996 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
1997 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
2000 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2002 struct mv_port_priv
*pp
;
2003 int edma_was_enabled
;
2005 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2006 mv_unexpected_intr(ap
, 0);
2010 * Grab a snapshot of the EDMA_EN flag setting,
2011 * so that we have a consistent view for this port,
2012 * even if something we call of our routines changes it.
2014 pp
= ap
->private_data
;
2015 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2017 * Process completed CRPB response(s) before other events.
2019 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2020 mv_process_crpb_entries(ap
, pp
);
2021 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2022 mv_handle_fbs_ncq_dev_err(ap
);
2025 * Handle chip-reported errors, or continue on to handle PIO.
2027 if (unlikely(port_cause
& ERR_IRQ
)) {
2029 } else if (!edma_was_enabled
) {
2030 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2032 ata_sff_host_intr(ap
, qc
);
2034 mv_unexpected_intr(ap
, edma_was_enabled
);
2039 * mv_host_intr - Handle all interrupts on the given host controller
2040 * @host: host specific structure
2041 * @main_irq_cause: Main interrupt cause register for the chip.
2044 * Inherited from caller.
2046 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2048 struct mv_host_priv
*hpriv
= host
->private_data
;
2049 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2050 unsigned int handled
= 0, port
;
2052 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2053 struct ata_port
*ap
= host
->ports
[port
];
2054 unsigned int p
, shift
, hardport
, port_cause
;
2056 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2058 * Each hc within the host has its own hc_irq_cause register,
2059 * where the interrupting ports bits get ack'd.
2061 if (hardport
== 0) { /* first port on this hc ? */
2062 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2063 u32 port_mask
, ack_irqs
;
2065 * Skip this entire hc if nothing pending for any ports
2068 port
+= MV_PORTS_PER_HC
- 1;
2072 * We don't need/want to read the hc_irq_cause register,
2073 * because doing so hurts performance, and
2074 * main_irq_cause already gives us everything we need.
2076 * But we do have to *write* to the hc_irq_cause to ack
2077 * the ports that we are handling this time through.
2079 * This requires that we create a bitmap for those
2080 * ports which interrupted us, and use that bitmap
2081 * to ack (only) those ports via hc_irq_cause.
2084 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2085 if ((port
+ p
) >= hpriv
->n_ports
)
2087 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2088 if (hc_cause
& port_mask
)
2089 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2091 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2092 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2096 * Handle interrupts signalled for this port:
2098 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2100 mv_port_intr(ap
, port_cause
);
2105 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2107 struct mv_host_priv
*hpriv
= host
->private_data
;
2108 struct ata_port
*ap
;
2109 struct ata_queued_cmd
*qc
;
2110 struct ata_eh_info
*ehi
;
2111 unsigned int i
, err_mask
, printed
= 0;
2114 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
2116 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2119 DPRINTK("All regs @ PCI error\n");
2120 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2122 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2124 for (i
= 0; i
< host
->n_ports
; i
++) {
2125 ap
= host
->ports
[i
];
2126 if (!ata_link_offline(&ap
->link
)) {
2127 ehi
= &ap
->link
.eh_info
;
2128 ata_ehi_clear_desc(ehi
);
2130 ata_ehi_push_desc(ehi
,
2131 "PCI err cause 0x%08x", err_cause
);
2132 err_mask
= AC_ERR_HOST_BUS
;
2133 ehi
->action
= ATA_EH_RESET
;
2134 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2136 qc
->err_mask
|= err_mask
;
2138 ehi
->err_mask
|= err_mask
;
2140 ata_port_freeze(ap
);
2143 return 1; /* handled */
2147 * mv_interrupt - Main interrupt event handler
2149 * @dev_instance: private data; in this case the host structure
2151 * Read the read only register to determine if any host
2152 * controllers have pending interrupts. If so, call lower level
2153 * routine to handle. Also check for PCI errors which are only
2157 * This routine holds the host lock while processing pending
2160 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2162 struct ata_host
*host
= dev_instance
;
2163 struct mv_host_priv
*hpriv
= host
->private_data
;
2164 unsigned int handled
= 0;
2165 u32 main_irq_cause
, main_irq_mask
;
2167 spin_lock(&host
->lock
);
2168 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2169 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
2171 * Deal with cases where we either have nothing pending, or have read
2172 * a bogus register value which can indicate HW removal or PCI fault.
2174 if ((main_irq_cause
& main_irq_mask
) && (main_irq_cause
!= 0xffffffffU
)) {
2175 if (unlikely((main_irq_cause
& PCI_ERR
) && HAS_PCI(host
)))
2176 handled
= mv_pci_error(host
, hpriv
->base
);
2178 handled
= mv_host_intr(host
, main_irq_cause
);
2180 spin_unlock(&host
->lock
);
2181 return IRQ_RETVAL(handled
);
2184 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2188 switch (sc_reg_in
) {
2192 ofs
= sc_reg_in
* sizeof(u32
);
2201 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
2203 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2204 void __iomem
*mmio
= hpriv
->base
;
2205 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
2206 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2208 if (ofs
!= 0xffffffffU
) {
2209 *val
= readl(addr
+ ofs
);
2215 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
2217 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2218 void __iomem
*mmio
= hpriv
->base
;
2219 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
2220 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2222 if (ofs
!= 0xffffffffU
) {
2223 writelfl(val
, addr
+ ofs
);
2229 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2231 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2234 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
2237 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2239 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2242 mv_reset_pci_bus(host
, mmio
);
2245 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2247 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL_OFS
);
2250 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2253 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
2256 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2258 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
2259 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
2262 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2266 writel(0, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2268 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2270 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2272 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2275 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2278 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
2279 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2281 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
2284 tmp
= readl(phy_mmio
+ MV5_LTMODE_OFS
);
2286 writel(tmp
, phy_mmio
+ MV5_LTMODE_OFS
);
2288 tmp
= readl(phy_mmio
+ MV5_PHY_CTL_OFS
);
2291 writel(tmp
, phy_mmio
+ MV5_PHY_CTL_OFS
);
2294 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2296 tmp
|= hpriv
->signal
[port
].pre
;
2297 tmp
|= hpriv
->signal
[port
].amps
;
2298 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
2303 #define ZERO(reg) writel(0, port_mmio + (reg))
2304 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2307 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2309 mv_reset_channel(hpriv
, mmio
, port
);
2311 ZERO(0x028); /* command */
2312 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
2313 ZERO(0x004); /* timer */
2314 ZERO(0x008); /* irq err cause */
2315 ZERO(0x00c); /* irq err mask */
2316 ZERO(0x010); /* rq bah */
2317 ZERO(0x014); /* rq inp */
2318 ZERO(0x018); /* rq outp */
2319 ZERO(0x01c); /* respq bah */
2320 ZERO(0x024); /* respq outp */
2321 ZERO(0x020); /* respq inp */
2322 ZERO(0x02c); /* test control */
2323 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2327 #define ZERO(reg) writel(0, hc_mmio + (reg))
2328 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2331 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2339 tmp
= readl(hc_mmio
+ 0x20);
2342 writel(tmp
, hc_mmio
+ 0x20);
2346 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2349 unsigned int hc
, port
;
2351 for (hc
= 0; hc
< n_hc
; hc
++) {
2352 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
2353 mv5_reset_hc_port(hpriv
, mmio
,
2354 (hc
* MV_PORTS_PER_HC
) + port
);
2356 mv5_reset_one_hc(hpriv
, mmio
, hc
);
2363 #define ZERO(reg) writel(0, mmio + (reg))
2364 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
2366 struct mv_host_priv
*hpriv
= host
->private_data
;
2369 tmp
= readl(mmio
+ MV_PCI_MODE_OFS
);
2371 writel(tmp
, mmio
+ MV_PCI_MODE_OFS
);
2373 ZERO(MV_PCI_DISC_TIMER
);
2374 ZERO(MV_PCI_MSI_TRIGGER
);
2375 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT_OFS
);
2376 ZERO(PCI_HC_MAIN_IRQ_MASK_OFS
);
2377 ZERO(MV_PCI_SERR_MASK
);
2378 ZERO(hpriv
->irq_cause_ofs
);
2379 ZERO(hpriv
->irq_mask_ofs
);
2380 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
2381 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
2382 ZERO(MV_PCI_ERR_ATTRIBUTE
);
2383 ZERO(MV_PCI_ERR_COMMAND
);
2387 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2391 mv5_reset_flash(hpriv
, mmio
);
2393 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL_OFS
);
2395 tmp
|= (1 << 5) | (1 << 6);
2396 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2400 * mv6_reset_hc - Perform the 6xxx global soft reset
2401 * @mmio: base address of the HBA
2403 * This routine only applies to 6xxx parts.
2406 * Inherited from caller.
2408 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2411 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
2415 /* Following procedure defined in PCI "main command and status
2419 writel(t
| STOP_PCI_MASTER
, reg
);
2421 for (i
= 0; i
< 1000; i
++) {
2424 if (PCI_MASTER_EMPTY
& t
)
2427 if (!(PCI_MASTER_EMPTY
& t
)) {
2428 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
2436 writel(t
| GLOB_SFT_RST
, reg
);
2439 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
2441 if (!(GLOB_SFT_RST
& t
)) {
2442 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
2447 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2450 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
2453 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
2455 if (GLOB_SFT_RST
& t
) {
2456 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
2463 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2466 void __iomem
*port_mmio
;
2469 tmp
= readl(mmio
+ MV_RESET_CFG_OFS
);
2470 if ((tmp
& (1 << 0)) == 0) {
2471 hpriv
->signal
[idx
].amps
= 0x7 << 8;
2472 hpriv
->signal
[idx
].pre
= 0x1 << 5;
2476 port_mmio
= mv_port_base(mmio
, idx
);
2477 tmp
= readl(port_mmio
+ PHY_MODE2
);
2479 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2480 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2483 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2485 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2488 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2491 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2493 u32 hp_flags
= hpriv
->hp_flags
;
2495 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2497 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2500 if (fix_phy_mode2
) {
2501 m2
= readl(port_mmio
+ PHY_MODE2
);
2504 writel(m2
, port_mmio
+ PHY_MODE2
);
2508 m2
= readl(port_mmio
+ PHY_MODE2
);
2509 m2
&= ~((1 << 16) | (1 << 31));
2510 writel(m2
, port_mmio
+ PHY_MODE2
);
2515 /* who knows what this magic does */
2516 tmp
= readl(port_mmio
+ PHY_MODE3
);
2519 writel(tmp
, port_mmio
+ PHY_MODE3
);
2521 if (fix_phy_mode4
) {
2524 m4
= readl(port_mmio
+ PHY_MODE4
);
2526 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
2527 tmp
= readl(port_mmio
+ PHY_MODE3
);
2529 /* workaround for errata FEr SATA#10 (part 1) */
2530 m4
= (m4
& ~(1 << 1)) | (1 << 0);
2532 writel(m4
, port_mmio
+ PHY_MODE4
);
2534 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
2535 writel(tmp
, port_mmio
+ PHY_MODE3
);
2538 /* Revert values of pre-emphasis and signal amps to the saved ones */
2539 m2
= readl(port_mmio
+ PHY_MODE2
);
2541 m2
&= ~MV_M2_PREAMP_MASK
;
2542 m2
|= hpriv
->signal
[port
].amps
;
2543 m2
|= hpriv
->signal
[port
].pre
;
2546 /* according to mvSata 3.6.1, some IIE values are fixed */
2547 if (IS_GEN_IIE(hpriv
)) {
2552 writel(m2
, port_mmio
+ PHY_MODE2
);
2555 /* TODO: use the generic LED interface to configure the SATA Presence */
2556 /* & Acitivy LEDs on the board */
2557 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
2563 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2566 void __iomem
*port_mmio
;
2569 port_mmio
= mv_port_base(mmio
, idx
);
2570 tmp
= readl(port_mmio
+ PHY_MODE2
);
2572 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2573 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2577 #define ZERO(reg) writel(0, port_mmio + (reg))
2578 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
2579 void __iomem
*mmio
, unsigned int port
)
2581 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2583 mv_reset_channel(hpriv
, mmio
, port
);
2585 ZERO(0x028); /* command */
2586 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
2587 ZERO(0x004); /* timer */
2588 ZERO(0x008); /* irq err cause */
2589 ZERO(0x00c); /* irq err mask */
2590 ZERO(0x010); /* rq bah */
2591 ZERO(0x014); /* rq inp */
2592 ZERO(0x018); /* rq outp */
2593 ZERO(0x01c); /* respq bah */
2594 ZERO(0x024); /* respq outp */
2595 ZERO(0x020); /* respq inp */
2596 ZERO(0x02c); /* test control */
2597 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2602 #define ZERO(reg) writel(0, hc_mmio + (reg))
2603 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
2606 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
2616 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
2617 void __iomem
*mmio
, unsigned int n_hc
)
2621 for (port
= 0; port
< hpriv
->n_ports
; port
++)
2622 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
2624 mv_soc_reset_one_hc(hpriv
, mmio
);
2629 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
2635 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2640 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
2642 u32 ifcfg
= readl(port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2644 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
2646 ifcfg
|= (1 << 7); /* enable gen2i speed */
2647 writelfl(ifcfg
, port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2650 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2651 unsigned int port_no
)
2653 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
2656 * The datasheet warns against setting EDMA_RESET when EDMA is active
2657 * (but doesn't say what the problem might be). So we first try
2658 * to disable the EDMA engine before doing the EDMA_RESET operation.
2660 mv_stop_edma_engine(port_mmio
);
2661 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2663 if (!IS_GEN_I(hpriv
)) {
2664 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2665 mv_setup_ifcfg(port_mmio
, 1);
2668 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2669 * link, and physical layers. It resets all SATA interface registers
2670 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2672 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2673 udelay(25); /* allow reset propagation */
2674 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
2676 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
2678 if (IS_GEN_I(hpriv
))
2682 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
2684 if (sata_pmp_supported(ap
)) {
2685 void __iomem
*port_mmio
= mv_ap_base(ap
);
2686 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2687 int old
= reg
& 0xf;
2690 reg
= (reg
& ~0xf) | pmp
;
2691 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
2696 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
2697 unsigned long deadline
)
2699 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2700 return sata_std_hardreset(link
, class, deadline
);
2703 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
2704 unsigned long deadline
)
2706 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2707 return ata_sff_softreset(link
, class, deadline
);
2710 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
2711 unsigned long deadline
)
2713 struct ata_port
*ap
= link
->ap
;
2714 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2715 struct mv_port_priv
*pp
= ap
->private_data
;
2716 void __iomem
*mmio
= hpriv
->base
;
2717 int rc
, attempts
= 0, extra
= 0;
2721 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
2722 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2724 /* Workaround for errata FEr SATA#10 (part 2) */
2726 const unsigned long *timing
=
2727 sata_ehc_deb_timing(&link
->eh_context
);
2729 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
2733 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2734 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
2735 /* Force 1.5gb/s link speed and try again */
2736 mv_setup_ifcfg(mv_ap_base(ap
), 0);
2737 if (time_after(jiffies
+ HZ
, deadline
))
2738 extra
= HZ
; /* only extend it once, max */
2740 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
2745 static void mv_eh_freeze(struct ata_port
*ap
)
2747 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2748 unsigned int shift
, hardport
, port
= ap
->port_no
;
2751 /* FIXME: handle coalescing completion events properly */
2754 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2756 /* disable assertion of portN err, done events */
2757 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
2758 main_irq_mask
&= ~((DONE_IRQ
| ERR_IRQ
) << shift
);
2759 writelfl(main_irq_mask
, hpriv
->main_irq_mask_addr
);
2762 static void mv_eh_thaw(struct ata_port
*ap
)
2764 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2765 unsigned int shift
, hardport
, port
= ap
->port_no
;
2766 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
2767 void __iomem
*port_mmio
= mv_ap_base(ap
);
2768 u32 main_irq_mask
, hc_irq_cause
;
2770 /* FIXME: handle coalescing completion events properly */
2772 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2774 /* clear EDMA errors on this port */
2775 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2777 /* clear pending irq events */
2778 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2779 hc_irq_cause
&= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
2780 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2782 /* enable assertion of portN err, done events */
2783 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
2784 main_irq_mask
|= ((DONE_IRQ
| ERR_IRQ
) << shift
);
2785 writelfl(main_irq_mask
, hpriv
->main_irq_mask_addr
);
2789 * mv_port_init - Perform some early initialization on a single port.
2790 * @port: libata data structure storing shadow register addresses
2791 * @port_mmio: base address of the port
2793 * Initialize shadow register mmio addresses, clear outstanding
2794 * interrupts on the port, and unmask interrupts for the future
2795 * start of the port.
2798 * Inherited from caller.
2800 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2802 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2805 /* PIO related setup
2807 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2809 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2810 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2811 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2812 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2813 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2814 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2816 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2817 /* special case: control/altstatus doesn't have ATA_REG_ address */
2818 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2821 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2823 /* Clear any currently outstanding port interrupt conditions */
2824 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2825 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2826 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2828 /* unmask all non-transient EDMA error interrupts */
2829 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2831 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2832 readl(port_mmio
+ EDMA_CFG_OFS
),
2833 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2834 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2837 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
2839 struct mv_host_priv
*hpriv
= host
->private_data
;
2840 void __iomem
*mmio
= hpriv
->base
;
2843 if (!HAS_PCI(host
) || !IS_PCIE(hpriv
))
2844 return 0; /* not PCI-X capable */
2845 reg
= readl(mmio
+ MV_PCI_MODE_OFS
);
2846 if ((reg
& MV_PCI_MODE_MASK
) == 0)
2847 return 0; /* conventional PCI mode */
2848 return 1; /* chip is in PCI-X mode */
2851 static int mv_pci_cut_through_okay(struct ata_host
*host
)
2853 struct mv_host_priv
*hpriv
= host
->private_data
;
2854 void __iomem
*mmio
= hpriv
->base
;
2857 if (!mv_in_pcix_mode(host
)) {
2858 reg
= readl(mmio
+ PCI_COMMAND_OFS
);
2859 if (reg
& PCI_COMMAND_MRDTRIG
)
2860 return 0; /* not okay */
2862 return 1; /* okay */
2865 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
2867 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2868 struct mv_host_priv
*hpriv
= host
->private_data
;
2869 u32 hp_flags
= hpriv
->hp_flags
;
2871 switch (board_idx
) {
2873 hpriv
->ops
= &mv5xxx_ops
;
2874 hp_flags
|= MV_HP_GEN_I
;
2876 switch (pdev
->revision
) {
2878 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2881 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2884 dev_printk(KERN_WARNING
, &pdev
->dev
,
2885 "Applying 50XXB2 workarounds to unknown rev\n");
2886 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2893 hpriv
->ops
= &mv5xxx_ops
;
2894 hp_flags
|= MV_HP_GEN_I
;
2896 switch (pdev
->revision
) {
2898 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2901 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2904 dev_printk(KERN_WARNING
, &pdev
->dev
,
2905 "Applying B2 workarounds to unknown rev\n");
2906 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2913 hpriv
->ops
= &mv6xxx_ops
;
2914 hp_flags
|= MV_HP_GEN_II
;
2916 switch (pdev
->revision
) {
2918 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2921 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2924 dev_printk(KERN_WARNING
, &pdev
->dev
,
2925 "Applying B2 workarounds to unknown rev\n");
2926 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2932 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
2933 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
2934 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
2937 * Highpoint RocketRAID PCIe 23xx series cards:
2939 * Unconfigured drives are treated as "Legacy"
2940 * by the BIOS, and it overwrites sector 8 with
2941 * a "Lgcy" metadata block prior to Linux boot.
2943 * Configured drives (RAID or JBOD) leave sector 8
2944 * alone, but instead overwrite a high numbered
2945 * sector for the RAID metadata. This sector can
2946 * be determined exactly, by truncating the physical
2947 * drive capacity to a nice even GB value.
2949 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2951 * Warn the user, lest they think we're just buggy.
2953 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
2954 " BIOS CORRUPTS DATA on all attached drives,"
2955 " regardless of if/how they are configured."
2957 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
2958 " use sectors 8-9 on \"Legacy\" drives,"
2959 " and avoid the final two gigabytes on"
2960 " all RocketRAID BIOS initialized drives.\n");
2964 hpriv
->ops
= &mv6xxx_ops
;
2965 hp_flags
|= MV_HP_GEN_IIE
;
2966 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
2967 hp_flags
|= MV_HP_CUT_THROUGH
;
2969 switch (pdev
->revision
) {
2971 hp_flags
|= MV_HP_ERRATA_XX42A0
;
2974 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2977 dev_printk(KERN_WARNING
, &pdev
->dev
,
2978 "Applying 60X1C0 workarounds to unknown rev\n");
2979 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2984 hpriv
->ops
= &mv_soc_ops
;
2985 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2989 dev_printk(KERN_ERR
, host
->dev
,
2990 "BUG: invalid board index %u\n", board_idx
);
2994 hpriv
->hp_flags
= hp_flags
;
2995 if (hp_flags
& MV_HP_PCIE
) {
2996 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
2997 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
2998 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3000 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
3001 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
3002 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3009 * mv_init_host - Perform some early initialization of the host.
3010 * @host: ATA host to initialize
3011 * @board_idx: controller index
3013 * If possible, do an early global reset of the host. Then do
3014 * our port init and clear/unmask all/relevant host interrupts.
3017 * Inherited from caller.
3019 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3021 int rc
= 0, n_hc
, port
, hc
;
3022 struct mv_host_priv
*hpriv
= host
->private_data
;
3023 void __iomem
*mmio
= hpriv
->base
;
3025 rc
= mv_chip_id(host
, board_idx
);
3029 if (HAS_PCI(host
)) {
3030 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
3031 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
3033 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
3034 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
3037 /* global interrupt mask: 0 == mask everything */
3038 writel(0, hpriv
->main_irq_mask_addr
);
3040 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3042 for (port
= 0; port
< host
->n_ports
; port
++)
3043 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3045 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3049 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3050 hpriv
->ops
->reset_bus(host
, mmio
);
3051 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3053 for (port
= 0; port
< host
->n_ports
; port
++) {
3054 struct ata_port
*ap
= host
->ports
[port
];
3055 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3057 mv_port_init(&ap
->ioaddr
, port_mmio
);
3060 if (HAS_PCI(host
)) {
3061 unsigned int offset
= port_mmio
- mmio
;
3062 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3063 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3068 for (hc
= 0; hc
< n_hc
; hc
++) {
3069 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3071 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3072 "(before clear)=0x%08x\n", hc
,
3073 readl(hc_mmio
+ HC_CFG_OFS
),
3074 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
3076 /* Clear any currently outstanding hc interrupt conditions */
3077 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3080 if (HAS_PCI(host
)) {
3081 /* Clear any currently outstanding host interrupt conditions */
3082 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
3084 /* and unmask interrupt generation for host regs */
3085 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
3086 if (IS_GEN_I(hpriv
))
3087 writelfl(~HC_MAIN_MASKED_IRQS_5
,
3088 hpriv
->main_irq_mask_addr
);
3090 writelfl(~HC_MAIN_MASKED_IRQS
,
3091 hpriv
->main_irq_mask_addr
);
3093 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
3094 "PCI int cause/mask=0x%08x/0x%08x\n",
3095 readl(hpriv
->main_irq_cause_addr
),
3096 readl(hpriv
->main_irq_mask_addr
),
3097 readl(mmio
+ hpriv
->irq_cause_ofs
),
3098 readl(mmio
+ hpriv
->irq_mask_ofs
));
3100 writelfl(~HC_MAIN_MASKED_IRQS_SOC
,
3101 hpriv
->main_irq_mask_addr
);
3102 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
3103 readl(hpriv
->main_irq_cause_addr
),
3104 readl(hpriv
->main_irq_mask_addr
));
3110 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3112 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3114 if (!hpriv
->crqb_pool
)
3117 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3119 if (!hpriv
->crpb_pool
)
3122 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3124 if (!hpriv
->sg_tbl_pool
)
3130 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3131 struct mbus_dram_target_info
*dram
)
3135 for (i
= 0; i
< 4; i
++) {
3136 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3137 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3140 for (i
= 0; i
< dram
->num_cs
; i
++) {
3141 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3143 writel(((cs
->size
- 1) & 0xffff0000) |
3144 (cs
->mbus_attr
<< 8) |
3145 (dram
->mbus_dram_target_id
<< 4) | 1,
3146 hpriv
->base
+ WINDOW_CTRL(i
));
3147 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3152 * mv_platform_probe - handle a positive probe of an soc Marvell
3154 * @pdev: platform device found
3157 * Inherited from caller.
3159 static int mv_platform_probe(struct platform_device
*pdev
)
3161 static int printed_version
;
3162 const struct mv_sata_platform_data
*mv_platform_data
;
3163 const struct ata_port_info
*ppi
[] =
3164 { &mv_port_info
[chip_soc
], NULL
};
3165 struct ata_host
*host
;
3166 struct mv_host_priv
*hpriv
;
3167 struct resource
*res
;
3170 if (!printed_version
++)
3171 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3174 * Simple resource validation ..
3176 if (unlikely(pdev
->num_resources
!= 2)) {
3177 dev_err(&pdev
->dev
, "invalid number of resources\n");
3182 * Get the register base first
3184 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3189 mv_platform_data
= pdev
->dev
.platform_data
;
3190 n_ports
= mv_platform_data
->n_ports
;
3192 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3193 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3195 if (!host
|| !hpriv
)
3197 host
->private_data
= hpriv
;
3198 hpriv
->n_ports
= n_ports
;
3201 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
3202 res
->end
- res
->start
+ 1);
3203 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
3206 * (Re-)program MBUS remapping windows if we are asked to.
3208 if (mv_platform_data
->dram
!= NULL
)
3209 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
3211 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3215 /* initialize adapter */
3216 rc
= mv_init_host(host
, chip_soc
);
3220 dev_printk(KERN_INFO
, &pdev
->dev
,
3221 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
3224 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
3225 IRQF_SHARED
, &mv6_sht
);
3230 * mv_platform_remove - unplug a platform interface
3231 * @pdev: platform device
3233 * A platform bus SATA device has been unplugged. Perform the needed
3234 * cleanup. Also called on module unload for any active devices.
3236 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
3238 struct device
*dev
= &pdev
->dev
;
3239 struct ata_host
*host
= dev_get_drvdata(dev
);
3241 ata_host_detach(host
);
3245 static struct platform_driver mv_platform_driver
= {
3246 .probe
= mv_platform_probe
,
3247 .remove
= __devexit_p(mv_platform_remove
),
3250 .owner
= THIS_MODULE
,
3256 static int mv_pci_init_one(struct pci_dev
*pdev
,
3257 const struct pci_device_id
*ent
);
3260 static struct pci_driver mv_pci_driver
= {
3262 .id_table
= mv_pci_tbl
,
3263 .probe
= mv_pci_init_one
,
3264 .remove
= ata_pci_remove_one
,
3270 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
3273 /* move to PCI layer or libata core? */
3274 static int pci_go_64(struct pci_dev
*pdev
)
3278 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3279 rc
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3281 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3283 dev_printk(KERN_ERR
, &pdev
->dev
,
3284 "64-bit DMA enable failed\n");
3289 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3291 dev_printk(KERN_ERR
, &pdev
->dev
,
3292 "32-bit DMA enable failed\n");
3295 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3297 dev_printk(KERN_ERR
, &pdev
->dev
,
3298 "32-bit consistent DMA enable failed\n");
3307 * mv_print_info - Dump key info to kernel log for perusal.
3308 * @host: ATA host to print info about
3310 * FIXME: complete this.
3313 * Inherited from caller.
3315 static void mv_print_info(struct ata_host
*host
)
3317 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3318 struct mv_host_priv
*hpriv
= host
->private_data
;
3320 const char *scc_s
, *gen
;
3322 /* Use this to determine the HW stepping of the chip so we know
3323 * what errata to workaround
3325 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
3328 else if (scc
== 0x01)
3333 if (IS_GEN_I(hpriv
))
3335 else if (IS_GEN_II(hpriv
))
3337 else if (IS_GEN_IIE(hpriv
))
3342 dev_printk(KERN_INFO
, &pdev
->dev
,
3343 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3344 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
3345 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
3349 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3350 * @pdev: PCI device found
3351 * @ent: PCI device ID entry for the matched host
3354 * Inherited from caller.
3356 static int mv_pci_init_one(struct pci_dev
*pdev
,
3357 const struct pci_device_id
*ent
)
3359 static int printed_version
;
3360 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
3361 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
3362 struct ata_host
*host
;
3363 struct mv_host_priv
*hpriv
;
3366 if (!printed_version
++)
3367 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3370 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
3372 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3373 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3374 if (!host
|| !hpriv
)
3376 host
->private_data
= hpriv
;
3377 hpriv
->n_ports
= n_ports
;
3379 /* acquire resources */
3380 rc
= pcim_enable_device(pdev
);
3384 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
3386 pcim_pin_device(pdev
);
3389 host
->iomap
= pcim_iomap_table(pdev
);
3390 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
3392 rc
= pci_go_64(pdev
);
3396 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3400 /* initialize adapter */
3401 rc
= mv_init_host(host
, board_idx
);
3405 /* Enable interrupts */
3406 if (msi
&& pci_enable_msi(pdev
))
3409 mv_dump_pci_cfg(pdev
, 0x68);
3410 mv_print_info(host
);
3412 pci_set_master(pdev
);
3413 pci_try_set_mwi(pdev
);
3414 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
3415 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
3419 static int mv_platform_probe(struct platform_device
*pdev
);
3420 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
3422 static int __init
mv_init(void)
3426 rc
= pci_register_driver(&mv_pci_driver
);
3430 rc
= platform_driver_register(&mv_platform_driver
);
3434 pci_unregister_driver(&mv_pci_driver
);
3439 static void __exit
mv_exit(void)
3442 pci_unregister_driver(&mv_pci_driver
);
3444 platform_driver_unregister(&mv_platform_driver
);
3447 MODULE_AUTHOR("Brett Russ");
3448 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3449 MODULE_LICENSE("GPL");
3450 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
3451 MODULE_VERSION(DRV_VERSION
);
3452 MODULE_ALIAS("platform:" DRV_NAME
);
3455 module_param(msi
, int, 0444);
3456 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
3459 module_init(mv_init
);
3460 module_exit(mv_exit
);